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Abstract

The widespread dissemination of small-scale sensor nodes has sparked interest in a powerful new database
abstraction for sensor networks: Clients “program” the sensors through queries in a high-level declarative language
(such as a variant of SQL) permitting the system to perform the low-level optimizations necessary for energy-
efficient query processing. In this paper we consider multi-query optimization for aggregate queries on sensor
networks. We develop a set of distributed algorithms for processing multiple queries that incur minimum commu-
nication while observing the computational limitations of the sensor nodes. Our algorithms support incremental
changes to the set of active queries and allow for local repairs to routes in response to node failures. A thorough
experimental analysis shows that our approach results in significant energy savings, compared to previous work.

I. I NTRODUCTION

Wireless sensor networks consisting of small nodes with sensing, computation and communication
capabilities will soon be ubiquitous. Such networks have resource constraints on communication, compu-
tation, and energy consumption. First, the bandwidth of wireless links connecting sensor nodes is usually
limited, on the order of a few hundred Kbps, and the wireless network that connects the sensors provides
only limited quality of service, with variable latency and dropped packets. Second, sensor nodes have
limited computing power and memory sizes that restrict the types of data processing algorithms that can be
deployed. Third, wireless sensors have limited supply of energy, and thus energy conservation is a major
system design consideration. Recently, a database approach to programming sensor networks has gained
interest [1], [2], [3], [4], [5], [6], [7], where the sensors are programmed through declarative queries in
a variant of SQL. Since energy is a highly valuable resource and communication consumes most of the
available power of a sensor network, recent research has focused on devising query processing strategies,
like in-network aggregation, that reduce the amount of data propagated in the network.
Our Model and Assumptions. We assume that nodes are stationary and battery-powered, and thus severely
energy constrained. We distinguish a special type of node, referred to as agateway node, where users inject
query requests. The raw data generated at a sensor node is produced by one or more attached physical
sensors. Sensor nodes generate new readings either at regular intervals (such as polling a temperature
sensor every minute) or irregularly (such as a motion sensor detecting movement). The sensor network
is programmed through declarative queries posed in a variant of SQL or an event-based language [1],
[2], [3], [4], [5]. We concentrate on aggregation queries, and the sensor network performs in-network
aggregation while routing data from source sensors through intermediate nodes to the gateway.

Existing work has focussed on the execution of a single long-running aggregation query. In our new
usage model, we allowmultiple users to pose both long-running and snapshot queries (i.e. queries executed
once). As new queries occur, they are not sent immediately to the network for evaluation, but are gathered
at the gateway node into batches and are dispatched for evaluation once everyepoch. The query optimizer
groups together queries with the same aggregate operator and optimizes each group separately. Hence, in
our presentation of our optimization techniques, we assume that queries use the same aggregate operator.
Each epoch consists of aquery preparation (QP) and aresult propagation (RP) phase. In the QP phase,
all queries gathered during the previous epoch are sent to the network together for evaluation. In the RP
phase, query answers are forwarded back to the gateway.

An example query workload is illustrated in Figure 1. Requestrij represents thejth result of query
qi. Queriesq1 and q2 are presented in the first QP, whileq3 and q4 are presented in the second. Query
q1 is active during the second epoch, whileq2 terminates after the first epoch. Notice that our model
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is general enough to include queries with different result frequencies and different lifespans. Although
the algorithms proposed in this paper apply to this general usage model, for ease of presentation we
will restrict our discussion to a simpler scenario: all queries asked in a QP phase have the same result
frequency, and their computation spans a single (and entire) RP phase. The duration of an RP phase is a
tunable application-specific parameter. Typically, an RP phase is long enough to include multiplerounds
of query results. To summarize, anepoch has a QP and an RP phase, and an RP phase has manyrounds
in which query results are returned to the gateway.
The Intelligent National Park. To give an example of a scenario with multiple queries, consider a sensor
network deployed in a national park. Visitors of the park are provided with mobile devices that allow them
to access a variety of information about the surrounding habitat by issuing queries to the network through
a special purposegateway. For instance, visitors may wish to know counts of certain animal species in
different regions of the park. The region boundaries will vary depending on the location of the visitors.
The queries also change with time, as visitors move to different sections of the park, and certain queries
are more popular than others. In addition, the sensor readings change probabilistically as animals move
around the park, and there might be different update rates during the day than at night. In order to extend
the lifetime of the sensor network, the park’s gateway does not answer queries immediately, but batches
queries intoepochs, and sends all the queries posed during an epoch together to the sensor network for
evaluation. Query results are routed to the gateway at the end of every round until the end of the epoch.
Our Contributions. Query processing in large-scale sensor networks poses a number of challenges. First,
we need to minimize the communication cost of data dissemination, while ensuring that all the queries
posed are correctly computed. This is especially challenging if the rates at which sensors are updated vary
across nodes. Furthermore, our solution needs to be deployable in a completely distributed manner and
must observe the computational and memory constraints of the sensor nodes. Since communication links
may fail and the data dissemination tree reorganized, our solution must also be adaptive to topological
changes. This paper addresses these challenges and makes the following key contributions:

• Multi-Query Optimization In Sensor Networks: Concepts and Complexity. We formally introduce
the concept ofresult sharing for efficient processing of multiple aggregate queries. The main idea
is to share intermediate results whenever possible, taking the distribution of results in the network
into account. We also address the problem of irregular sensor updates by developingresult encoding
techniques that send only a minimum amount of data that is sufficient to evaluate the updated queries.
Our result sharing and encoding techniques achieve optimal communication cost forsum and related
queries (such ascount and avg). While some of our techniques also extend tomax and min queries,
we show that the problem of minimizing communication cost is NP-hard for these queries.

• Distributed Deployment of Multi-Query Optimization. We refine our multi-query optimization
algorithms to account for computational and memory limitations of sensor nodes, and present fully
distributed implementations of our algorithms. Besides a communication-optimal algorithm, we propose
a near-optimal algorithm that significantly decreases the computational effort. We show how to tune our
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algorithms to take into account the node computational capabilities, and the relative energy expended
for communication and for computation. We also show how to adapt our algorithms to link failures
that change the structure of the dissemination tree.

