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Abstract

The sheaf theoretic description of non-locality and contextuality by
Abramsky and Brandenburger sets the ground for a topological study of
these peculiar features of quantum mechanics. This viewpoint has been
recently developed thanks to sheaf cohomology, which provides a sufficient
condition for the contextuality of empirical models in quantum mechanics
and beyond. Subsequently, a number of studies proposed methods to de-
tect contextuality based on different cohomology theories. However, none
of these cohomological descriptions succeeds in giving a full invariant for
contextuality. In the present work, we introduce a cohomology invariant
for possibilistic and strong contextuality which is applicable to the vast
majority of empirical models.

1 Introduction

Non-locality and contextuality are key features of quantum mechanics, which
have been proved to play a crucial role as a fundamental resource for quantum in-
formation and computation [HWVE14, Rau13]. Abramsky and Brandenburger
gave a general and unified description of these phenomena using sheaf theory
[AB11], showing that contextual behaviour can be observed even beyond quan-
tum mechanics. The sheaf theoretic framework provides a rigorous topological
description of contextuality, which perfectly conveys the idea of contextuality
as a fundamental discrepancy between local consistency and global inconsis-
tency [ABK+15]. In this framework, empirical models, which contain all the
information concerning the outcomes of an ideal experiment, are represented
as presheafs over the set of available measurements. Then, contextuality cor-
responds to the impossibility of extending the local sections of the empirical
model presheaf to global ones.

In recent work, this topological viewpoint has been further developed by
taking advantage of sheaf cohomology, a widely used theory in algebraic ge-
ometry and topology, suited to study extendability of local features to global
ones. In particular, Abramsky et al. used Čech cohomology to derive a coho-
mological obstruction to the extendability of local sections [AMB12, ABK+15].
Although the obstruction has been proved to detect contextuality in a vari-
ety of well-studied empirical models, such as the Popescu-Röhrlich (PR) boxes
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[Per90], the Greenberger-Holt-Zeilinger (GHZ) states under Pauli measurements
[GHSZ90, GHZ89, Mer90], the Peres-Mermin ‘magic’ square, and the whole class
of models admitting All-vs-Nothing (AvN) arguments [ABK+15], there is evi-
dence of a significant amount of false positives (e.g. the Hardy model [Har93]).
In fact, subsequent work has highlighted many limits of the Čech cohomology
approach, including the fact that it does not provide a full invariant for contex-
tuality even in its strongest form [Car17], and even under strong assumptions
on the measurement scenarios.

Since then, other studies have used different cohomology theories to study
contextual features. For instance, Okay et al. [Rau16] used simplicial and group
cohomology to present topological counterparts for the contextuality arguments
used in measurement based quantum computation (MBQC). However, these
methods do not represent a full invariant for contextuality, and they are limited
to the class of contextuality arguments relevant for MBQC. Roumen’s cohomol-
ogy of effect algebras [Rou16], provides an alternative viewpoint, based on cyclic
and order cohomology. The author partially addresses the question of existence
of false positives, and suggests that order cohomology does not produce any
false positives. However, the result is obtained at the expense of the practical
computatability of the cohomology invariant, which appears so complex that no
application to concrete empirical models has been presented yet.

The aim of this paper is to refine the theory of Čech cohomology in order to
obtain a complete invariant which is applicable to the vast majority of empirical
models, without compromising the practical computability of the cohomology
obstructions.

2 Background

2.1 Sheaf theory and contextuality

The sheaf-theoretic description of non-locality and contextuality provides the
appropriate topological framework for the definition of cohomology. The key
aspect of this approach is that sheaves represent the most natural objects to
study the extendability of local properties to global ones, and thus perfectly
convey the conception of contextuality as a discrepancy between local consis-
tency and global inconsistency. In this section, we review the main definitions
and results and set the ground for the definition of cohomology.

Let X be a finite set of measurement labels representing all the measure-
ments available to the experimenters in an ideal scenario. A fundamental aspect
of contextuality scenarios is that not all the measurements may be performed
simultaneously.1 To capture this feature, we introduce a measurement cover i.e.
an antichain M ⊆ P(X) satisfying

⋃
C∈M C = X. Elements of the cover M

are the measurement contexts, i.e. the maximal sets of measurements that can
be jointly performed. Each measurement m ∈ X will produce an outcome in a
set Om. The set X, the coverM and the outcome sets (Om)m∈X constitute the
measurement scenario 〈X,M, (Om)m〉. We equip X with the discrete topology
and define the sheaf of events

E : Open(X)op = P(X)op −→ Set,

1In quantum mechanics, this arises e.g. when considering non-commuting observables.
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where, for all U ⊆ X,

E(U) :=
∏
m∈U

Om,

and the restriction maps are given by the obvious projection, i.e. given U ⊆
U ′ ⊆ X, we have

ρU
′

U := E(U ⊆ U ′) :
∏
m∈U ′

Om −→
∏
m∈U

Om :: 〈sm〉m∈U ′ 7−→ 〈sm〉m∈U .

It is quite easy to show that E is indeed a functor and satisfies the sheaf condi-
tion. Each s ∈ E(U) is called a local section over U . If U = X such a section is
called a global section. We will often refer to a local section at U as a function
U →∐

m∈U Om such that s(m) ∈ Om for all m ∈ U .
The measurement scenario and the sheaf of events define the experiment

setting and are therefore independent of any physical system we aim to apply
these measurements to. The application of this scenario on an actual physical
system is captured by the notion of empirical model. An empirical model is
a compatible family {eC}C∈M of probability distributions over the events at
each contexts E(C),2 which represent the statistics obtained as a result of the
experiment. In this work, we focus on possibilistic empirical models, in other
words, we shall be concerned only with whether an event is possible (i.e. with
probability > 0) or not, disregarding the actual value of the probability. Such
models are defined as subpresheaves S of E satisfying the following conditions:

1. S(C) 6= ∅ for all C ∈M.

2. S is flasque beneath the cover, i.e. the restriction map ρU
′

U is surjective
whenever U ⊆ U ′ ⊆ C for some context C ∈M.

3. Every family {sC ∈ S(C)}C∈M which is compatible (i.e. for all C,C ′ ∈M,
we have sC |C∩C′= sC′ |C∩C′) induces a global section in S(X). Such a
section must be unique as S is a subpresheaf of E .

Condition 2 can be seen as a possibilistic version of no-signalling.
We can now define the notion of contextuality. Let S be an empirical model

on a scenario 〈X,M, (Om)m〉.

• Given a context C ∈ M and a section s ∈ S(C), we say that S is possi-
bilistically (or logically) contextual at s and write LC(S, s), if s is not part
of any compatible family. We say that S is logically contextual, or LC(S)
if LC(S, s) for some section s.

• We say that S is strongly contextual, and write SC(S), if LC(S, s) for all s.
In other words, by condition 3, there is no global section, i.e. S(X) = ∅.

In this framework, non-locality is a special case of contextuality. It corre-
sponds to contextuality in the particular case where the measurement scenario
is Bell-type. A scenario 〈X,M, (Om)m〉 is said to be Bell-type if

2Here, compatibility means that the marginals of the distributions agree on the intersec-
tions of contexts. The formal definition can be found in [AB11] and will not be needed in this
paper.
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• The measurement set X can be partitioned into subsets {Xi}i∈I , where I
labels different ‘parts’ of the system, and Xi represents the measurements
that can be carried out at part i.

• The coverM contains contexts of the form {xi}i∈I , where xi ∈ Xi for all
i ∈ I. This corresponds to performing one and only one measurement for
each part of the system.

For this reason, every result concerning contextuality will be true in partic-
ular for non-locality.

2.1.1 Simplicial complex description and bundle diagrams

The structure of a measurement scenario can also be described as an abstract
simplicial complex having measurements as vertices [Bar14, Bar15]. A set of
vertices constitutes a face of the complex whenever the corresponding measure-
ments can be performed jointly, hence contexts correspond to facets. Using
this description, it is possible to see possibilistic empirical models as simplicial
bundles over measurement complexes.This allows to represent simple empirical
models in a clear and intuitive way, using bundle diagrams. For example, con-
sider the Hardy model represented in Table 1. In this case, we have two exper-

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1 1 1 1
a1 b2 0 1 1 1
a2 b1 0 1 1 1
a2 b2 1 1 1 0

Table 1: The Hardy possibilistic model.

imenters Alice and Bob who can choose between two dichotomic measurements
each (a1, a2 for Alice and b1, b2 for Bob). Thus, we have X = {a1, a2, b1, b2},
M = {{a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}} and Om = {0, 1} for all m ∈ X. No-
tice that this is a Bell-type scenario. The rows of the table correspond to the
contexts, and the events marked with ’1’ are the ones deemed possible by the
model. The bundle description of the Hardy model can be found in Figure 1,
both in its 3-dimensional and planar version. At the base of the diagram lies
the measurement complex. Above each vertex is a fiber representing the two
possible outcomes for the corresponding measurement. Possible sections of the
empirical model are represented by edges connecting points in the fiber above
each context. Global sections correspond to a choice of one section per context
such that they all agree at intersections, and appear as closed loops around the
bundle. For instance, we have highlighted a global section in blue. The planar
representation will be handy with more complicated scenarios. To recover the
full model from it, one has to glue the right hand side with the left hand side.

One of the advantages of representing empirical models using bundle dia-
grams is that we have an immediate visual feedback on the contextual properties
of the model. For example, by simply looking at the diagrams in Figure 1, we
see that the section s := (a1, b1) 7→ (0, 0) is not part of any compatible family,
hence the model is logically contextual at s. However, the model is not strongly
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Figure 1: Bundle diagram of the Hardy model in its 3-dimensional version (left)
and planar version (right).

contextual because it contains, among others, the global section highlighted in
blue.

2.2 Čech cohomology

In this section, we recall the main definitions and results of [AMB12, ABK+15]
on how to apply Čech cohomology, which is a particular type of sheaf cohomol-
ogy, to the study of contextuality.

Consider an empirical model S on a measurement scenario 〈X,M, (Om)m〉.
The first issue we encounter in the definition of cohomology is that it requires a
presheaf of abelian groups, while S is merely a presheaf of sets. This difficulty is
overcome by taking a presheaf F of abelian groups which represents S. Formally,
this means that F is a presheaf F : P(X)→ AbGrp which verifies conditions 1,
2, 3 and is such that there exists an injection i : S ↪→ F with iC(sC) 6= 0 ∈ F(C)
for all C ∈ M and for each sC ∈ S(C). In practice, we will select F := FRS
as a representative presheaf, where R is a ring, and FR : Set → AbGrp is
the functor that maps a set X to the free abelian group on R generated by it.3

Although this might seem as a minor alteration, it actually plays a crucial role
in the existence of false positives in the detection of contextuality as we shall
see in detail later in this paper.

The nerve N (M) of M is an abstract simplicial complex with vertices in
M. The set N (M)q of its q-simplices is constituted by tuples σ = 〈C0, . . . , Cq〉
of elements ofM such that |σ| := ∩qi=0Ci 6= ∅. For all q ≥ 0 and each 0 ≤ j ≤ q,
we define the boundary maps ∂j : N (M)q+1 → N (M)q by

∂j(C0, . . . , Cq+1) := (C0, . . . , Cj−1, Ĉj , Cj+1, . . . , Cq+1).

We can now introduce the augmented Čech cochain complex

0
0−−→ C0(M,F)

δ0−→ C1(M,F)
δ1−→ . . .

where, for all q ≥ 0,

Cq(M,F) :=
⊕

σ∈N (M)q

F(|σ|)

3The restriction maps in this case are obtained by linearly extending the ones of S. In a

slight abuse of notation, we will denote by ρU
′

U both the restriction maps of S and those of F .
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is the abelian group of q-cochains, and δq : Cq(M,F) → Cq+1(M,F) defined
by

δq(ω)(σ) :=

q+1∑
j=0

(−1)jρ
|∂jσ|
|σ| (ω(∂jσ)) ∀ω ∈ Cq(M,F), ∀σ ∈ N (M)q

is the q-th coboundary map. Čech cohomology Ȟ∗(M,F) is defined as the co-
homology of this augmented cochain complex.

