
HybridExploration: a Distributed Approach to Terrain Exploration
using Mobile and Fixed Sensor Nodes

Ettore Ferranti, Niki Trigoni and Mark Levene

Abstract— When an emergency occurs within a building,
it may be initially safer to send autonomous mobile nodes,
instead of human responders, to explore the area and identify
hazards and victims. Exploring all the area in the minimum
amount of time and reporting back interesting findings to the
human personnel outside the building is an essential part of
rescue operations. Our assumptions are that the area map is
unknown, there is no existing network infrastructure, long-
range wireless communication is unreliable and nodes are not
location-aware. We take into account these limitations, and
propose a novel algorithm, HybridExploration, that makes use
of both mobile nodes (robots, called agents) and stationary
nodes (inexpensive smart devices, called tags). As agents enter
the emergency area, they sprinkle tags within the space to
label the environment with states. By reading and updating
the state of the local tags, agents are able to coordinate
indirectly with each other, without relying on direct agent-
to-agent communication. In addition, tags wirelessly exchange
local information with nearby tags to further assist agents in
their exploration task. Our simulation results show that the
proposed algorithm, which exploits both tag-to-tag and agent-
to-tag communication, outperforms previous algorithms that
rely only on agent-to-tag communication.

I. INTRODUCTION

When an emergency occurs within a building, it is crucial
for the first responders to acquire as much information
as possible on the ongoing situation, in order to identify
and contain hazards and coordinate the rescue of victims.
Initially, the area is off-limits and hazardous for anyone not
wearing respiratory equipment, garments or barrier materials
to protect themselves from exposure to biological, chemical,
and radioactive hazards. This kind of suit can be very heavy
and bulky, consequently limiting the first responders’ move-
ments, and reducing their sensing capacity (touch, vision, and
hearing). A group of autonomous mobile nodes, referred to as
agents, should therefore be deployed in the area to acquire
all the information that could assist the tasks of the first
responders.

Effort sponsored by the Air Force Office of Scientific Research, Air
Force Material Command, USAF, under grant number FA8655-08-1-3022.
The U.S. Government is authorized to reproduce and distribute reprints
for Government purpose notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the author and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Air Force Office of
Scientific Research or the U.S. Government.

E. Ferranti and N. Trigoni are with the Computing Labora-
tory, University of Oxford, Oxford, UK Ettore.Ferranti |
Niki.Trigoni@comlab.ox.ac.uk

M. Levene is with the School of Computer Science and In-
formation Systems, Birkbeck College, University of London, UK
Mark@dcs.bbk.ac.uk

The rescue operations however may be obstructed by a
number of limitations, e.g. the possible lack of a terrain map,
the failure of previously established networks, and the short-
range and often unreliable wireless indoor communication.
In addition, it might be difficult to use GPS positioning inside
a building, so an agent cannot rely on knowledge of its exact
location within the terrain.

In this paper, we take into account these limitations, and
assume that agents can rely only on local information that is
sensed in their vicinity (which other agents have left behind
them as a trace), before making the next exploration step. We
propose an approach to area exploration in which a swarm
of agents enter the emergency area and dynamically deploy
a network of stationary sensor nodes, referred to as tags, in
order to label the environment. Agents do not communicate
directly with each other; instead, they coordinate indirectly
by leaving traces of information on the tags that they deploy
on the space. In addition, the set of deployed tags form a
multi-hop wireless network, to further assist the agents in
their exploration task.

The key contribution of our proposed exploration algo-
rithm, named HybridExploration, is that it combines two
modes of communication: between agents and tags (agent-
to-tag) and multi-hop communication within the stationary
network of tags (tag-to-tag). It is fully distributed and does
not require centralized control of the agents to determine
their next move. It only exploits short-range communication
between agents and tags, and among tags, and does not
use unreliable long-range communication among agents, or
agents and the human responders.

The rest of the paper is organized as follows. Section II
presents the model, objectives and assumptions of our work,
and Section III describes the new HybridExploration algo-
rithm. Section IV presents a thorough experimental anal-
ysis of the proposed algorithm and the three competing
approaches. An overview of related work is provided in
Section V, followed by conclusions and directions for future
work in Section VI.