• Implementation Results Validating our Techniques. We present results from an empirical study
of our multi-query optimization techniques with several synthetic data sets and realistic multi-query
workloads. Our results clearly demonstrate the benefits of effective result sharing and result encoding.
We also present a prototype implementation on real sensor nodes and demonstrate the time and memory
requirements of running our code with different query workloads.

Relationship to Traditional Approaches for Multi-Query Optimization (MQO). The problem consid-
ered in this paper is significantly different from the traditional MQO problems. The difficulty in devising
efficient MQO algorithms for sensor networks is not only in finding common subexpressions, but in
dealing with the challenges of distribution and resource constraints at the nodes. This paper is, to the best
of our knowledge, the first piece of work to i) formulate this important problem, and ii) give efficient
algorithms with provable performance guarantees that are shown to work well in practice.

II. A N ILLUSTRATIVE EXAMPLE

In this section we present a simple example to illustrate our optimization techniques, which are then
presented in detail in Section IV. Recall from the introduction that in the QP (query preparation) phase
queries are propagated from the gateway node to the network. As a result of query propagation, a tree is
created that connects all nodes to the gateway [3]; such a tree will be hereafter referred to as dissemination
tree. Each sensor node is a potential data source and the single gateway node is at the root. Internal nodes
of the tree are used to process and route information from the source nodes to the gateway node. Figure 2
shows a simple example tree. Here the rootr is the gateway node, the leavesa, b and c are the data
sources, and values must be routed from the data sources through internal nodei to the root as needed to
compute query results. Data sources are located at the leaf nodes only for the purposes of this example;
in general, we are able to deal with any intermediate node generating sensor readings. In the remainder
of this section we present two scenarios of query evaluation on the tree of Figure 2.

Deterministic Updates: For the simplest scenario, suppose that each sensor produces a new value in
each round. We call this the D-scenario: it assumes that data updates occur deterministically, with proba-
bility 1. In each round, each sensor node sends its current sensor value to its parent in the dissemination
tree. Interior nodes of the tree compute sub-aggregates of the values they receive from their children,
and forward them up the tree towards the root. Under these conditions, multi-query optimization involves
recognizing when the values of sub-aggregates can be shared effectively among queries, so that redundant
data messages can be eliminated.

Consider evaluating the three queriesa + b, a + b + c, andc on the tree of Figure 2. In each round all
leaves send their values to the interior nodei, which then has enough information to compute the values
of all the queries. The three queriesa + b, a + b + c, andc, however, are not linearly independent – the
values of any two of them can be used to calculate the value of the third. Thus, nodei need forward
only two of the values (saya + b andc). The root can then recompute the third value (a + b + c) locally,
achieving a net saving of energy. This technique of “reducing” the set of data values forwarded toward
the root can be repeated at every subtree.

Irregular Updates: Next we consider the I-scenario, in which sensor updates are irregular, with the
update rates varying across different sensors. The goal of the query optimizer is to choose an efficient
“result encoding,” sending the minimum amount of data up the tree that will enable the root both to
identify the queries affected by the updated sensors and to compute the values of those queries. We call
data sent for these purposes RESULTCODE and RESULTDATA, respectively. Returning to the example in
Figure 2, consider the same three queries discussed for the D scenario:a + b, a + b + c, andc. Suppose
only sensora is updated in a round. Clearly the information forwarded up edge(i, r) must inform the
root that queriesa + b and a + b + c are affected, and must include the current value ofa. However,
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this does not imply that the root must “know” the exact set of sensors that were updated. It is easy to
verify that sensorsa andb and the aggregatea + b are all indistinguishable by any of the queries in the
workload. Consequently, rounds in whicha changes, orb changes, or botha andb change, can all result
in identical messages being sent along edge(i, r). Thus, in the I-scenario the goal of the multi-query
optimizer is to find an optimally compressed result encoding that eliminates unnecessary distinctions in
the RESULTCODE component in addition to representing the RESULTDATA component efficiently. This
is a more difficult problem than in the D-scenario, since the expected performance of a result encoding
clearly depends on the distribution of sensor updates.

III. O PTIMIZATION PROBLEMS AND COMPLEXITY

We now formally present the multi-query optimization, and give some complexity results, showing that
certain aspects of the problem are intractable while for others there are centralized optimal algorithms that
run in polynomial time. In this section, we focus on algorithms that aim to minimize the communication
cost of query evaluation ignoring any computation limitations or issues of distributed implementation. In
Section IV we will develop fully distributed algorithms that take into consideration the computation and
memory constraints in sensor networks.

We consider a set of aggregate queriesQ = {q1, . . . , qm} over a set ofk distinct sensor data sources.
A set of sensor readings is a vectorx = 〈x1, . . . , xk〉 ∈ <k. Each queryqi requests an aggregate value of
some subset of the data sources at some desired frequency. This allows each queryqi to be expressed as
a k-bit vector: elementj of the vector is 1 ifxj contributes to the value ofqi, and 0 otherwise. Thevalue
of queryqi on sensor readingsx is expressed as the dot productqi · x.

In our multi-query optimization problem, we are given a dissemination tree connecting thek sensor
nodes and the gateway, over which the aggregations are executed. Note that our solutions apply to any given
tree. The goal is to devise an execution plan for evaluating queries, that minimizes total communication
cost. The communication cost includes the cost of query propagation in the QP phase and the cost of
result propagation in each round of the RP phase. While we discuss the implementation of the QP phase
in detail in Section IV-B, we ignore the query propagation cost in the following analysis, since it is
negligible compared to the total result propagation costs, whenever the RP phase of an epoch consists of
a sufficiently large number of rounds. We focus on two classes of aggregation: (i)min queries and (ii)
sum queries. Clearly our results formin queries also apply tomax, and our results forsum queries can
be extended tocount, average, moments and linear combinations in the usual way.
Complexity of sum Queries: For sum queries the underlying mathematical structure is a field. We can
exploit this fact, using techniques from linear algebra to optimize the number of data values that must
be communicated. LetN be an arbitrary node in the tree. LetP (N) denote the parent ofN and letTN

denote the subtree rooted atN . We denote asx(N) the vector of sensor values in the subtreeTN and
Qx(N) the set of query vectors projected only onto sensors inTN .

