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Abstract When an emergency occurs within a building, it may be initially safer to send
autonomous mobile nodes, instead of human responders, to explore the area and identify haz-
ards and victims. Exploring all the area in the minimum amount of time and reporting back
interesting findings to the human personnel outside the building is an essential part of rescue
operations. Our assumptions are that the area map is unknown, there is no existing network
infrastructure, long-range wireless communication is unreliable and nodes are not location-
aware. We take into account these limitations, and propose an architecture consisting of both
mobile nodes (robots, called agents) and stationary nodes (inexpensive smart devices, called
tags). As agents enter the emergency area, they sprinkle tags within the space to label the
environment with states. By reading and updating the state of the local tags, agents are able
to coordinate indirectly with each other, without relying on direct agent-to-agent communi-
cation. In addition, tags wirelessly exchange local information with nearby tags to further
assist agents in their exploration task. Our simulation results show that the proposed algo-
rithm, which exploits both tag-to-tag and agent-to-tag communication, outperforms previous
algorithms that rely only on agent-to-tag communication.

Keywords Autonomous agents · Area exploration · Sensor networks · Collaboration ·
Tags

1 Introduction

When an emergency occurs within a building, it is crucial for the first responders to acquire
as much information as possible on the ongoing situation, in order to identify and contain
hazards and coordinate the rescue of victims. Initially, the area is off-limits and hazardous
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for anyone not wearing respiratory equipment, garments or barrier materials to protect them-
selves from exposure to biological, chemical, and radioactive hazards. This kind of suit can be
very heavy and bulky, consequently limiting the first responders’ movements, and reducing
their sensing capacity (touch, vision, and hearing). A group of autonomous mobile nodes,
referred to as agents, should therefore be deployed in the area to acquire all the information
that could assist the tasks of the first responders.

Exploring all the area in the minimum amount of time and reporting back to the human
personnel outside the building is an essential part of rescue operations. However, such opera-
tions may be obstructed by a number of limitations, e.g. the possible lack of a terrain map (the
environment could in any case be substantially changed as the result of a disaster), the failure
of previously established networks, and the short-range and often unreliable wireless indoor
communication. In addition, it might be difficult to use GPS positioning inside a building,
so an agent cannot rely on knowledge of its exact location within the terrain, even if it were
able to memorise its previous steps.

In this paper, we take into account these limitations, and assume that agents can rely only
on local information that is sensed in their vicinity (which other agents have left behind
them as a trace), before making the next exploration step. We propose an approach to area
exploration in which a swarm of agents enter the emergency area and dynamically deploy
a network of stationary sensor nodes, referred to as tags, in order to label the environment.
Agents do not communicate directly with each other; instead, they coordinate indirectly by
leaving traces of information on the tags that they deploy on the space. Agents are able to
read and update the state of local tags, and by doing so, they leave valuable information for
other agents in order to help them make intelligent navigation decisions. In addition, the set
of deployed tags form a multi-hop wireless network. Tags disseminate their local information
to other tags downstream hop-by-hop in order to further assist the agents in their exploration
task.

The feasibility of the approach in real-time systems has been confirmed in Batalin and
Sukhatme [1–4], who used radio beacons to guide the navigation of robots and assist them in
the coverage of an unknown terrain, and in O’Hara et al. [5–8], who deployed an extensive
test-bed of small sensors (GNATs) to guide the navigation of a LEGO Mindstorm/RCX robot
using infrared transmitters and receivers. The goal of the present work is therefore to provide
a more sophisticated and better performing exploration algorithm to be used by the agents.

Furthermore, a very accurate formalisation of the online exploration problem has been
provided by Wagner et al. [9] and it would thus be redundant within the scope of the current
work.

The key contribution of our proposed exploration algorithm, named HybridExploration,
is that it combines two modes of communication: between agents and tags (agent-to-tag) and
multi-hop communication within the stationary network of tags (tag-to-tag). It is fully dis-
tributed and does not require centralized control of the agents to determine their next move.
It only exploits short-range communication between agents and tags, and among tags, and
does not use unreliable long-range communication among agents, or agents and the human
responders.

In this paper, we compare HybridExploration with three competing algorithms, namely
Ants [10], Multiple Depth First Search (MDFS) [11–14], and Brick & Mortar [14]. In
Sect. 5.4, we also briefly describe another closely related algorithm, CLEAN [9], which
is very similar to Brick & Mortar. These algorithms make similar assumptions to those
discussed above, i.e. no knowledge of the area map, lack of GPS positioning, and no cen-
tralized control of agents. Agents dynamically deploy tags on the floor and, by reading and
updating the state of the local tags, they coordinate their exploration task. However, unlike
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HybridExploration, these algorithms do not exploit tag-to-tag communication, i.e. they do
not use the multi-hop communication capabilities of the deployed sensor network.

Other weaknesses of these algorithms, compared to HybridExploration one, are as follows:

1. Agents running the Ants algorithm cannot determine when the exploration task is com-
pleted. Moreover, whilst the first few agents rapidly discover new terrains, most of the
remaining ones may dwell on already explored network areas, leading to inefficient use
of agent resources.

2. Agents running MDFS know when the exploration task terminates, but their poor coor-
dination leads toward long exploration times.

3. Agents running Brick & Mortar use a complex loop resolution mechanism that signifi-
cantly delays the task of area exploration, especially in topologies with many obstacles
(e.g. desks in the middle of an open space).

Our proposed algorithm, named HybridExploration, overcomes the limitations of exist-
ing approaches, and offers significant performance gains in terms of exploration time for a
variety of terrain topologies. Our experimental results allow us to understand the impact of
several parameters on the performance of HybridExploration (and competing algorithms),
including the number of agents, the terrain size, the numbers of rooms, and the number of
obstacles (e.g. desks or hazards in the middle of rooms).

The rest of the paper is organized as follows. Section 2 presents our model, together with
its objectives and assumptions, and Sect. 3 describes the new HybridExploration algorithm.
Section 4 presents a thorough experimental analysis of the proposed algorithm and the three
competing approaches. An overview of related work is provided in Sect. 5, followed by
conclusions and directions for future work in Sect. 6.

2 Model

We consider the task of exploring a hazardous terrain using a group of autonomous agents.
We assume a very simple model of the area, in which the environment is divided into a grid
of square cells, whose size depends on both sensing coverage and communication range of
the agent. In particular, when an agent is at the centre of a cell, it must be able to cover the
entire area with a sensor attached to it to scan for victims or hazards. Therefore, the size x of
a cell must be determined by the range of the sensor (rsense) and by the communication range
of the agent (rcomm), which is also equal to the range of a laser sensor to detect obstacles. In
particular, if we refer to Fig. 1, it must be that x ≤ 2rsense√

2
. Furthermore, since the agent must

be able to communicate with wireless nodes, referred to as tags, in everyone of the 8 cells
around it, and to scan the same cells for obstacles, it must be that x ≤ 2rcomm

3
√

2
.

A cell can be in one of the following states:

– Wall: The cell cannot be traversed by an agent because it is blocked by an obstacle. In
particular, we assume that an agent is equipped with sensors (e.g. laser, sonar, etc.) that
enable to detect if it can successfully traverse the cell area from the center of it toward
points A, B, C, D (Fig. 2) which represent all the possible accesses to the adjacent cells.
If any one of these routes is blocked by an obstacle, then the cell is considered to be a
wall.

– Unexplored: No agent has been in the cell yet, and therefore no tag has been deployed
there yet.
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Fig. 1 Example of an agent
equipped with a sensor. The
sensor must cover the entire area
of the cell, and the agent must be
able to communicate with the 8
cells around it

Fig. 2 A, B, C, D are the access
points from the current cell
toward the adjacent ones

– Explored: The cell has been traversed at least once, but the agents might need to go
through it again in order to reach other unexplored cells. A tag is already deployed there
by the agent who first visited the cell.

– Visited: The agents have already explored the cell, and they do not need to go through it
again to reach other cells. Conceptually, this state is equivalent to a wall cell, in that no
agent is allowed to traverse it. A tag is already deployed in the cell.