II. MODEL

We consider the task of exploring a hazardous terrain using
a group of autonomous agents. We assume a very simple
model of the area, in which the environment is divided
into a grid of square cells, whose size depends on both
sensing coverage and communication range of the agent. In
particular, when an agent is at the centre of a cell, it must
be able to cover the entire area with a sensor attached to
it to scan for victims or hazards. Therefore, the size x of a



cell must be determined by the range of the sensor (rsense)
and by the communication range of the agent (rcomm). In
particular, if we refer to Figure 1, it must be that x ≤ 2rsense√

2
.

Furthermore, since the agent must be able to communicate
with wireless nodes, referred to as tags, in everyone of the
8 cells around it, it must be that x ≤ 2rcomm

3
√

2
.

Fig. 1. Example of an agent equipped with a sensor. The sensor must
cover the entire area of the cell, and the agent must be able to communicate
with the 8 cells around it.

A cell can be in one of the following states:

• Wall: The cell cannot be traversed by an agent because
it is blocked by an obstacle.

• Unexplored: No agent has been in the cell yet, and
therefore no tag has been deployed there yet.

• Explored: The cell has been traversed at least once, but
the agents might need to go through it again in order
to reach other unexplored cells.

• Visited: The agents have already explored the cell, and
they do not need to go through it again to reach other
cells.

In the remainder of this section, we provide a high
level overview on the agent movement and tag deployment,
and discuss the agent-to-tag and tag-to-tag communication
modes.

Agent movement and deployment of tags: Agents are
initially deployed in one of the boundary cells and, in each
step, they are able to move from the current cell to one of
the four adjacent cells in the North, East, South or West
directions. As they move to an unexplored cell, they deploy
a miniature device (e.g. mote or RFID), referred to as tag,
capable of storing small amounts of information about the
state of the local cell.

Agent-to-tag communication: In emergency situations,
long-range wireless communication may be intermittent and
unreliable, so we assume that agents are able to communicate
only by reading and updating the tags installed in the local
and 8 neighbouring cells. We thus only consider distributed
exploration algorithms, in which agents make independent
decisions about how to navigate through the terrain based
on local state.

Tag-to-tag communication: In the proposed algorithm,
HybridExploration, we introduce virtual agents, i.e. active
messages that cause the execution of a small piece of code
on the tag that receives them. Virtual agents alter the state of
the local tag and are further disseminated to neighboring tags
within communication range. The underlying assumption of
our model is that a tag in a cell is able to communicate
wirelessly with the tags in the four adjacent cells.

A. Objectives

We are now going to introduce two objectives, which we
will use to assess the performance of the algorithm we are
going to examine in Section III and IV.

1) Exploration Objective: all cells in the area are tra-
versed by an agent at least once. This means that no
cell is left in the unexplored state. When this objective
is achieved, cells can be in any of the explored, visited
or wall states.

2) Termination Objective: all cells in the area are either
walls or visited. No cell is left in the unexplored or
explored state.

By definition, the Exploration Objective is always
achieved earlier (or at the same time as) than the Termi-
nation Objective. Both objectives should be achieved in the
minimum amount of time, because in an emergency scenario
as the one we are considering, speed is essential. The faster
the Exploration Objective is achieved, the faster victims and
hazards are identified. The quicker the Termination Objective
is achieved, the earlier human responders can enter the area
with the certainty that there are no hidden hazards. The
efficiency of an algorithm can be measured by how fast
it is able to achieve both the Exploration and Termination
Objectives. The goal of the present work is therefore to
devise an efficient algorithm that achieves both objectives
in a rapid manner.

III. THE HYBRIDEXPLORATION ALGORITHM

The HybridExploration algorithm gracefully combines two
parallel protocols, one followed by physical agents (robots,
or simply agents) and one followed by virtual agents. A
physical agent takes significantly longer to move from one
cell to another (physical robot motion) than a virtual agent
(message propagation). Hence, the time of completing the
exploration task is measured as the minimum number of
physical steps required by physical agents to explore the
entire area.