We present a simple method to minimize the amount of data thatN sends toP (N) in each round. Let
B(Qx(N)) = {b1, . . . , bn} be a basis of the subspace of<k spanned byQx(N). Then any queryq ∈ Qx(N)

can be expressed as a linear combination of the basis vectorsq =
∑

j αj · bj, whereαj ∈ <, j = 1, . . . , n.
By linearity of inner product we get, for sensorsx(N) (in the subtreeTN )

q · x(N) = (
∑

j αj · bj) · x(N) =
∑

j αj · (bj · x(N))

That is, to evaluate the answers of queries inQx(N) it suffices to know the answers for any basis of the
query space spanned byQx(N). Any maximal linearly independent subset ofQx(N) is a (not necessarily
orthogonal or normal) basis of the space and every such basis has the same cardinality. So we can use
any maximal linearly independent subset ofQx(N) as our basis, andN can forward the answers of the
queries in this basis toP (N). The parentP (N), using the same set of basis vectors, can easily interpret
the reduced results that it receives fromN . We assume thatN andP (N) use the same algorithm in order
to identify the basis vectors ofQx(N), and the factorsαj. We refer to this procedure aslinear reduction.
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Fig. 3. Equivalence classes formed by three queries.

Fig. 4. The bounding box of a subtree is the minimum
rectangle that covers all sensors in the subtree. Grey nodes
represent sensors that belong to a bounding box of a subtree
without belonging to the subtree.

Theorem 1: The size of the query result message sent by the above algorithm in each round is optimal.
Complexity of min Queries: For min queries, the underlying structure is not a field (it lacks inverses)
and the above algebraic techniques do not apply. In fact, the multi-query optimization problem formin
queries turns out to be intractable even for very simple dissemination trees. We show it is NP-hard by
a reduction from the Set Basis problem. An instance of the Set Basis problem is collectionC of finite
subsets of a setS, together with an integerk. The problem is to find a collectionB of at mostk subsets
of S such that each element ofC can be achieved as the union of some elements ofB. Mapping an
instance of this problem to an instance of multi-query optimization is straightforward. The dissemination
tree consists of a root node, a single interior node, and|S| leaf nodes. We mapS to the set of sensors at
the leaf nodes, andC becomes the set ofmin queries to be computed. There is an execution plan sending
at mostk messages to the root in each round if and only if the given instance of Set Basis has a solution.

Theorem 2: The multi-query optimization problem formin queries is NP-hard.

IV. M ULTI -QUERY OPTIMIZATION

The linear reduction technique outlined in Section III provides an elegant solution for minimizing the
cost of processing multiplesum queries. However, a number of system considerations and details have
to be taken into account to apply to a real sensor network. In this section, we develop fully distributed
multi-query optimization algorithms forsum queries. We start our discussion by introducing the notion
of equivalence class, which is central to the algorithms proposed in the remainder of the section.

A. Queries and equivalence classes

Rectangular Queries: We have represented each query as ak-bit vector, wherek is the number of sensors.
Expressing queries in this form requires that the user have complete knowledge of the sensor topology. It
is more natural, and generally more compact, to represent queries spatially. In the remainder of this paper,
we focus our attention on queries that aggregate sensor values within a rectangular region, and represent
such a query as a pair of points((x0, y0), (x1, y1)) at opposite corners of the rectangle. Since queries do
no longer enumerate nodes specifically, we can even evaluate queries in an acquisitional manner [8], e.g.
by selecting a sample of sensor values generated within a query rectangle.
Equivalence Classes (ECs): To deal efficiently with rectangular queries and distribution, we introduce the
notion ofEquivalence Class (EC). An equivalence class is the union of all regions covered by the same set
of queries. For example, Figure 3 shows that queries{q1, q2, q3} form four ECs{EC1, EC2, EC3, EC4},
each one of which corresponds to a different set of queries. For instance,EC4 is covered only by queries
q2 and q3, and can be represented by the column bit-vector[0, 1, 1]T ; EC1 is represented by[1, 0, 0]T ,
EC2 by [0, 1, 0]T and EC3 by [0, 0, 1]T . Notice that an equivalence class is not necessarily a connected
region (seeEC2). An equivalence class may contain no sensors. Equivalence classes are identified based
solely on spatial query information; they are independent of the node locations in the network or of the



6

dissemination tree that connects nodes. We can, however, speak of thevalue of an equivalence class –
this is the aggregate of the data values of sensors located in the EC region. The value of an EC can be
obtained by a subset of sensors located in the EC region, if an acquisitional processing style is adopted.
Query Vectors and Query Values: We can now express queries in terms of ECs as follows. We number
equivalence classes (instead of sensors) from 1 to`, where` is the number of equivalence classes. Letx
denote the column vector in<` representing the values of the equivalence classes; thus,xi denotes the
sum of (all or a sample of) sensor values inECi. Each queryq is a linear combination of the set of
equivalence classes and can be captured by a row vector in{0, 1}`. For example, queryq3 in Figure 3
can be represented as the vector[0, 0, 1, 1], since it only coversEC3 and EC4. The value of a queryq
given the EC valuesx is simply the productq · x. Given the above representation of the queries and EC
values, it is natural to represent a set ofm queries as anm× ` (bit) matrix Q, in which the(i, j) element
is 1 if the ith query inQ covers thejth equivalence class. The value of the query setQ given the EC
valuesx is again given by the productQ · x, which is a column vector in<m. We often refer to the rows
of a query-EC matrix asquery vectors, and to the columns asEC vectors.
Bounding Boxes (BBs): Expressing queries in terms of ECs brings out the dependencies among queries.
In order to exploit these dependencies fully, each node needs to view queries in the context of its subtree,
rather than the entire network. Therefore, in our algorithms, a node expresses queries in terms of ECs
intersecting with its subtree; an EC intersects with a subtree if any of the sensor nodes in the subtree lies
within the EC region. A nodeN can accurately determine which ECs intersect with subtreeTN , if it either
knows the locations of all nodes inTN or receives from its children a list of all ECs intersecting with
their subtrees. Both approaches are prohibitive in terms of the communication involved. An approximation
of the set of equivalence classes intersectingTN can be obtained if we consider the minimum rectangle
that contains all sensors in the subtree. This rectangle is hereafter called thebounding box of TN and is
denoted asBBN . Figure 4 depicts the bounding boxes of the subtrees rooted at nodesn1 andn2. Note
that a bounding box may contain nodes that do not belong in the subtree (grey nodes in Figure 4).
Queries and ECs projected to the bounding box of a subtree: Let XN denote the set of equivalence
classes that intersect with the bounding box of the subtreeTN . It is easy to see thatXN is a superset
of the equivalence classes that actually intersect with the subtreeTN . For given query setQ, we let QN