Furthermore, we assume that the perimeter of the area is always formed by wall cells.
In the remainder of this section, we provide a high level overview on the agent movement

and tag deployment, and discuss the agent-to-tag and tag-to-tag modes of communication.
Agent movement and deployment of tags: Agents are initially deployed in one of the

boundary cells and, in each step, they are able to move from the current cell to one of the
four adjacent cells in the North, East, South or West directions. As they move to an unex-
plored cell, they deploy a miniature device (e.g. mote or RFID), referred to as tag, capable
of storing small amounts of information about the state of the local cell. They also update
the relative location of this tag, with respect to previously installed tags in adjacent cells. In
indoor environments where GPS cannot be used, agents do not rely on knowledge of their
exact location; once they find themselves within a cell, they can move towards one of the
four directions until they reach the next cell.

Agent-to-tag communication: In emergency situations, long-range wireless communica-
tion may be intermittent and unreliable, so we assume that agents are able to communicate
only by reading and updating the tags installed in the local and 8 neighbouring cells. We
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thus only consider distributed exploration algorithms, in which agents make independent
decisions about how to navigate through the terrain based on local state.

Tag-to-tag communication: In the proposed algorithm, HybridExploration, we introduce
virtual agents, i.e. active messages that cause the execution of a small piece of code on the tag
that receives them. Virtual agents alter the state of the local tag and are further disseminated
to neighboring tags within communication range. The underlying assumption of our model
is that a tag in a cell is able to communicate wirelessly with the tags in the four adjacent cells.

2.1 Objectives

We are now going to introduce two objectives, which we will use to assess the performance
of the proposed HybridExploration algorithm, presented in Sect. 3.

1. Exploration Objective: all non-wall cells in the area are traversed by an agent at least once.
This means that no cell is left in the unexplored state. When this objective is achieved,
cells can be in any of the explored, visited or wall states.

2. Termination Objective: all cells in the area are either walls or visited. No cell is left in
the unexplored or explored state.

By definition, the Exploration Objective is always achieved earlier (or at the same time as)
than the Termination Objective. Both objectives should be achieved in the minimum amount
of time, because in an emergency scenario as the one we are considering, speed is essential.
The faster the Exploration Objective is achieved, the faster victims and hazards are identified.
The quicker the Termination Objective is achieved, the earlier human responders can enter the
area with the certainty that there are no hidden hazards. The efficiency of an algorithm can be
measured by how fast it is able to achieve both the Exploration and Termination Objectives.
The goal of the present work is therefore to devise an efficient algorithm that achieves both
objectives in a rapid manner.

2.2 Assumptions

In this section, we clarify the assumptions of our model. Most of the currently listed assump-
tions will be further relaxed in future work.

1. Perfect tag-to-tag and agent-to-tag communications
We assume that agents can communicate without faults with tags lying on the same cell
or any of the 8 neighbouring cells. Moreover, agents deploy at most one tag per cell; the
erroneous deployment of multiple tags on the same cell is not allowed.

2. Perfect agent movement and localisation wrt tags
We assume that the agent is capable of moving from the centre of a cell to the centre of
another cell without odometry errors. Moreover, it is able to identify which tag lies at the
centre of the current cell, if any, and those that lie at the 8 cells around it.

3. Static environment
We assume that the environment cannot dynamically change its topology during the
exploration process.

4. Abundant network lifetime
We assume that the network lifetime of the deployed tag network will not expire until
agents will have terminated the exploration process. This is reasonable because the explo-
ration process is not a long-term and repetitive application but a fast one and thus network
lifetime is not our primary concern.
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5. Atomic operations
We assume that atomic operations are performed on tags. In particular, this means that
a tag is able to perform one operation at each time, thus if several agents are willing to
make the tag perform a set of operations then these are queued while waiting for the tag
to finish the execution of the current operation.

3 The HybridExploration algorithm

The HybridExploration algorithm gracefully combines two parallel protocols, one followed
by physical agents (robots, or simply agents) and one followed by virtual agents. A physical
agent takes significantly longer to move from one cell to another (physical robot motion)
than a virtual agent (message propagation). Hence, the time of completing the exploration
task is measured as the minimum number of physical steps required by physical agents to
explore the entire area.

In Sect. 3.1, we describe in detail the protocol that runs on the physical agents. This proto-
col enables them to cover the entire area of interest eventually, but it has two weaknesses. First,
physical agents are often inefficient in exploring the area, as they cover the same cells multiple
times, instead of focusing their efforts on unexplored parts of the space. Second, although
physical agents eventually manage to visit every cell at least once, they are not aware when
this happens, i.e. they have no indication of when the exploration task terminates. These two
problems are discussed in detail in Sect. 3.2 and they motivate the introduction of the Virtual
Agent Protocol in Sect. 3.3. The two protocols, the Physical Agent Protocol and the Virtual
Agent Protocol, work in synchrony and together constitute our proposed HybridExploration
algorithm.

3.1 Physical Agent Protocol

The main idea behind the algorithm followed by the physical agents is that of thickening the
existing walls by progressively marking the cells that surround them as visited (see Fig. 3).
Note that visited cells are equivalent to wall cells in that they can no longer be accessed. In
the description of the algorithm, we refer to wall and visited cells as inaccessible cells, and to
unexplored or explored cells as accessible cells. The algorithm aims to progressively thicken
the blocks of inaccessible cells, whilst always keeping accessible cells connected. The latter
can be achieved by maintaining corridors of explored cells that connect all unexplored parts
of the network as shown in Fig. 3.

The Physical Agent Protocol (see Algorithm 1) consists of two discrete steps. In the mark-
ing step, the agent marks the current cell choosing between the explored and visited states.
In the navigation step, the agent decides which cell to go to next.

Marking step: Every time an agent is in an unexplored cell (with no tags on it), it deploys
a tag and updates the state of the cell, choosing between the explored and visited states. The
current cell is marked as visited if it does not block the path between two accessible cells
around it. Otherwise it is marked as explored. Figure 4 provides two examples of the marking
step: one where the current cell is marked as explored (map a), and one where it is marked as
visited (map b). In the first example, the only path between the two unexplored cells A and
B traverses the cell in which the agent (black spot) is at the moment, thus the cell cannot be
marked as visited. In the second example, there is an alternative path on the right hand side
of the map, thus the current cell can be marked as visited without closing the way between A
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Fig. 3 Two physical agents running the Physical Agent Protocol are used to explore a room, by gradually
deploying tags in its cells and updating their states. Cells A, B and C represent doors. The agents enter the
room from door A and gradually thicken the walls by marking cells adjacent to walls as visited (Stages 1, 2
and 3). Recall that visited cells cannot be accessed in the future by other agents—thus, they can be viewed
as virtual walls. Agents stop thickening walls if they are at risk of disconnecting two unexplored parts of the
network. For example, in Stage 4, the physical agents create two corridors of explored cells in order not to
disconnect unexplored cells in the inner part of the room from unexplored cells in other rooms (beyond doors
B and C). When the exploration of the current room is finished (Stage 6), the cells A, B and C are connected
by corridors of explored cells. These corridors will allow agents to traverse the room through doors A, B and
C to access other unexplored rooms in the building. These corridors will be eventually marked as visited when
no room in the building is left unexplored

and B. Note that such alternative paths are easy to compute locally, because they are strictly
confined to the 8-cell perimeter of the current cell.

Navigation step: In this step, the agents take a decision about which cell to access next.
Priority is always given to the unexplored cells which are adjacent to the current one (Fig. 5a).
If the unexplored cells are more than one, they can be chosen at random (Fig. 5c). If the agent
is equipped with a laser sensor or a sonar, and thus capable of detecting if a neighbouring
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Fig. 4 Marking rules: the agent must decide to mark the current cell as explored or visited. In the first example
a the current cell cannot be marked as visited because it is the only available passage between adjacent cells
A and B. In the second example b the current cell is marked as visited because there is an alternative passage
between A and B on the right

Fig. 5 Different situations in which the agent applies the navigation rules to decide which one of the adjacent
cells it will go to during the next move

cell is surrounded by other black (obstacles) cells, the cell which is most likely to be marked
as visited is chosen, i.e. the one with the most black cells around it (Fig. 5b). If there are
no unexplored cells, the explored cell which has been visited the least amount of times in
the past is selected (Fig. 5d). To do that, the agents simply need to increase a counter on the
tag of a cell each time they traverse it, and then read all the counters of the adjacent cells
and choose the minimum. In this way, an agent which traverses the same cell twice can take
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Fig. 6 The numbers in the cells represent the times the cell has been traversed in the past. The agent goes to
the cell which has been traversed the minimum amount of times to avoid being trapped in a loop

different decisions about the next move instead of always going toward the same direction,
thus avoiding being trapped in a loop like the one shown in Fig. 6. Finally, when the agent is
surrounded by inaccessible (wall or visited) cells, it stops its exploration task (Fig. 5e).