In Section III-A, we describe in detail the protocol that
runs on the physical agents. This protocol enables them to
cover the entire area of interest eventually, but it has two
weaknesses. First, physical agents are often inefficient in
exploring the area, as they cover the same cells multiple
times, instead of focusing their efforts on unexplored parts
of the space. Second, although physical agents eventually
manage to visit every cell at least once, they are not aware
when this happens, i.e. they have no indication of when the
exploration task terminates. These two problems motivate the
introduction of the Virtual Agent Protocol in Section III-B.



Fig. 2. Two physical agents running the Physical Agent Protocol are used
to explore a room.

The two protocols work in synchrony and together constitute
our proposed HybridExploration algorithm.

A. Physical Agent Protocol

The main idea behind the algorithm followed by the
physical agents is that of thickening the existing walls by
progressively marking the cells that surround them as visited.
Referring to Figure 2, cells A, B and C represent doors. The
agents enter the room from door A and gradually thicken the
walls by marking cells adjacent to walls as visited (Stages
1, 2 and 3). Agents stop thickening walls if they are at risk
of disconnecting two unexplored parts of the network. For
example, in Stage 4, the physical agents create two corridors
of explored cells in order not to disconnect unexplored cells
in the inner part of the room from unexplored cells in
other rooms (beyond doors B and C). When the exploration
of the current room is finished (Stage 6), the cells A, B
and C are connected by corridors of explored cells. These
corridors will allow agents to traverse the room through
doors A, B and C to access other unexplored rooms in the
building. In the description of the algorithm, we refer to
wall and visited cells as inaccessible cells, and to unexplored
or explored cells as accessible cells. The algorithm aims to
progressively thicken the blocks of inaccessible cells, whilst
always keeping accessible cells connected. The latter can

Fig. 3. Marking rules: the agent must decide to mark the current cell
as explored or visited. In the first example (a) the current cell cannot be
marked as visited because it is the only available passage between adjacent
cells A and B. In the second example (b) the current cell is marked as
visited because there is an alternative passage between A and B on the
right.

be achieved by maintaining corridors of explored cells that
connect all unexplored parts of the network.

The Physical Agent Protocol consists of two discrete steps.
In the marking step, the agent marks the current cell choosing
between the explored and visited states. In the navigation
step, the agent decides which cell to go to next.

Marking step: Every time an agent is in an unexplored
cell (with no tags on it), it deploys a tag and updates the state
of the cell, choosing between the explored and visited states.
The current cell is marked as visited if it does not block
the path between two accessible cells around it. Otherwise
it is marked as explored. Figure 3 provides two examples
of the marking step: one where the current cell is marked
as explored (map a), and one where it is marked as visited
(map b). In the first example, the only path between the two
unexplored cells A and B traverses the cell in which the
agent (black spot) is at the moment, thus the cell cannot
be marked as visited. In the second example, there is an
alternative path on the right end side of the map, thus the
current cell can be marked as visited without closing the way
between A and B. Note that such alternative paths are easy
to compute locally, because they are strictly confined to the
8-cell perimeter of the current cell.

Navigation step: In this step, the agents take a decision
about which cell to access next. Priority is always given to
the unexplored cells which are adjacent to the current one
(Figure 4a). If the unexplored cells are more than one, they
can be chosen at random (Figure 4c). If the agent is equipped
with a laser sensor or a sonar, and thus capable of detecting if
a neighbouring cell is surrounded by other black (obstacles)
cells, the cell which is most likely to be marked as visited
is chosen, i.e. the one with the most black cells around it
(Figure 4b). If there are no unexplored cells, the explored cell
which has been visited the least amount of times in the past
is selected (Figure 4d). To do that, the agents simply need to
increase a counter on the tag of a cell each time they traverse
it, and then read all the counters of the adjacent cells and
choose the minimum. In this way, an agent which traverses
the same cell twice can take different decisions about the next
move instead of always going toward the same direction, thus



Fig. 4. Different situations in which the agent applies the navigation rules
to decide which one of the adjacent cells it will go to during the next move.

avoiding being trapped in a loop. Finally, when the agent is
surrounded by inaccessible (wall or visited) cells, it stops its
exploration task (Figure 4e).

