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Abstract— Localization is a key requirement for mobile
robot autonomy and human-robot interaction. Vision-based
localization is accurate and flexible, however, it incurs a high
computational burden which limits its application on many
resource-constrained platforms. In this paper, we address the
problem of performing real-time localization in large-scale 3D
point cloud maps of ever-growing size. While most systems using
multi-modal information reduce localization time by employing
side-channel information in a coarse manner (eg. WiFi for
a rough prior position estimate), we propose to inter-weave
the map with rich sensory data. This multi-modal approach
achieves two key goals simultaneously. First, it enables us
to harness additional sensory data to localise against a map
covering a vast area in real-time; and secondly, it also allows
us to roughly localise devices which are not equipped with
a camera. The key to our approach is a localization policy
based on a sequential Monte Carlo estimator. The localiser
uses this policy to attempt point-matching only in nodes where
it is likely to succeed, significantly increasing the efficiency of
the localization process. The proposed multi-modal localization
system is evaluated extensively in a large museum building.
The results show that our multi-modal approach not only
increases the localization accuracy but significantly reduces
computational time.

I. INTRODUCTION

6-DoF localisation is a key capability required by au-

tonomous humanoid robots and for human-robot interaction

(HRI). Consider, for example, the case where a robot needs

to locate and pick-up a cup or mug in a domestic workspace.

First, the robot needs to find its 6-DoF location and orien-

tation with respect to the stored map. Once this is achieved,

the robot can shift its attention to the last known location

of the object, check if it is still there, update its knowledge

of the object and then proceed with the task as necessary.

Another use-case from the HRI side may involve a user,

equipped with a pair of smart-glasses, who can motion his

head towards locations or objects of interest and mark these

for a robot to attend to. This too requires accurate 6-DoF

localisation of the user with respect to a global map. 6-

DoF pose estimation, however, is computationally expensive

which severely limits its application on resource constrained

platforms. A key challenge of operating in real-time using

3D pose estimation is thus to narrow the search through the

map to make localisation computationally feasible online.

Strategies that exploit side-channel information (eg. WiFi,

geo-magnetic field distortions) show a marked improvement

over exhaustive matching, but due to noisy sensor infor-

mation there are many false positives and an overly large

candidate subset still needs to be searched.

In this paper, we propose an Efficient Multi-modal Local-

isation (EM-Loc) system, which leverages multiple modal-

Fig. 1. localisation against large point clouds comes with a low efficiency
and high computational cost making accurate localisation difficult on
computationally constrained platforms such as the Nao V5 (with only an
Intel Atom @ 1.6 GHz and 48.6 Wh battery). In this paper we reduce the
computational load by creating a localisation graph of multiple modalities.

ities to make precise vision-based localisation on resource-

constrained platforms more feasible. We exploit the side-

channel information and along with an estimated trajectory

predict which features will be visible. This intelligent guid-

ance is achieved through a sequential Monte-Carlo process

which estimates the posterior distribution of the current

location over the nodes which ensures the 3D pose estimation

is carried out using only the currently visible features. We

show how this dramatically reduces computational time for

6-DoF localisation and achieves high accuracy.

The key contributions of our paper are:

• We present EM-LOC, an accurate localisation system

that can be used across a range of platforms

• We propose a localisation policy which exploits side-

channel information (WiFi, magnetic) to cut down

vision-based localisation time (thus enabling real-time

6-DoF visual localisation)

• We evaluate these contributions on data gathered from

a large museum building

The remainder of the paper is organised as follows: Sec. V

focuses on the two aspects of the EM-LOC system - graph

construction and localisation respectively. Sec. VI presents

an evaluation of the proposed system and Sec. VII concludes

the paper and highlights ideas for future work.

II. RELATED WORK

In this section we review existing works related to the

EM-LOC system and how they relate to our contribution.

Model-based pose estimation: When a 3D model of dis-

criminative feature points is available, such as is obtained
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using Structure from Motion (SfM), then the pose of query

images can be found using camera-resectioning. This process

first establishes feature matches between the image and

the 3D model by either 3D-to-2D [26] or 2D-to-3D [21]

matching. The camera pose is then found by using RANSAC

in combination with a PnP algorithm [14]. Camera locali-

sation techniques where direct matching to the 3D model

is performed are generally very computationally expensive

due to the exhaustive matching that needs to be carried

out between the many local feature descriptors. To reduce

the matching cost, heuristic techniques have been proposed

based on image retrieval methods [10] to find images with 3D

points that are likely to be successfully localized against as

well as methods that use mutual visibility information to find

matches [15]. Although these methods make strides towards

reducing the computational burden of large-scale localisation

in point clouds, they do not completely solve the problem

due to the large decrease in successful localisations (i.e. they

trade localisation efficiency for localisation frequency). Our

proposed method is orthogonal to these approaches; we use

multiple modalities to increase localisation efficiency with

negligible decrease in the number of successful localisations.