/*Marking step */
increase the counter of the cell;1
if the cell is not blocking the path between any two surrounding cells (i.e. there exists an alternative2
path that connects these two cells via other surrounding cells) then

mark it as VISITED;3
end4
else if the cell is UNEXPLORED then5

mark it as EXPLORED;6
end7
/*Navigation step */
if one of the adjacent cells is UNEXPLORED then8

go to the one with the most walls around it;9
end10
else if at least one of the adjacent cells is EXPLORED (and different from the cell you are coming11
from) then

go to the one with the minimum counter;12
end13
else14

stay in the current cell;15
end16

Algorithm 1 Physical Agent Protocol of HybridExploration

3.2 Analysis of the Physical Agent Protocol

In this section, we highlight the strengths and weaknesses of the Physical Agent Protocol.
The weaknesses motivate the need to extend it with a new protocol, the Virtual Agent Proto-
col, which we describe in detail in Sect. 3.3. We assess the behaviour of the Physical Agent
Protocol with regards to the Exploration and Termination Objectives specified in Sect. 2.1.

Advantage 1 The Physical Agent Protocol always achieves the Exploration Objective.

Proof Let’s define a cell as accessible if the cell is explored or unexplored. Because of the
marking rules illustrated in Fig. 4, accessible cells always remain part of the same group, i.e.
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for each pair of accessible cells A and B an agent is always able to go from A to B (and vice
versa) only traversing accessible cells. Agents always move towards an adjacent accessible
cell with the smallest counter value (we can consider unexplored cells as accessible cells
with a counter = 0) and, once there, they increase the local counter value. According to the
proof in [15], this guarantees that agents will eventually traverse all unexplored cells (with
counter 0) and mark them as explored or visited. ��

However, the performance of the Physical Agent Protocol is severely compromised in
areas with obstacles, like desks and walls in the middle of rooms. In fact, in the presence of
obstacles the Physical Agent Protocol is never able to achieve the Termination Objective.

Let us first define the term obstacle formally, and then discuss the weaknesses of the
Physical Agent Protocol in the presence of obstacles.

First of all, we need to specify that two cells are linked if one is in the 8-cell perimeter of
the other. Thus, a cell can have up to 8 linked cells (in the North, East, South, West, North-
East, North-West, South-East, South-West directions), whereas only up to 4 adjacent cells
(in the North, East, South or West directions). Moreover, every map is always considered to
be surrounded by a perimeter of wall cells. We can now define an obstacle O as a set of cells
with the following properties:

– Each cell c ∈ O is inaccessible, i.e. wall or visited.
– Any cell c′ linked to a cell c ∈ O belongs to the same obstacle (c′ ∈ O).
– Each pair of cells in obstacle O is connected via cells of the same obstacle. That is, for

any pair of cells c1 and cn in obstacle O , there is a sequence of cells c1, . . . , cn ∈ O , such
that ci+1 is linked to ci , for all i = 1, . . . , n − 1.

– None of the obstacle cells is linked to the wall cells in the perimeter of the map.

Intuitively, we can think of an obstacle as an island of inaccessible cells separated from
the perimeter of the map by other accessible cells.

The Physical Agent Protocol terminates successfully (achieving both the Exploration and
Termination Objectives) only if agents do not encounter loops during the exploration pro-
cess. Informally, a loop occurs when an agent traverses the same sequence of explored cells
multiple times without being able to mark any of the cells as visited. Loops are encountered
when there are obstacles in the middle of an area. For example, in Fig. 7a, an agent on cell
C1 of the figure will start building a corridor of explored cells traversing cell C2 and then
finding itself back at cell C1 again. According to the rule in the marking step of Algorithm 1,
every cell blocks the path between the previous and the following one, and is thus repeatedly
marked as explored (Fig. 7b).

Disadvantage 1 If there are obstacles in the area, the Physical Agent Protocol can never
achieve the Termination Objective.

Proof Initially, there are many cyclic paths of accessible (unexplored or explored) cells
around each obstacle (see cyclic paths of white cells that wrap around the obstacle on the
left map of Fig. 8). As agents mark more cells as visited the number of such paths gradually
decreases (circular paths of white cells that wrap around the obstacle on the right map of
Fig. 8). Assume that the Physical Agent Protocol was about to remove the last set of remaining
cyclic paths, by marking a single cell as visited. For this to happen, this cell should be common
to all remaining cyclic paths, like cell b on the right map of Fig. 8. Since this cell belongs to
cyclic paths of accessible cells, by removing it, we would disconnect the accessible cells that
are adjacent to it on the cyclic paths. This however is not possible according to the marking
rules of the Physical Agent Protocol illustrated in Fig. 4. Hence, it is impossible to remove
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Fig. 7 The loop problem

Fig. 8 The number of cyclic paths of accessible (unexplored or explored) cells around an obstacle gradually
decreases as the agent marks more cells as visited. For example, the right map has fewer cyclic paths of white
cells around the black cells than the left path. However, it is not possible to remove all cyclic paths by marking
one of their common cells (e.g. cell b) as visited, as this would violate the marking rules of the Physical Agent
Protocol, illustrated in Fig. 4

all cyclic paths of accessible cells around an obstacle, which means that it is impossible to
achieve the Termination Objective in the presence of obstacles. An illustrative step-by-step
example of this problem in a specific map scenario is provided in Fig. 9. ��

Disadvantage 2 If there are obstacles in the area, the Physical Agent Protocol is consider-
ably slowed down in achieving the Exploration Objective.

An example of the second disadvantage is shown in Fig. 10, where an agent is exploring
the same loop several times, thus wasting time that could be employed in exploring unknown
areas of the map. The cells in the loop (part L of the map) have been traversed only once. To
go from the zone L toward the unexplored part of the map (U), the agent in the loop will need
to explore every cell in it at least another 3 times, so that once traversing the cell pointed
by the arrow, it will be able to choose the corridor on the left which leads toward zone U.
Thus, before being able to escape the loop, the agent will need to traverse 3n cells, where n
is the number of cells in the loop. The bigger the loop, the more time the agent will spend
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Fig. 9 A physical agent explores a room with an obstacle in the middle of it. At the beginning, all the cells
in the room are unexplored (Stage a). While the agent explores the room, it thickens the walls with layers of
visited cells (Stage b) until it forms a loop of explored cells around the obstacle (Stage c). To close the loop,
the agent needs to mark one of the cells in it as visited. However, each cell is blocking the path between the two
cells adjacent to it, and although an alternative path exists (the loop itself), the agent cannot know it locally.
Therefore, no cell in the loop is marked as visited, and although the room has been fully explored, the agent
will just keep moving along the corridor forever (Stages c and d)

in it, without being able to collaborate with the other agents in exploring other areas of the
map. This waste of resources (agents) causes a longer overall exploration time, which is an
essential parameter to be minimized in an emergency scenario.

To summarize, we have shown that whereas the Physical Agent Protocol always achieves
the Exploration Objective, it takes considerably longer to do so in the presence of obsta-
cles. In addition, it can never achieve the Termination Objective in the presence of obstacles.
Both problems arise from the inability of the Physical Agent Protocol to cope with loops of
accessible cells formed around obstacles. In the next section, we introduce a new protocol,
called the Virtual Agent Protocol, which provides a loop-resolution mechanism, and works
in synergy with the Physical Agent Protocol. Together the two protocols constitute the Hy-
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Fig. 10 The cells in the loop (part L of the map) have been traversed only once. To go from the zone L toward
the unexplored part of the map (U), the agent in the loop will need to explore every cell in it at least other
3 times, so that once traversing the cell pointed by the arrow, it will be able to choose the corridor on the left
which leads toward the zone U. This waste of resources (agents) causes a longer overall exploration time,
which is an essential parameter to be minimized in an emergency scenario

bridExploration protocol that is capable of achieving both the Exploration and Termination
Objectives in an efficient manner.