We will assume thatM is connected, which means that given any C,C ′ ∈M,
there exists a sequence C = C0, . . . , Cn = C ′ such that Ci ∩ Ci+1 6= ∅ for all
0 ≤ i ≤ n − 1. Note that this assumption does not cause any loss of gener-
ality as we can always study an empirical model defined on a non-connected
cover by analysing its behavior on the individual connected components, with-
out compromising the contextual structure of the model itself. Thanks to this
assumption, cocycles in Z0(M,F) ∼= Ȟ0(M,F) correspond to compatible fam-
ilies {rC ∈ F(C)}C∈M (i.e. such that rC |C∩C′= rC′ |C∩C′ for all C,C ′ ∈M).4

We shall be concerned with extendability of local sections at a fixed context
C0 ∈M. For this reason, we define the relative cohomology of F . To do so, we
introduce two auxiliary preshaves. Firstly

F |C0
: Open(X)op → AbGrp :: U 7→ F(U ∩ C0).

The restriction to C0 yields a morphism of sheaves pC0 : F ⇒ F |C0 given by

pC0

U : F(U)→ F |C0
(U) :: r 7→ r |C0∩U .

Each pC0

U is surjective as F is flasque beneath the cover and U ∩C0 ⊆ C0 ∈M.

The second presheaf is defined by FC̃0
(U) := ker(pC0

U ). To summarise, we have
the following exact sequence of presheaves

0 =⇒ FC̃0
=⇒ F pC0

===⇒ F |C0 , (1)

which can be lifted to cochains to

0 −→ C0(M,FC̃0
) ↪−−−−→ C0(M,F)

⊕
C p

C0
C−−−−−→ C0(F ,F |C0),−→ 0,

where exactness on the right follows by surjectivity of all the pC0

C . The map δ0

can be correstricted to a map δ̃0 := δ0 |Z1(M,F) whose kernel is Z0(M,F) ∼=
Ȟ0(M,F) and whose cokernel is isomorphic to Ȟ1(M,F), and the same proce-
dure can be applied to F |C0 and FC̃0

. Therefore, by applying the snake lemma
to

0 C0(M,FC̃0
) C0(M,F) C0(M,F |C0

) 0

0 Z1(M,FC̃0
) Z1(M,F) Z1(M,F |C0

)

δ̃0 δ̃0 δ̃0

we obtain the following exact sequence

4Where rC |C∩C′ is an equivalent notation for ρC
C∩C′ (rC) = F(C ∩ C′ ⊆ C)(rC).
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Ȟ0(M,FC̃0
) Ȟ0(M,F) Ȟ0(M,F |C0)

Ȟ1(M,FC̃0
) Ȟ1(M,F) Ȟ1(M,F |C0

)

γC0

The homomorphism γC0
is called the connecting homomorphism relative to the

context C0.
It can be shown that F(C0) ∼= Ȟ0(M,F |C0). Thus, given a local section

r0 ∈ F(C0), we can define the cohomology obstruction of r0 as the element
γC0

(r0) ∈ Ȟ1(M,FC̃0
).

Proposition 2.1 ([AMB12]). Let M be a connected cover, C0 ∈ M and r0 ∈
F(C0). Then, γC0

(r0) = 0 if and only if there exists a compatible family {rC ∈
F(C)}C∈M such that rC0 = r0.

Let S be an empirical model and consider a local section s0 ∈ S(C0). We
define the following concepts

• S is cohomologically logically contextual at s0, or CLC (S, s0), if γC0
(s0) 6=

0. We say that S is cohomologically logically contextual, or CLC(S), if
CLC (S, s) for some section s.

• S is cohomologically strongly contextual, or CSC (S), if CLC (S, s) for all
sections s.

The main result of [AMB12] provides a sufficient condition for an empirical
model to be contextual:

Theorem 2.2. Let S be an empirical model. Given a section s0 of S, we have
CLC(S, s0)⇒ LC(S, s0). Moreover, CSC (S)⇒ SC (S).

Note that cohomology only provides a sufficient condition for contextuality,
which is not necessary in general. False positives do exist, as we shall see in
detail in the following section. The key subtlety that leads to such detection
errors is that the vanishing of the cohomology obstruction γ(s) implies that s is
a part of a compatible family for the presheaf F . However this compatible family
may not be a valid family for S, because S does not allow linear combinations
of sections.

3 False positives in cohomology

In this section, we will study false positives by analysing some key examples.
Consider the Hardy model presented in Figure 1. We have already shown

that the section s := (a1, b1) 7→ (0, 0), marked in red in the picture, is not part of
any compatible family of the presheaf S of the model, proving that S is logically
contextual at s. However, the section s is part of the following compatible family
for the sheaf F := FZS:

{s, (a2, b1) 7→ (1, 0),(a2, b2) 7→ (1, 0),

[(a1, b2) 7→ (1, 0)]− [(a1, b2) 7→ (1, 1)] + [(a1, b2) 7→ (0, 1)]},
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Figure 2: A cohomology false positive for the Hardy model.

which is higlighted in blue in the bundle diagram of Figure 2.5 This means
that the obstruction γ(s) vanishes, and cohomology is unable to detect the
contextuality of the Hardy model.

Another, more extreme, false positive is presented in [Car17], and is depicted
in the bundle diagram of Figure 3. The peculiarity of this model is that coho-

1

0

a1

a2

b1

b2

2

2

3

33

1

00

a1 b1 a2 b2 a1

1

0

2

3

Figure 3: A strongly contextual model which is cohomologically non-contextual.

mology fails to detect contextuality at every single section of the model, despite
the fact that none of the sections is part of a compatible family, as the model
is strongly contextual. This proves that Čech cohomology, as it is defined in
[AMB12], is not an invariant for strong contextuality, and it can fail even on
extremely simple scenarios. To show how this is possible, in the planar diagram
of Figure 3, we highlighted in blue a compatible family for F containing the

5The compatible family can be seen as a closed loop around the bundle, or, equivalently,
as a path going from left to right in the planar bundle diagram. The convention we follow is
that we assign coefficient +1 to all the segments of the path going from left to right, and −1 to
all the segments going from right to left. This kind of loops will be referred to as cohomology
loops or non-standard loops, and correspond to global sections for the presheaf F .
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section (a1, b1) 7→ (0, 0).6

Notice how the possibility of following a ‘Z’ shaped path like the one for the
context {a1, b2} is crucial for the existence of this false positive. This appears
to be an aspect common to most of the false positives we know. For instance,
it is sufficient to invert the labelling of the outcome set Oa1 = {0, 1} for the
measurement a1 in the Hardy model to see that a ‘Z’ path is responsible for
the false positive in this case as well. This common trait is crucial, and it will
essentially motivate our basic strategy to avoid false positives.

Before we illustrate the strategy, we present one last example which will
clarify our arguments. Consider the model described by Table 2 and graphically
represented in Figure 4.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 1 0 0 1
a1 b2 1 0 1 1
a2 b1 1 0 0 1
a2 b2 0 1 1 0

Table 2: A logically contextual empirical model.

0

1
0

11

0

a1

a2

b1

b2

1

0

a1 b1 a2 b2 a1

Figure 4: A cohomology false positive for section (a1, b1) 7→ (1, 1), highlighted
in red

Once again, the section s := (a1, b1) 7→ (1, 1), highlighted in red, is not part
of any compatible family, which means that the model is logically contextual
at s. However, if we allow linear combinations of sections by considering the
presehaf F := FZS, we see that s is part of the compatible family

{s,[(a2, b1) 7→ (1, 1)− (a2, b1) 7→ (1, 0) + (a2, b1) 7→ (0, 0)],

(a2, b2) 7→ (0, 0), (a1, b2) 7→ (0, 1)},

which means that the model is not cohomologically logically contextual at s. The
reason why this model is important to understand our strategy is the following.
We have already mentioned that compatible families correspond to closed loops
around the bundle. Suppose that, in the process of trying to extend s to form
a closed loop, we could ‘force’ the selection of section (a2, b1) 7→ (1, 1) for the

6A similar kind of path can be found for any of the local sections of the model.
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context {a2, b1}. This would disallow the ‘Z’ path higlighted in blue in Figure 4,
which is ultimately responsible for the existence of a false positive. It would then
be possible to conclude that it is impossible to extend s to a closed loop, even the
ones allowed by linear combinations typical of cohomology. Our main strategy
will follow exactly this idea. We will derive a series of modified scenarios where
each section corresponds to a ‘forced’ selection of sections in adjacent contexts
of the original model.

4 Changing the original problem

In order to achieve a complete cohomology invariant for contextuality, we will
need to transform the original model into a new one, which is defined on a
carefully modified scenario with special properties. The following sections will
introduce the main definitions and results.

4.1 Joint scenarios

Definition 4.1. Let 〈X,M, (Om)m〉 be a measurement scenario, such thatM is
connected.7 We define the first joint scenario of 〈X,M, (Om)m〉 as the scenario

〈X,M, (Om)m〉(1) :=
〈
X(1),M(1), (O(1)

m )m∈X(1)

〉
.

where

• X(1) :=M.

• If M contains a single context C, we let M(1) := {{C}}.8 Otherwise, we
have |M| ≥ 2, and define

M(1) := {{C,C ′} ⊆ M | C 6= C ′ and C ∩ C ′ 6= ∅}

• For all C ∈ M, O
(1)
C := E(C), where E : P(X)op → Set is the sheaf of

events of 〈X,M, (Om)m〉.

Note that 〈X,M, (Om)m〉(1) is a well-defined measurement scenario, as shown
by the following proposition.

Proposition 4.2. Let 〈X,M, (Om)m〉 be a measurement scenario. Then its
first joint scenario is well-defined.

Proof. First of all, note that X(1) is finite because X is finite. We only need to
show that M(1) is a well-defined measurement cover. We clearly have M(1) ⊆
P(X(1)). If M contains a single context C, this is trivially verified. Indeed,
M(1) = {{C}} and we have⋃

M∈M(1)

M = {C} =M = X(1).

7Note that this assumption does not cause any loss of generality. Indeed, contextual
behavior in non-connected scenarios can be completely understood by studying the individual
connected components of the scenario.

8This special case will never be used in practice, as we will clarify in Remark 4.4.
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Now, suppose |M| ≥ 2. We have M(1) ⊆ P(X(1)), and⋃
M∈M(1)

M =
⋃

C,C′∈M
C∩C′ 6=∅

{C,C ′} =M = X(1).

Indeed,

• The inclusion
⋃
M∈M(1) M ⊆ M = X(1) is trivial, given that each M ∈

M(1) is included in M by definition.

• Let C ∈ M. Since |M| ≥ 2, there exists a distinct C ′ ∈ M. Since
M is connected, there exists a sequence C = C0, . . . Cn = C ′ such that
Ci ∩ Ci+1 6= ∅, hence C ∈ {C0, C1} ⊆

⋃
M∈M(1) M .

It is worth spelling out the definition of the sheaf of events of the first joint
scenario, which we will denote by E(1).We have E(1) : P(X(1))op → Set, where,
given a U ⊆ X(1), we have

E(1)(U) :=
∏
C∈U

O
(1)
C =

∏
C∈U
E(C),

with restriction maps given by the obvious projections.
To have a better understanding of how the first joint scenario is defined,

we give an example in Figure 5. On the left hand side is a simplicial complex
representation of the measurement cover

M = {{a, b, c}, {b, c, d}, {a, c, d}, {a, b, d}, {b, e, f}, {e, g}}

over the setX = {a, b, c, d, e, f, g}. On the right hand side, we have the simplicial
representation of the coverM(1) of the first joint scenario. Notice that, despite

a

b

c

d

e

f

g

{a, b, c} {b, c, d}

{a, b, d}{a, c, d}
{b, e, f}

{e, g}

Figure 5: A measurement scenario (left) and its first joint version (right). Note
that the tetrahedron {a, b, c, d} is hollow.

the simplicial complex of the original scenario has dimension 2, the complex
of the first joint scenario is a graph. This is not a coincidence, and it can be
easily verified from the definition that every joint scenario has a one-dimensional
simplicial complex representation, which can be seen as a graph.

We will often need to repeat the procedure of modifying the original scenario
into its joint version. This leads to the following recursive definition:
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Definition 4.3. Let 〈X,M, (Om)m〉 be a measurement scenario, and k ≥ 1 an
integer. We will adopt the following convention:

〈X,M, (Om)m〉(0) := 〈X,M, (Om)m〉 .

