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Abstract— Deep Reinforcement Learning (DRL) has been
applied successfully to many robotic applications. However,
the large number of trials needed for training is a key issue.
Most of existing techniques developed to improve training
efficiency (e.g. imitation) target on general tasks rather than
being tailored for robot applications, which have their specific
context to benefit from. We propose a novel framework, Assisted
Reinforcement Learning, where a classical controller (e.g. a PID
controller) is used as an alternative, switchable policy to speed
up training of DRL for local planning and navigation problems.
The core idea is that the simple control law allows the robot
to rapidly learn sensible primitives, like driving in a straight
line, instead of random exploration. As the actor network
becomes more advanced, it can then take over to perform more
complex actions, like obstacle avoidance. Eventually, the simple
controller can be discarded entirely. We show that not only does
this technique train faster, it also is less sensitive to the structure
of the DRL network and consistently outperforms a standard
Deep Deterministic Policy Gradient network. We demonstrate
the results in both simulation and real-world experiments.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has been shown
to be able to master complex games, even with high-
dimensional input such as video games [1]. However, there
are many additional difficulties to conquer when applying it
to robot tasks. Among them, improving training efficiency
is a realistic and urgent demand since a long-term training
phase is almost impossible to be conducted in the real world.

In the machine learning community, researchers mostly
focus on algorithmic techniques for accelerating the training
of DRL, such as parallel training [2] and data efficiency [3].
However, these algorithms do not consider the context of
a specific task, which can be valuable for training. Many
robotic problems, for example, do have existing solutions
which could benefit the training of DRL. Although these
solutions may not be optimal, they still outperform a random
exploration policy in most cases. How to fully exploit and
benefit from prior approaches and tightly combine them with
DRL to accelerate training is an important, yet open, topic.

Autonomous navigation, one of the most fundamental
capabilities in robotics, is a canonical scenario where this
topic can be investigated. Teaching a robot to swiftly navigate
towards a target in an unknown world, whilst avoiding
obstacles, requires a huge number of trials (e.g. in the order
of millions) to learn a good policy. This clearly is impractical
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Fig. 1: A deep neural network is trained with an actor-critic
Reinforcement Learning approach to learn local planning for robot
navigation. The critic-DQN network assesses both the performance
of the external controller, e.g. a PID controller, and the policy
network, selecting actions from a better one according to the
situation. All the resulting learning samples are stored in the replay
buffer. Therefore, the policy network can improve itself either by
imitating the external controller or by examining its own policy.

to perform in the real-world. Instead, we can exploit the close
correspondence between a simulator and the real-world, to
transfer the learned policy. This is especially the case when
using laser range finders [4] or depth images [5].

One strategy that allows reinforcement learning to benefit
from an existing controller is to generate training labels
for input states by using self-supervised or semi-supervised
learning [6]–[8]. Another approach is to generate a few
demonstration samples with high performance and ask the
networks to imitate them, i.e. imitation learning [9]. How-
ever, in the autonomous navigation problem domain, a good
controller itself is difficult to design. Instead, we consider
using a simple control law e.g. a proportional (P) controller.
As this will be unable to navigate past obstacles, we cannot
use such a naive approach to record a demonstration trace.
However, it will obtain a higher reward on average compared
with a completely random strategy which is a common policy
exploration approach. Our intuition is to use this controller
like training wheels on a bicycle - they prevent a novice from
falling off in the beginning, by making the control problem
easier, but once the rider has mastered how to balance, they
can be safely removed.



In this paper, we present a novel framework, called As-
sisted Reinforcement Learning, which is able to significantly
accelerate and improve the training of DRL by incorporating
an external controller. Built upon this framework and Deep
Deterministic Policy Gradient (DDPG) [10], we propose
the Assisted Deep Deterministic Policy Gradient (AsDDPG)
algorithm. Our contributions are summarized as follows:
• We propose a novel actor-critic algorithm that can seam-

lessly incorporate an external controller to assist DRL
and eventually work independently from the controller.

• Training of DDPG is significantly accelerated and sta-
bilized for robot navigation with the AsDDPG strategy.

• Autonomous navigation is achieved in the framework
of DRL with fast training, showing promising results in
challenging environments.

The rest of this paper is organized as follows. Related
work is reviewed in Section II. The background and the
proposed AsDDPG algorithm are described in Sections III
and IV, respectively. Section V presents experimental results,
followed by conclusions in Section VI.

II. RELATED WORK

Deep Learning (DL) has garnered an intense amount of
attention in the robotics community due to its performance
in a number of different and complex tasks, e.g. localization
[11], [12], navigation [6] and manipulation [13].

A. Supervised Deep Learning in Robot Navigation

Robot navigation is a well studied problem and a large
amount of work has been developed to tackle issues of au-
tonomous navigation [14], [15]. Recently, several supervised
and self-supervised DL approaches have been applied to
navigation [7], [16], [17] and its sub-problems e.g. obstacle
avoidance [8]. However, limitations prevent these approaches
from being widely used in a real robotic setting. For exam-
ple, a massive manually labeled dataset is required for the
training of the supervised learning approaches. Although this
can be mitigated to an extent by resorting to self-supervised
learning methods, their performance is largely bounded by
the strategy generating training labels.