3.3 Virtual Agent Protocol

To speed up the exploration process and eventually achieve the Termination Objective, we
introduce the concept of virtual agents. These are active messages propagated from cell to
cell via the corresponding wireless tags. Virtual agents can only move to cells that are already
deployed with tags; they cause changes in the current cell’s state and make informed deci-
sions about which cell to traverse next. Like physical agents, virtual agents move from one
cell to an adjacent cell in the North, East, South or West direction, and they cannot traverse
visited or wall cells. Unlike physical agents, they cannot traverse unexplored cells since there
are no tags deployed there. Hence, they consider explored cells as their own territory, and
build DFS trees along the corridors of explored cells that the physical agents leave behind.
The goal of the virtual agents is to remove cyclic paths (loops) of explored cells.

The protocol that they run is a variant of the Depth-First-Search (DFS) algorithm. A
detailed description of the Virtual Agent Protocol is provided in Algorithm 2. The main idea
is that virtual agents extend the DFS tree with new explored cells in their way downwards,
and mark these cells as visited when they traverse them in the opposite upward direction (as
shown in lines 8–14 and 15–28 of Algorithm 2). An illustrative example of the Virtual Agent
Protocol is provided in Fig. 11. The two agents first move together and include each explored
cell in their way into the DFS tree (as shown in lines 4–7 of Algorithm 2). At the intersection,
they continue to extend the DFS tree, but the one extends the left branch and the other the
right branch. When the two virtual agents meet, they cannot extend the DFS tree any further;
hence, they traverse the branches upwards marking cells in the way as visited.

The example above proved how the Virtual Agent Protocol tries to balance its resources
across different branches of the DFS tree (one virtual agent followed the left branch and
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Fig. 11 Two virtual agents are collaborating to close a loop left by the physical agents. After the start (a),
they separate into each of the two branches of the DFS tree (b) and meet again at the other side of the loop
(c). Once there, they do not find any more explored cells which are not part of the DFS tree, so they close the
loop by going back and marking every cell as visited (d)

Fig. 12 In the DFS tree, each cell has four counters, associated with every edge connecting the current cell to
the adjacent ones. The counter is updated by the agents and represents the number of agents which traversed the
cell and went in the direction of that particular edge. The aim of the counters is to balance the agents during
the exploration of the tree: at each node in fact, an agent will choose the edge which has been explored by the
minimum number of other agents, so as to assign the same number of agents to each branch of the DFS tree.
In the figure, the second virtual agent will go right, because the counter associated to that direction is 1 at the
moment, and the previous agent has already updated the counter of the edge on the left from 1 to 2

the other the right branch). The mechanism used for distributing virtual agents to different
parts of the network is as follows: each explored cell has a counter that measures how many
virtual agents have traversed it coming from the same parent cell. Note that a cell can be
accessed by a virtual agent from at most one parent cell. As virtual agents traverse the DFS
tree downwards, they increment the counters associated with each traversed cell (as shown
in lines 29–31 of Algorithm 2). At intersections, they choose to move to the explored cells
traversed by the minimum number of virtual agents, so as to assign the same number of agents
to each branch of the DFS tree. In Fig. 12, the second virtual agent will go right, because the
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Fig. 13 Exploration rules for virtual agents. a Since the virtual agents are just messages, they move infinitely
faster than the physical ones. To avoid virtual agents marking as visited a branch of the DFS tree in which
a physical agent is exploring, the virtual agents always stop when they need to mark as visited a cell which
is occupied by a physical one. As a result, a virtual agent could follow a physical one and mark the cells
immediately behind it, literally “pushing” the physical agent toward unexplored areas. b When a virtual agent
needs to mark as visited a cell with at least an unexplored adjacent neighbour, it stops until the unknown area
is explored by a physical agent. In this way, unexplored areas will never be disconnected from the explored
corridors

counter associated to that direction is 1 at the moment, whereas the counter associated with
the left direction is 2.

We now discuss two rules that virtual agents should follow to work in harmony with
physical agents. These rules are handled in lines 9–12 and 22–25 of Algorithm 2.

Rule 1: a virtual agent cannot mark a cell as visited if that cell is occupied by a physical
agent, and it always has to wait until the physical agent is gone before continuing marking.
An example of this behaviour is depicted in Fig. 13a, where virtual agents are following
physical agents while they avoid “overtaking” them and subsequently blocking them in a
branch with visited cells.

Rule 2: a virtual agent cannot mark a cell as visited if at least one of the adjacent cells is
unexplored. An example of this case is provided in Fig. 13b, where the virtual agent stops
any activity until the adjacent cell is explored by a physical agent.

To summarize, the Virtual Agent Protocol is capable of quickly removing cyclic paths of
explored cells, formed by the Physical Agent Protocol. The role of virtual agents is to assist
physical agents, by following them closely and cleaning up unwanted explored states in some
of the cells, in order to help physical agents achieve the Exploration and Termination Objec-
tives faster. The rules followed by virtual agents ensure that they always work in harmony
with physical agents, i.e. they never delay or trap physical agents before the Termination
Objective is achieved. For a detailed description of the Virtual Agent Protocol, the interested
reader can refer to the pseudocode provided in Algorithm 2.

3.4 Analysis of the HybridExploration algorithm

Theorem 1 The HybridExploration algorithm, which consists of the Physical Agent Proto-
col and the Virtual Agent Protocol, always achieves the Exploration Objective.
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/* The cell in which the agent is located is defined as the current cell. */
/* The cell from which the agent is coming is defined as the previous cell. */
/* In the DFS tree the hierarchical relationship between the cells is defined as parent/child. */
/* Every parent cell in the DFS tree has a counter for each of its children cells. The counter indicates

the number of virtual agents which traversed the parent cell toward that particular child cell. */
if you are coming from a cell which is child of the current one then1

decrease the counter of the current cell associated with the child;2
end3
if the current cell is not part of the DFS tree then4

mark the current cell as part of the DFS tree;5
define the previous cell as parent of the current one;6

end7
if the parent of the current cell is VISITED AND the current cell has one child cell only AND all the8
adjacent EXPLORED cells are part of the DFS tree then

if there are any adjacent UNEXPLORED cells OR a physical agent is in the current cell then9
stay in the current cell;10
return11

end12
mark the current cell as VISITED;13

end14
if there are EXPLORED adjacent cells which are not part of the DFS tree then15

go to one of them (each agent chooses a different cell according to its ID);16
end17
else if there is at least one child which is not VISITED then18

go toward the child cell with the minimum associated counter;19
end20
else21

if there are any adjacent UNEXPLORED cells OR a physical agent is in the current cell then22
stay in the current cell;23
return24

end25
mark the current cell as VISITED;26
go to the parent cell;27

end28
if you are going to a cell which is child of the current cell then29

increase the counter associated to that cell;30
end31

Algorithm 2 Virtual Agent Protocol of HybridExploration

Proof In Sect. 3.2, we proved that the Physical Agent Protocol alone always achieves the
Exploration Objective, i.e. the physical agents eventually leave no cell in the unexplored state.
The rules illustrated in Fig. 13 ensure that virtual agents do not block physical agents from
achieving the Exploration Objective. The reasons are that virtual agents never disconnect
two accessible parts of the network, and they never trap physical agents within visited cells
away from accessible cells. ��

Theorem 2 The HybridExploration algorithm always achieves the Termination Objective.