Then, the k-th joint scenario of 〈X,M, (Om)m〉, denoted by 〈X,M, (Om)m〉(k) ,
is defined as

〈X,M, (Om)m〉(k) :=
(
〈X,M, (Om)m〉(k−1)

)(1)
.

In other words, it is the first joint scenario of the (k − 1)–th joint scenario.

Proposition 4.2 ensures that all the higher-level joint scenarios are well-
defined.

Remark 4.4. Consider a scenario 〈X,M, (Om)m〉. If there exists a k ≥ 0
such that M(k) contains a single context C , then this necessarily implies that
〈X,M, (Om)m〉 is acyclic in the sense of [Bar15], which means that its associ-
ated simplicial complex can be reduced to the empty set by Graham reduction.
A result from [Bar15], obtained through an adaptation of Vorob’ev’s theorem
[Vor62], shows that it is impossible to witness contextual behavior in acyclic
scenarios. Therefore, from now on, we will always assume |M(k)| ≥ 2 for all
k ≥ 0.

4.2 Joint models

To an empirical model on a scenario, one can associate an empirical model on
the first joint scenario.

Definition 4.5. Let S be an empirical model on a scenario 〈X,M, (Om)m〉.
The first joint model S(1) is a possibilistic empirical model on the scenario

〈X,M, (Om)m〉(1), defined as follows: for all U ⊆ X(1), we have

S(1)(U) :=

{
(sC)C∈U ∈

∏
C∈U
S(C)

∣∣∣∣∣ sC |C∩C′= sC′ |C∩C′ ∀C,C ′ ∈ U
}
.

The restriction maps are inherited from E(1).
Note that, in particular, for elements C = {C,C ′} ⊆ M of the cover M(1),

S(1)(C ) coincides with the following pullback:

S(1)(C ) S(C)

y

S(C ′) S(C ∩ C ′)

ρC
C∩C′

ρC
′

C∩C′

The following proposition shows that the first joint model is a well-defined
concept.
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Proposition 4.6. Let S be an empirical model. Then, S(1) is a well-defined
empirical model.

Proof. First of all, note that S(1) is a subpresheaf of E(1). Indeed,

S(1)(U) ⊆
∏
C∈U
S(C) ⊆

∏
C∈U
E(C) = E(1)(U).

Now, we need to verify conditions 1, 2 and 3 of the definition of an empirical
model given in section 2.1.

1. Let C = {C,C ′} ∈ M(1). Because S is an empirical model, we now that
S(C) 6= ∅, given that C ∈ M. Let sC ∈ S(C). Since S is flasque beneath
the cover, and because C ∩ C ′ ⊆ C ′ ∈ M, the restriction map ρC

′

C∩C′ :
S(C ′)→ S(C ∩C ′) is surjective. Therefore, there exists sC′ ∈ S(C ′) such
that

ρC
′

C∩C′(sC′) = sC′ |C∩C′= sC |C∩C′ .
Hence, (sC , sC′) ∈ S(1)({C,C ′}).

2. Let U ⊆ U ′ ⊆ C for some context C = {C,C ′} ∈ M(1). There are three
cases,9 of whom only one is non-trivial:

• U = U ′ = {C} (or {C ′}). In this case, ρUU ′ is the identity, which is
obviously surjective.

• U = U ′ = C . Once again, ρUU ′ is the identity.

• Suppose U = {C}, and U ′ = C . Let sC ∈ S(C). Becuase S is flasque
beneath the cover, the restriction map ρC

′

C∩C′ : S(C ′)→ S(C ∩C ′) is
surjective. Hence, there exists a sC′ ∈ S(C ′) such that sC′ |C∩C′=
sC |C∩C′ . Thus, (sC , sC′) ∈ S(1)(C ), and

(sC , sC′) |U= (sC , sC′) |{C}= sC ,

which shows that ρU
′

U is surjective.

3. Let F := {(sC , sC′)C }C∈M(1) be a compatible family10 for S(1), which

means that (sC , sC′)C ∈ S(1)(C ) for all C ∈M(1), and

(sC , sC′) |C∩D= (sD, sD′) |C∩D
for all C = {C,C ′} and D = {D,D′} in M(1).11 The family F induces
the global section

g := (sC)C∈M ∈
∏
C∈M

S(C) ⊆ S(1)
(
X(1)

)
,

which is well-defined by the remark in footnote 11. The fact that gC |C∩C′=
gC′ |C∩C′ for all C,C ′ ∈ M is trivially verified given that gC = sC and
(sC , sC′) ∈ S(1)({C,C ′}).

9If U = ∅ or U ′ = ∅, then the condition is trivially verified, as ρU∅ :: s 7→ ∗ for all s ∈ S(1)(U).
10A more precise notation would be

{
(sC , sC′ ){C,C′}

}
{C,C′}∈M(1) , but we will often use

the one we adopt here to simplify notation.
11Explicitly, excluding the trivial case where C ∩ D = ∅, compatibility implies that, if

C ∩ D = {C}, e.g. in the case where C = D, we must have sC = sD (or similarly for the
other cases). In other words, F cannot contain two different local sections of S at the same
context.
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We will often need to repeat the procedure of taking the first joint model,
which leads to the following definition (cf. Definition 4.3).

Definition 4.7. Let S be an empirical model on a scenario 〈X,M, (Om)m〉 and
let k ≥ 1 be an integer. We will adopt the convention S(0) := S. Then, the k-th
joint model of S, denoted by S(k), is defined by

S(k) :=
(
S(k−1)

)(1)
.

In other words, it is the first joint model of the (k − 1)-th joint model of S.

Proposition 4.6 guarantees that all the higher-level joint models are well-
defined concepts.

We end this section with two important remarks.

Remark 4.8. Consider an emirical model S on a scenario 〈X,M, (Om)m〉. There
is a key subtlety in the definition of the joint models of S which we will exploit
in some of the proofs in Section 6. Let C ∈ M(k−1). The subtlety consists in
the following equality, which simply follows by definition:

S(k)({C}) = S(k−1)(C). (2)

Consider two contexts C1 = {C1
1 , C

2
1},C2 = {C1

2 , C
2
2} ∈ M(k), such that C1 ∩

C2 6= ∅. W.l.o.g. we can suppose that C1 ∩C2 = {C2
1} (i.e. C2

1 = C1
2 ). Suppose

we have a section sC1
∈ S(k)(C1). Then, because of (2), the restricted section

sC1 |C1∩C2= sC1 |{C2
1}

can be seen both as an element of S(k)({C2
1}), or, equivalently, as an element

of S(k−1)(C2
1 ). In the latter case, we will denote the restricted section as

sC1
|C2

1
∈ S(k−1)(C2

1 ).

Remark 4.9. Let S be an empirical model on a scenario 〈X,M, (Om)m〉. By
definition, the possible sections of S(1) are pairs of sections of S. Similarly,
sections of S(2) are pairs of pairs of sections of S. In general, sections of S(k)
are pairs of pairs ... of pairs (k times) of sections of S. For our purposes, given
a section s of S, we will need to list those sections of S(k) that contain s. To
do this, we will use the flatten function, whose name is borrowed from popular
programming languages. This function takes a section tC ∈ S(k)(C ) (which is a
pair of pairs ... of pairs (k times) of sections of S(k)) as argument and returns a
single set containing all the sections of S(k) that appear in tC .12 For instance,
for k = 3, we have

flatten [(((s1, s2), (s3, s4)), ((s5, s6), (s7, s8)))] = {s1, s2, s3, s4, s5, s6, s7, s8}
12This operation directly exploits the axiom of union, one of the axioms of the Zermelo-

Fränkel set theory.
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4.3 Interpretation and examples

At the end of the previous section, we briefly sketched our strategy to avoid
false positives, which consists of considering multiple compatible local sections
at the same time, instead of focusing on a single one. The notion of joint model
perfectly embodies this idea. As discussed above, local sections of the first
joint model of an empirical model S are pairs of sections of S above adjacent
contexts. This allows one to ‘force’ the selection of the sections on adjacent
contexts in the original model, thus reducing the chances of the existence of a
false positive. Higher-level joint models further refine this approach and allow to
consider three, four, k compatible sections at the same time. These statements
will be made precise in Section 6, but it is worth giving some examples that will
guide us through the technical results.

Let us start by illustrating the first joint model of the Hardy model 1. Recall
that X = {a1, a2, b1, b2}, M = {{a1, b1}, {a1, b2}, {a2, b1}, {a2, b2}} and Om =
{0, 1} for all m ∈ X. Let C1 := {a1, b1}, C2 := {a1, b2}, C3 := {a2, b1} and
C4 := {a2, b2}. Then we have X(1) =M and

M(1) = {{C1, C2}, {C2, C4}, {C3, C4}, {C1, C3}}.

In Table 3, we introduce an enumeration of the possible sections for the Hardy
model (blank spaces correspond to impossible sections). Thanks to this nota-

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 s1 s2 s3 s4
a1 b2 s5 s6 s7
a2 b1 s8 s9 s10
a2 b2 s11 s12 s13

Table 3: An enumeration of the possible sections of the Hardy model.

tion, we can represent the planar bundle diagram for the first joint model of the
Hardy model in Figure 6

s1

s2

s3

s4

s1

s2

s3

s4

s5

s6

s7

s11

s12

s13

s8

s9

s10

C1 C2 C4 C3 C1

Figure 6: The first joint model of the Hardy model. In red, the only section
containing s1 in the context {C1, C2}. In blue, a cohomology loop containing
s1.

Compare this to Figure 1, where we highlighted in red the section s1, which
is not part of any compatible family. The only section in the first joint model
containing s1 is (s1, s6), marked in red in Figure 6. Notice that this section is
not part of any compatible family in the joint model either. In Figure 2, we
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provided a cohomology loop containing s1, which is responsible for the existence
of a false positive. Note that, in the case of the first joint model, it is no longer
possible to create ‘Z’ shaped paths above a single context (this fact is not a
coincidence, as we will se in Lemma 7.4 and more generally in Theorem 2.2),
however, it is still possible to find a more complex cohomology loop containing
(s1, s6), namely

{(s1, s6), (s6, s13)− (s5, s11) + (s5, s12), (s13, s9)− (s11, s9) + (s12, s8), (s8, s1)},

which is highlighted in blue in Figure 6.
Let us now consider the model of Table 2. In Table 4, we give an enumeration

of its possible sections.

A B (0, 0) (1, 0) (0, 1) (1, 1)
a1 b1 s1 s2
a1 b2 s3 s4 s5
a2 b1 s6 s7
a2 b2 s8 s9

Table 4: An enumeration of the possible sections of the model 2.

With this enumeration, we illustrate the first joint model as a planar bundle
diagram in Figure 7.

s1

s2

s3

s4

C1 C2 C4 C3 C1

s8

s9s5

s6

s7 s2

s1

Figure 7: The first joint model of the model given by Table 2. In red, the section
S

We have already shown that s2 is not part of any compatible family, but it
is part of a cohomology loop, which gives rise to a false positive. In the joint
model, the only section containing s2 is (s2, s5). Note that not only (s2, s5) is not
part of any compatible family, but it appears not to be part of any cohomology
loop either. We have successfully removed the ‘Z’ path responsible for the false
positive. This fact perfectly reflects the discussion on this model carried out
at the end of section 3. By imposing the joint selection of s1 and s5, we have
successfully removed the false positive. A formal proof of this fact will be given
in Section 6.

It is fairly easy to see that the fact that the first joint model is logically
contextual at (s2, s5), which is the only section containing s2, implies that the
underlying model is logically contextual at s2. However, the relation between
the contextual properties of joint models and the original ones may not be im-
mediately clear. We will give all the details about this question in the following
section.
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5 The contextuality of joint models

By looking at the examples of the previous sections, a natural question to ask
is: what conclusions can we draw on an empirical model by looking at the
contextual properties of its joint models? The answer is given by the following
results.

Proposition 5.1. Consider an empirical model S on a measurement scenario
〈X,M, (Om)m〉. Let C ∈M and s ∈ S(C). The following are equivalent.

1. The model S is logically contextual at s.

2. There exists a C ′ ∈ M with C ∩ C ′ 6= ∅ such that, for all t ∈ S(C ′)
verifying t |C∩C′= s |C∩C′ , we have LC

(
S(1), (s, t)

)
3. For all C ′ ∈ M with C ∩ C ′ 6= ∅, for all t ∈ S(C ′) verifying t |C∩C′=

s |C∩C′ , we have LC
(
S(1), (s, t)

)
.

