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Abstract— Ocean currents monitoring is a crucial re-
search area in marine sciences as it has a significant
impact on marine ecology. Currents carry nutrients; they
affect diffusion of various marine species, and knowledge
of currents can help energy savings in naval vessels.
Today, large-scale sensing platforms such as stationary
buoys, research vessels, gliders, single drifters and high
frequency coastal radars are utilized in ocean current
monitoring. In the near future, novel technologies will
be added, such as small-scale, cost effective networks of
drifters and/or autonomous underwater vehicles (AUVs)
such as gliders. Such networks of drifter are equipped
with GPS devices to collect location data and can use
acoustic, optical and/or radio communications systems
to be in coordination with other instruments and each
other; furthermore, we assume some drifters will be use
satellite communication to send their data to onshore
base stations or research vessels.

Deploying a fleet of passively propelled drifters
presents novel research questions in spatio-temporal
modeling and querying. It raises challenges with regard
to in-network data collection, and aggregation to provide
continuous ocean current observations on a much finer
scale as is possible today. Our proposed model relies on
a fleet deployment of passive, current-propelled, small-
sized ocean drifters as an alternative or support to
CODAR systems. We simulated the connectivity of the
drifters and uniformity of monitoring area using real data
from the Gulf of Maine (US) and Liverpool Bay (UK) in
our previous work. In this paper, we develop a formal
model for fleets based on the relative motion patterns
of drifters as a group, which is connected over time.
The drifters are conceptualized as geo-spatial lifelines (i.e.
trajectories) with spatio-temporal relationships between
the relative movements of the objects. This leads to the
formalization of various moving patterns types such as
flock, leadership, convergence, and encounter patterns.

I. I NTRODUCTION

Establishing a fine-grained model of local ocean
currents is important since currents carry nutrients and
other substances, which affect ecosystems in coastal
regions. For example, researchers are interested in

establishing current models for the Gulf of Maine
(US) since they distributed a specific type of algae to
shellfish of the coast of Maine during the warm summer
months; the shellfish consuming the algae turn toxic for
humans (red tide).

**INCOMPLETE SECTION**

II. BACKGROUND

There has been considerable research on spatiotem-
poral modeling of moving point objects (MPOs) over
the couple of decades. In the database community
moving object databases (MODs) have been studied
extensively. In general, MOD studies center on data
structures, efficient querying and indexing of moving
point objects. On the other hand, recent technological
progress in capturing motion data gave rise to an
immense growth of datasets. This, in turn, brought up
the potential of mining motion patterns of the moving
objects. [?] Today, the researches on mining motion
patterns over large spatiotemporal datasets mostly deal
exploring new patterns via modeling based on a set
of related moving objects. Some of the application
areas are: natural habitats of animals and migration
patterns, vehicle fleet management, tracking soccer
players movements, agent based simulation of crowd
movement[?] and spatio-temporal movement patterns
of tourists between various attraction locations.[?].
Both qualitative and quantitative generic formalisms
are proposed discovering motion patterns. Laube et.al
proposed ReMo analysis concept[?] which examines
relative motions of many MPOs and identifies patterns
such asflocks, leadershipand convergencebased on
an analysis matrix of objects with motion parameters
such as speed, motion azimuth and acceleration. Gud-
mundsson et al. and Benkert et. al also investigated the
flock and leadership and patterns based on geometric
arrangement of objects rather than using the analytical
space. They also propose efficient approximation algo-
rithms to identify these patterns. Van de Weghe et. al



[?] proposed QTCc a similar qualitative approach to
ReMo, that analysis based on the interaction between
multiple moving objects. QTCc represents movement of
two objects with respect to each other by checking four
different conditions such as movements with respect
to each other, e.g moving away or moving towards.
Accordingly, this framework tags these motion pat-
terns with qualitative values. (-,0,+) QTCc defines 81
relations between two objects based on their relative
movements. Verhein and Chawla [?] proposed STARs,
a mining technique which implements a modified As-
sociation Rule Mining (ARM) method that supports
spatiotemporal data. Their analysis is based on describ-
ing a set of regions distinguished by objects moving
throughout these regions. These regions are classified
as stationary regions and high-traffic regions and high
traffic regions are separated intosinks, sourcesand
through-fares.

