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ABSTRACT
When an emergency occurs within a building, it is safer to
send autonomous mobile agents instead of human respon-
ders, to explore the area and identify hazards and victims.
Existing exploration algorithms [11, 4] allow mobile agents
to make distributed navigation decisions by communicat-
ing with nearby fixed sensors embedded in the environment.
These algorithms are very efficient in terms of exploration
time, but they have mainly been evaluated in simulation en-
vironments, where idealized assumptions were made regard-
ing the ability of mobile agents to detect and localize fixed
sensors in their vicinity. To address this problem, recent
work [3] has focused on practical mechanisms for detecting
and localizing sensors, implemented them in a real testbed,
and derived realistic models of localization errors.

The objective of this work is to investigate the impact
of these realistic errors [3] on the performance of the Ants
exploration algorithm [11]. In particular, we simulate the
performance of Ants with and without realistic errors, and
show that introducing small errors can have a significant
effect on the total exploration time.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Autonomous vehicles

General Terms
Design, Measurement, Experimentation
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1. INTRODUCTION
When an emergency occurs within a building, the area

is typically off-limits for anyone not wearing garments to
protect themselves from exposure to hazards. In such ad-
verse conditions, it is safer to deploy a group of autonomous

robots, (mobile agents) to explore the area as fast as possi-
ble. Agents should overcome three important limitations: 1)
lack of location information in indoor environments; 2) lack
of direct connectivity between agents and 3) lack of map
information. In order to address these challenges, recent
work has proposed instrumenting the emergency area with
tiny fixed sensors [11, 4]. By using the instrumented envi-
ronment, mobile agents are able to explore the environment
without map or location information, and to communicate
with each other indirectly by using the sensors to leave and
retrieve messages.

For simplicity, consider an area instrumented with fixed
sensors lying in a grid topology. Wall cells, i.e. cells that
are occupied by some obstacle, are the only ones without
fixed sensors. We assume that a mobile agent is able to
communicate with the fixed sensor on the current cell, as
well as with at most eight fixed sensors in the surrounding
cells. We also assume that the mobile agent is able to detect
hazards and victims within the current cell. Exploration
algorithms that use the above model [11, 4] typically follow
four steps: 1) Sensor localisation: the mobile agent identifies
the fixed sensors lying in the current and eight surrounding
cells; 2) Sensor querying: the mobile agent queries the state
of the previously localized sensors; 3) Sensor updating: the
mobile agent updates the state of the fixed sensor in the
current cell; 4) Navigation: the mobile agent selects one
of the surrounding fixed sensors and navigates towards it.
Note that exploration decisions are made in a completely
distributed manner, by simply relying on the local state of
the instrumented environment.

The weakness of previous studies [11, 4] is that they have
only focused on the sensor tasking and marking steps, and
have largely ignored the practical issues pertaining to sensor
localization and navigation. They make unrealistic assump-
tions about the ability of an agent to accurately localize
sensors in its vicinity, and move towards a selected sensor
without odometry errors. In order to address these chal-
lenges, recent work [3] has proposed realistic localization
and odometry error models based on experiments in a real
testbed. The objective of this paper is to investigate the
effects of applying the proposed error models [3] to the Ants
exploration algorithm [11]. In particular, we integrate the
error models into an existing simulation environment, and
assess how the performance of Ants degrades as a result of
introducing realistic errors.

The paper is organized as follows: Section 2 provides an
overview of existing localization techniques, and summarizes
the error models derived from applying one of them in a



real testbed. Section 3 briefly describes the Ants algorithm,
which is one of the most popular and simple approaches to
exploring a sensor-instrumented environment. Section 4 as-
sesses the performance of the Ants exploration algorithm in
a simulation environment with and without realistic errors.

2. BACKGROUND
In this section, we first give an overview of existing tech-

nologies for localizing sensor nodes. We then focus on a prac-
tical localization technique in which mobile agents equipped
with cameras detect fixed sensors lying in their vicinity and
localize them [3]. We provide a summary of detection and
localization errors reported in [3], which are based on ex-
periments run in a real testbed.

2.1 Localization technologies
Radio Signals: Radio signal strength is a not reliable

way of identifying the robot relative position with respect to
tags deployed in an environment. In fact, it heavily depends
on factors like the relative orientation of the deployed motes,
their height from the floor, the material of the floor, and the
obstacles in the environment. Batalin et al. [1] create an
algorithm called Adaptive Delta Percent, which takes into
account the signal strength of the messages received from
the various tags while the robot is moving in order to guide
it toward one of them. A strong limitation of this approach
is that the authors consider an experiment to be successful
if the robot is able to reach a tag in the environment within
a distance of 3m, an accuracy which is unreasonable for our
scenario.