Proof. The fact that 3 implies 2 is trivial.

• 2 ⇒ 1: We will prove ¬1 ⇒ ¬2. Suppose ¬LC (S, s). Then there exists a
family F := {sC ∈ S(C)}C∈M, compatible for S, such that sC = s. We
want to show that, for all C ′ ∈M with C ∩C ′ 6= ∅, there exists t ∈ S(C ′)
verifying t |C∩C′= s |C∩C′ such that ¬LC

(
S(1), (s, tC′)

)
.

Consider the family

F ′ :=
{

(sK , sK′) ∈ S(1)({K,K ′})
}
{K,K′}∈M(1)

.

This family is well-defined (i.e. (sK , sK′) is indeed in S(1)({K,K ′})) by
compatibility of F , and it is compatible for S(1) by definition. Let C ′ ∈M
with C ∩C ′ 6= ∅, and consider t := sC′ ∈ S(C ′). Then (s, t) = (sC , sC′) ∈
F ′, which proves that t |C∩C′= s |C∩C′ (as t = sC′ and s = sC), and
¬LC

(
S(1), (s, tC′)

)
.

• 1 ⇒ 3: We will prove ¬3 ⇒ ¬1. Suppose there exists a C ′ with C ∩C ′ 6=
∅, such that there exists a t ∈ S(C ′), with t |C∩C′= s |C∩C′ , verifying
¬LC

(
S(1), (s, t)

)
. This means that there exists a family

F :=
{

(vK , vK′) ∈ S(1)({K,K ′})
}
{K,K′}∈M(1)

,

compatible for S(1), such that (vC , vC′) = (s, t). Consider the family
F ′ := {vK ∈ S(K)}K∈M. This family contains precisely one local section
for each context ofM by connectedness of the cover. Moreover, each such
global section is well-defined by compatibility of F (see footnote 11). F’ is
a compatible family for S. Indeed, given K,K ′ ∈M, because (vK , vK′) ∈
S(1)({K,K ′}), we must have vK |K∩K′= vK′ |K∩K′ . Therefore, because
vC = s, the section s is contained in the compatible family F ′, proving
that ¬LC (S, s).

Corollary 5.2. Let S be an empirical model on a scenario 〈X,M, (Om)m〉.
Then S is strongly contextual if and only if S(1) is strongly contextual.
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Proof. Suppose SC (S). Consider two contexts C,C ′ ∈M such that C ∩C ′ 6= ∅
(these always exist by connectedness ofM and the fact that |M| ≥ 2). Take an
arbitrary section (sC , tC′) ∈ S(1)({C,C ′}) (there is at least one such a section by
condition 1 of the definition of an empirical model). We want to show that S(1) is
logically contextual at (sC , tC′). Since S is strongly contextual, it is in particular
logically contextual at sC . By Proposition 5.1, this implies that, for all C ′ ∈M
with C ∩ C ′ 6= ∅, for all t ∈ S(C ′) verifying t |C∩C′= sC |C∩C′ , we have
LC
(
S(1), (sC , t)

)
. In particular, if we take t := tC′ , we have LC

(
S(1), (sC , tC′)

)
.

For the converse, suppose SC
(
S(1)

)
. Let C ∈ M and take an arbitrary

section s ∈ S(C). Let C ′ ∈ M such that C ∩ C ′ 6= ∅ (these always exist by the
usual assumptions). Because SC(S(1)), we know that for all t ∈ S(C ′) verifying
t |C∩C′= s |C∩C′ , we have LC

(
S(1), (s, t)

)
. By Proposition 5.1, we conclude

that LC (S, s).

Proposition 5.1 motivates the following definition.

Definition 5.3. Let S be an empirical model on a scenario 〈X,M, (Om)m〉.
Let s ∈ S(C) be a local section at some context C ∈ M, and k ≥ 1. We say

that S is LC(k) at s, and write LC(k)(S, s), if we have LC
(
S(k), t

)
for all local

section t of S(k) such that s ∈ flatten(t) (cf. Remark 4.9).

By applying simple inductive arguments, we immediately have the following
additional corollaries of Proposition 5.1:

Corollary 5.4. Let S be an empirical model on a scenario 〈X,M, (Om)m〉. Let
C ∈M and s ∈ S(C). Then the following are equivalent:

1. S is logically contextual at s.

2. There exists a k ≥ 1 such that LC(k)(S, s)

3. LC(k)(S, s) for all k ≥ 1.

Corollary 5.5. Let S be an empirical model on a scenario 〈X,M, (Om)m〉.
The following are equivalent:

1. S is strongly contextual.

2. There exists a k ≥ 1 such that S(k) is strongly contextual

3. S(k) is strongly contextual for all k ≥ 0

Note that there is no need to extend Definition 5.3 to strong contextuality
as this would be equivalent to regular strong contextuality by Corollary 5.5.

6 Cyclic models and their properties

Before we prove the main results of the paper, we will need to introduce the
notions of path, cycle, and cyclic model, and thoroughly inspect their properties.
We start with an important remark:
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Remark 6.1. Let 〈X,M, (Om)m〉 be a measurement scenario. By definition,
for each k ≥ 1, the contexts of M(k) are sets of contexts of M(k−1). In order
to avoid confusion between the contexts of M(k) and those of M(k−1) we will
denote them using different calligraphic styles. The typical hierarchy we will
use is the following:

c ∈M(k−2) → C ∈M(k−1) → C ∈M(k) → C ∈M(k+1).

Note that the hierarchy will always be the same, but we will not fix a calligraphic
style for a specific k, as we will have to deal with many different cases.

6.1 Paths and cycles

Let us inspect some of the properties of joint scenarios. We start by introducing
the notion of path.

Definition 6.2. Let 〈X,M, (Om)m〉 be a measurement scenario and n, k ≥ 1.
An n-path for M(k) is a set D := {C1, . . . , Cn} ⊆ M(k−1) of n distinct contexts
of M(k−1) such that Ci ∩ Ci+1 6= ∅ for all 1 ≤ i ≤ n − 1. It is called a cycle
if, in addition, Cn ∩ C1 6= ∅. An n-path D is called chordal if there exist two
non-consecutive indices i, j, with {i, j} 6= {1, n}, such that Ci ∩ Cj 6= ∅.

We can think of an n-path forM(k) as a sequence of distinct vertices in the
graph generated by M(k). This corresponds to the graph-theoretic notion of
simple path. Similarly, (chordal) cycles forM(k) correspond to (chordal) simple
cycles in graph theory. In Figure 8, we give some graphical examples.

Figure 8: Different types of paths for M(k). The grey graph represents M(k).
From left to right: a chordless 4-path, a chordal 4-path (chord highlighted in
red), a chordless 5-cycle and a chordal 5-cycle (chords highlighted in red).

Remark 6.3. In graph theory, a simple path can be equivalently described
by the sequence of edges connecting the vertices. Similarly, an n-path D• =
{C1, . . . , Cn} ⊆ M(k−1) for M(k) can be specified by the set

D = {{C1, C2}, {C2, C3}, . . . , {Cn−1, Cn}} ⊆ M(k),

containing contexts of M(k), i.e. edges of the graph generated by M(k). The
set D will be referred to as the edge representation of the path D•. To avoid
confusion, from now on, we will denote D• for the vertex representation and D
for the edge representation.

6.1.1 3-cycles: proper and improper

Cycles forM(k) of size 3 present some peculiarities that deserve to be discussed
in details in order to avoid confusion. The reason is that, although they are
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technically chordless, one of their edges could be seen as a chord connecting the
remaining two. A key aspect of chordless n-cycles forM(k) of size n ≥ 4, which
will be proved in Proposition 6.5, is that they must be generated by n-cycles for
M(k−1). This is not generally true for 3-cycles. Indeed, we could potentially
have a 3-cycle D• = {C1, C2, C3} for M(k) which is generated by a star-shaped
configuration of the Ci’s, seen as edges of M(k−1), as shown in Figure 9.

C1 C2

C3

C1

C2

C3

M(k) M(k−1)

Figure 9: A non proper 3-cycle D• = {C1, C2, C3} for M(k).

We will refer to this kind of 3-cycles as improper 3 cycles for M(k). On the
other hand, a proper 3-cycle D• = {C1, C2, C3} ⊆ M(k−1) forM(k) is a 3-cycle
forM(k) such that D = {C1, C2, C3} is a 3-cycle forM(k−1), as shown in Figure
10.

C1 C2

C3

M(k) M(k−1)

C3

C1 C2

Figure 10: A proper 3-cycle D• = {C1, C2, C3} for M(k).

6.1.2 Fundamental properties of paths and cycles

In this paragraph, we will present some key properties of paths and cycles that
will play a crucial role in the proofs of the main results of the paper. The first
proposition, for instance, shows that paths and cycles are preserved when taking
the joint version of a scenario, in the sense that they naturally give rise to paths
and cycles in the new scenario.

Proposition 6.4. Let 〈X,M, (Om)m〉 be a measurement scenario. Let k ≥ 1,
and let D := {C1, . . . , Cn} ⊆ M(k) be an n-path for M(k). Then, the set

D′ = {K1, . . . ,Kn−1} := {{C1, C2}, {C2, C3}, . . . , {Cn−1, Cn}}
is an (n− 1)-path for M(k+1). Moreover, if D is a cycle, then

D′ = {K1, . . . ,Kn} := {{C1, C2}, {C2, C3}, . . . , {Cn−1, Cn}, {Cn, C1}}
is a chordless n-cycle for M(k+1).
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Proof. The elements of D′ are all distinct because the elements of D are all
distinct. Moreover, D′ ⊆ M(k) because Ci ∩ Ci+1 6= ∅ for all 1 ≤ i ≤ n − 1.
We have Ki ∩ Ki+1 = {Ci, Ci+1} ∩ {Ci+1, Ci+2} = {Ci+1} 6= ∅ for all 1 ≤
i ≤ n − 2. If D is a cycle, then Cn ∩ C1 6= ∅, thus {Cn, C1} ∈ M(k), and we
have Kn ∩ K1 = {Cn, C1} ∩ {C1, C2} = {C1} 6= ∅, which proves that D′ is a
cycle. To prove that it is chordless, suppose by contradiction that there exist
two non-consecutive indices i, j, with {i, j} 6= {1, n}, such that Ki ∩ Kj 6= ∅.
Then {Ci, Ci+1} ∩ {Cj , Cj+1} 6= ∅, which contradicts the fact that the Ci’s are
all distinct.

Consider a measurement scenario 〈X,M, (Om)m〉 and let k ≥ 2, n ≥ 3. Let
D• := {C1, . . . , Cn} ⊆ M(k−1) be an n-cycle for M(k). By definition of a cycle,
we know that there exist k1, . . . kn ∈ M(k−2) such that {kn} = Cn ∩ C1 and
{ki} = Ci ∩ Ci+1 for all 1 ≤ i ≤ n − 1. With this notation, we can prove the
following proposition.

Proposition 6.5. Let 〈X,M, (Om)m〉 be a measurement scenario, let k ≥ 2
and n ≥ 3. Let D• := {C1, . . . , Cn} ⊆ M(k−1) be chordless n-cycle for M(k)

such that it is not an improper 3-cycle. Then the set

D′• = {k1, . . . kn} ⊆ M(k−2)

is an n-cycle for M(k−1).

Proof. First of all, we need to verify that the ki’s are all disinct. Suppose there
are two indices 1 ≤ i, j ≤ n such that ki = kj . Then i and j must be consecutive
because otherwise we would have Ci ∩ Cj = {ki} 6= ∅, which contradicts the
fact that D• is chordless. Thus, we only need to prove that ki 6= kn and that
ki 6= ki+1 for all 1 ≤ i ≤ n − 1. Suppose 1 ≤ i ≤ n − 2 and assume ki = ki+1,
then we have

Ci ∩ Ci+1 = {ki} = {ki+1} = Ci+1 ∩ Ci+2,

which implies that Ci ∩ Ci+2 = {ki} 6= ∅ which contradicts the fact that D•
is chordless and not an improper 3-cycle. We can prove that kn−1 6= kn and
kn 6= k1 with the same argument.