Topometric localisation: The act of localisation does not

require exact measurements of a robots pose or position on a

map, rather it suffices to estimate the robots location relative

to a set of predefined points. These points take the form of

nodes in a graph which represent distinct locations or places

in the environment and edges which connect neighbouring

locations [24]. Examples of such systems include CAT-

SLAM [17] and the real-time topometric localisation system

by Kanade et al. [1]. The real-time topometric localisation

system works in two phases; in the mapping phase the

robot drives around the workspace equipped with a GPS

and visual sensor. A graph is then created with nodes at

fixed interval with each node storing 3D features garnered

from the available sensors and stored in a database. In the

localisation phase, a Bayesian method is used to estimate

the robot with respect to the stored database using the

available sensors. Experience based navigation (EBN) [3]

extends this formulation by allowing the robot to collect

multiple, disconnected segments of the graph during on-

line operation. Each segment (called an experience) can be

collected during different times of day, weather conditions or

seasons and each segment consists of stereo frames linked

by edges with odometry information. These segments are

then stitched together, allowing the robot to localize under a

range of environmental conditions. In this paper, we adopt

the graph-based structure of topometric localisation, by using

a map of nodes, edges and 3D points. However, we keep

fully metric relations between the nodes which allows for

accurate localisation. This structure allows us to partition

the monolithic model of 3D points, while still being able to

index it for fast localisation.

Place recognition and appearance-based localisation:
Appearance-based localisation methods like FAB-MAP [4]

and others [19] recognise places purely based on the ap-

pearance of the image. In most cases, the image appearance

is described by adopting the bag of visual words (BoVW)

model. This process is similar to the large-scale image-

retrieval problem. In classical image retrieval, however, the

aim is to find as many relevant database images as possible,

while appearance-based localisation methods aim at finding

co-located images in the database. Thus, approaches such

as FAB-MAP are characterised by incredibly high precision

with typically low-recall rates. By integrating temporal links

and considering places as sequences of images, as is done

in SeqSLAM [18], the recall rate of appearance-based local-

isation methods can be significantly improved. Appearance-

based methods can also be used for localizing in model-

based maps by rendering synthetic views at a large number

of candidate locations and orientations. This approach of ren-

dering synthetic views is used, for example, by [10] as a pre-

processing step to speed up the direct-matching process in

localisation using an SfM model. Because of their efficiency

and robustness, appearance-base recognition methods have

been popular in mobile phone localisation systems [28] in

order to meet the strict resource constraints. Appearance-

based methods are also used for loop-closure detections and

re-localisations on robotic platforms as they allow one to

globally localize against maps of a very large scale [13].

These approaches, however, have the disadvantage of not

providing a 6-DoF pose and being far less accurate compared

to model-based localisation systems based on local feature

point matching. In our system we consider appearance-based

features as one of the side-channels (along with WiFi and

geo-magnetic measurements), which are used to find model

sections against which to localize. Like SeqSLAM, we uti-

lizes temporal/sequential information for global localisation.

Multi-modal localisation: The promise of exploiting multi-

ple modalities for aiding vision-based localisation has been

demonstrated in a variety of ways, but not directly for

reducing visual processing time. For example, the W-RGBD

system [11] uses WiFi in combination with RGBD images

to perform localisation using an architectural floorplan. They

model the WiFi signal strength across the floorplan using a

Gaussian process and through the use of this model intel-

ligently initialize the particles for Monte Carlo localisation

(MCL). They show that this improves the convergence rate

and final accuracy of the position estimate. Their goal differs

from ours; while they are mainly concerned with using WiFi

to increase the convergence rate and global accuracy of MCL

we are interested in using the side-channel information to

guide the expensive 2D-3D feature matching to increase

the efficiency of the RANSAC-based pose computation and

thus reduce the computational time required on resource-

constrained platforms.