Infrared Signals: Several systems have been created
to define mobile robot localisation in indoor environments.
Some of them use ultrasonic and infrared technologies si-
multaneously [5], others radio frequency (RF) and infrared
together [7], and some just infrared techniques [8]. However,
infrared signals are not completely suitable for our scenario
because they have a particularly limited transmission range
(i.e. ∼20-30cm), thus the robot risks not being able to iden-
tify the deployed tag if the dimension of the cell is bigger
than the allowed range. Moreover, interference from the IR
component of other light sources could compromise the lo-
calisation process [6].

Ultrasonic Signals: Ultrasonic sensors [9] alone could
be used to avoid obstacles, but not to identify specific tags
in the environment due to the poor resolution of their read-
ings. Therefore, we argue that IR or sonar are not suitable
technologies for localizing sensors around an agent (avoid-
ing localisation errors), or for guiding the agent to one of
the sensors odometry errors.

Cameras and image processing: Since the previous
approaches are not suitable for our scenario, we decided to
explore sensor localisation using camera technologies. Sev-
eral approaches investigated this area adopting feature clus-
ter recognition [2]. In particular, some of them use image
processing techniques to recognize landmarks in the envi-
ronment [10]. However, most of the approaches are very
sophisticated, and cannot run in resource-constrained mo-
bile agents. A simple approach to localizing sensor nodes
using cameras is proposed in [3]. In the next subsection,
we summarize the error model derived by applying this ap-
proach in a real testbed.

2.2 Localization errors
In previous work [3], we proposed practical techniques

that allow agents to use their on-board camera to localize
sensors lying in their vicinity. In this section, we summarize
the localization errors that were observed when we applied
these techniques in a real testbed. Our system consisted of
three different platforms: 1) mobile agent: Surveyor SRV-1
robot connected with a Tmote Sky mote; 2) fixed sensor:
Tmote Sky mote with external bright LED and 3) gateway:
laptop connected with a Tmote Sky mote (via its USB inter-
face) used primarily for visualisation of experimental results.
The sensors were deployed on the ground in a grid topology
as shown in Figure 1, and the agent was placed in the middle
of the central cell. The size of each cell was set to 48 cm.

The main results regarding detection and localization er-
rors, are reported in [3], and summarized below: The per-
centage of undetected sensors, due to adverse light condi-
tions, is not negligible and amounts to 5.56% of all sensors.
Sensors that are correctly detected are then localized rel-
ative to the position of the mobile agent. Figure 1 shows
estimated (circles) and real (squares) positions of sensors
surrounding a given agent. In this case one can notice how,
even if the sensors were not always correctly localised, the
errors are always small enough, so that a sensor can not be
thought to be in another cell from its own.

Figure 1: Localisation of sensors around a mobile
agent.

3. THE ANTS ALGORITHM
In this section, we briefly describe the Ants algorithm pro-

posed by Svennebring and Koenig in [11]. This is a dis-
tributed algorithm that simulates a colony of ants leaving
pheromone traces as they move in their environment. Ini-
tially, all cells are marked with value 0 to denote that they
are unexplored. At each step, an agent reads the values of
the four cells around it and chooses to step onto the least
traversed cell (the one with the minimum value). Before
moving there, it updates the value of the current cell, for
example by incrementing its value by one. The authors dis-
cuss a few other rules that could be used instead to mark a
cell and navigate to the next one, but they all exhibit similar



performance in terms of exploration time. Hence, we select
the above variant of the Ants algorithm (move to the least
visited cell) as a basis for comparison. The authors provide a
proof that the agents will eventually cover the entire terrain
(provided that it is not disconnected by wall cells).

Figure 2: Impact of a small error.

The first advantage of the algorithm is its simplicity: agents
do not require memory or radio communication, but only
one-cell lookahead. Since they are easy to build, many of
them can be used to shorten the coverage process. Secondly,
there is no map stored inside the agents: if one of them is
relocated (accidentally or on purpose) it will not even realise
it and it will continue to do its work as if nothing happened.
This means that the whole system is flexible and fault tol-
erant, and the area can be covered even if some markings or
agents are lost. At the sensor of each cell, we only need to
store an integer counting the number of times that agents
have visited the cell. When the number of times exceeds a
threshold, the counter is reset to 0.