Proof When the Exploration Objective is achieved, all explored cells in the network are
connected, since none of the Physical or Virtual Agent Protocols ever disconnect accessible
parts of the network. Hence, the virtual agents will eventually finish building a single DFS
tree over these explored cells and will eventually mark them as visited when traversing the
branches of the tree upwards. ��
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4 Simulation results

We developed a simulation tool to test the performance of HybridExploration and com-
pare it with three competing approaches: Ants [10], MDFS [14] and Brick & Mortar [14].
In fact, MDFS and Brick & Mortar are improved versions of the ones presented in [14]:
MDFS agents are now capable of coordinating so that they are not trapped among visited
cells; the loop resolution protocol of Brick & Mortar has been improved using timestamps
and now is faster than the original version proposed in [14]. To introduce a further com-
parison with the existing literature, we also implemented the Ants algorithm presented by
Svennebring et al. in [10]. The Ants algorithm performance appears in the graphs report-
ing only the exploration times, because this approach is not capable of achieving the Ter-
mination Objective. This happens because the Ants agents are not able to identify when
the exploration terminates, therefore all cells remain permanently marked as explored and
none of them is subsequently marked as visited. It is important to note that Ants has been
devised with the aim of having computationally simple agents continuously sweeping an
area, and therefore uses very basic rules, sacrificing initial exploration speed to the sim-
plicity of the agents and the robustness of the system (e.g. Ants agents are immune to the
kidnapped robot problem, because if one agent is moved from its location it can continue
carrying on the exploration as nothing has happened). Our algorithm on the contrary focuses
on a very rapid initial exploration and assumes slightly more capable agents in terms of
computational power, thus the reader would probably need to consider this trade-off when
looking at the plots in the present section. A detailed comparison between Ants and the
original Brick & Mortar algorithm can be found in [14]. The developed tool allows us to
automatically generate terrain maps with different topological features. Thus, we are able
to study the impact of (i) the number of obstacles, (ii) the terrain size, (iii) the number
of rooms and (iv) the number of agents on the performance of the three algorithms. Each
point in the following graphs is the average of running an algorithm 20 times, each time
with a different randomly generated map that satisfies the input topological features. In
each experiment, we vary the values of one parameter, and assign default values to the
remaining ones. The default values are: a map of 2500 (50 × 50) cells with 30 obstacles
and 36 (6 × 6) rooms, which is explored by 20 agents. The agents are deployed from
the top left cell of the area. We consider two performance metrics: (i) the exploration
time (each graph on the left of the following figures), i.e. the number of steps required
to achieve the Exploration Objective, and (ii) the visiting time (each graph on the right
of the following figures), i.e. the number of steps required to achieve the Termination
Objective. We chose the number of steps to evaluate our performance metrics because it
represents the major source of energy consumption for the robot during the exploration
process.

We also consider three different area types: (i) Office: area inspired by a real building
plan, with corridors, offices, and an open-space area. (ii) Collapsed: area in which a severe
event occurred (i.e. earthquake) and disrupted the normal plan of the building. (iii) Series: a
long corridor which traverses several rooms; this scenario is inspired by a mine or another
underground map in which each room has a door entering from the previous one and another
door leading to the next. Examples of these area types are provided in Fig. 14. Our objec-
tive is to investigate how the performance of the proposed and competing algorithms varies
depending on the spatial layout of rooms and doors in a building.

Effect of obstacles: Let us first study the impact of obstacles on the performance of
HybridExploration and competing algorithms, as shown in Fig. 15. In all three scenarios,
the introduction of obstacles does not seem to slow down MDFS towards achieving the
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Fig. 14 Different scenarios in
which the algorithms were tested

Exploration and Termination Objectives. In contrast, Brick & Mortar, which has a complex
and time-consuming mechanism for resolving loops around obstacles [14], suffers from hav-
ing to resolve an increasing number of obstacles. In all three scenarios, as one would expect,
the plots denoting the exploration time of Brick & Mortar and MDFS cross over towards the
middle of the x-axis, since Brick & Mortar is faster with few obstacles, but becomes ineffi-
cient with many obstacles. In the Collapsed scenario (Fig. 15c, d), we observe an unexpected
behavior: the exploration time of Brick & Mortar is far lower than its visiting time. A careful
study of this case revealed that Brick & Mortar agents were able to explore the area quite fast
(thus achieving the Exploration Objective), but they interfered with each other whilst trying
to resolve a large number of overlapping loops around obstacles. Thus, they required a much
longer period to mark all cells as visited.

Our proposed algorithm, HybridExploration, has lower exploration and visiting times
than the others in all three scenarios, and for varying numbers of obstacles. The reason is
that it combines the ability of Brick & Mortar to quickly mark cells as visited when there are
no obstacles, with the ability of MDFS to resolve loops, when there are many obstacles. It
handles the presence of loops very well thanks to the virtual agents which are able to close
them very quickly after they are created, while the physical agents are free to explore the
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Fig. 15 Effect of changing the number of obstacles

remaining part of the area as fast as possible. The comparative benefits of HybridExploration
are more pronounced in the Series scenario (Fig. 15e, f), where it is up to 50% faster than
Brick & Mortar and MDFS.

Brick & Mortar is affected by obstacles, while MDFS can cope with them much more eas-
ily. HybridExploration, thanks to the virtual agent protocol, can maintain good performance
even if the number of obstacles is increased.

Effect of area size: The next question that we address is whether the proposed algorithm
scale gracefully as we increase the number of cells in the area. A comparison of the four algo-
rithms in three different scenarios is depicted in Fig. 16. As one would expect, as we increase
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Fig. 16 Effect of changing the size of the map

the area size, the exploration and termination times increase for all three algorithms in all
scenarios. Let us take a closer look at the behavior of MDFS and Brick & Mortar. In terms of
exploration time, small areas favour MDFS over Brick & Mortar, whereas large areas favour
MDFS. The two algorithms meet towards the middle of the x-axis in all three graphs. The
reason is that MDFS typically traverses each cell more than once, whereas Brick & Mortar
only once unless it has to resolve loops. The visiting times of the two algorithms is very
close to the respective exploration times, except in the case of the Collapsed scenario where
Brick & Mortar takes much longer to achieve the Termination Objective than to achieve the

123



230 Auton Agent Multi-Agent Syst (2009) 19:210–243

Exploration Objective. The reason for this gap is explained above in our discussion of the
effect of obstacles.

Our HybridExploration algorithm, which combines the strengths of MDFS and Brick &
Mortar, outperforms both of them in all three scenarios, and scales gracefully with the area
size. In the Series scenario (Fig. 16e, f), where the loops around obstacles are longer than in
the other two scenarios, the ability of HybridExploration to close loops using virtual instead
of physical agents gives it a significant advantage over Brick & Mortar and MDFS.

HybridExploration scales gracefully with the number of cells, thanks to the positive effect
of the Physical agent protocol.

Effect of rooms: Figure 17 shows the effect of varying the number of rooms in the area
while maintaining the same number of cells, and thus the same area size. It is peculiar how
Brick & Mortar performs poorly in terms of visiting time, when there are no rooms at all
(open space area). This can be explained by observing that the loops are not bound within
a room but the agents can build loops which are as large as the whole area, and therefore
the time needed to close them is much longer than in cases where a loop cannot be larger
than the size of a room. In the Collapsed scenario (Fig. 17c, d), however, an increase in the
number of rooms slows down Brick & Mortar. The reason is that in this particular scenario,
rooms have many collapsed walls (doors), and more rooms effectively introduce more loops
that are difficult and time-consuming to resolve.

The behavior of MDFS is also interestingly different depending on the scenario. In the
Office and Collapsed scenarios (Fig. 17a–d), the performance of MDFS both in terms of
exploring and visiting times hardly depends on the number of rooms. We observe a small
decrease in the exploration and visiting times of MDFS, simply because some of the cells that
were previously unexplored are now wall cells forming the frames of rooms; these wall cells
do not require to be traversed and marked as explored or visited. The behavior of MDFS in the
Series scenario (Fig. 17e, f) is rather unexpected. MDFS is slowed down by the presence of
rooms although with more rooms there are fewer cells to cover. We think that this is because
one of the strengths of the MDFS algorithm is that the agents can build trees of explored
cells, with several branches spanning different rooms in the scenario, and process them at
the same time. This parallelisation though is not possible in the Series scenario, where the
rooms form a chain and need to be explored one after the other, without the possibility to
explore more than one at the same time. The agents running MDFS therefore need firstly
to mark the cells in the room as explored, then traverse them again to mark them as visited
and finally move on to the next room, without efficiently using all the agents in a parallel
way during the exploration. The Brick & Mortar and HybridExploration algorithms on the
contrary can directly mark every cell as visited, so that, although they cannot explore more
rooms at the same time in parallel, the overall exploration and visiting times are much less
than the MDFS ones.

The HybridExploration algorithm outperforms the other two algorithms in both scenar-
ios; again, the Series scenario presents the most interesting case, where the benefits of
HybridExploration are more pronounced.

Effect of agents: Figure 18 shows the effect of varying the number of agents exploring
the area. From the graphs, we notice how the performance of all algorithms in terms of both
exploring and visiting times is improved as more agents are used but up to a certain thresh-
old. After this threshold is achieved, using more agents does not lead to better exploration or
visiting times. This happens because there is a limit to the parallelism of the exploration
that the agents can achieve, determined by the size of both rooms and the whole exploration
area. Notice that HybridExploration always achieves better results than the other algorithms
when relatively few agents (i.e. less than 30) are used. Furthermore, even when the number
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Fig. 17 Effect of changing the number of rooms

of agents is increased above that number, the performance of HybridExploration remains
comparable to that of the others. Once again, the benefits of HybridExploration over the
competing algorithms are more pronounced in the Series scenario.