We are only left to prove that consecutive ki’s intersect. Because the ki’s are
all distinct, we know that Ci = {ki−1, ki} for all 2 ≤ i ≤ n, and C1 = {kn, k1}.
Since C1, . . . , Cn ∈ M(k−1), this implies that ki−1 ∩ ki 6= ∅ for all 2 ≤ i ≤ n,
and k1 ∩ kn 6= ∅.

We define the notion of cyclic scenario.

Definition 6.6. A measurement scenario 〈X,M, (Om)m〉 is called cyclic if
M(1) is a chordless cycle (in edge representation).

Thanks to Proposition 6.4, we immediately have the following:

Proposition 6.7. Let 〈X,M, (Om)m〉 be a cyclic scenario, and let n := |M|.
ThenM(k) is a chordless n-cycle for all k ≥ 1. In particular, 〈X,M, (Om)m〉(l)
is cyclic for all l ≥ 0.

Remark 6.8. Before we proceed, we shall introduce a convention concerning
notation. Suppose we have a chordless n-path D• := {C1, . . . , Cn} for M(k),
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with n ≥ 1 and k ≥ 2. Suppose, in addition, that D• is not an improper 3-
cycle. Proposition 6.5 shows that we can relabel the components c1i , c

2
i of each

Ci = {c1i , c2i } in such a way that c2i = c1i+1 for all 1 ≤ i ≤ n− 1. If D is a cycle,
we also have c2n = c11.13 This notation will be used extensively in many of the
proofs of this section. To clarify how it is constructed, we provide a graphical
representation in Figure 11.

. . .
C1 C2

C3 Cn−1 Cn

c11 c21 = c12 c22 = c13 c23 = c14 c2n−2 = c1n−1 c2n−1 = c1n c2n

. . .
C1 C2 C3 Cn−1 CnM(k)

M(k−1)

Figure 11: The standard notation for n-paths.

Suppose we have a cyclic scenario, and a n-path D := {C1, . . .Cn} ⊆ M(k)

for M(k), with n < |M|. Because 〈X,M, (Om)m〉 is chordless, we know by
Proposition 6.7 that M(k) is a chordless |M|-cycle. Thus, the path D must be
chordless as well, as the existence of a chord for D would imply the existence
of a chord for M(k). Moreover, because n < |M|, we know that D is not
an improper 3-cycle, thus we can use the notation of Remark 6.8. Using this
notation, we formulate the following proposition.

Proposition 6.9. Let 〈X,M, (Om)m〉 be a cyclic scenario, and let k ≥ 2,
2 ≤ n < |M|. Let D := {C1, . . .Cn} ⊆ M(k) be an n-path for M(k). Then the
set

D′ := {K ′1,K1,K2, . . .Kn},
where K ′1 := C1

1 and Ki := C2
i for all 1 ≤ i ≤ n, is an (n+ 1)-path for M(k−1)

Proof. The argument we will use to prove that theKi’s are all distinct essentially
coincides with the one of Proposition 6.5. Let us start by proving that Ki 6=
Ki+1. Suppose Ki = Ki+1 for some 1 ≤ i ≤ n − 1. Then we have C2

i = C2
i+1,

which implies Ci+1 = {C1
i+1, C

1
i+1} = {C1

i+1}, which is not a context of M(k).
We can prove that K ′1 6= K in the same way. Now, suppose there are two
non-consecutive indices such that Ki = Kj . This implies C2

i = C2
j . Hence

Ci ∩ Cj = {C1
i , C

2
i } ∩ {C1

j , C
2
j } = {C2

i } 6= ∅,

however, this would imply that the cover M(k), which is chordless by defini-
tion of a cyclic scenario, has a chord {Ci, Cj} ∈ M(k), which is obviously a
contradiction. We can prove that K ′1 6= Kj for all 2 ≤ j ≤ n in the same way.

We are only left to prove that consecutive Ki’s intersect. This can be done
following exactly the same argument as in the proof of Proposition 6.5.

13In other words, we relabel the components of the Ci’s in such a way that ki = c2i for all
1 ≤ i ≤ n, where k1, . . . kn are defined as in Proposition 6.5
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7 The cohomology of cyclic models

In this section we will formalise the intuitive idea discussed at the end of Section
4.3, and generalise it to prove that we can always find a cohomological witness
for contextuality in the joint models of a cyclic empirical model.

7.1 Preliminaries

First of all, we need to introduce some preliminary definitions. Let S be an
empirical model on a measurement scenario 〈X,M, (Om)m〉. We will choose, as
a representative for each joint model S(k), the presheaf of abelian groups

F (k) := FZ2S(k) : P(X(k))op −→ AbGrp. (3)

We can now formulate the following definition, which is a natural extension of
Definition 5.3 to account for cohomology.

Definition 7.1. Let S be an empirical model on a measurement scenario
〈X,M, (Om)m〉, with representative F as in (3). Let s be a local section of

S. In view of the results of Section 5, we say that S is CLC(k) at s, and write
CLC(k)(S, s), if we have CLC(S(k), t) for every local section t of S(k) such that
s ∈ flatten(t).

We can use this definition to extend Theorem 2.2 to joint models:

Theorem 7.2. Let S be an empirical model. Given a section s of S, if there
exists a k ≥ 0 such that CLC(k)(S, s), then LC(S, s). Moreover, CSC(S(k)) ⇒
SC(S).

Proof. Suppose CLC(k)(S, s), i.e. CLC(S(k), t) for every local section t of S(k)
such that s ∈ flatten(t). By Theorem 2.2, it follows that LC(S(k), t) for all t such

that s ∈ flatten(t). In other words, we have LC(k)(S, s) (cf. Definition 5.3). By
Corollary 5.4, this implies that S is logically contextual at s.

Now, suppose CSC(S(k)), then, by Theorem 2.2, we have SC(S(k)). By
Corollary 5.5 we conclude that SC(S).

We now introduce the notion of partial family.

Definition 7.3. Let S be an empirical model over a measurement scenario
〈X,M, (Om)m〉, and n, k ≥ 1. An n-partial family for F (k) is a family{

fC ∈ F (k)(C )
}

C∈D

over an n-path D = {C1, . . . ,Cn} ⊆ M(k), which is compatible for F (k), and
satisfies the following conditions:

fC1
|C1

1
∈ S(k−1)(C1

1 ), (4)

fCn |C2
n
∈ S(k−1)(C2

n), (5)

(cf. Remark 6.8 for notation). A partial family is called standard if there exists
a family {sC ∈ S(k)(C )}C∈D, compatible for S(k) such that

sC1
|C1

1
= fC1

|C1
1
, (6)
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sCn
|C2

n
= fCn

|C2
n
. (7)

In this case, the family {sC ∈ S(k)(C )}C∈D is called the the standard form of{
fC ∈ F (k)(C )

}
C∈D

Note that a 1-partial family for F (k) is simply a single section f ∈ F (k)(C )
over a context C ∈M(k), which verifies conditions (4) and (5).

We have introduced partial families in order to model the typical cohomol-
ogy false positive. Indeed, non-standard partial families are nothing but partial
families of F (k) (i.e. families of linear combinations of sections of S(k)) that
cannot be replaced by simple families of S(k), just like a cohomology false pos-
itive is a family for F which cannot be replaced by a family of S. We give
some graphical intuition on partial families in Figure 12, to clarify this concept.
Throughout the rest of the section, we will show how non-standard families can
be suppressed by applying the joint model construction a sufficient amount of
times.

C1 C2 C3 C4
M(k)

C1 C2 C3 C4
M(k)

Figure 12: Two examples of 4-partial families for F (k) (in red) over the 4-path
{C1,C2,C3,C4} ⊆ M(k). On the left, a standard family, with its standard form
highlighted in blue. On the right, a non-standard partial family.

7.2 A complete cohomology invariant for contextuality in
cyclic models

We will now show how to get rid of non-standard partial families. This procedure
will require a number of intermediate steps.

The following lemma is called the no-Z lemma because it formalises the idea,
introduced in Section 3, that first joint models do not contain ‘Z’ shaped paths
which typically give rise to false positives in cohomology.

Lemma 7.4 (No-Z lemma). Let S be an empirical model over a measurement
scenario 〈X,M, (Om)m〉. Let k ≥ 1, and C = {C1, C2} ∈ M(k). Every 1-
partial family for F (k) over C of the form

fC = (s1, t1) + (s2, t1) + (s2, t2), (8)

(where si ∈ S(k−1)(C1), ti ∈ S(k−1)(C2) for all i = 1, 2) is standard.

Proof. Let fC be a 1-partial family defined by (8). Because both (s1, t1) and
(s2, t1) are in S(k)(C ), we know that

s1 |C1∩C2= t1 |C1∩C2= s2 |C1∩C2 (9)
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Moreover, s2 |C1∩C2= t2 |C1∩C2 , given that (s2, t2) ∈ S(k)(C ). Hence

s1 |C1∩C2

(9)
= s2 |C1∩C2= t2 |C1∩C2 .

Therefore, (s1, t2) ∈ S(k)(C ), and we have

(s1, t2) |C1 = s1 |C1= s1 |C1 + 2 · s2 |C1︸ ︷︷ ︸
=0

= fC |C1

(s1, t2) |C2 = t2 |C2= t2 |C2 + 2 · t1 |C2︸ ︷︷ ︸
=0

= fC |C2 ,

which correspond to conditions (6) and (7) (we have used the fact that the
coefficients are in Z2, hence 2 = 0). This proves that (s1, t2) is the standard
form of fC .

We will now generalise the no-Z lemma to all the 1-partial families for F (k).
The proof essentially consists of a recursive algorithm which takes a 1-partial
family as input, and outputs a standard form by repeatedly applying the no-Z
lemma to the first three segments of the partial family, which – we show – are
always in a ‘Z’ shape.

Lemma 7.5. Let S be an empirical model on a scenario 〈X,M, (Om)m〉, and
let k ≥ 1. All the 1-partial families for F (k) are standard.

Proof. A 1-partial family is a single section fC ∈ F (k)(C ) over a single context
C = {C1, C2} ∈ M(k), which verifies conditions (4) and (5). We provide
an algorithm that constructs a standard form sC ∈ S(k)(C ). Let us start by
enumerating the possible sections at C1 and C2 by denoting S(k−1)(C1) =
{s1, s2, . . . , sn}, and S(k−1)(C2) = {t1, t2, . . . , tm}. Let

I := {(i, j) ∈ [n]× [m] | (si, tj) ∈ S(k)(C )},

where [l] := {1, 2, . . . , l}. By definition of F (k), the section fC can be written
as a formal linear combination of sections in S(k)(C ):

fC =
∑

(i.j)∈I

αij · (si, tj),

where αij ∈ Z2.
If fC ∈ S(k)(C ), then we are done, as fC is already in standard form.

Otherwise, we know by (4) that fC |C1∈ S(k−1)(C1). Therefore, we can assume
w.l.o.g. that fC |C1= s1. Because of this, there exists a j1 ∈ [m] such that
α1j1 = 1, and we can assume w.l.o.g. that j1 = 1, which means that fC

contains the section (s1, t1) ∈ S(1)(C ) in its summands, i.e.

fC = (s1, t1) +
∑

(i,j)6=(1,1)

αij(si, tj) (10)

By equation (5), we know that fC |C2∈ S(k−1)(C2) and we can denote
fC |C2= tl, for some l ∈ [m]. If l = 1, then we can immediately return (s1, t1)
as the standard form of fC . Otherwise we assume l 6= 1.
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Claim 1. There exists an index i1 6= 1, i1 ∈ [n] , such that (i1, 1) ∈ I and
αi11 = 1. W.l.o.g. we let i1 = 2.

Proof Suppose ab absurdo αi1 = 0 for all 1 6= i ∈ [n] such that (i, 1) ∈ I. Then,
given (10), we have

fC = (s1, t1) +
∑
j 6=1

αij(si, tj).

This implies

fC |C2= t1 +
∑
j 6=1

αijtj ,

which always contains the summand t1 6= tl, and thus can never equal tl, which
is a contradiction. �

Claim 1 shows that fC always contains the summand (s2, t1), i.e.

fC = (s1, t1) + (s2, t1) +
∑

(i,j)6=(1,1)
(i,j)6=(2,1)

αij(si, tj). (11)

Claim 2. There exists an index j2 ∈ [m], j2 6= 1, such that (2, j2) ∈ I and
α2j2 = 1. W.l.o.g. we let j2 = 2.