B. Virtual Agent Protocol

To speed up the exploration process and eventually achieve
the Termination Objective, we introduce the concept of
virtual agents. These are active messages propagated from
cell to cell via the corresponding wireless tags. Virtual agents
can only move to cells that are already deployed with tags;
they cause changes in the current cell’s state and make
informed decisions about which cell to traverse next. Like
physical agents, virtual agents move from one cell to an
adjacent cell in the North, East, South or West directions,
and they cannot traverse visited or wall cells. Unlike physical
agents, they cannot traverse unexplored cells since there are
no tags deployed there. Hence, they consider explored cells
as their own territory, and build Depth-First-Search (DFS)
trees along the corridors of explored cells that the physical
agents leave behind. The goal of the virtual agents is to
remove cyclic paths (loops) of explored cells.

The protocol that they run is a variant of the DFS
algorithm. The main idea is that virtual agents extend the
DFS tree with new explored cells in their way downwards,
and mark these cells as visited when they traverse them in
the opposite upward direction. If we consider two agents
running the protocol, for example, they will move together
and include each explored cell in their way into the DFS
tree. At the first intersection, they continue to extend the
DFS tree, but the one extends the left branch and the other
the right branch. When the two virtual agents meet, they
cannot extend the DFS tree any further; hence, they traverse
the branches upwards marking cells in the way as visited.

The example above proved how the Virtual Agent Protocol
tries to balance its resources across different branches of the
DFS tree (one virtual agent followed the left branch and the
other the right branch). The mechanism used for distributing

Fig. 5. Exploration rules for virtual agents. (A) Since the virtual agents
are just messages, they move infinitely faster than the physical ones. To
avoid virtual agents marking as visited a branch of the DFS tree in which a
physical agent is exploring, the virtual agents always stop when they need
to mark as visited a cell which is occupied by a physical one. As a result,
a virtual agent could follow a physical one and mark the cells immediately
behind it, literally “pushing” the physical agent toward unexplored areas.
(B) When a virtual agent needs to mark as visited a cell with at least an
unexplored adjacent neighbour, it stops until the unknown area is explored
by a physical agent. In this way, unexplored areas will never be disconnected
from the explored corridors.

virtual agents to different parts of the network is as follows:
each explored cell has a counter that measures how many
virtual agents have traversed it coming from the same parent
cell. Note that a cell can be accessed by a virtual agent from
at most one parent cell. As virtual agents traverse the DFS
tree downwards, they increment the counters associated with
each traversed cell. At intersections, they choose to move
to the explored cells traversed by the minimum number of
virtual agents, so as to assign the same number of agents to
each branch of the DFS tree.

We now discuss two rules that virtual agents should follow
to work in harmony with physical agents.

Rule 1: a virtual agent cannot mark a cell as visited if that
cell is occupied by a physical agent, and it always has to wait
until the physical agent is gone before continuing marking.
An example of this behaviour is depicted in Figure 5(A),
where virtual agents are following physical agents while they
avoid “overtaking” them and subsequently blocking them in
a branch with visited cells.

Rule 2: a virtual agent cannot mark a cell as visited if
at least one of the adjacent cells is unexplored. An example
of this case is provided in Figure 5(B), where the virtual
agent stops any activity until the adjacent cell is explored by
a physical agent.

To summarize, the Virtual Agent Protocol is capable of
quickly removing cyclic paths of explored cells, formed by
the Physical Agent Protocol. The role of virtual agents is
to assist physical agents, by following them closely and
cleaning up unwanted explored states in some of the cells,
in order to help physical agents achieve the Exploration
and Termination Objectives faster. The rules followed by
virtual agents ensure that they always work in harmony with
physical agents, i.e. they never delay or trap physical agents
before the Termination Objective is achieved. For a detailed
description of both Physical and Virtual Agent Protocols, the
interested reader can refer to the pseudocode provided in [1].