As expected, the performance of HybridExploration and competing algorithms improves
as we increase the number of collaborating agents. Initially, when the number of agents is low,
the benefit of adding one more agent is significant for all algorithms. However, there exists
a threshold of agents beyond which no significant performance improvements are detected.
This threshold tends to be lower for HybridExploration than for competing approaches.

123



232 Auton Agent Multi-Agent Syst (2009) 19:210–243

Fig. 18 Effect of changing the number of agents

HybridExploration performs similarly to the best of competing approaches in the Office and
Collapsed scenarios, and is clearly superior in the Series scenario.

Summary of results: The HybridExploration algorithm outperforms the three competing
approaches (Ants, MDFS, and Brick & Mortar) in terms of exploration and visiting time, in
all three scenarios (Office, Collapsed, and Series), and for a wide range of area sizes, obstacle,
room and agent numbers. The benefits of HybridExploration compared to Ants, MDFS and
Brick & Mortar are far more obvious in the Series scenario. In general, HybridExploration is
faster because it combines the strengths of all the competing approaches. First, like MDFS
it adopts a depth-first-search approach to resolve loops around obstacles, but using virtual
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agents instead of physical agents. Second, like Brick & Mortar, agents running HybridEx-
ploration traverse each cell approximately once before they mark it as visited. Finally, a
variation of the Ants algorithm is used to let the physical agents escape from loops. Inter-
estingly, whereas Brick & Mortar tends to traverse cells multiple times when we introduce
obstacles, HybridExploration is more robust when obstacles are present, because it resolves
loops around them much faster with the aid of virtual agents.

5 Related work

Information gathering inside an area is essential to avoid risking the lives of the first respond-
ers: for example, if the responders knew the locations of the victims before entering a building,
they could immediately get there avoiding hazardous areas such as rooms on fire or collapsed
corridors or stairs. Exploring all the area in the minimum amount of time and reporting back
to the human personnel outside the building is therefore an essential part of rescue opera-
tions. A group of mobile agents should therefore be deployed in the area to acquire all the
information that could assist the tasks of the first responders. The existing algorithms used
by the agents to perform the exploration task can be distinguished based on two criteria: (i)
knowledge of map and (ii) communication modes.

1. Knowledge of map: Choset [16] provides a survey of coverage algorithms and distin-
guishes them into off-line and on-line. In the former, the agents are previously provided
with a map of the area to explore, while in the latter, also called sensor-based, no assump-
tion is made concerning the availability of an environmental map for the agents.

2. Communication modes: the robots communication can be classified in three main differ-
ent ways:

– Agent-to-Server communication: the robots coordination occurs through a central
server;

– Agent-to-Agent communication: a direct wireless communication occurs between
robots within the same range;

– Agent-to-Environment communication: agents communicate indirectly by interacting
with an instrumented (smart) environment.

Our approach differs from related work in that we are investigating the subclass of on-line
algorithms that rely on communication through the instrumented environment (Agent-to-
Environment). Usually in fact the on-line approaches assume that the agents are able to
coordinate their movements using long range radio frequency (RF) communication. How-
ever, in the literature [17–23] it is widely accepted that radio propagation is (i) non-isotropic
(i.e. the received signal, at a given distance from the sender, is not the same in all directions), it
has (ii) non-monotonic distance decay (i.e. lower distance does not mean better link quality),
and (iii) the communication is based on asymmetrical links (i.e. if A hears B, it cannot be
assumed that B hears A). For this reason, the agents coordination through RF communication
represents an assumption that is not always true.

The unreliability of the wireless communications leads us to explore a relatively novel
class of algorithms within the on-line paradigm, in which the agents are able to tag the envi-
ronment and update the state of the tags in order to communicate and coordinate with each
other, without relying on long range RF communication. In particular, we envision the use
of inexpensive tags that can be left on the ground and which the agents can use to store and
retrieve data (Agent-to-Environment). The feasibility of the approach is supported by Hähnel
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et al. [24], who proved how a robot can use RFID tags already placed on an area to localize
itself and navigate through the rooms, and recently by Kleiner et al. [25], who presented a
robot which is able to autonomously drop RFID tags on the environment and implement an
existing on-line exploration algorithm [26].

To the best of our knowledge, little work [10,14,15,25] has investigated the problem of
on-line area exploration by letting agents coordinate indirectly by tagging the environment,
subsequently reading and updating the state of the deployed tags. Moreover, only few of those
algorithms are able to autonomously decide when the exploration is terminated. Recognising
when the exploration terminates is in fact of primary importance in an emergency scenario
such as the one we are tackling: if the robots have to report back to the first responders the
situation inside the building, they absolutely need to know when to stop exploring, and to
do that they need to be sure whether all the area has been explored or not. In our previous
work [14], we proposed two algorithms, MDFS and Brick & Mortar, to solve the terminat-
ing issue in a distributed fashion by marking cells already visited by the agents, but these
algorithms do not exploit tag-to-tag communication, i.e. they do not use the multi-hop com-
munication capabilities of the deployed sensor network. Furthermore, agents running MDFS
are poorly coordinated, and this leads toward long exploration times, while agents running
Brick & Mortar use a complex loop resolution mechanism that significantly delays the task
of area exploration, especially in topologies with many obstacles (e.g. desks in the middle of
an open space). Our proposed approach, HybridEploration, has been designed to address all
these weaknesses and achieve even better performance by making advantage of tag-to-tag
communication.

The following subsections will provide detailed descriptions of the state of the art in the
field of exploration algorithms. The approaches most related to our work will be presented
first, namely Ants (Sect. 5.1), MDFS (Sect. 5.2) and Brick & Mortar (Sect. 5.3). Following
that, a more general survey of on-line algorithms will be presented in Sect. 5.4, while off-line
approaches will be described in Sect. 5.5. Finally, related to our work is also the SLAM
exploration, to which Sect. 5.6 is dedicated.

5.1 The Ants algorithm

In this section, we first discuss the behaviour, strengths and limitations of the Ants algo-
rithm proposed by Svennebring and Koenig in [10,15]. This is a distributed algorithm that
simulates a colony of ants leaving pheromone traces as they move in their environment.
Initially, all cells are marked with value 0 to denote that they are unexplored. At each step,
an agent reads the values of the four cells around it and chooses to step onto the least tra-
versed cell (the one with the minimum value). Before moving there, it updates the value of
the current cell, for example by incrementing its value by one. The authors discuss a few
other rules that could be used instead to mark a cell and navigate to the next one, but they
all exhibit similar performance in terms of exploration time. Hence, we select the above
variant of the Ants algorithm (move to the least visited cell) as a basis for comparison. The
authors provide a proof that the agents will eventually cover the entire terrain (provided
that it is not disconnected by wall cells), and thus that the Exploration Objective is always
achieved.

The first advantage of the algorithm is its simplicity: agents do not require memory or
radio communication, but only one-cell lookahead. Since they are easy to build, many of
them can be used to shorten the coverage process. Secondly, there is no map stored inside
the agents: if one of them is relocated (accidentally or on purpose) it will not even realise it
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Fig. 19 The Ants algorithm is not efficient in a scenario with many rooms, because most of the agents explore
the first rooms repeatedly, while only few of them set out to discover new areas

and it will continue to do its work as if nothing happened. This means that the whole system
is flexible and fault tolerant, and the area can be covered even if some markings or agents are
lost. At the storage device of each cell, we only need to store an integer counting the number
of times that agents have visited the cell. When the number of times exceeds a threshold, the
counter is reset to 0.

The main limitation of the Ants algorithm is that the visited state is not used during the
process of marking cells. Therefore, the Termination Objective is never achieved, and the
agents continue the exploration phase until they run out of energy.

Thus, this approach is not suitable in an emergency scenario, in which the primary consid-
eration is to cover the overall area as soon as possible, and be notified immediately after the
task is completed. A further drawback of the algorithm is the limited collaboration among
agents. As shown in Fig. 19, in a scenario with many rooms most of the agents would sweep
the first few rooms repeatedly, while only a few of them would venture to explore new areas,
thus limiting the efficiency of the algorithm when using multiple agents.