denote the projection ofQ on to XN ; that is, we obtainQN by setting all entries ofQ that appear in
columns not inXN to be zero. Duplicate and zero rows are removed. We extend the notation to letxN

denote the vector of projected EC values onto the subtreeTN (not onto BBN since a nodeN can only
receive values generated by its descendants). Theith entry corresponds to the sum of sensor values lying
in the intersection ofECi and the subtreeTN . The entries of ECs that do not intersect withTN are set to
0. If we denote the values of queriesQ that are contributed from sensors in the subtreeTN asV (Q,N),
then the vector of values ofQN contributed from subtreeTN is V (QN , N) = QN · xN .

B. The Query Preparation (QP) phase

The query preparation phase consists of three steps: abounding-box calculation step, aquery prop-
agation step, and anEC evaluation step. Some of our algorithms for the RP phase do not require the
evaluation of ECs, in which case the last step is omitted.

Bounding-box calculation: A dissemination tree is first created using a simple flooding algorithm. Given
the dissemination tree, each nodeN computes the bounding boxBBN of its subtreeTN from the bounding
boxes of the subtrees of its children (if any) as follows. Ifx, (resp.,x′) andy (resp,y′) are the smallest
(resp., largest)x- andy-coordinates of the child bounding boxes, then(x, y) and(x′, y′) form two opposite
corner points of the bounding box ofN .

Query propagation: The next step is to send query information down the dissemination tree; the query
information includes the set of sensors involved in the query as well as its frequency. We distinguish
query propagation schemes based on whether bounding boxes are used to reduce the query propagation
cost: (i) AllQueries: flood all queries to the entire network; (ii) BBQueries: each node propagates down
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only queries that have a non-empty intersection with its bounding box. This is performed using semantic
routing information, discussed in detail in [8]. Once a node receives information about the relevant queries,
it can compute for each round in the epoch the set of queries that are active in the round.

EC computation: Given a set ofm query rectangles, we can compute all the ECs formed by the
m queries using a two-dimensional sweep algorithm inO(m3) time usingO(m3) space. Due to space
constraints, we defer the algorithm description and its analysis to the full paper. Using this algorithm,
each node locally computes the ECs intersecting with its bounding box.

C. The Result Propagation (RP) phase

Each RP phase consists of a number ofrounds; in each round, aggregation results are forwarded through
the tree paths from the leaves to the gateway. Consider a result message sent by a nodeN to its parent
P (N). The data forwarded byN to P (N) should be sufficient to evaluateV (QN , N), i.e. to evaluate
the contribution of sensors inTN to the values of the projected queriesQN . A result message that node
N sends to its parentP (N) consists of a pair〈RESULTCODE, RESULTDATA 〉; RESULTDATA includes
updated values, and RESULTCODE encodes what has been updated, showing how to interpret the values
in RESULTDATA .

We now propose a series of result propagation algorithms, all of which use the above message format.
These algorithms can be classified according to four dimensions. The first two dimensions are the
methods employed for computing the RESULTCODE and RESULTDATA components. The third dimension
is whether the linear reduction technique of Section III is applied. The last dimension is whether these
choices are identical for all nodes, yielding apure algorithm, or these choices may differ across nodes,
yielding ahybrid algorithm.
Pure algorithms without reduction: We consider two methods for determining the RESULTCODE

component of a message that a node sends to its parent. InQuery-encoding, a node sends to its parent
information aboutwhich queries have been updated since the last round. Formally, letUpdRows(QN )
be the matrix derived fromQN after removing all queries (row vectors) that are not affected by the
current sensor updates inTN . Both N andP (N) agree on unique labels for the queries inQN from the
integer interval[1, |QN |]. Then, RESULTCODE consists of a set oflg |QN |-bit labels listing the queries in
UpdRows(QN ). We note that Query-encoding does not require computation of equivalence classes. In
EC-encoding, a node sends to its parent information aboutwhich equivalence classes have been updated
since the last round. LetUpdCols(QN ) be the matrix derived fromQN after removing all ECs (column
vectors) that do not include any updated sensors inTN (and after removing duplicate and zero rows).
Since bothN and P (N) can computeXN (i.e. the set of equivalence classes that intersect withBBN )
they can agree on a unique label in the range[1, |XN |] for each equivalence class inXN . In EC-encoding,
RESULTCODE includes the identifiers of ECs (columns) ofUpdCols(QN ).

The size of RESULTCODE depends on the probability distribution of sensor updates. Instead of including
a list of identifiers of updated (present) queries (resp. ECs) in RESULTCODE, we could only include
identifiers of non-updated (absent) queries (resp. ECs) or simply represent the updated queries (resp.
ECs) as a bit vector (vector). Different strategies might be better for different sensor update probabilities.
In our experiments, we use an adaptive hybrid scheme that selects at each node the optimal of the three
strategies (present, absent and vector).