III. PROPOSED SYSTEM

Our system consists of a two-tier architecture, as shown

in Figure 2. The back-end graph assembler is responsible

for creating the localisation graph, while the front-end runs

on the target platform and performs on-line localisation. The

back-end graph assembler receives as input the data collected

from mappers during the mapping session of the system
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which are uploaded to the cloud where the server is im-

plemented. The graph assembler constructs the localization

graph by merging data traces from different mappers. The

localiser carries out state estimation to position the humanoid

with respect to the assembled localisation graph.

Fig. 2. EM-LOC consists of a two-tier architecture. The localisation graph
is created and updated in the cloud, while the localisation module receives
the localisation graph and performs on-line state estimation.

IV. STAGE 1: MAP CREATION

We use three types of information in our map creation

phase - RGB data from which sparse SIFT features [16] are

extracted and associated with 3D points (these are needed

to perform the 6-DoF localization), depth frames (which are

used to determine the visibility of the sparse feature points

from nodes) and the multi-modal side-channel information.

Using this data a map of 3D points associated with SURF

features and the relative translation between frames is created

using an RGB-D SLAM algorithm [7] 1 The localization

graph in our case is a set of nodes, n1, n2, . . . , nN (each

frame is considered as a node) which are joined by a set of

directed edges ei−1,i that link the nodes. Each edge contains

odometry data consisting of the displacement and orientation

(computed by the RGB-D SLAM) which describes the metric

relation between the nodes. Each edge also contains the

side-channel information which includes the distribution of

WiFi RSSI values along that edge, geo-magnetic distortion

measurements and appearance-based visual features.

The structure of the side-channel features is as follows:

WiFi: The readings are composed of the received

signal strength, s, for each access point observed in

the environment. As described in [22], the RSS of typical

radio-based measurements does not change very rapidly with

typical humanoid/human mobility and thus the distribution

is collected over a finite duration of time which is used as

the feature, Ewifi
i = [s1, s2, · · · sn]

Magnetic: Similarly, we capture the magnetic field strength

data over a short time segment. The magnetic data

consists of the magnitude, m, of the geo-magnetic field

calculated from the 3 components in the x, y and z axes,

Emag
i = [m1,m2, . . . ,mn]

Image: We further capture images along each experience

and use appearance-based features derived from these

images as additional side-channel information. The full

images themselves are not stored, rather we detect and

compute the distinctive visual features which are present

in the image. Each feature is then quantized into BovW

1If a depth camera is not available, this process could also be carried out
using an image-based Structure-from-Motion process followed by a dense
multi-view stereo reconstruction.

Node with 
associated
3D features

Multi-modal
Side-channel
Trace

Fig. 3. Illustration of a 3D model for localization with millions of candidate
feature points (green dots).In this paper, we propose EM-Loc (Efficient
Multi-modal Localization) that integrates these features in a localization
graph and interweaves it with additional (side-channel) sensory data. Our
localiser uses this side-channel information to predict which features will
give successful visual localization. This cuts down the matching time and
enables real-time and fine-grained localization over vast areas.

vector, where the word vocabulary, w1, w2, · · · , wn has

been precomputed using k-means clustering. The final

representation of the image consists of a histogram of

the word occurrence counts Eimg
i = [h1, h2, · · · , hn] As

the quantization incurs additional cost, the inclusion of

appearance-based features is entirely optional in our system,

and if these features are used the vocabulary is kept very

small.

The graph consists of data traces, which may be collected

during different times, allowing the map to be readily

extended. Many disjoint data traces may be generated

by mappers traversing an area. The localisation graph

thus consists of short segments, along with their nodes

and edges, which need to be linked together at certain

co-location points. The graph assembly process harnesses

the side-channel information to establish these co-location

links across multiple data traces. Given a trace denoted as

En
i where n is the modality, i is the trace index and t is

the timestamp at which the data was recorded, a co-location

link established across multiple traces when

∃t2 s.t. maxP (iEn
t1 |iE

n

t2) > τ. (1)

This means is that for each data frame of a certain

modality that is assigned to a place, some other modality,

already belonging to that place shares a strong similarity

with its partner in the current trace. After the co-location

links have been established the entire localisation graph is

optimized using a robust pose graph optimization through

the GT-SAM library [5] with the Vertigo extension [23].

The graph construction process is carried out off-line and
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also updated using data collected during additional mapping

sessions. The end result of this process is a consistent

representation of the world in the form of a linked multi-

modal localization graph.