5.2 The multiple depth first search algorithm

In order to address the limitations of the Ants algorithm detailed in Sect. 5.1 (i.e. lack
of collaboration among the agents, slow achievement of the Exploration Objective and no
achievement of the Termination Objective), a Depth First Search (DFS) approach has been
proposed in [14]. Unlike Ants, this algorithm allows agents to mark cells as visited, so that
agents do not need to traverse them in the future. As a result, an agent knows that its task is
completed if its four adjacent cells are either visited or wall cells. The values used to annotate
cells by the Ants algorithm are not used in this case.

We first consider the case with a single agent. The agent explores the area by moving to
the next unexplored cell, marking it as explored, and storing in it the direction of the previous
cell (i.e. North, East, South, West). In doing so, it builds an exploration tree in which each
cell has a parent cell (the cell where the agent came from, before moving to the current cell
for the first time). When there are no unexplored cells adjacent to the current cell, the agent
has reached the end of a branch and is ready to start traversing it backwards. It marks the
current cell as visited and moves to the parent cell. This is repeated until the agent finds an
adjacent unexplored cell and moves to it to start marking a new branch as explored. In short,
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Fig. 20 DFS exploration example

most cells (except for leaf cells) are traversed at least twice, once marked as explored, as the
agent traverses the branch downwards, and once marked as visited, as the agent traverses
the branch upwards. When the agent is back at the root cell and all adjacent cells are either
visited or walls, the algorithm terminates.

A snapshot of the exploration process with one agent can be seen in Fig. 20: the agent
starts at the cell in the top left corner of the area, and decides to move on the path denoted
by the arrows, annotating cells in the way as explored. When it reaches the cell at the bottom
right corner, it is surrounded by either wall or explored cells, and realises that it is at the
end of a branch. It starts moving backwards marking the cells of the branch as visited until
it identifies the start of a new branch. The first cell of the new branch is the one between
the two wall cells, which is initially unexplored. It starts processing the second branch by
marking that cell as explored and repeating this step as it traverses the branch downwards,
until it reaches the current position denoted by the black sphere. At this point, it identifies
the end of another branch, and it will start traversing the branch upwards and marking its
cells as visited. The agent will continue the exploration task in a similar manner until it is
surrounded only by visited or wall cells.

The challenge in using more than one agent is to ensure that they can efficiently collabo-
rate to explore the area. In the extended Multiple Depth First Search (MDFS) algorithm, the
protocol that the agents run is a variant of the Depth-First-Search (DFS) one.

The main idea is that agents extend the DFS tree with new explored cells in their way
downwards, and mark these cells as visited when they traverse them in the opposite upward
direction. In the DFS tree the hierarchical relationship between the cells is defined as
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parent/child. Moreover, the mechanism used for distributing agents to different parts of the
network is as follows: each explored cell has a counter that measures how many agents have
traversed it coming from the same parent cell. Note that a cell can be accessed by an agent
from at most one parent cell. As agents traverse the DFS tree downwards, they increment
the counters associated with each traversed cell. At intersections, they choose to move to the
explored cells traversed by the minimum number of agents, so as to assign the same number
of agents to each branch of the DFS tree.

Using this algorithm the agents are typically able to explore the area in less time than
using the Ants algorithm, and more importantly, each agent knows exactly when to stop its
exploration task, and thus the algorithm is capable of achieving both the Exploration and
Termination Objectives, as described in [14]. Hence, the algorithm terminates when all agents
stop moving, since when that happens all cells are marked as visited or walls. Although the
Multiple Depth First Search addresses some of the weaknesses of the Ants algorithm, it is
still not very efficient in terms of exploration time. By definition it traverses each cell at
least twice (except for leaf cells), thus resulting in a long exploration time even in open areas
without walls where a single traversal would suffice. Furthermore, the approach does not
make use of the tag-to-tag communication, which could be exploited to better coordinate the
agents.

5.3 The Brick & Mortar algorithm

The Brick & Mortar [14] algorithm is designed to address the weaknesses of the two algo-
rithms seen so far in Sects. 5.1 and 5.2. Unlike the Ants algorithm, agents using Brick &
Mortar know when the exploration task is completed and they do not spend much time revis-
iting the same cells. Unlike MDFS, agents typically traverse each cell less than twice, thus
resulting in a shorter exploration time.

The driving idea is that of thickening the existing walls by progressively marking the
cells that surround them as visited. Once again, visited cells are equivalent to wall cells in
that they can no longer be accessed. In the description of the algorithm, we refer to wall
and visited cells as inaccessible cells, and to unexplored or explored cells as accessible cells.
The algorithm aims to progressively thicken the blocks of inaccessible cells, whilst always
keeping accessible cells connected. The latter can be achieved by maintaining corridors of
explored cells that connect all unexplored parts of the network.

Like Ants and MDFS, Brick & Mortar does not require agents to know their location
in the building. A relocated agent can simply navigate randomly until it finds an accessi-
ble cell and then continues the exploration from there. Brick & Mortar makes the blocks
of inaccessible cells thicker until the entire terrain is converted to a large block of inac-
cessible cells. In a rectangular terrain without wall cells, agents starting from border cells
always succeed in visiting the entire area. In more complex topologies with many rooms
and obstacles, agents may be faced with a loop closure problem. In particular, if there are
obstacles in the area, the Brick & Mortar algorithm without loop closure does not always
achieve the Exploration Objective and never achieves the Termination Objective. On the
other hand, with a loop closure procedure, the Brick & Mortar algorithm always manages to
achieve both the Exploration and the Termination Objectives. However, the loop resolution
mechanism is complex and often introduces delays in the exploration when too many obsta-
cles are found, and the algorithm does not use tag-to-tag communication to coordinated the
agents.

123



238 Auton Agent Multi-Agent Syst (2009) 19:210–243

5.4 On-line algorithms

On-line algorithms should rely only on their sensors in order to navigate an unknown envi-
ronment and be capable of taking on-line decisions about what to do next. Having many
different possible environments, one algorithm could work better in an indoor environment
with tiny rooms and a great number of corridors, while another could be faster in the case
of big rooms interconnected by many doors, and so on. Most of these approaches divide the
environment into cells, also called regions, that are explored one by one iteratively until the
global area is covered. Furthermore, on-line algorithms are comparable to our approach with
regard to hardware cost and complexity, since they all make use of small inexpensive robots
with few sensors, and are bounded in their exploration time [9].

A very important contribution can be found in the work of Wagner et al. [9,27–29], who
extensively covered the use of small inexpensive robots (A(ge)nts) to explore an unknown
area. They formalized the exploration problem in a more analytical way (a one-robot for-
malization is also available by Albers et al. [30]), proved that the off-line coverage problem
is NP-Hard, and proposed very interesting heuristics to solve the on-line version. Further-
more, in their most recent work [9] they envisioned an approach (CLEAN) presenting several
similarities with the Brick & Mortar algorithm [14], which is also at the core of the Hybri-
dExploration solution presented in this paper. In particular, robots make use of the status of
‘dirtiness’ of floor tiles to determine if someone already explored a certain area, and clean a
tile to “mark” it as already visited. However, this method is incapable of solving loops when
scenarios with obstacles are considered; to address this problem, the authors suggest a loop
resolution mechanism (using additional markings) that is similar to the one used by Brick &
Mortar [14]. Furthermore, since only two “status” are used (dirt or not) their algorithm would
be less efficient than Brick & Mortar during the exploration. In fact, agents running Brick &
Mortar can choose to explore unexplored cells preferring them over explored ones, therefore
speeding up the exploration time. For this reason, we chose to compare HybridExploration
with Brick & Mortar (instead of CLEAN) in the experimental section.

Batalin and Sukhatme have done plenty of work [1–4] using radio beacons to guide the
navigation of robots and assist them in the coverage of an unknown terrain. In particular, their
robots are able to detect the beacons (which are pre-deployed into the environment), choose
one of them and move toward it, always guided by their radios. The beacons are able to tell
the robot on which direction (North, West, South or East) the least recently visited neighbour
beacon lies. Beacons and robots are both equipped with a 2-bit compass, so the former can
give the latter indications about which direction to take to reach the next beacon. Further-
more, in [31], the same authors suggest that the beacons could be dynamically deployed by a
robot (an approach similar to our previous work [14]), which could then use the same Least
Recently Visited (LRV) navigation approach. We believe that the relatively simple algorithm
they use could be further improved to reach better performance in exploring the area as fast
as possible.