IV. SIMULATION RESULTS

We developed a simulation tool to test the performance
of the proposed HybridExploration algorithm and competing
approaches (i.e. Ants [2], MDFS [3], and Brick&Mortar [3]).
All of the tested approaches use an Agent-to-Tag commu-
nication paradigm, and assume an environment divided in
a grid of square cells. In particular, agents running Ants
leave traces on the cells they visit and then always choose to
move to the least visited cell. MDFS instead is a distributed
version of the DFS algorithm, in which agents use tags
in the cells to coordinate and explore a single DFS tree.
Brick&Mortar finally lets the agents mark the already visited
cells, so that they do not need to be traversed in the future,
while leaving corridors connecting all the unexplored areas
of the map, until every single cell has been traversed. All
of the above uses simple tags that can only be updated
by agents (e.g. passive RFID), while we believe that by
using HybridExploration, with a Tag-to-Tag communication
paradigm, we might improve the overall efficiency of the
exploration.

The Ants algorithm performance appears in the graphs
reporting only the exploration times, because this approach
is not capable of achieving the Termination Objective. This
happens because the Ants agents are not able to identify
when the exploration terminates, therefore all cells remain
permanently marked as explored and none of them is subse-
quently marked as visited. We are able to study the impact
of i) the number of obstacles, ii) the terrain size, and iii) the
number of rooms on the performance of the three algorithms.
In each experiment, we vary the values of one parameter,
and assign default values to the remaining ones. The default
values are: a map of 2500 (50x50) cells with 30 obstacles
and 36 (6x6) rooms, which is explored by 20 agents. The
agents are deployed from the top left cell of the area. We
consider two performance metrics: i) the exploration time
(Figure 6), i.e. the number of steps required to achieve the
Exploration Objective, and ii) the visiting time (Figure 7),
i.e. the number of steps required to achieve the Termination
Objective. We chose the number of steps to evaluate our
performance metrics because it represents the major source
of energy consumption for the robot during the exploration
process.

We also consider two different area types: i) Office: area
inspired by a real building plan, with corridors, offices, and
an open-space area. ii) Series: a long corridor which traverses
several rooms. The latter scenario is inspired by a mine or
another underground map in which each room has a door
entering from the previous one and another door leading to
the next. Our objective is to investigate how the performance
of the proposed and competing algorithms varies depending
on the spatial layout of rooms and doors in a building.

Effect of obstacles: Let us first study the impact of obsta-
cles on the performance of HybridExploration and competing
algorithms, as shown in Figures 6A/B and 7A/B. In both
scenarios, the introduction of obstacles does not seem to
slow down MDFS towards achieving both Exploration and

Termination Objectives. In contrast, Brick&Mortar, which
has a complex and time-consuming mechanism for resolving
loops around obstacles [3], suffers from having to resolve
an increasing number of obstacles. Furthermore, as one
would expect, the plots denoting the exploration time of
Brick&Mortar and MDFS cross over towards the middle of
the x-axis, since Brick&Mortar is faster with few obstacles,
but becomes inefficient with many obstacles.

Our proposed algorithm, HybridExploration, has lower ex-
ploration and visiting times than the others in both scenarios,
and for varying numbers of obstacles. The reason is that
it combines the ability of Brick&Mortar to quickly mark
cells as visited when there are no obstacles, with the ability
of MDFS to resolve loops, when there are many obstacles.
It handles the presence of loops very well thanks to the
virtual agents which are able to close them very quickly
after they are created, while the physical agents are free to
explore the remaining part of the area as fast as possible.
The comparative benefits of HybridExploration are more
pronounced in the Series scenario (Figures 6B and 7B),
where it is up to 50% faster than Brick&Mortar and MDFS.

Brick&Mortar is affected by obstacles, while MDFS can
cope with them much more easily. HybridExploration, thanks
to the virtual agent protocol, can maintain good performance
even if the number of obstacles is increased.

Effect of area size: The next question that we address
is whether the algorithms scale gracefully as we increase
the number of cells in the area. A comparison of the four
algorithms in both scenarios is depicted in Figures 6C/D
and 7C/D. As one would expect, as we increase the area
size, the exploration and termination times increase for all
algorithms in all scenarios. Let us take a closer look at the be-
havior of MDFS and Brick&Mortar. In terms of exploration
time, small areas favour MDFS over Brick&Mortar, whereas
in large areas Brick&Mortar performs better than the MDFS.
The two algorithms meet towards the middle of the x-axis in
all three graphs. The reason is that MDFS typically traverses
each cell more than once, whereas Brick&Mortar only once
unless it has to resolve loops. The visiting times of the two
algorithms is very close to the respective exploration times.