We also consider two methods for populating the RESULTDATA component of a result message that
a node sends to its parent. In theQuery-data approach, RESULTDATA is the set of values of updated
queries. In theEC-data approach, RESULTDATA is the set of values of updated EC values.

One can combine the two dimensions above to obtain four different algorithms for the RP phase:
QueryQuery, QueryEC, ECQuery and ECEC, respectively, where the first part of the name refers to the
encoding, and the second part to the data. EC-encoding results in messages with smaller RESULTDATA

components than Query-encoding, independent of whether the Query-data or EC-data policy is used. This is
because both (row and column) dimensions ofUpdCols(QN) are smaller than those ofUpdRows(QN ).
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Basis Evaluation Step at Node N :
Input:

i) {BBNk}, k = 1, . . . , ch // child bounding boxes
ii) BBN // my bounding box
iii) UQN = UpdCols(QN )
iv) UQNk = UpdCols(QNk), k = 1, . . . , ch

Pseudocode:
1. repeat for each childk

(B(UQNk ), ANk) = linear reduction(UQNk);
// s.t. B(UQNk ) is a basis ofUQNk ,
// and UQNk = ANk · B(UQNk )

2. do (B(UQN ), AN ) = linear reduction(UQN);
// s.t. B(UQN ) is a basis ofUQN ,
// and UQN = AN · B(UQN )

Fig. 5. Basis Evaluation Step

Result Evaluation Step at Node N :
Input:

i) {V (B(UQNk ), Nk)}, k = 1, . . . , ch // from children
ii) {ANk}, k = 1, . . . , ch // from basis eval. step
iii) B(UQN ) // from basis eval. step
iv) UQN , {UQNk}, k = 1, . . . , ch // from basis eval. step

Pseudocode:
1. repeat for each childk

-V (UQNk , Nk) = ANk · V (B(UQNk ), Nk)
-V (UQN , Nk) = assignvalues(UQN , UQNk , V (UQNk , Nk))

2. V = evaluatemy contrib to queries (UQN )
3. V (UQN , N ) = V +

∑ch
k=1 V (UQN , Nk)

4. V (B(UQN ), N )=selectbasisvalues(V (UQN , N ), B(UQN))
// whereV (B(UQN ), N ) ⊆ V (UQN , N )

5. forwardbasisvaluesto parent(V (B(UQN ), N ))

Fig. 6. Result Evaluation Step

Therefore, if the computational capabilities of the sensor nodes allow EC-computations, then we only
consider ECQuery and ECEC. On the other hand, if the computational limitations of the sensor nodes do
not allow them to compute the ECs, then QueryQuery is the only algorithm of interest. Consequently, we
focus our attention on three of these four algorithms, namely, QueryQuery, ECQuery, and ECEC.

• ECQuery: In the RESULTCODE component, each nodeN sends toP (N) the identifiers of the updated
ECs in the subtree rooted atN . In the RESULTDATA component, nodeN includes delta values only
of the distinct row vectors of matrixUpdCols(QN ). That is, query vectors are projected only onto the
updated ECs (columns), and one value is sent for each distinct projected query vector.

• QueryQuery: In the RESULTCODE component of the message thatN sends toP (N), it includes
the identifiers of updated queries. In RESULTDATA , nodeN includes delta values of the distinct row
vectors of matrixUpdRows(QN ). Since the number of distinct query (row) vectors inUpdRows(QN )
is larger or equal to their number inUpdCols(QN), the size of RESULTDATA in QueryQuery is larger
or equal to its counterpart in ECQuery.

• ECEC: The RESULTCODE component is identical to that of ECQuery. Unlike ECQuery, ECEC sends
up EC values in the RESULTDATA component of the message. For each updated EC in the subtree, it
sends up the aggregate value of all sensors in the intersection of the EC and the subtreeTN .

An optimal pure algorithm using linear reduction: Both ECQuery and ECEC decrease the commu-
nication cost of result propagation by explicitly encoding irregular updates. Additional communication
savings can be achieved by carefully applying the linear reduction technique (introduced in Section III)
in a distributed manner to reduce the size of propagated irregular updates. We now present the algorithm
ECReduced which uses EC-encoding, and is provably optimal with respect to the amount of result data
that is communicated. The RP phase of ECReduced at each node consists of two steps: i) a basis evaluation
step and ii) a result evaluation step. The basis evaluation step is executed whenever the set of active queries
changes or the set of updated ECs changes. Thus, if every query has the same frequency and all sensors
are updated regularly (D-scenario), then the basis evaluation step is executed only once at the beginning
of the RP phase. This step is the most computationally demanding part of our algorithm since it involves
matrix linear reduction; the complexity of reducing a matrix withm rows andn columns isO(mn2).

Basis evaluation step: Consider a nodeN with ch children nodes. NodeN initially performs ch row-
based linear reductions on matricesUpdCols(QNk

), k = 1, . . . , ch, in order to interpret the results received
from its childrenN1, . . . , Nch. NodeN then reduces its own query-EC matrixUpdCols(QN ) into a set of
linearly independent query vectors. Overall,N performsch + 1 matrix reductions. An illustration of this
step is shown in Figure 5, if we setUQN to UpdCols(QN ) and UQNk

to UpdCols(QNk
). In task 1 of

Figure 5, nodeN does not only derive the basis vectorsB(UQNk
) for each childk, but also a coefficient
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matrix ANk
, such that the product ofANk

and B(UQNk
) yields the original projected queriesUQNk

.
Matrix ANk

can be easily computed if we use the Gauss-Jordan elimination method for linear reduction,
and observe the row transformations performed. The coefficients in matrixANk

will become input of the
next result evaluation step.