Proof Suppose by contradiction that α2j = 0 for all 1 6= j ∈ [m] such that
(2, j) ∈ I. Then, given (11), we have

fC = (s1, t1) + (s2, t1) +
∑

(i,j)6=(1,1)
i 6=2

αij(si, tj).

This implies

fC |C 1= s1 + s2 +
∑

(i,j)6=(1,1)
i 6=2

αijsi,

which always contains the summand s2, and thus can never equal s1, which is
a contradiction. �

Claim 2 shows that fC always contains the summand (s2, t2), i.e.

fC = (s1, t1) + (s2, t1) + (s2, t2) +
∑

(i,j)6=(1,1)
(i,j)6=(2,1)
(i,j)6=(2,2)

αij(si, tj).

Notice how the first three summands are exactly the same as in (8). This
means that these first three ‘steps’ of the partial family fC are in a ‘Z’ shape.
This allows us to apply the no-Z lemma and substitute the Z with a section in
S(k)(C ), as shown in Figure 13.

More formally, by the no-Z lemma (Lemma 7.4), (1, 2) must be in I, and the
section (s1, t2) ∈ S(k)(C ) is the standard form of the partial family (s1, t1) +
(s2, t1) + (s2, t2).
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...
...

C1 C2C

s1 t1

s2 t2

s3

sn

t3

tm

...
...

C1 C2C

s1 t1

s2 t2

s3

sn

t3

tm

Figure 13: A visualisation of the proof. On the left hand side the ‘Z’ shape at
the beginning of the partial family. On the right hand side, the substitution of
the ‘Z’ with a section of S(k)(C ).

If l = 2, then (s1, t2) is the standard form of fC and we are done. Otherwise
we can re-input the partial family

f ′C := (s1, t2) +
∑

(i,j) 6=(1,1)
(i,j) 6=(2,1)
(i,j) 6=(2,2)

αij(si, tj)

into the algorithm. The algorithm obviously terminates as there is only a finite
amount of sections.

The following theorem is the key result of the paper. It shows that, on cyclic
scenarios, all the n-partial families for F (k), where n ≤ k, can be replaced by
a standard form of the same size. In other words, any potential cohomological
false positive of size n ≤ k can be erased. This fact will lead us to a fundamental
result, namely that it is sufficient to take the (|M| − 1)-joint model of a cyclic
scenario to remove every cohomology false positive with certainty (Corollary
7.7).

Theorem 7.6. Let S be an empirical model on a cyclic scenario 〈X,M, (Om)m〉.
Let k ≥ 1 and let n be such that n ≤ k and n < |M|. All the n-partial families
for F (k) are standard.

Proof. We will proceed by induction on k. The base case k = 1 has been proved
in Lemma 7.5. We will now suppose k ≥ 2.

Let P :=
{
fC ∈ F (k)(C )

}
C∈D be an n-partial family for F (k) over the n-

path D = {C1, . . . ,Cn} ⊆ M(k). Notice that, for n = 1, the result follows
directly from Lemma 7.5.

Suppose n ≥ 2. Because 〈X,M, (Om)m〉 is cyclic, by Proposition 6.7 we
know that M(k) is a chordless |M|-cycle. Moreover, D cannot be an improper
3-cycle, because n < |M|. Thus we can use the notation of Remark 6.8. Let

D′ := {K1,K2, . . .Kn−1} = {C2
1 , C

2
2 , . . . C

2
n−1} ⊆ M(k−1).

Then D′ is an (n − 1)-path for M(k−1). Indeed, by Proposition 6.9 we know
that D′ ∪ {C1

1 , C
2
n} is an (n+ 1)-path for M(k−1).
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Define a family P ′ :=
{
tKi ∈ F (k−1)(Ki)

}n−1
i=1

by

tKi
:= fCi

|Ki
, (12)

(cf. Remark 4.8).

Claim 1. The family P ′ is an (n− 1)-partial family for F (k−1).

Proof Let us start by proving that P ′ is compatible for F (k−1). Let 1 ≤ i ≤ n−2.
We have

tKi |Ki∩Ki+1 = (fCi |Ki) |Ki∩Ki+1

(∗)
=
(
fCi |Ci∩Ci+1

)
|Ki∩Ki+1

(†)
=
(
fCi+1

|Ci∩Ci+1

)
|Ki∩Ki+1

(∗)
=
(
fCi+1

|Ki

)
|Ki∩Ki+1

= fCi+1
|Ki∩Ki+1

=
(
fCi+1

|Ki+1

)
|Ki∩Ki+1

= tKi+1
|Ki∩Ki+1

,

where we have used the fact that Ci ∩ Ci+1 = {C2
i } = {Ki} in the equalities

(∗) (cf. Remark 4.8), and the fact that P is compatible for F (k) in equality
(†). With the usual notation Ki := {k1i , k2i }, since {k11, k21, k22, . . . , k2n−1} is an

n-path forM(k−2) by Proposition 6.9, we know that k11 is the first vertex of the
path, which means that {k11} = C1

1 ∩ C2
1 . In view of Remark 4.8, we have

tK1
|k11 = (fC1

|K1
) |k11=

(
fC1
|C2

1

)
|k11=

(
fC1
|C2

1

)
|C1

1∩C2
1
= fC1

|C1
1∩C2

1

=
(
fC1
|C1

1

)
|C1

1∩C2
1
=
(
fC1
|C1

1

)
|k11

Because fC1 |C1
1
∈ S(k−1)(C1

1 ) by condition (4), we must have

tK1
|k11=

(
fC1
|C1

1

)
|C1

1∩C2
1
∈ S(k−1)(k11), (13)

hence P ′ satisfies (4).
To prove (5), we start by a simple observation, namely that, because Kn−1 =

C2
n−1, we have {Kn−1} = Cn−1 ∩ Cn. Therefore

tKn−1
= fCn−1

|Kn−1
= fCn−1

|Cn−1∩Cn
= fCn

|Cn−1∩Cn
= fCn

|Kn−1
, (14)

where we have used the fact that P is compatible in the third equality. Now,
with a similar argument as before, given that {k2n−1} = C2

n−1 ∩ C2
n, we have

tKn−1
|k2n−1

(14)
=
(
fCn
|Kn−1

)
|k2n−1

=
(
fCn
|C2

n−1

)
|k2n−1

=
(
fCn
|C2

n−1

)
|C2

n−1∩C2
n

= fCn
|C2

n−1∩C2
n
=
(
fCn
|C2

n

)
|C2

n−1∩C2
n
=
(
fCn
|C2

n

)
|k2n−1

.

Because fCn
|C2

n
∈ S(k−1)(C1

1 ) by condition (5), we must have

tKn−1
|k2n−1

=
(
fCn
|C2

n

)
|C2

n−1∩C2
n
∈ S(k−1)(k2n−1), (15)

which means that P ′ satisfies (5). �
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Because P ′ is an (n− 1)-partial family for F (k−1), by inductive hypothesis,
we know that P ′ is standard. Let S := {sKi

∈ S(k−1)(Ki)}n−1i=1 be the standard
form of P ′, i.e. S is compatible for S(k−1) and it is such that

sK1
|k11 = tK1

|k11 , (16)

sKn−1 |k2n−1
= tKn−1 |k2n−1

. (17)

Consider the family G := {gCi
∈ S(k)(Ci)}ni=1 where

gCi
:=


(
fC1|C1

1

, sK1

)
if i = 1,(

sKn−1
, fCn

|C2
n

)
if i = n,

(sKi−1
, sKi

) for all 2 ≤ i ≤ n− 1.

Claim 2. The family G is a standard form for P .

Proof First of all, we need to check that gCi
is indeed an element of S(k)(Ci)

for all 1 ≤ i ≤ n. We have(
fC1
|C1

1

)
|C1

1∩K1
=
(
fC1
|C1

1

)
|C1

1∩C2
1

(13)
= tK1

|k11
(16)
= sK1

|k11= sK1
|C1

1∩K1
.

Similarly,

sKn−1
|Kn−1∩C2

n
= sKn−1

|k2n−1

(17)
= tKn−1

|k2n−1

(15)
=
(
fCn
|C2

n

)
|C2

n−1∩C2
n

=
(
fCn
|C2

n

)
|Kn−1∩C2

n
.

Finally, let 2 ≤ i ≤ n− 1. We readily have

sKi−1
|Ki−1∩Ki

= sKi
|Ki−1∩Ki

by the simple fact that S is compatible for S(k−1).
The fact that G satisfies equations (6) and (7) for P trivially follows from

the very definition of G, indeed

gC1
|C 1

1
=
(
fC1|C1

1

, sK1

)
|C1

1
= fC1

|C1
1
;

gCn
|C 2

n
=
(
sKn−1

, fCn
|C2

n

)
|C2

n
= fCn

|C2
n
.

�
Thanks to this claim, we have successfully proved that P is standard.

We can now introduce a complete cohomology characterisation of logical and
strong contextuality for cyclic scenarios:

Theorem 7.7. Let S be an empirical model on a cyclic scenario 〈X,M, (Om)m〉.
Let C ∈M and s ∈ S(C). Then we have

LC(S, s)⇔ CLC(n)(S, s),

where n := |M| − 1. Moreover,

SC(S)⇔ CSC(S(n))
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Proof. The implications CLC(n)(S, s)⇒ LC(S, s) and CSC(S(n))⇒ SC(S) have
already been proven in Theorem 7.2.

To prove the converse, we will show that ¬CLC(n)(S, s) ⇒ ¬LC(S, s). Sup-

pose ¬CLC(n)(S, s). By Definition 7.1, this implies that there exists a context
C0 ∈M(n) and a section t ∈ S(n)(C0) such that s ∈ flatten(t) and ¬CLC(S(n), t).
Thus, there exists a compatible family

F :=
{
fC ∈ F (n)(C )

}
C∈M(n)

such that fC0
= t. Because 〈X,M, (Om)m〉 is cyclic, we know by Proposition

6.7 that M(n−1) is also cyclic. Theferefore,

M(n) = {C0,C1, . . . ,Cn}
is a chordless |M|-cycle, which implies that {C1, . . . ,Cn} is a chordless n-path
(in edge representation) for M(n). Let

P :=
{
fCi
∈ F (n)(Ci)

}n
i=1

.

Then P is a n-partial family for F (n), indeed it is compatible because F is
compatible, and we have, with the usual notation

fC1
|C1

1
= fC1

|C0∩C1

(∗)
= fC0

|C0∩C1
= t |C0∩C1

∈ S(n−1)(C0 ∩ C1),

and

fCn |C2
n
= fCn |Cn∩C0

(∗)
= fC0 |Cn∩C0= t |Cn∩C0∈ S(n−1)(Cn ∩ C0),

where we have used the fact that F is compatible in equalities (∗). By Theorem
7.6, we know that P is standard. Thus there exists a family

P ′ := {sCi
∈ S(n)(Ci)}ni=1

such that

sC1
|C1

1
= fC1

|C1
1
= t |C0∩C1

,

sCn |C2
n

= fCn |C2
n
= t |Cn∩C0 .

Therefore, the family

P ′ ∪ {t} = {sCi
∈ S(n)(Ci)}ni=1 ∪ {t}

is a compatible family for S(n) that contains t. Thus we have ¬LC(S(n), t), which

means that ¬LC(n)(S, s). It follows from Corollary 5.4 that S is not logically
contextual at s.

Suppose now ¬CSC(S(n)). Then there exists a section t of S(n) such that
¬LC(S(n), t). Consider an arbitrary section s of S such that s ∈ flatten(t)
(such a section always exists by definition of the model S(k). Then we have

¬LC(n)(S, s), and we can apply the same argument used before to show that
this implies ¬LC(S, s), which in turn implies ¬SC(S).

This theorem tells us that if we want to study the contextuality of a cyclic
scenario 〈X,M, (Om)m〉, it is sufficient to analyse the cohomology of its (|M|−
1)-th joint model to assert with certainty which sections give rise to contextual
behavior. This is a major step forward, as this method allows us to get rid of
all the false positives introduced in section 3, and many others, as we shall see
in the rest of the paper.

30



7.2.1 Examples

In this section we will show how this method applies to the well known false pos-
itives that have appeared in the litterature, including the ones we have discussed
in Section 3.