Once the graph has been created and optimized it consists

of a large number of nodes each associated with a small

number of feature points which represent those that were

visible in the frame during the mapping process. However,

once the consistant map has been created, many feature

points may be visible from a node which is not taken into

account by the initial mapping process. We therefore utilise a

post-processing step to determine the true point visibility for

each node. This is achieved by raycasting from the node to

the 3D location of each SIFT feature stored in the map and

checking for ray intersections with depth frames registered

to their world locations. If no hit occurs occurs, the SIFT

feature is visible from that node and is added to the node’s

feature-set. This process is illustrated in Fig. IV. Each node

is associated with a set of 3D features which comprises those

features that are visible from the node’s location.

Fig. 4. In order to determine the visbility of features from each node
location, we make use of the depth frames. The visbility is computed by
ray-casting from the node center to the stored 3D location of the feature.

V. STAGE 2: LOCALISATION

In this section we describe our localiser which runs on

the humanoid with the objective of providing efficient 6-DoF

pose estimates. We adopt a sequential Bayesian approach to

perform localisation in the established localisation graph.

p(ni,Xi,Θi|zi:t) = p(Xi,Θi|ni, zi:t)p(ni|zi:t)
Where ni are the nodes of the localisation graph as defined

before, Θi is the orientation (yaw, pitch, roll) of the device,

and Xi is the location of the humanoid with respect to
the current node ni. The pose estimates relative to a node

are independent of the node, the state estimation problem

reduces to

p(ni,Xi,Θi|zi:t) = p(Xi,Θi|zi:t)p(ni|zi:t)

In order to perform localisation, we use a particle filtering

approach. This enables us to employ a Rao-Blackwellized

approach to performing the localisation on the localisation

graph where the term p(ni|zi:t) keeps track of the global

localisation of the humanoid in the localisation graph, while

the term p(Xi,Θi|zi:t) ensures that the local 6D pose com-

putations remain consistent. In order to ensure that the pose

computation remains lightweight, we make the assumption

that the local pose estimate produces a uni-modal Gaussian.

Our particle-filter is initialized and updated as follows.

A. State and initialization:

The particle structure is split into two components which

consists of an estimate of the humanoid’s current location

in the localisation graph represented by the node ni and

(xi, yi, zi, θi) which is the 6-DoF pose of the humanoid

relative to node ni.

Particle: Xi = [{ni}, ] [{μXi,ΘiΣXi,Θi}]
We uniformly initialize the particles over the entire localisa-

tion graph.

B. Measurement

In order to utilise the incoming sensory measurements for

localisation in our localisation graph, we need some means

of relating the measurements to the data stored in our graph.

This is achieved by utilising likelihood functions for each

modality as a function of the system state. In particular, we

use the following likelihood functions:

RSSI: For RSSI data, the Kullback-Liebler divergence,

DKL, is used as the metric to compare measurements coming

from individual access points.

p(Ewifi
i |Eiwifi

j ) ∝ e−DKL(Ewifi
i ,Ewifi

j ))

Magnetic: The magnetic features consist of a series of geo-

magnetic measurements strung together in a series. As the

humanoid may have been moving at different speeds between

the stored and query feature, we use dynamic time warping

(DTW) as a measure of their similarity

p(Emag
i |Emag

j ) ∝ e−DTW (Emag
i ,Emag

j ).