The main limitation of the Ants algorithm is that agents
do not know when the exploration is terminated, and they
continue the exploration phase until they run out of energy.
Thus, this approach is not suitable in an emergency scenario,
in which the primary consideration is to cover the overall
area as soon as possible, and be notified immediately after
the task is completed. A further drawback of the algorithm
is the limited collaboration among agents. For example,
in scenarios with many rooms most of the agents tend to
sweep the first few rooms repeatedly, while only a few of
them venture to explore new areas.

4. EVALUATION OF ANTS
In this section we illustrate how localization errors impact

the behavior of the Ants algorithm and evaluate the algo-
rithm’s performance, with and without errors, in a variety of
scenarios. In Section 2, we summarized two types of local-
ization errors reported in previous work [3]: 1) Agents tend
to introduce small errors in the locations of sensors they
identify in their vicinity; these errors are not big enough
to impact the behavior of Ants. The reason is that agents
see sensors in slightly different locations, but in the correct
cells where sensors are actually placed. 2) Agents sometimes
completely fail to identify some of the sensors in their vicin-
ity - this type of localization error is referred to as sensor
detection error. Although the percentage of missed sensors
is reported to be low (5.56%), it significantly affects the per-
formance of Ants. This is illustrated via an example, and
quantitatively measured with simulation experiments.

Figure 2 shows the impact of a sensor detection error. In
the absence of errors, the agent at the center of the area

Figure 3: Example of area used during the simula-
tions.

would choose to explore the cell immediately north of it,
by choosing path A. But if it wrongly believes that the cell
north of it is not occupied by a sensor and thus is an obstacle
or a wall, it will choose to explore first the cell on its left,
by choosing path B. This error will bring the agent away
from the main front of exploration, causing it to follow a
long path of already explored cells, before it can get back to
exploring new cells. Note that path B, which is the effect of
one detection error, is seven times longer than the regular
path A that would be followed in the absence of errors.

Our next step is to quantify the impact of sensor detection
errors on the performance of Ants in a variety of scenarios.
To this end, we simulated the Ants algorithm with and with-
out errors and ran a number of simulations varying the num-
ber of agents, the size of the area and the number of rooms.
The simulations were performed on automatically generated
environments representing office-like scenarios (see Figure 3
for an example) with a default area size of 30x30 cells and
4x4 rooms in them. The positions of doors and walls were
changed randomly during the experiments, while the default
number of agents was 20. For each experiment, we computed
the total time necessary to explore the whole area (every cell
was traversed at least once by one of the agents). Each point
of the graph is the average time of 100 different runs, and is
plotted with the corresponding standard deviation bar.

Figure 4 shows the performance of Ants with and without
localization errors as we increase the number of agents. Note
that with one agent, sensor detection errors actually double
the exploration time. Increasing the number of agents helps
in reducing the negative effect of these errors, but even with
the maximum number of agents the difference remains no-
ticeable. These findings show that simplifying assumptions
about the ability of agents to perfectly detect sensors in their
vicinity lead to results that are very different from reality.

Figure 5 shows the performance of Ants with and without
sensor detection errors as we increase the size of the area.
Observe that the negative impact of these errors becomes
more pronounced in larger areas. We believe that this is due
to the fact that in large areas, a sensor detection error can
lead agents to take much long detour paths before returning
to the exploration front.

Figure 6 shows the impact of sensor detection errors as
we increase the number of rooms, whilst keeping the size of
the area constant. Observe that the impact of these errors
decreases as we increase the number of rooms. This is due to



Figure 4: Effect of changing the number of agents.

Figure 5: Effect of changing the size of the area.

the fact that with more rooms, accessible areas of the map
are narrower, agents are more constrained in their move-
ments, and have smaller chances of following long detour
paths as a result of a sensor detection error.

5. CONCLUSIONS
In this paper, we studied the impact of localization errors

on the performance of the Ants algorithm. We distinguished
two types of errors: i) inaccuracies in determining the exact
location of detected sensors wrt the agent’s current position,
and ii) complete failure to detect and localize sensons. We
showed that small errors in locating sensors are not criti-
cal, but completely failing to detect sensors can significantly
slow down the exploration process. The impact of failing
to detect sensors is more pronounced in scenarios where few
agents are used to explore large areas with few rooms.
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