The model of Table 2 We have already shown that the model S presented
in Table 2 displays a cohomology false positive for the section s2 (cf. Table
4), and suggested that it vanishes as soon as we consider its first joint model
S(1). We can give a formal proof that this is true. In Figure 14 we present once
again the bundle diagram of the first joint model, where we introduce variables
a, b, c, d, e, f, g, h, i, j ∈ Z2 that represent the coefficients to give to every section
of S(1) in order to construct a compatible family for F (1).

C1 C2 C4 C3 C1

a

b

c

d

e

f

g

h

i

j

Figure 14: The bundle diagram of S(1) with the variables in Z2 corresponding
to each section. The seciton s2, responsible for logical contextuality (cf. Section
3) is highlighted in red.

The compatibility conditions of a presumed compatible family for F (1) can
be summarised in the following equations:

a = d,

b = e,

c = f,

d⊕ e = g,

f = h,

h = i,

g = j,

i = a,

j = b⊕ c.

Because the family must contain s2, which is marked in red in Figure 14, we
must have a = 1 and b = c = 0. It follows directly that e = f = h = i = 0 and
that d = g = j = 1. However, since j = b⊕ c, this leads to 1 = 0⊕ 0 = 0, which
is obviously a contradiction. We have just proved that the cohomology of S(1)
does detect the logical contextuality of S at s2.

Note that in this case, although |M| = 4, it was not necessary to take the
third joint model of S to remove the false positive, as suggested by Theorem
7.7. Indeed, the bound |M|−1 is the one that gives us absolute certainty about
the non-existence of a false positive. However, as we have just shown, it might
be sufficient to take a lower level joint model to remove any false positive from
the model.

The Hardy model The Hardy model (cf. Table 1) is perhaps the most
well-studied example of cohomological false positive for contextuality [AMB12,
ABK+15, Car17]. We have already illustrated its bundle diagram in Figure 1,
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and showed in Figure 6 that its first joint model still results in a cohomolog-
ical false positive for the section s1, at which the Hardy model S is logically
contextual. In Figure 15, we present the bundle diagram of the second joint
model.

{C1, C2} {C2, C4} {C4, C3} {C3, C1} {C1, C2}C1 C2 C3 C4

Figure 15: The bundle diagram of the second joint model of the Hardy model.
The red section is the only section of S(2) that contains the original section s1.
In blue, a false positive for the red section

Notice that, even in this case, we still have a compatible family for F (2)

containing the only section of S(2) that contains s1. Thus, we must consider the
third joint model to get rid of the false positive. The third joint model of the
Hardy model is presented in Figure 16, where we have highlighted in red the
only section containing s1.

C1 C2 C3 C4 C1

Figure 16: The bundle diagram of the third joint model of the Hardy model.
The section marked in red is the only section containing s1.

Since |M| = 4, Theorem 7.7 assures that cohomology does detect the con-
textuality at the red section. This can be graphically checked by highlighting
all the possible attempts to extend the red section to a compatible family for
F (4), as shown in Figure 17.
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C1 C2 C3 C4 C1

Figure 17: It is impossible to extend the red section to a compatible family for
F (4).

This graphical proof can easily be converted into a formal proof following
the same idea as in the previous paragraph. Note that the fact that we had to
consider the third joint model of the Hardy model in order to get rid of the false
positive shows that the bound |M| − 1 of Theorem 2.2 is tight.

The False positive of [Car17] As mentioned before, the false positive of
[Car17] (cf. Figure 3) is particularly intereseting because it concerns all the
sections of the model. Indeed, the model is cohomologically non-contextual
despite being strongly contextual. In other words, there is a cohomology false
positive for every single section of the model. In Figure 18, we depict the bundle
diagram of the first joint model.

C1 C2 C4 C3 C1

Figure 18: The first joint model S(1) of the false positive from [Car17]. In blue,
a compatible family for F (1).

Notice that, for each section, it is still possible to find compatible families
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for F (1) that contains it, giving rise to a false positive. For example, we have
highlighted one such compatible family in blue, which constitutes a false positive
for the contextuality of the top section for the context {C1, C2}.

Therefore, we need to consider the second joint model, whose bundle diagram
is depicted in Figure 19

{C1, C2} {C2, C4} {C4, C3} {C3, C1} {C1, C2}C1 C2 C3 C4

Figure 19: The second joint model of the false positive from [Car15]. In blue, a
compatible family for F (2).

Even in this case, it is still possible to find a cohomology false positive for
each section of the model (see e.g. the blue loop highlighted in Figure 19).

In Figure 20 the bundle diagram of the third joint model is shown.

C1 C2 C3 C4 C1

Figure 20: The third joint model of the false positive from [Car17]

Once again, because |M| = 4, we know by Theorem 7.7, that cohomology
detects contextuality at every section of the model. This can be checked graph-
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ically. For example, in Figure 21 we show that it is never possible to extend the
section marked in red to a compatible family for F (3). The reader can verify
that this is true for any section of the model.

C1 C2 C3 C4 C1

Figure 21: A graphical proof of the fact that cohomology of F (3) does detect
contextuality at the section marked in red. This is true for any section of the
model.

8 Extending the invariant to general models

In the previous section, we have successfully defined a full cohomology invariant
for contextuality for all cyclic models. The goal of this section is to extend this
result to arbitrary models. In particular, will show that the invariant can be
extended to an extremely vast class of scenarios. This result will lead us to
conjecture that the invariant works universally.

Although cyclic models constitute only a fraction of all the possible empirical
models, they play a crucial role in the study of contextuality. Indeed, it was
proven in [Bar15], thanks to an adaptation of Vorob’ev’s theorem [Vor62], that
a necessary condition for contextuality is the ciclicity of the measurement cover.
Ciclicity in [Bar15] is a notion coming from database theory, and it is not strictly
equivalent to the one we introduced in this paper. However, it is easy to prove
that any cyclic cover in the sense of [Bar15] must contain at least one cyclic
subcover in the sense defined here. The fact that the existence of cycles in
the cover is necessary for contextuality suggests that contextual features can be
observed by focusing uniquely on the cycles.

To convey this idea, we introduce here the notion of cyclic contextuality
property (CCP). The contextual features of models equipped with the CCP can
always be recovered by looking at cycles in the cover M(1).
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Definition 8.1. Let S be an empirical model on a measurement scenario
〈X,M, (Om)m〉. We say that S has the cyclic contextuality property (CCP)
if, for each local section s of S such that LC(S, s), there exists a cycle D• ⊆M
for M(1) (called the contextual cycle of s) such that LC(S |D• , s), where S |D•
is the model obtained by restricting S on the subcover D•.

Most empirical models satisfy the CCP. To give an idea of how common
this property is, it is sufficient to say that all the models that have appeared
in the literature on the sheaf description of contextuality share this property.
For instance, it was proven in [ABCP17] that strong contextuality in quantum
models obtained by applying Pauli measurements to stabiliser states can be
witnessed by only looking at a cycle of size 4.

Remarkably, the cohomology invariant introduced in the previous sections
can be immediately extended to all models equipped with the CCP.

Proposition 8.2. Let S be a model on a general scenario 〈X,M, (Om)m〉, and
suppose S has the CCP. For all sections s of S, we have

LC(S, s)⇔ CLC(n−1)(S, s),
where n denotes the size of the contextual cycle of s.

Proof. The implication CLC(n−1)(S, s) ⇒ LC(S, s) follows from Theorem 7.2.
Now, suppose LC(S, s). Let D• ⊆M be the contextual cycle of s. By definition,
we have LC(S |D• , s). The model S |D• is defined on the cyclic scenario D•, thus

we can apply Theorem 7.7 to conclude that CLC(n−1)(S |D• , s), which readily

implies CLC(n−1)(S, s).
Thanks to this simple proposition, we can extend Theorem 7.7 to models

satisfying the CCP over general scenarios. To prove this, we will need the
following proposition

Proposition 8.3. Let S be an empirical model on a scenario 〈X,M, (Om)m〉.
For all k ≥ 0 and every section s of S, we have

CLC(k)(S, s)⇒ CLC(l)(S, s) ∀l ≥ k.
Similarly,

CSC(S(k))⇒ CSC(S(l)) ∀l ≥ k.
Proof. We are going to prove that ¬CLC(k+1)(S, s) ⇒ ¬CLC(k)(S, s), and the

result will follow by induction. Suppose ¬CLC(k+1)(S, s). Then there exists a
context C = {C1, C2} ∈ M(k+1) and a section t = (t1, t2) ∈ S(k+1)(C ) (where
t1 ∈ S(k)(C1) and t2 ∈ S(k)(C2)) such that s ∈ flatten(t) and ¬CLC(S(k+1), t).
In particular, this means that there exists a compatible family

F = {tK ∈ F (k+1)(K)}K∈M(k+1)

such that tC = t. Given a context C ∈ M(k) we know that there exists a
C ′ ∈ M(k) such that {C,C ′} ∈ M(k+1). Let uC := t{C,C′} |C . This is well-

defined because, given a different C ′′ ∈ M(k) such that {C,C ′′} ∈ M(k+1), we
have

t{C,C′′} |C
(∗)
= t{C,C′′} |{C}= t{C,C′′} |{C,C′}∩{C,C′′}

(†)
= t{C,C′} |{C,C′}∩{C,C′′}

= t{C,C′} |{C}
(∗)
= t{C,C′} |C ,
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where we have used compatibility of F in (†), and applied what discussed in
Remark 4.8 in (∗). Thus we can define the family

F ′ := {uC ∈ F (k)(C)}C∈M(k) .

We can show that F ′ is a compatible family for F (k) as follows: suppose C,C ′ ∈
M(k) and C ∩ C ′ 6= ∅, then

uC |C∩C′=
(
t{C,C′} |C

)
|C∩C′= t{C,C′} |C∩C′=

(
t{C,C′} |C′

)
|C∩C′= uC′ |C∩C′ .

Now, because s ∈ flatten(t), we can suppose w.l.o.g. that s ∈ flatten(t1). More-
over, because tC = t = (t1, t2), we have uC1

= t1. Thus F ′ is a compati-
ble family which contains t1. We conclude that ¬CLC(S(k), t1), which implies

¬CLC(k)(S, s), as s ∈ flatten(t1). The same argument can be used to prove that
CSC(S(k+1))⇒ CSC(S(k)).

From these two propositions, we immediately have the following theorem:

Theorem 8.4. Let S be a model on a scenario 〈X,M, (Om)m〉, and suppose S
has the CCP. Let N denote the size of the largest cycle in M(1). We have

LC(S, s)⇔ CLC(N−1)(S, s),

for all section s of S. Moreover, we have

SC(S)⇔ CSC(S(N−1)).

This result shows that, if a model has the CCP, then studying its contex-
tuality is equivalent to study the cohomological contextuality of its (N − 1)-th
joint model. In other words, cohomological contextuality on S(N−1) is a full
invariant for contextuality on the original model. As for cyclic scenarios, note
that it might be possible to erase cohomological false positives for a particular
model even at a lower level.

Obviously, we usually do not know a priori whether a model satisfies the
CCP, however, as we mentioned earlier, this property is extremely common
among empirical models, which means that this method is widely applicable.
In the following section we will give some examples to support this claim.

8.1 Examples

A simple scenario Let us start with the model summarised in Table 5. A

Contexts (0, 0) (0, 1) (1, 0) (1, 1)
{a, b} 0 1 1 0
{a, d} 1 0 1 1
{b, c} 1 1 0 1
{b, d} 1 0 0 1
{c, d} 0 1 1 0

Table 5: The empirical model S.

bundle diagram representation of the model can be found in Figure 22. By
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a b

cd

0

1

Figure 22: The bundle diagram of the model summarised in Table 5. In blue
is highlighted the cohomological false positive for the section (b, d) 7→ (1, 1),
marked in red.

simply looking at the diagram, it is easy to see that the section (b, d) 7→ (1, 1),
marked in red, cannot be extended to any compatible family for S. However, it
can be extended to a compatible family for F , as shown in blue.

Using the enumeration specified in Table 6, we can represent the first joint
model S(1) as a bundle diagram in Figure 23.