Image: To compute the likelihood of a new image given one

in the stored experience we use use the FAB-MAP approach

[4]. FAB-MAP takes as input the image’s BoW vector and

produces a normalized likelihood measure for each stored

location, p(Eimg
i |Eimg

j ).
We compute the weight by assuming that each of the side-

channel likelihoods is independent. The importance weights,

wi
t, for the particles are thus calculated as the product of the

individual terms

wi
t = p(Ewifi

i |Eiwifi
j )p(Emag

i |Emag
j )p(Eimg

i |Eimg
j ).
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C. Odometry

For the process update of our sequential Bayesian filter,

we use odometric measurements. Many humanoid odometry

estimation schemes rely on incorporating domain constraints

for a specific application, along with a complex dynamics

model [25] and state-estimation methods. In this paper,

however, we are interested in the case where the IMU is

not firmly attached to the body of the subject being tracked

with the goal of allowing our approach to be transferred

seamlessly from a humanoid to human (eg. human wearing

a pair of smart-glasses). In this case such strict and clear-

cut assumptions does not exist and thus, rather than relying

on a state-space approach and encoder data, most methods

extract features from the IMU traces and use these these

for odometry estimation in what is know as pedestrian dead

reckoning (PDR) [8]. PDR performs 3 main operations; step

detection, step-length estimation and heading calculation. By

coupling the stride length estimates and step event detections

derived from these features, the PDR is able to roughly

estimate the relative position of the subject. Step events

are detected as maximum of the z-axis accelerometer data

and the heading is tracking using the the gyroscope and

magnetometer [12]. We use a simple step-frequency which

has been shown to work well in practice [20]. This model

relates the step length to the step frequency, ls = αf + b,
where f is the step frequency and α and b are constants as

described in [20].

D. Pose Estimation using 3D features

6-DoF pose estimation using 3D features is performed

using the EPnP algorithm [14]. Using a set of 2D features

detected in an image at locations, ui, vi matched to 3D fea-

tures xN
i , yNi , zNi stored relative to the coordinate system of

node n. The pose, X, θ, of the the camera which recorded the

image relative to the world coordinate system, is computed

using a PnP solver. We use the standard EPnP solver wrapped

in a RANSAC loop as implemented in OpenCV [2].

E. EKF Process and Measurement Update

Unlike the side-channel information which gives inexpen-

sive, but noisy and outlier-prone estimates of the current

location, the 6-DoF pose computation gives outlier-free mea-

surements. An internal EKF is used to keep track of the

pose mean μXi,Θi and the covariance ΣXi,Θi , relative to a

particular node. The process update of the EKF is carried

out by using odometric measurements.

In particular, process update is carried out as follows

xt
n = xt

n + ls × cos(θφ)

ytn = ytn + ls × sin(θφ)

Where the step lengths ls and step detections are obtained

from the PDR. For the EKF measurement, a 6-DoF pose

computation is done using the 3D features, this yields an

observation z = x̂N
i , ŷNi , ẑNi ,Θi relative to the 3D node, ni,

to which those features belong. Using this measurement, the

Kalman gain is calculated using the standard gain equations

Fig. 5. a) Before particle re-weighting many particles contain 6-DoF pose
estimates which are far from their current graph node. b) After weight
modification, particles with with nodes far from their 6-Dof estimates are
given a lower weight. c) After re-sampling more particles have closely-
related node and 6-DoF pose estimates.

[9] and the mean and covariance updated using this gain.

We concurrently perform the measurement update for the

weights of each particle sharing the same node ni, which

significantly reduces the computational effort.

F. Update and resampling

The weights consider only the likelihoods of the particles

at the discretised node-level. However, our particles contain

more information i.e. in the form of a continuous 6-DoF pose

estimate (maintained by the EKF). As the dead reckoning and

6-DoF pose estimate may lead to the particle deviating from

the current nearest node and coming closer to another one,

we further adjust the weight of the particles such that those

closer to the predicted pose have a greater weight.

wi′
k = wi′

k e
−d.

The quantity d =
√

(xi′
k )

2 + (yi
′
k )

2 + (zi
′
k )

2 represents the

distance of the particle’s 6-DoF pose estimate to the location

its node i′. The transformation to a particular node’s coordi-

nate system is done using the information stored along the

edges in the graph. This weight adjustment is illustrated in

Fig. 5.

G. Localisation policy

A major bottleneck in using full 3D localization for the

purpose of mobile device localisation is the severe limitation

which the computational constraints of the mobile device

places on the number of 3D features which can be local-

ized against while still allowing for real-time operation. To

address this, we use a localisation policy which performs

the expensive 2D-3D matching only in nodes where it is

essential, guided by the current distribution of particles on

the graph.

For reliable localisation, we would like to ensure that 2

criteria are met; 1) the particle distribution should faithfully

represent the posterior distribution of the humanoid’s loca-

tion on the graph and 2) we only want to try to localize

on a limited number of nodes and these should have a high

probability of being the humanoid’s actual location.
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In order to satisfy 1) we use a metric based on the

importance weights obtained from the previous time instant,

wi
t−1. These weights are used to calculate the “effective

number of particles” Neff = 1
∑

ω̂i
2

t−1

, which is a metric

that gauges how well the particles represent the posterior

[6].