Our HybridExploration algorithm, which combines the
strengths of MDFS and Brick&Mortar, outperforms both of
them (and Ants) in every scenario, and scales gracefully with
the area size. In the Series scenario (Figures 6D and 7D),
where the loops around obstacles are longer than in the other
scenario, the ability of HybridExploration to close loops
using virtual instead of physical agents gives it a significant
advantage over Brick&Mortar and MDFS.

HybridExploration scales gracefully with the number of
cells, thanks to the positive effect of the Physical agent
protocol.

Effect of rooms: Figures 6E/F and 7E/F show the effect of
varying the number of rooms in the area while maintaining
the same number of cells, and thus the same area size. It
is peculiar how Brick&Mortar performs poorly in terms of
visiting time, when there are no rooms at all (open-space
area). This can be explained by observing that the loops are



Fig. 6. Effect on exploration time, when changing number of obstacles, size of the area or number of rooms.

Fig. 7. Effect on visiting time, when changing number of obstacles, size of the area or number of rooms.



not bound within a room but the agents can build loops which
are as large as the whole area, and therefore the time needed
to close them is much longer than in cases where a loop
cannot be larger than the size of a room.

The behavior of MDFS is also interestingly different
depending on the scenario. In the Office scenario (Figures 6E
and 7E), the performance of MDFS both in terms of ex-
ploring and visiting times hardly depends on the number of
rooms. We observe a small decrease in the exploration and
visiting times of MDFS, simply because some of the cells
that were previously unexplored are now wall cells forming
the frames of rooms. These wall cells do not require to be
traversed and marked as explored or visited. The behavior
of MDFS in the Series scenario (Figures 6F and 7F) is
rather unexpected. MDFS is slowed down by the presence
of rooms although with more rooms there are fewer cells
to cover. We think that this is because one of the strengths
of the MDFS algorithm is that the agents can build trees
of explored cells, with several branches spanning different
rooms in the scenario, and process them at the same time.
This parallelisation though is not possible in the Series
scenario, where the rooms form a chain and need to be
explored one after the other, without the possibility to explore
more than one at the same time. The agents running MDFS
therefore need firstly to mark the cells in the room as
explored, then traverse them again to mark them as visited
and finally move on to the next room, without efficiently
using all the agents in a parallel way during the exploration.
The Brick&Mortar and HybridExploration algorithms on the
contrary can directly mark every cell as visited, so that,
although they cannot explore more rooms at the same time in
parallel, the overall exploration and visiting times are much
less than the MDFS ones.

The HybridExploration algorithm outperforms the other
two algorithms in both scenarios; again, the Series scenario
presents the most interesting case, where the benefits of
HybridExploration are more pronounced.

V. RELATED WORK

Choset [4] provides a survey of coverage algorithms and
distinguishes them into off-line and on-line. In the former,
the agents are previously provided with a map of the area
to explore, while in the latter, also called sensor-based,
no assumption is made concerning the availability of an
environmental map for the agents. Our approach differs from
related work in that we are investigating the subclass of
on-line algorithms that rely on communication through the
instrumented environment.

Since the off-line algorithms previously know the map of
the environment, in theory they could build a set of optimal
paths to cover the area using all the available agents in the
minimum amount of time (optimal solution). In practice,
this is not possible because this problem is NP-complete,
therefore heuristics are needed to find a feasible solution in
polynomial time. Such a heuristic is proposed in [5], where
the authors prove that the original problem is NP-complete,
and propose a polynomial algorithm, which runs in the worst

case eight times slower than the optimal solution. Agmon et
al. [6] propose a faster tree construction algorithm, while
Hazon et al. [7], [8] focus on the robustness of the solution,
so that even if only one robot remains in operation, it will
be able to carry and complete the exploration task.