Result evaluation step: This step is executed once per round of the RP phase, and it includes simple
operations wrt time and memory space. Relying on the output of the basis evaluation step, nodeN
combines the incoming (delta) values received from its children and forwards a minimum number of
values to its parentP (N). Details of this step are shown in Figure 6, whereUQN is set toUpdCols(QN )
andUQNk

is set toUpdCols(UQNk
) as in Figure 5. First, for each childNk, nodeN evaluates the values

of queries (row vectors of)UQNk
, based on the values of the basis vectorsB(UQNk

) and matrixANk
.

More specifically,ANk
[i, j] denotes how the value of thej-th row vector ofB(UQNk

) contributes to the
value of thei-th query inUQNk

. NodeN then assigns the contribution of subtreeTNk
to queriesUQN as

follows: if a queryqi ∈ UQN has an empty projection to (the updated EC regions of subtree)TNk
, then

the assigned (delta) value is 0. Otherwise,qi takes the value of the corresponding projected query onto
TNk

. In task 2 (Figure 6),N evaluates the contribution of its own reading to queriesUQN . Combining
the values from the previous two tasks, nodeN proceeds to evaluate the results of queriesUQN for the
entire subtreeTN (task 3). As shown in task 4, it is sufficient to evaluate only the values of queries that
belong to the basisB(UQN). Only those values, denoted asV (B(UQN), N), are finally forwarded to the
parent nodeP (N) (task 5). Notice that if all nodes use the same algorithm to linearly reduce a query
matrix, there is no need to communicate the selected basis vectors; a node only forwards up the values
of these vectors to its parent. The following result is derived from Theorem 1.

Theorem 3: The size of the RESULTDATA component in the ECReduced algorithm is optimal; it is a
lower bound on the size of the optimal result message.
Hybrid algorithms with no reduction: The algorithms introduced so far are executed in an identical
manner at all nodes. We now consider two hybrid algorithms that perform differently across nodes,
depending on the load of results contributed by the underlying subtrees. The first algorithm, referred to
as HybridBasic, attempts to approximate the optimal cost achieved by the ECReduced algorithm, while
avoiding the high computational requirements for linear reduction.

• HybridBasic: Consider the bounding box of a node and the set of queries and ECs intersecting with
the bounding box. For a given sensor update rate, when the number of (projected) queries is small, the
number of (projected) ECs is greater than the number of queries. In this case, the ECQuery algorithm
is expected to outperform the ECEC algorithm. However, for a large number of queries the equivalence
classes might be fewer than the queries. In this case, the ECEC algorithm is expected to outperform the
ECQuery algorithm. The point where the two algorithms cross depends on the sensor update frequency.
The HybridBasic algorithm combines the ECEC and ECQuery approaches. A node selects the approach
that locally yields the least cost, and sends an additional bit to denote its choice. The only constraint
is that if a child uses the ECQuery approach, it only provides information about the values of updated
queries; hence, its parent can only implement the ECQuery approach. On the contrary, a parent of a
node that implements ECEC can implement either of the two approaches.

Surprisingly, HybridBasic performs extremely well in terms of communication; as will be shown in
Section V, it closely approximates the cost of the ECReduced algorithm, without requiring a linear
reduction task. In fact, HybridBasic can be viewed as an approximate application of linear reduction
in the following sense: the rank of a matrix is always smaller or equal to the smallest dimension of the
matrix; given a query-EC matrix, HybridBasic effectively chooses to propagate values of row vectors
(queries), or of column vectors (ECs) depending on which ones are fewer. In practice, this policy works
well, since the cardinality of the smallest matrix dimension often coincides with the matrix rank.

HybridBasic assumes that each node is able to evaluate equivalence classes within the bounding box of
its subtree. The following algorithm, named HybridWithThreshold, lifts this requirement for nodes close
to the gateway, whose bounding boxes overlap with many queries.
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• HybridWithThreshold: If the input query workload is light, EC evaluation for the entire network
is easy to perform locally at each node. Otherwise, nodes close to the leaves may opt for local EC
computation, i.e. computation of ECs within the context of the bounding box of the node’s subtree. As
we approach the gateway, the bounding box of a node’s subtree increases, and so do the number of
query rectangles that intersect with the bounding box. The computational cost of evaluating ECs may
become prohibitively expensive for nodes close to the gateway. The HybridWithThreshold algorithm
behaves like the HybridBasic algorithm at nodes that are able to perform EC computation. When the
effort for EC computation exceeds a certain threshold at a node (its computational capability), the node
switches to Query-encoding and sends up one result per updated query.

D. Handling failures

We now briefly consider the impact of failures on the result propagation schemes. In the general case,
a change in the dissemination tree will change the bounding boxes for a subset of the nodes. Since
in each of the result propagation schemes, a node projects queries to its bounding box, it follows that
the computation of this projection must be updated for each node whose bounding box has changed. In
addition, the calculation of the EC-ids has to be performed at some of the nodes for all algorithms that
use EC-encoding; if instead of “local EC-ids”, we use global EC-ids (which require more bits), then this
computation can be avoided at the expense of increasing the per-round communication. Finally, in the
ECReduced algorithm, all the nodes for which the bounding boxes have changed, and their parents, need
to recompute the basis to achieve result size reduction. It is important to note, however, that no additional
communication is incurred in the result propagation schemes.

V. EXPERIMENTAL EVALUATION

We first measure the communication cost of the proposed algorithms under synthetic query and sensor
update workloads using a home-grown simulator (Sections V-A and V-B). In Section V-B. we also present
our feasibility test of the linear reduction technique, which we performed on the Mica2 mote. In Section V-
C, we evaluate how the proposed algorithms trade communication for computation. Finally, in Section V-D
we show the benefits of our techniques by drawing data from a real sensor network infrastructure deployed
in the Intel Berkeley Research Lab.