B. Deep Reinforcement Learning in Robot Navigation

Different from previous supervised learning methods,
DRL based approaches learn from a large number of trials
and corresponding rewards instead of labeled data. For
instance, Zhu et al. [7] train a network which can steer a
monocular-based robot to find an image as a target by only
giving a large reward when the target is found.

However, because of the excessive number of trials re-
quired to learn a good policy, training in a simulator is more
suitable than experiences derived from the real world. In
[18], a network learns a controller for a flying robot to avoid
obstacles through monocular images. The learned policy is
transferred from simulation to reality by frequently changing
the rendering settings of the simulator to bridge the gap
between the images from the simulator and real-world. When
utilizing laser scans instead of images as input, DRL models

trained in the simulator can be directly applied in real world
[4]. As an alternative approach, in [5] the differences between
RGB images in simulation and reality are mitigated by first
transferring the RGB images to depth images.

C. Accelerating Training

In this work, we pay more attention to improving the
training efficiency, to reduce the number of trials required.
[19] achieves this by transferring knowledge learned for
navigation through successor features but is limited to op-
erate within similar scenarios. In [2], training is sped up
by executing multiple threads in parallel, but this can result
in more computing overhead especially when the simulator
is computationally heavy. Gu et al. [20] propose an ad-
ditional network that is trained to learn the model of the
environment. This can be used for generating more training
data, accelerating the training procedure with these additional
synthetic samples. Zhang et al. [21] apply a traditional
model predictive controller (MPC) to assist the training of
the network controlling a drone. However, the controller is
utilized to initialize the network in a supervised style. The
point at which to transfer to Reinforcement Learning policy
needs to be manually decided. Vecerik et al. [22] exploit
human demonstrations to accelerate the training of DDPG in
manipulation, but this suffers from two limitations. Firstly,
they manually inject demonstration samples into the replay
buffer [3]. Secondly, the human demonstrations needed take
significant time and effort to collect.

III. BACKGROUND

In this work, we focus on training a network as a local
planner to deal with the robot navigation problem, that is,
it is designed to drive the robot to a nearby target without
colliding with obstacles. Our proposed approach is based
on two DRL methods: Deep Q networks (DQN) [1] and
DDPG [10]. They will be briefly introduced in this section
after we outline the generic problem of robotic navigation.

A. Problem Formulation

We can consider the local navigation problem as a decision
making process where the robot is required to avoid obstacles
and reach a target position. At time t ∈ [0,T ] the robot
takes an action at ∈ A according to the input xt . The input
contains a view of the world e.g. a stack of laser scans, the
current speed of robot, and the target position with respect
to the robot’s local frame. We assume that the robot can
localize itself in the global coordinate frame with a map
which enables the calculation of the target position in local
frame. After executing the action, the robot receives a reward
rt given by the environment according to the reward function
and then transits to the next observation xt+1. The goal
of this decision making procedure is to reach a maximum
discounted accumulative future reward Rt = ∑

T
τ=t γτ−trτ ,

where γ is the discount factor.
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Fig. 2: Network architecture. Network layers are demonstrated by the rectangles. Orange arrows indicate the connectivity between network
layers and some other components, e.g. input state and the output of the simple controller. The final action is selected based on the Q
value predicted by critic-DQN.

B. Deep Q Network (DQN)

A DQN is a RL algorithm based on Q learning and deep
neural networks. It only estimates the value of a state-action
pair (xt ,at), which is termed the Q-value for all states. Given
the policy at = π(xt), it can be defined as follows

Qπ(xt ,at) = E[Rt |xt ,at ,π], (1)

which can be calculated with the Bellman equation

Qπ(xt ,at) = E[rt + γE[Qπ(xt+1,at+1)|xt ,at ,π].

By choosing the optimal action each time where Q∗(xt ,at) =
maxπE[Rt |xt ,at ,π], we can have the optimal Q-value func-
tion

Q∗(xt ,at) = Ext+1 [r+ γ max
at+1

Q∗(xt+1,at+1)|xt ,at ], (2)

which shows that by adding the discounted optimal Q-value
at time t + 1 with the current reward, the optimal Q-value
at time t can be approximated rather than computed directly
over a large state space. In summary, DQN utilizes a deep
neural network (parameterized by θ Q) to estimate the Q-
value through Q-learning.

C. Deep Deterministic Policy Gradient (DDPG)

Similar to DQN, DDPG [10] also estimates the Q-value
for each state-action pair with a critic network which is
parameterized by θ Q. But it also utilizes an actor network
(parameterized by θ π ) to estimate optimal actions directly,
which will be assessed by the critic network. Such an actor-
critic architecture makes it suitable to work in a continuous
action domain which is difficult for DQN and is ideal for
controlling robots. DQN applies a greedy policy where we
need to maximize the Q-value w.r.t. the actions. Thus, if the
action is continuous, it will be computationally expensive.
This is one of the reasons why DDPG is appealing in robotics
as most of the robotic tasks stay in a continuous action
domain.