To the best of our knowledge, little work [9], [2], [10],
[3] has investigated the problem of on-line area exploration
by letting agents coordinate indirectly by tagging the envi-
ronment, subsequently reading and updating the state of the
deployed tags. Moreover, existing algorithms are not able
to autonomously decide when the exploration is terminated.
Recognising when the exploration terminates is of primary
importance in an emergency scenario such as the one we
are tackling: if the robots have to report back to the first
responders the situation inside the building, they absolutely
need to know when to stop exploring, and to do that they
need to be sure whether all the area has been explored or
not.

In our previous work, we proposed two algorithms, MDFS
and Brick&Mortar, to solve the terminating issue in a dis-
tributed fashion by marking cells already visited by the
agents, but these algorithms do not exploit tag-to-tag commu-
nication, i.e. they do not use the multi-hop communication
capabilities of the deployed sensor network. Furthermore,
agents running MDFS are poorly coordinated, and this
leads toward long exploration times, while agents running
Brick&Mortar use a complex loop resolution mechanism that
significantly delays the task of area exploration, especially
in topologies with many obstacles (e.g. desks in the middle
of an open space).

The feasibility of the approach is supported by Hähnel et
al. [11], who proved how a robot can use RFID tags already
placed on an area to localize itself and navigate through the
rooms, and recently by Kleiner et al.[10], who presented a
robot which is able to autonomously drop RFID tags on the
environment and implement an existing on-line exploration
algorithm [12].

One of the first on-line methods that uses a cellular de-
composition of the environment is the ants-inspired algorithm
presented in [9] and [2]. The area is divided into a grid
of square cells on which the exploring agents leave traces
of their passage, similarly to real ants leaving pheromone.
Agents (or ants) tend to move to the least visited cells, i.e. the
cells with the least amount of pheromone, and they increase
the number of visits (pheromone) as they hop onto a cell. A
similar approach to the Ants algorithm uses a sensor network
infrastructure to provide agents with information about the
visited areas and direct them to the least recently visited
direction [13].

Batalin and Sukhatme have done plenty of work [13], [14],
[15], [16] using radio beacons to guide the navigation of
robots and assist them in the coverage of an unknown terrain.
In particular, their robots are able to detect the beacons
(which are pre-deployed into the environment), choose one
of them and move toward it, always guided by their radios.
Furthermore, in [17], the same authors suggest that the bea-
cons could be dynamically deployed by a robot (an approach



similar to our previous work [3]), which could then use the
same Least Recently Visited (LRV) navigation approach. We
believe that the relatively simple algorithm they use could be
further improved to reach better performance in exploring the
area as fast as possible.

A different approach (centralized) has been presented
in [18]. In this work, the authors use a Boustrophedon [19]
technique to let the robots cover the area. Yamauchi presents
a frontier-based exploration algorithm [20], where the agents
explore the environment, represented by a regular grid of
cells, keeping in their memory a map of the area and
always directing themselves “to the boundary between open
space and uncharted territory”. The algorithm also makes
the same strong assumptions that we found in [18] namely
perfect localization, communication and mapping, and uses
a centralized communication approach, because the map is
stored in a common server.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a new algorithm, HybridExplo-
ration, for the multi-agent exploration of unknown terrains.
Our algorithm is based on an architecture consisting of both
mobile nodes (robots, called agents), and stationary nodes
(inexpensive smart devices, called tags). As the former enter
the emergency area, they drop tags into the environment to
label it with a state. By reading and updating the state of
the local tags, agents are able to coordinate indirectly with
each other. In addition, agents are further assisted during
the exploration task by tags able to wirelessly exchange
local information. We compared our novel approach against
three existing algorithms, Ants, Brick&Mortar, and MDFS.
Our simulation results show that our HybridExploration
algorithm is significantly faster than the three competing ones
in a variety of scenarios.

In the future, we would like to explore how to use tags as
a network infrastructure, to communicate interesting events
back to human responders. Another challenge is to cope with
different cell distributions, without assuming that the tags are
deployed in a grid network.

REFERENCES

[1] “Hybridexploration algorithm extended version.”
web.comlab.ox.ac.uk/oucl/work/ettore.ferranti/HybridExploration.pdf.

[2] J. Svennebring and S. Koenig, “Building Terrain-Covering Ant Robots:
A Feasibility Study,” Autonomous Robots, vol. 16, pp. 313–332, May
2004.