A. Synthetic experimental setup

We deploy 400 sensors in a square region of 400m2 and randomly select theirx andy coordinates to be
any real numbers in[0, 20]. We ensure that with a communication range of2m the random deployment of
nodes results in a (100%) connected network (otherwise the random deployment is repeated). A flooding
algorithm is used to generate a minimum spanning tree that connects all nodes to the gateway. Each
node selects as its parent a randomly chosen neighbor that lies on a shortest path to the root. The
queries considered in our framework aresum queries that cover all sensors in a rectangular area. In our
experiments we test a number of different query workloads, each defined as a set of tuples of the form
(numberOfQueries, minQueryWidth, maxQueryWidth, minQueryHeight, maxQueryHeight). We assume
that all the queries in a workload have the same frequency. We set the minimum values of the query
dimensions (minQueryWidth, minQueryHeight) to1m and the maximum values to20m. Given query
input patterns, a random workload generator generates specificinstances in each epoch that satisfy the
patterns. The sensor update workload defines the probability that a sensor is updated at the end of a
round. Given a sensor update inputpattern, a random workload generator selects a specific set of sensors
to be updated in a round.

For simplicity, we assume long-running queries that are propagated once at the beginning of an epoch
(in the QP phase) and are evaluated at every round of the RP phase until the end of the epoch. Since the
query propagation cost occurs once per epoch, it is negligible compared to the result propagation cost and
is not accounted for. In our evaluation, we measure the result (communication) costper round, averaged
over 200 rounds (10 epochs of 20 rounds each).
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Fig. 7. Communication cost of algorithms in the D-scenario.
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B. Communication cost

In the first set of experiments we ignore the computation cost. To make the measurements of commu-
nication cost realistic, we consider a packet size of 34 bytes (similar to the size ofTOS Msg used for
Mica motes) that consists of a 5-byte header and a 29-byte payload. If the number of bits in a message
is x, then the communication cost isdx/29e × 34; that is, we account for a fixed header cost (5 bytes)
and only consider fixed size packets. The size of each query result is set to 16 bytes.

Deterministic sensor updates: In Figure 7, we compare the performance of different algorithms as we
increase the number of queries sent together for evaluation at the beginning of an epoch. In this initial
experiment, we assume that all sensors are updated in each round with probability 1 (D-scenario). We
first compare our techniques with the existing approach, namely an extension of the TAG algorithm [3] to
process multiple queries. Since this algorithm, which we refer to as NoOptimization, performs in-network
aggregation independently for each query, the average (per round) result propagation cost increases linearly
in the number of queries. The performance advantage of our proposed techniques is apparent even for
light query workloads. In fact, our most basic optimization approach QueryQuery offers communication
cost benefits of up to 50% for 20 queries (and the gap increases significantly with the number of queries).
We also note here that an alternative approach in which all sensors push their data up to the gateway
without in-network aggregation is always inferior to ECEC.

Figure 7 validates our analysis of Section IV-C that EC-encoding outperforms Query-encoding, if we
restrict our attention to communication cost. Between ECQuery and ECEC, Figure 7 shows that ECQuery
outperforms ECEC for query workloads with less than 80 queries, but as we increase the number of
queries, the number of ECs became smaller than the number of queries and ECEC wins.

We now consider the cost and benefit of the reduction technique in the D-scenario. Figure 7 shows
that the proposed ECReduced algorithm performs better than all the other algorithms, thus validating
Theorem 3. In addition to our simulations, we implemented the linear reduction technique on the Berkeley
Mica2 motes (4MHz ATMEL processor128kB flash, 4kB RAM, 4kB ROM) using the NesC programming
language. We measured the time in seconds required for reducing anm×m matrix of floats as a function
of m. The observed time grows asΘ(m3), which is consistent with the complexity of the reduction
algorithm. The algorithm completes successfully despite the limited storage and processing capabilities
of the mote. The code for matrix reduction was compiled with ”make mica” to 12604 bytes in ROM and
428 bytes in RAM. For matrices of dimension from 5 to 15, the linear reduction algorithm takes 0.07 to
1 seconds, but the algorithm time increases rapidly for larger matrices.

A final important observation from Figure 7 is that the HybridBasic algorithm performs almost as well
as the ECReduced algorithm, without requiring any computational cost for linear reduction (Figure 7). This
is encouraging since it shows that a very simple distributed algorithm, which can easily be implemented
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on constrained sensor nodes, gives a very good approximation of the optimal solution.
Probabilistic sensor updates: In Figure 8, we compare the performance of different algorithms as

we vary the probability that a sensor generates an updated reading in a given round. We set the number
of queries to 50. Recall that in the D-scenario (Figure 7), which corresponds to the I-scenario with
probability 1, ECQuery is preferred to ECEC for workloads of less than 80 queries. As we decrease the
sensor update probability to less than 0.6, however, Figure 8 shows that it becomes beneficial for nodes
to send up EC values instead of query values in RESULTDATA . For an update rate of 10%, ECEC is
30% cheaper than ECQuery. The ECReduced algorithm, which applies the linear reduction technique in
a distributed manner, outperforms all other algorithms (Figure 8). Moreover, the HybridBasic algorithm
has a very good performance, approaching closely the cost of ECReduced.

In Figures 9 and 10, we take into consideration the limited computational power of sensor nodes.
From the two algorithms that do not require EC computation (NoOptimization and QueryQuery), we
only consider QueryQuery because it has smaller communication cost. Among the algorithms that do not
perform reduction but require EC computation, we only consider HybridBasic because it has similar
computational requirements with the others yet smaller communication cost. We omit the study of
ECReduced because it requires matrix reduction without yielding noteworthy cost savings compared to
HybridBasic. In the experiment of Figure 9, we set the sensor update probability to 1, and in Figure 10
we perform the same experiment for update probability 0.1. In both figures, QueryQuery has a higher cost
than HybridBasic. The former algorithm does not require knowledge of ECs, whereas the latter assumes
knowledge of ECs independent of the nodes’ computational capabilities. We study the performance of
the HybridWithThreshold algorithm, where the significance of the threshold value is as follows: if the
threshold value at a nodeN is greater than the effort of computing ECs (measured asm3, wherem is the
number of distinct projected queries onto the local bounding boxBBN ), then EC computation cannot be
performed atN , and the node switches to using the QueryQuery algorithm. Figure 9 shows that as we
increase the threshold value (plotted on a logarithmic scale), more nodes are able to compute ECs, and
the cost of HybridWithThreshold approaches the cost of HybridBasic.