The localisation policy then uses this metric to deter-

mine when localisation should be attempted. If the effective

number of particles is high enough, the localiser attempts

to localize in the k most likely nodes. Typically, the 3D

matching only has to be done on 1 or 2 nodes and each of

these frames naturally contains only a fraction of the most

relevant 3D features needed for localisation. The full locali-

sation algorithm is detailed in Alg. 1 where our contributions

compared to standard MCL are highlighted in red.

Algorithm 1 Localizer

Require: localisation graph G, Particles Xi

1: function LOCALIZE(G,Xi)

2: Calculate Neff

3: for m = 1 : k do
4: if Neff > τeff then
5: Select mth most common node

6: Pose computation using m′s 3D features

7: end if
8: end for
9: return Xt, θt � Proceed with EKF update

10: end function

The quantity k is a very important parameter as it

determines the number of nodes in which localisation is

attempted. It therefore directly affects the number of feature

matches that are carried out during the 6-Dof pose estimate.

By adjusting this quantity, the number of feature matching

can be controlled as required and thus allows the localisation

time to be scaled according to the requirements of the

platform.

VI. EXPERIMENTS

In order to adaquately evaluate EM-LOC, we gauge its

performance along three performance axes. The first is the

localisation time. As the 6-DoF localisation is the most

computationally expensive component which we seek to

minimize, we define as the localisation time as the time

it takes from receiving the current visual frame from the

camera to the time that the 6-DoF pose for the frame is

determined by the RANSAC-based pose computation. The

second factor is the localisation efficiency. The localisation

efficiency is defined as the number of successfully localised

divided by the total number of images for which localisation

was attempted. This is important as the RANSAC-based pose

computation may not localise a 6-DoF pose if it does not

find enough inliers. In our case we use 8 inliers as the

threshold for successful localisation. The final aspect we

evaluate is the localisation accuracy which is simply the

Node i Node i Node i

N
od

e 
j

N
od

e 
j

N
od

e 
j

Similarity

0

1

a) b) c)

Fig. 6. Visualization of the magnetic and WiFi similarities for the data
used in the museum experiment. a) shows the ground-truth metric distance
between the nodes b) shows the magnetic signal similarity and c) the WiFi
similarity

difference between the system’s current estimate of the angle

and orientation and the ground truth pose.

For fair comparison, we compare to two existing methods

in terms of both accuracy and processing time. The first

system, which we use as a baseline for comparison is the

EBN framework [3]. The EBN method stores frames along

with 3D feature points against which incoming images can

be localised. We consider two variants of the framework.

The first carries out an exhaustive matching against 3D

points belonging to all available nodes stored in the map

- in order to vary the number of nodes that are used

in the localisation, we randomly select k nodes from the

graph (we label this method A1). In the second method for

comparison, we make use of the side-channel data to rank

the nodes which are selected (A2). The ranking is computed

by using the likelihoods of Sec. V-B as features and using the

independence assumption - ranking the nodes as the product

of the features in the same way as the weights of the particles

are calculated in EM-LOC. Our third method for comparison

is based on Travi-Navi [27], which is a state-of-the art teach-

and- repeat pedestrian bi-pedal navigation system from the

mobile computing literature. Travi-Navi simply uses an SVM

to produce an estimate of the current location from the

WiFi, magnetic and appearance-based visual data. For our

purposes, we use the SVM to rank the nodes on which the

3D pose estimation is performed (A3).

Our evaluation data was gathered from a large museum

area. The area was chosen for numerous reasons; firstly,

its size (≈ 5000m2) allows for thorough evaluation of

our approach; secondly it is representative of a practical

implementation setting of our system - a popular tourist

attraction and public site with much commercial interest

for a viable localisation service. Furthermore, the museum

interior is a very complex space - filled with vast open rooms,

narrow corridors and dim-lighting which makes it a challenge

for vision-based localisation methods. In order to evaluate

such a large area and considering the locomotion speed of

current humanoid robots, the data for our experiments were

collected by two humans equipped with a pair of Google

Glasses. This is reasonable as our odometry does not rely

on modelling intricate dynamics. For offline procedure of

map creation, RGB-D frames were collected using a Project

Tango device and run through an RGB-D Slam algorithm

[7]. The same procedure was used to collect ground-truth

locations for the online localisation tests. We stress, however,
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that all the reported online localisation results are obtained

using the data from Google Glass. We test at a total of 167

test locations across the museum. Our experiments were run

on an Intel Core i5-2467M @ 1.60GHz, which is similar in

performance to that of the Nao v5.
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Fig. 7. Comparison between the processing times for EM-LOC system,
and comparison methods A1, A2 and A3 (see text)

The error distribution for EM-LOC, A2 and A3 at 3 values

of k is reported in the left subplots of Fig. 10 (A1 is not

plotted in the graph as the random node decimation performs

significantly worse than the other methods at these low k
values) and the CDF in Fig. 9. The EM-LOC system clearly

outperform methods A2 and A3 in terms of localisation

accuracy. This can be explained through two observations.