The use of a pre-deployed embedded network to assist the navigation of a robot in the
environment has been extensively studied by O’Hara et al. [5–8]. In particular, the authors
use small and relatively inexpensive embedded network platforms, the GNATs, to guide the
navigation of a LEGO Mindstorm/RCX robot using infrared transmitter and receivers. The
main strength of this work relies on the extensive real-world experiments that the authors
have done (up to 156 nodes deployed), which proves the feasibility of their approach and of
the Agent-to-Environment communication paradigm in general.

Finally, Li et al. [32,33] also use a sensor network to help a user (human or robot) to
safely traverse an hostile environment, but the positions of the nodes are always known (by
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using a GPS on each of them) and in the real experiment there is no communication between
the user and the network (information from the LEDs of the nodes are video recorded and
examined a posteriori).

A different approach (following an Agent-to-Server communication mode) has been pre-
sented in [34]. In this work, the authors use a Boustrophedon [35] technique to let the robots
cover the area. The environment is divided into cells and each robot starts covering each
cell with forward and reverse phases. While doing this, it builds a graph of the environment
which is shared by all the robots of the team. Due to this fact, the robots always know where
there are uncovered cells and therefore they can distribute themselves over the area in order
to cover the remaining unexplored regions. The proposed algorithm is globally simple and
easy to implement on real hardware. It also leads toward very efficient coverage time because
the robots always know where the unexplored zones are, so they can go directly on them
without wasting time in idle states. The graph is shared among all the agents so that, if one
of them has a fault, the covering procedure can continue without losing any information.
However the assumptions are different from the ones we are adopting for the present work,
in particular our agents do not rely on perfect wireless communication among them and we
do not assume that they always know where they are in the map (perfect localization).

Yamauchi presents a frontier-based exploration algorithm [36], where the agents explore
the environment, represented by a regular grid of cells, keeping in their memory a map of the
area and always directing themselves “to the boundary between open space and uncharted
territory”. A depth first search algorithm is used to move from the current position to the next
frontier. Each agent has a local map and a global map shared with all the other agents. When
a local map is updated (the agent explores a new area), it is summed with the global map,
and the latter is broadcasted to all the other agents so that they can update their global maps.
The agents do not broadcast information about what area will be explored next, so different
agents could explore the same frontiers in the same time resulting in an inefficient utilization
of the team. The algorithm also makes the same strong assumptions that we found in [34]
namely perfect localization, communication and mapping, and uses an Agent-to-Server com-
munication approach, because the map is stored in a centralized server.

Another Agent-to-Server communication approach is presented by Howard et al. [37],
where the authors show a general approach to explore a building, find objectives, and report
them back to the human personnel outside. However, it requires human support to solve
problems like loop closures or map merging between the agents, so it does not satisfy the
requirements for autonomous area coverage.

Finally, works which use the Agent-to-Agent communication paradigm have been pro-
posed by the following authors.

Burgard et al. [38] do not assume that the environment is divided into grid cells. Agents
compute an utility function to go to the next “frontier” in order to maximize the explored
territory. Although the agents have to store information about the map and localize them-
selves, this approach is probability-based and therefore more suitable for a real scenario: the
agents have a list of target points to reach in the next step, each of them associated to a value
which takes into account the cost to reach the point, and the probability of exploring new
areas once an agent has positioned itself on that point. The probability takes into account how
many agents are going to explore the area in which the target point is, therefore avoiding the
situation where all the agents explore the same area. Rekleitis et al. [11] try to improve the
exploration by mapping the environment while the area is covered by two robots. To localize
the robots they use odometry (a position estimate based on the previous movements), but
while a robot is exploring the area, the other stands still and observes the former to measure
its movements and improve the localization; after a certain amount of time the two robots
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exchange roles. The authors map the environment as trapezoids divided into striped which
are connected forming a graph. The agents use a depth first search algorithm to cover all the
stripes.

Batalin et al. [39], who focus on agent dispersion and propose two algorithms to make
the agents move away from each other when they are in sensing range. This is an important
issue because the agents should always be spread out as much as possible in the environment
to avoid wasting resources in exploring the same area multiple times.

Another interesting approach, inspired by ants behaviour, is proposed by Payton et al. [40].
The authors use a swarm of robots which spread into the environment, and coordinate between
themselves through infrared communication. Messages are propagated through the robots
(which act both as explorers and as relays for messages) to send information about the dis-
tance and position of a goal that must be reached.

5.5 Off-line algorithms

Since the off-line algorithms previously know the map of the environment, in theory they
could build a set of optimal paths to cover the area using all the available agents in the mini-
mum amount of time (optimal solution). In practice, this is not possible because this problem
is NP-complete, therefore heuristics are needed to find a feasible solution in polynomial
time. Such a heuristic is proposed in [41], where the authors prove that the original problem
is NP-complete, and propose a polynomial algorithm, which runs in the worst case eight
times slower than the optimal solution. Agmon et al. [42] propose a faster tree construction
algorithm, while Hazon et al. [13,43] focus on the robustness of the solution, so that even
if only one robot remains in operation, it will be able to carry and complete the exploration
task. All the off-line algorithms, being centralized in their computation of the exploration
paths, use the Agent-to-Server communication mode.

5.6 Simultaneous Localization and Mapping (SLAM)

In this section, we provide a brief overview of the Simultaneous Localisation and Mapping
(SLAM) technique. Our aim is to describe its main characteristics while emphasising the
reasons that make it different from our approach. A detailed description of SLAM can be
found in two tutorials by Hugh Durrant-Whyte and Tim Bailey [44] and [45]. The SLAM
problem investigates the possibility for a mobile robot to be placed at an unknown location
in an unknown environment and to incrementally build a map of the environment while
simultaneously determining its position within the map. In particular, the SLAM is a pro-
cess by which a mobile robot can build a map of an environment and at the same time use
this map to deduce its location. In SLAM, both the trajectory of the robot and the loca-
tion of all landmarks are estimated online without the need for any a priori knowledge.
The robots just use, without actively modifying, the information extracted from the envi-
ronment both to estimate their position and to dynamically build a map of an unknown
area. On the other hand, the aim of our work focus on the ability of a team of autono-
mous robots to collaborate in the task of exploring an unknown and hazardous terrain in the
minimum amount of time. Fast exploration and coverage of unknown areas, along with coor-
dination of the agents, are thus the primary concerns of our work. Moreover, our approach
actively modifies the environment tagging it with devices able to store information during
the exploration process. Finally, our approach does not use observations to estimate robot
locations.
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6 Conclusion and future work

In this work, we proposed a new algorithm, HybridExploration, for the multi-agent explora-
tion of unknown terrains. Our algorithm is based on an architecture consisting of both mobile
nodes (robots, called agents), and stationary nodes (inexpensive smart devices, called tags).
As the former enter the emergency area, they drop tags into the environment to label it with
a state. By reading and updating the state of the local tags, agents are able to coordinate
indirectly with each other. In addition, agents are further assisted during the exploration
task by tags able to wirelessly exchange local information. We compared our novel approach
against three existing algorithms, Ants, Brick & Mortar, and Multiple Depth First Search. Our
algorithm avoids exploring the same areas multiple times, it makes good utilization of both
physical and virtual agents and it is capable of efficiently resolving loops. Our simulation
results show that our HybridExploration algorithm, combining both tag-to-tag and agent-
to-tag communication, is significantly faster than the three competing ones, Ants, Brick &
Mortar, and Multiple Depth First Search, in a variety of scenarios.

As future research, we would like to explore the use of tags to create a network infrastruc-
ture, in order to communicate interesting events back to human responders and assist them in
the task of finding the cells where events were detected. Such an infrastructure could also be
used to monitor the surrounding environment, so that if an adjacent tag is malfunctioning, or
a section of a corridor collapses forming a new physical obstacle, the information could be
propagated immediately and alternative paths could be discovered by virtual agents, using
the same exploration algorithm. In this way, we could both monitor the explored areas and
cope with a dynamic environment. Another challenge is to cope with different cell distribu-
tions, without assuming that the tags are deployed in a grid network. In particular, we plan to
extend the proposed approach to the general case of connected graphs of cells. Furthermore,
we would like to deal with communication failures in tag-to-tag and agent-to-tag communica-
tions. Finally, we would like to provide a formal termination proof for the proposed algorithm.
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