C. Tradeoff between communication and computation cost in the presence of failures

In our next set of experiments (Figures 11 and 12), we consider both the computational and the
communication cost of our algorithms. In particular, we evaluate the total cost (computation and commu-
nication) as a function of the ratio between the communication and computation costs. Our experiments
for the D- and I-scenarios indicate that while linear reduction and EC-encoding together offer the most
communication-efficient approach (ECReduced), a hybrid of EC- and Query-encoding without invoking
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linear reduction (HybridBasic or HybridWithThreshold) performs almost as well for our collection of
synthetic workloads. Consequently, in this section, we only consider three algorithms: QueryQuery, which
performs neither linear reduction nor EC computations, and HybridBasic and HybridWithThreshold.

The computation cost at a node is measured as the effort needed to evaluate ECs. Hence it is zero for
QueryQuery, andm3 for HybridBasic at a nodeN , wherem is the number of distinct projected queries
onto BBN . For HybridWithThreshold, we adopt a threshold value of 50000. We set the sensor update
probability to 0.1 and the number of queries to 50. Since computation cost is spent primarily on EC
evaluation, we consider a link failure model, where ECs are reevaluated when the bounding box of a
node’s subtree changes. Figure 11 (resp. 12) shows the communication/computation tradeoff, when the
link failure probability in a round is 0.1 (resp. 0.5). In both figures the cost of QueryQuery is constant,
since the algorithm performs no EC evaluation. For the hybrid algorithms, as we increase the cost ratio,
the relative importance of computation cost decreases, and thus the overall cost decreases. The decrease
is more pronounced for HybridBasic, which performs EC computation at all nodes. For cost ratio less
than 50 in Figure 12, HybridWithThreshold is cheaper than HybridBasic because it avoids expensive EC
computation at some nodes. However, as the cost ratio increases, HybridBasic becomes more efficient -
it uses ECs at all nodes to reduce the communication cost, at the expense of little computational effort.

D. Experiment with real data

In this section we compare the communication cost of our preferred algorithm, HybridBasic, with the
NoOptimization algorithm, by drawing data from a real network setting. Data is collected from 54 sensors
deployed in the Intel Berkeley Research lab in a 31 by 41 area (Figure 13). Sensors are equipped with
weather boards that allow them to measure humidity, temperature, light and voltage values once every
31 seconds. The cost of the different techniques was measured as the average result propagation cost
over 40 rounds (of one epoch). Every round lasts for 30 minutes and a node reports an update at the
end of a round, if its new value differs from the previously reported value by more than a givenupdate
percentage. In our experiment, we vary theupdate percentage from 0 to 50% (x-axis in Figure 14). We
posed 30 queries, each of which asks for the average temperature reading within a rectangular area. The
query regions were selected to reflect the boundaries of different rooms (areas) of the Lab. For an update
percentage threshold of 5%, HybridBasic has a significant advantage over the existing NoOptimization
approach.

VI. RELATED WORK

We classify the related work into two categories: query processing and communication protocols.
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Fig. 13. Network setup in the Intel Berkeley Research Lab.
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Query processing in sensor networks. Several research groups have focused on in-network query
processing as a means of reducing energy consumption. The TinyDB Project at Berkeley investigates
query processing techniques for sensor networks including an implementation of the system on the
Berkeley motes and aggregation queries [1], [2], [3], [4], [5]. An acquisitional approach to query
processing is proposed in [8], in which the frequency and timing of data sampling is discussed. The
sensor network project at USC/ISI group [9], [10] proposes an energy-efficient aggregation tree using data-
centric reinforcement strategies (directed diffusion). A two-tier approach (TTDD) for data dissemination
to multiple mobile sinks is discussed in [11]. An approximation algorithm for finding an aggregation
tree that simultaneously applies to a large class of aggregation functions is proposed in [12]. Duplicate
insensitive skethches for approximate aggregate queries are discussed in [13], [14]. Our study differs from
previous work in that we consider multi-query optimization for sensor networks.

Communication protocols for sensor networks. The data dissemination algorithms that we study
in this paper are all aimed at minimizing energy consumption, a primary objective in communication
protocols designed for sensor (and ad hoc) networks. A number of MAC and routing protocols have been
proposed to reduce energy consumption in sensor networks [15], [16], [17], [18], [19], [20], [21], [22]
While these studies consider MAC and routing protocols for arbitrary communication patterns, our study
focuses on multi-query optimization to minimize the amount of data.

VII. C ONCLUSIONS AND FUTURE WORK

Our work addresses several issues in the area of Sensor Databases. We have introduced two major
extensions to the standard model of executing a single long-running query: A workload of multiple
aggregate queries and a workload of sensor data updates. We have given efficient algorithms for multi-
query optimization, and tested their performance in several scenarios. To the best of our knowledge this
is the first work toformally examine the problem of multi-query optimization in sensor networks.

The main conclusions drawn in this paper are the following: First, the notion of equivalence class
(EC) is important for distributed query evaluation: encoding sensor updates in terms of ECs enables
better compression of the result messages. Second, the result data size is minimized for a certain class of
aggregate queries (sum, count and avg) by applying the linear reduction technique in a distributed manner.
Third, in applications where the computationally expensive task of linear reduction is infeasible for the
sensor nodes, a very good approximation of the optimal can be obtained by having each node select an
appropriate local data encoding strategy. This local encoding strategy can itself be defined in terms of a
threshold that specifies the computational limitation.

There are a number of directions for further research. First, we would like to extend our ideas to a wider
class of aggregation functions. In this regard, fast approximate basis calculations formin queries may lead
to more efficient processing of these queries. Second, our paper has focused on accurate query evaluation.
It would be worthwhile to study approximate query processing and obtain error-energy tradeoffs. We would
also like to adapt our techniques to multi-path aggregation methods that provide more fault-tolerance.
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