Firstly, EM-LOC, has the ability to better propose matching

candidates for the localisation. This means that nodes where

localisation may be possible, but of low accuracy (such

as distant nodes) are automatically excluded. Secondly, by

leveraging multi-modal data, EM-LOC is able to resolve

visual ambiguities such as corridors of similar appearance

which are common very common in indoor environments

and in many cases cannot be resolved using visual data alone.

These two factors contribute to the 6-DoF pose estimation in

EM-LOC producing fewer outliers and more accurate pose

estimates.
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Fig. 8. Number of features visible for each node in the museum
environment test.

In terms of efiiciency, a comparison between EM-LOC

and the three competing approaches are reported in the right

three subplots of Fig. 10. As is evident from the results of

A2, the simple means of using the side-channel information

as a prior estimate for selecting nodes in which to localise

is not very effective. At low values of k localisation is

attempted in many nodes, leading to low efficiency and slow

performance, while at high k, nodes in which localisation

would have been accurate are missed. The reason for this

can easily be seen from 6 where it is evident that the

WiFi feature similarity does not perfectly mirror the true

metric similarity. From the figure it is clear that EM-LOC

successfully localises significantly more incoming images

than the competing approaches at the same k values. Another

noticeable trend is that even at k = 1, EM-LOC is still able

to localise most images, meaning that the localisation can

be performed extremely efficiently (every incoming frame

only has to be matched against the 3D features contained

by a single node). The localisation efficiency of EM-LOC is

extremely high, and thus the efficency is significantly higher

for EM-LOC even compared to the A3 where a trained SVM

is used to select candidate nodes.
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Fig. 9. Cdf plot of the orientaation and translation error of EM-LOC from
various values of k.

In Fig. 7 we report a comparison and breakdown of the

on-line localisation processing times for EM-LOC and the

three competing methods. Due to the efficiency EM-LOC

significantly cuts down the processing time spent on 2D- 3D

feature matching compared to A1 which uses all nodes in

the matching process.

TABLE I

EFFICIENCY OF THE 6-DOF LOCALISATION FOR THE 3 METHODS

Method k = 10 k = 5 k = 1

EM-LOC 0.4783 0.4534 0.4534
A1 0.1043 0.0519 0.0187
A3 0.1317 0.1257 0.1078

In summary, by localising only against a select subset of

nodes we are able to perform 6-DoF pose updates more fre-

quently than exhaustive matching and also avoid occasional

visual false positives, suppressing outlier pose estimates and

resulting in a higher localization accuracy. Although the side-

channel information is an ideeal means of selecting candidate

nodes for localisation, the noisy nature of this data means

that existing methods such as using independent features (as

in A2) or even an SVM that models correlations between

features (as in A3) is not able to provide sufficiently accurate

candidate nodes. By making use of a stream of side-channel

information along with rough odometry estimates the EM-

LOC system can significantly boost the accuracy of the node

proposals.
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Fig. 10. Evaluation of the localisation accuracy and the localisation
efficiency. The right subplots show the successful localisations for each
of the input test images.

VII. CONCLUSION

In this paper, we proposed EM-LOC, an indoor localisa-

tion system which leverages multiple modalities for efficient

global localisation.The key challenge here is the extremely

high computational cost incurred when trying to match

features to the millions of 3D features stored on a localisation

graph. We address this by intelligently integrating multiple

modalities in our localisation system, allowing us to signifi-

cantly reduce the matching cost and thereby achieve real-time

performance. Unlike other methods, our system is able to

utilise a temporal stream of side-channel information in order

to select candidate nodes in which to localise. The results

show that our multi-modal approach not only increases the

localisation accuracy but significantly reduces computational

time compared to other approaches. For future work, we plan

to focus on simultaneous, lightweight human and humanoid

localisation.
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