III. M ODELING MOTION PATTERNS OFOCEAN

DRIFTERS

The basic idea on how to discover ocean drifter
motion patterns presented in this paper is based on ob-
serving similarities of the trajectories of nodes around
for a sensible duration. The potential uses of this
information can be twofold. First, if the nodes can
acquire information about the availability of the closer
nodes within their communication range, they can share
and aggregate their trajectory information. Secondly, as
the trajectories presumably depict the ocean currents,
these aggregated information can be reported near real-
time to base stations via satellite communication. The
following sections describes the general assumption of
the system and describes our model.

A. Some characteristics spatio-temporal motion pat-
terns of drifters

In contrast with the previous research on motion
patterns, such as vehicle fleet management or migration
behaviors of animals, motion patterns of drifters present
considerable differences. First, the vehicles and animal
movement occur in a controlled manner whereas sensor
nodes movements are dependent to ocean currents and
winds. Secondly, vehicle movement occurs on road
networks, and animal movements are constrained by
the geomorphological or habitation characteristics of
their environment. Third, the initial settings of model
framework is well defined compared to crowd move-
ment or animal migration patterns, such as total number
of drifters are known and the initial locations and

timestamps are known. Finally, motion patterns of
intelligent entities are more complex. In certain cases,
some of the members of group of animals can split
up but can rejoin the same group in the long run, in
ocean drifters there is no assumption such that a group
is consist of the same members of nodes or in other
words there is no guarantee that a separated node can
rejoin in the future time.

B. Problem Descriptions

In this work we assume that the drifters periodically
record the time series of location data and transmit to
fixed or mobile base stations. Next, the trajectory of
the ocean drifter represents the underlying phenomena,
which is the movements of ocean surface currents.
The trajectory of a MPO can be described as a piece-
wise linear function [?]where each consecutive segment
with n dimensions refers to a location function over
time.(Figure 1) A trajectory is denoted by a finite set of
locations ats time steps:T (s) = {T1, T2, ...Ts} EachT
represents a segment which consists of drifters coordi-
nates on the 2D plane at every timestamp:Ts(xs, ys). In
this model we accept that the a straight line represents
a path between each way-point and the velocity is
constant during the segment. The drifters store their
trajectory parameters as theXYs as starting point of
each segment, calculatevi as the velocity vector at the
end of each segment and the log interval I with starting
and ending timestamps[ts, te). Is−1 = {tR | ts ≤ t <
te} We can denote the location function f(t)=vit+XYS .
Table 1 shows an example of two drifter nodes moving
in three consecutive time steps.

C. Identifying drifter flocks

Definition 1. Distances between two drifters is cal-
culated using the Euclidean metric at each temporal
point. The maximum spatial coverage of each drifter
is defined by its communication range with radiusr.
In our model, we assume that each drifter is equipped
with the equal communication devices.

• The system can have a finite number of flocks
formations at the same timeF (i) and a every flock
has a flock head denoted byHi.

• The initial deployment of drifter array can be var-
ious. Drifters are deployed either at the same time
and location, or with spatio-temporal intervals in
different geometric patterns, e.g linear, diagonal,
grid etc. In this case the they start with each others
communication range. The flock formations occurs
following:



Fig. 1. Spatio-temporal representation of moving object

TABLE I

COLLECTION OF 2 DRIFTER MOVEMENTS

drifter XYs vi ts te
(2,1) (2,2) 0 6

d1 (-6,4) (2,3) 6 12
(0,9) (-1,4) 12 15

(4,11) (0,3) 0 4
d2 (2,5) (2,1) 4 9

(3,7) (2,2) 9 14

1) Initially a flock head is selected and the
remaining drifters in the range join to this
initial flock.

2) When a drifter leaves the flockF (i), it
assigns itself as a new flock head. It either
meets a nearby flock and join it if greater
in size or merges with another single flock
head.

3) The drifter resigns from flock when the flock
conditions are not met at least two consecu-
tive time steps. These membership rules are
explained in Description 2.

Definition 2.

IV. CONCLUSION AND FUTURE WORK