Contexts (0, 0) (0, 1) (1, 0) (1, 1)
{a, b} s1 s2
{a, d} s3 s4 s5
{b, c} s6 s7 s8
{b, d} s9 s10
{c, d} s11 s12

Table 6: An enumeration of the sections of S. The model is logically contextual
at s10

Notice that the section s10, marked in red, cannot be extended to a com-
patible family for F (1) for the cycle {{b, d}, {b, c}, {c, d}} (all the possibilities
are highlighted in black). In particular, this means that the cohomological false
positive has been deleted. Note that in this case it was sufficient to derive the
first joint model to avoid a false positive. The size of the largest cycle in this
scenario is 4, thus, in general, we would have to consider the 3rd joint model to
remove any false positive with absolute certainty.

The Kochen-Specker model of [AMB12] The only cohomological false
positive on a non-cyclic model that has appeared in the litterature is the Kochen-
Specker model for the cover

{A,B,C}, {B,D,E}, {C,D,E}, {A,D,F}, {A,E,G}. (18)

It was introduced in [AMB12] as an example of a cohomological false positive for
a strongly contextual model. Let us show how the false positive arises. In Table
7 we introduce a list of variables in Z2 for each of the 15 possible sections of
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{a, b}

{b, c}{c, d}

{a, d}

{b, d}

s1

s2

s3

s4

s5
s9

s10s11

s12

s6

s7

s8

Figure 23: The bundle diagram of S(1). In black, all the possibilities to extend
s10 to a cohomology loop on the cycle {{b, d}, {b, c}, {c, d}}. They all fail to be
compatible.

the model, to see if it is possible to construct a global section (i.e. a compatible
family).

Contexts (1, 0, 0) (0, 1, 0) (1, 0, 0)
{A,B,C} a b c
{B,D,E} d e f
{C,D,E} g h i
{A,D,F} j k l
{A,E,G} m n o

Table 7: Variables for the possible sections of the Kochen-Specker model on the
cover (18).

The compatibility conditions of a presumed compatible family for F trans-
late into equations modulo 2. First of all, we have

a = j = m

b = d = g = c

e = h = k

f = i = n

Moreover,

a⊕ c = d⊕ f
a⊕ b = h⊕ i
b⊕ c = k ⊕ l

b⊕ c = n⊕ o
d⊕ f = j ⊕ l
d⊕ e = m⊕ o

g ⊕ i = j ⊕ l
g ⊕ h = m⊕ o
k ⊕ l = n⊕ o

From these equations it follows that

a = i = j = m = n = o

b = c = d = e = g = h = k = l
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Thus, we can rewrite Table 7 to obtain Table 8.

Contexts (1, 0, 0) (0, 1, 0) (1, 0, 0)
{A,B,C} a b b
{B,D,E} b b a
{C,D,E} b b a
{A,D,F} a b b
{A,E,G} a a a

Table 8: Table 7 rewritten given compatibility equations.

Thanks to this table, we can immediately check that the model is strongly
contextual. Indeed, in order to construct a compatible section for the model, we
are only allowed to choose one section per context to which we assign 1, while
the others must be zero. By simply looking at Table 8 we can see that this is
clearly impossible.

However, if we let a = 1 and b = 0 we obtain the following cohomological
compatible family

{s{A,B,C},A, s{B,D,E},E , s{C,D,E},E ,
s{A,D,F},A, s{A,E,G},A ⊕ s{A,E,G},E ⊕ s{A,E,G},G}

where we have used the standard notation for sections of a Kochen-Specker
model, i.e. given a context C and a measurement m ∈ C, the section sC,m is
the section that maps m to 1 and every other x ∈ C to 0.

This compatible family is a false positive for logical contextuality at sections
s{A,B,C},A, s{B,D,E},E , s{C,D,E},E and s{A,D,F},A. Furthermore, note that the
only other families we have, namely the ones obtained by setting a = 0, b = 1 or
a = b = 1, do not give rise to false positives for any section since they contain
multiple sections for every context.

We will now show that it is sufficient to derive the first joint model S(1) to
remove all the cohomological false positives.

First of all, we represent the first joint model using bundle diagrams. For
each context C = {c1, c2, c3} of M, there are exactly three possible sections,
namely sC,c1 , sC,c2 and sC,c3 . Therefore, for each vertex of M(1), there are
three distinct vertices in its fiber, which we will label with sC,c1 , sC,c2 and sC,c3
from bottom to top (this labelling is not shown in the pictures for the sake
of readability of the diagrams). Using this convention, we have depicted the
bundle diagram of the first joint model in Figure 24 (the colored vertices are
only used as a visual reference).

In Figure 25, we give a different representation of the model by decomposing
it into two planar diagrams. The top diagram corresponds to the cycle that
constitutes the perimeter of the pentagon, while the bottom one corresponds to
the star-shaped cycle in the center. The colored circles in the fibers represent
the four sections for which we have a cohomological false positive in the original
model, as explained at the bottom of the picture.

.
In the same picture, we have also introduced variables

a, b, . . . , y, z, ã, b̃, . . . , ũ, ṽ
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{A,B,C}

{B,D,E}

{C,D,E}

{A,D, F}

{A,E,G}

Figure 24: The bundle diagram of the first joint model of the Kochen-Specker
model on the cover (18).

f i n s
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c̃ h̃ m̃ r̃

a

b
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d

e

g

h
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l

m

o

p

q

r

t

u

v

w

y

z

ã

b̃ d̃ ẽ

f̃

g̃

ĩ

j̃

k̃

l̃

ñ

õ

p̃

q̃

s̃

t̃

ũ

ṽ

{A,B,C}

{A,E,G}{A,B,C}

{A,B,C}

{A,B,C}{C,D,E}

{C,D,E} {A,E,G}{A,D, F}

{A,D, F}

{B,D,E}

{B,D,E}

s{A,B,C},A s{B,D,E},E s{C,D,E},E s{A,D,F},A

Figure 25: The Kochen-Specker model of [AMB12] decomposed in two cyclic
planar diagrams. The top diagram corresponds to the perimeter of the pentagon;
the bottom diagram refers to the central ‘star’. We introduce one variable in
Z2 for each section of the model.
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in Z2 for each of the possible sections of the first joint model. We will now show
that the cohomological false positive no longer exists. To do so, we list all the
equations imposed by compatibility conditions:

a⊕ d = g

b⊕ e = h

c = f

a⊕ d = õ

b⊕ e = p̃⊕ q̃
c = m̃⊕ ñ

a⊕ d = ĩ⊕ l̃
b⊕ e = j̃

c = h̃⊕ k̃
a⊕ b = r̃

c = s̃⊕ ũ
d⊕ e = t̃⊕ ṽ
a⊕ b = s

c = t⊕ v
d⊕ e = u⊕ w
a⊕ b = x⊕ y

c = z ⊕ ã
d⊕ e = b̃

f = i⊕ j
g = k

h = l ⊕m
f = b1

g = x⊕ z
h = y ⊕ ã
f = h̃⊕ ĩ
g = j̃

h = k̃ ⊕ l̃
f = h̃⊕ k̃
g = ĩ⊕ l̃
h = j̃

f = m̃⊕ ñ
g = õ

h = p̃⊕ q̃
i⊕ l = n

k = o⊕ p
j ⊕m = q ⊕ r
i⊕ l = r̃

k = s̃⊕ t̃
j ⊕m = ũ⊕ ṽ
i⊕ l = m̃⊕ p̃

k = õ

j ⊕m = ñ⊕ q̃
i⊕ j = b̃

k = x⊕ z
l ⊕m = y ⊕ ã
i⊕ j = c̃⊕ d̃

k = ẽ⊕ f̃
l ⊕m = g̃

n = s

o⊕ q = t⊕ u
p⊕ r = v ⊕ w

n = h̃⊕ ĩ
o⊕ q = j̃

p⊕ r = k̃ ⊕ l̃
n = c̃⊕ l̃

o⊕ q = g̃

p⊕ r = d̃⊕ f̃
n = m̃⊕ p̃

o⊕ p = õ

q ⊕ r = ñ⊕ q̃

n = r̃

o⊕ r = s̃⊕ t̃
q ⊕ r = ũ⊕ ṽ

s = x⊕ y
t⊕ v = z ⊕ ã
u⊕ w = b̃

s = r̃

t⊕ v = s̃⊕ ũ
u⊕ w = t̃⊕ ṽ

s = c̃⊕ ẽ
t⊕ w = g̃

v ⊕ w = d̃⊕ f̃
s = h̃⊕ ĩ

t⊕ u = j̃

v ⊕ w = k̃ ⊕ l̃
b̃ = c̃⊕ d̃

x⊕ z = ẽ⊕ f̃
y ⊕ ã = g̃

x⊕ y = r̃

z ⊕ ã = s̃⊕ ũ
b̃ = t̃⊕ ṽ

c̃⊕ ẽ = h̃⊕ ĩ
g̃ = j̃

d̃⊕ f̃ = k̃ ⊕ l̃
h̃⊕ k̃ = m̃⊕ ñ
ĩ⊕ l̃ = õ

j̃ = p̃⊕ q̃
m̃⊕ p̃ = r̃

õ = s̃⊕ t̃
ñ⊕ q̃ = ũ⊕ ṽ

With the aid of a computer, we can easily find the solutions to this system
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of equations. The free variables are a, b, i, o, ã, c̃, m̃, s̃ and t̃, and we must have

c = f = g = h = k = n = s = b̃ = g̃ = j̃ = õ = r̃ = a⊕ b
j = l = a⊕ b⊕ i
p = q = a⊕ b⊕ o
u = v = a⊕ b⊕ t
y = z = a⊕ b⊕ ã
d̃ = ẽ = h̃ = l̃ = a⊕ b⊕ c̃
ñ = p̃ = a⊕ b⊕ m̃
t̃ = ũ = a⊕ b⊕ s̃

(19)

Consider section s{A,B,C},A of the original model (marked with a red circle in

Figure 25). The only section of S(1) at the context {{A,B,C}, {A,E,G}} ∈
M(1) that contains s{A,B,C},A is s := (s{A,B,C},A, s{A,E,G},A), whose corre-
sponding variable is s. If we impose s = 1 and t = u = v = w = 0, we can
see that these constraints are not consistent with the values (19) imposed by
compatibility of a presumed compatible family for cohomology. Indeed, we have

0 = u = a⊕ b⊕ t = s⊕ t = 1⊕ 0 = 1.

This means that the section s = (s{A,B,C},A, s{A,E,G},A) cannot be extended to

a compatible family for F (1). In other words, the cohomological false positive
for s{A,B,C},A has vanished.

In the same way, (s{B,D,E},E , s{C,D,E},E) is the only section of S(1) at

the context {{B,D,E}, {C,D,E}} ∈ M(1) that contains both s{B,D,E},E and
s{C,D,E},E). The corresponding variable is h, and if we impose h = 1 and
g = f = 0, we have an immediate contradiction since h = f = g by (19). Thus
we conclude, using the same argument as before, that the cohomological false
positive for the contextuality of S at sections s{B,D,E},E and s{C,D,E},E has
vanished.

Finally, to show that we have removed the false positive for s{A,D,F},A, it

is sufficient to argue that (s{A,D,F},A, s{A,E,G},A) is the only section of S(1) at

the context {{A,D,F}, {A,E,G}} ∈ M(1) that contains it. The corresponding
variable is n, and if we impose n = 1, o = p = q = r = 0, we have

0 = p = a⊕ b⊕ o = n⊕ o = 1⊕ 0 = 1,

which is again a contradiction.

9 Conclusions and further directions

Thanks to the joint model construction, we introduced a cohomology obstruc-
tion to the extension of local sections, which represents a complete invariant for
contextuality in the extremely vast class of models satisfying the cyclic contex-
tuality property. We showed how this invariant gets rid of all the known false
positives from the literature, and proved its efficacy in general models. There
are strong indications suggesting that this cohomology obstruction represents a
full invariant for contextuality in all models. Indeed, in order to give rise to a
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false positive, a model S on a scenario 〈X,M, (Om)m〉 would have to satisfy all
of the following:

• S is contextual.

• 〈X,M, (Om)m〉 is non-cyclic.

• S does not satisfy the CCP.

• S gives rise to a cohomology false positive in all its joint versions at all
its sections.

For this reason, we propose the following conjecture

Conjecture 9.1. Given a general model S on a scenario 〈X,M, (Om)m〉, there
exists a k ≥ 0 such that

LC(S, s)⇔ CLC(k)(S, s),

for all sections s of S. In other words, the cohomology of joint models represents
a full invariant for contextuality.

Proving this conjecture will be our main focus in future work.
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