[3] E. Ferranti, N. Trigoni, and M. Levene, “Brick&Mortar: An On-Line
Multi-Agent Exploration Algorithm,” in ICRA07: Proceedings of the
2007 IEEE International Conference on Robotics and Automation,
pp. 761–767, IEEE Press, April 2007.

[4] H. Choset, “Coverage for robotics - A survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

[5] X. Zheng, S. Jain, S. Koenig, and D. Kempe, “Multi-Robot Forest
Coverage,” in IROS05: Proceedings of the 2005 IEEE International
Conference of Intelligent Robots and Systems, pp. 3852–3857, IEEE
Press, August 2005.

[6] N. Agmon, N. Hazon, and G. A. Kaminka, “Constructing Spanning
Trees for Efficient Multi-Robot Coverage, booktitle = ICRA06: Pro-
ceedings of the 2006 IEEE International Conference on Robotics and
Automation,” pp. 1698–1703, IEEE Press, May 2006.

[7] N. Hazon and G. A. Kaminka, “Redundancy, Efficiency, and Robust-
ness in Multi-Robot Coverage,” in ICRA05: Proceedings of 2005 IEEE
International Conference on Robotics and Automation, pp. 735–741,
IEEE Press, April 2005.

[8] N. Hazon, F. Mieli, and G. A. Kaminka, “Towards Robust On-line
Multi-Robot Coverage,” in ICRA06: Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, pp. 1710–1715,
IEEE Press, May 2006.

[9] S. Koenig and Y. Liu, “Terrain Coverage with Ant Robots: a Simu-
lation Study,” in AGENTS01: Proceedings of the 2001 ACM Interna-
tional Conference on Autonomous Agents, pp. 600–607, ACM Press,
May 2001.

[10] A. Kleiner, J. Prediger, and B. Nebel, “RFID Technology-based Explo-
ration and SLAM for Search And Rescue,” in IROS06: Proceedings
of the 20062006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4054–4059, IEEE Press, October 2006.

[11] D. Hähnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose,
“Mapping and Localization with RFID Technology,” in ICRA04:
Proceedings of 2004 IEEE International Conference on Robotics and
Automation, pp. 1015–1020, IEEE Press, April 2004.

[12] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on Robotics, vol. 21,
pp. 376–378, June 2005.

[13] M. A. Batalin and G. S. Sukhatme, “The Analysis of an Efficient Algo-
rithm for Robot Coverage and Exploration based on Sensor Network
Deployment,” in ICRA05: Proceedings of 2005 IEEE International
Conference on Robotics and Automation, pp. 3478–3485, IEEE Press,
April 2005.

[14] M. A. Batalin and G. S. Sukhatme, “Efcient Exploration Without
Localization ,” in ICRA03: Proceedings of 2003 IEEE International
Conference on Robotics and Automation, pp. 2714–2719, IEEE Press,
May 2003.

[15] M. Batalin, G. Sukhatme, and M. Hattig, “Mobile Robot Navigation
using a Sensor Network,” in ICRA04: Proceedings of the 2004 IEEE
International Conference on Robotics and Automation, pp. 636–642,
IEEE Press, April 2004.

[16] M. A. Batalin and G. S. Sukhatme, “Coverage, Exploration and
Deployment by a Mobile Robot and Communication Network,” in
Proceedings of the International Workshop on Information Processing
in Sensor Networks, pp. 376–391, ACM, April 2003.

[17] M. A. Batalin and G. S. Sukhatme, “The design and Analysis of
an Efficient Local Algorithm for Coverage and Exploration,” IEEE
Transactions on Robotics, vol. 23, pp. 661–675, August 2007.

[18] C. S. Kong, N. A. Peng, and I. Rekleitis, “Distributed Coverage with
Multi-Robot System,” in ICRA06: Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, pp. 2423–2429,
IEEE Press, May 2006.

[19] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in FSN97: Proceedings of 1997 International
Conference on Field and Service Robotics, December 1997.

[20] B. Yamauchi, “Frontier-Based Exploration using Multiple Robots,” in
AGENTS98: Proceedings of the 1998 ACM International Conference
on Autonomous Agents, pp. 47–53, ACM Press, May 1998.