The training for critic network is almost the same as DQN,
but the actor network is updated with policy gradient, defined
through the chain rule as follows:

Oθ π π ≈ E[Oθ π Q(x,a|θ Q)|x=xt ,a=π(xt |θ π )] =

E[OaQ(x,a|θ Q)|x=xt ,a=π(xt )Oθ π π(x|θ π)|x=xt ].
(3)

It indicates that the policy gradient can be obtained by
multiplying two partial derivatives. One is the derivative of
Q-value Q(x,a|θ Q) obtained from the critic network w.r.t. the
output action a = π(xt |θ π) by actor network and the other
is action a w.r.t. the parameters of actor network θ π .

IV. ASSISTED DEEP REINFORCEMENT LEARNING

The main insight behind our framework is to provide a
simple controller to assist the network in policy exploration,
accelerating and stabilizing the training procedure. We in
particular focus on DDPG, and hence term our approach
Assisted DPPG, or AsDDPG for short. The intuition is
simple: a naive control law will outperform a random strategy
for simple tasks e.g. driving in a straight line.

However, instead of simply treating this controller as an
independent exploration method like ε-greedy, we combine
the critic network with a DQN to automatically judge which
policy it should use to maximize the reward. Essentially, the
augmented critic network controls a switch which determines
whether the robot follows the controller’s suggested actions
or the learned policy. This can avoid manually tuning pa-
rameters to decide when and how to use such an external
controller, potentially deriving an optimal strategy. Further-
more, this external controller does not need to solely cope
with the whole task. Instead, it is only used to outperform
sub-optimal policies (e.g. random actions).

Since AsDDPG is an off-policy learning method where
the network learns from a replay buffer, regardless of the
current policy, the actor network can benefit from learning
samples generated by both its own recorded policy and the
assisting controller. Initially, the simple controller will be
chosen more frequently as the optimal policy. However, over



time, the learned policy will outperform the simple controller
in terms of total reward. Once training has converged, both
the critic and the external controller can be discarded, and
the robot simply navigates based on the learned policy.

A. Network Architecture

To bring the previously discussed intuition into practice,
we design a novel network architecture shown in Fig. 2. It
includes three parts, namely feature extraction (blue), policy
network and assistive controller (red), and the augmented
critic network (green).

The first part of the system is the 1-D convolutional layers
which are utilized to extract features from the stacked dense
laser scans. The activations applied are ReLU. We find these
convolutional layers to be typically important for the policy
to reach both a good performance for obstacle avoidance
and an acceptable generalization ability in the real world.
In [4], the author only uses a sparse laser scan (10 beams
of a scan) which enables good generalization in different
scenarios. However, it is difficult for the robot to avoid small
obstacles smoothly. Intuitively, decimating a high-fidelity
observation loses information and is not ideal. Thus, we
prefer to keep the dense laser scans as input and instead
apply 1-D convolutional layers to learn efficient features for
our task. Stacking inputs across multiple timestamps also
provides more information on the environment.

The second part is the policy network with fully-connected
layers, estimating the optimal linear and angular speeds for
the robot based only on features extracted from the input
state (e.g., laser scans, current speed and target position in
local frame). Note that the activations for these two outputs
are sigmoid and tanh, respectively. The external controller
also generates a control signal (policy) based on the error
signals between current and target positions.

Finally, the Critic-DQN constructed with fully-connected
layers is the third part. It has two branches: one is the critic
branch where the action is concatenated into the second
layer; the other is DQN branch where we apply dueling [23]
and double network architecture [24] to speed up the training
and avoid overestimation. Note that there is no nonlinear
activation for its output layers. We discuss the critic in more
detail below.

B. Critic-DQN

The two branches of critic-DQN act respectively as 1) a
criticizer, evaluating the action output from the policy net-
work and generating policy gradients, and 2) a switch,
deciding when to use the learned policies from the network
or the external controller.

The critic branch is similar to the original DDPG. How-
ever, it estimates the advantage Aπ(x,a) from Q-value
Qπ(x,a) for each state-action pair. This is leveraged by a
dueling network in DQN branch where the value V π(x)
of each state will also be learned. With the definition
of advantage, it can be simply calculated as Aπ(x,a) =
Qπ(x,a)−V π(x) ≈ Qπ(x,σ)−V π(x). Note that the action
considered by critic-DQN branch is the switching action σ

Algorithm 1 AsDDPG

1: procedure TRAINING
2: Initialize A(x,a|θ A), Q(x,σ |θ Q) and π(x|θ π).
3: Initialize target network θ A′ , θ Q′ and θ π ′

4: Initialize replay buffer R and exploration noise ε

5: for episode=1, M do
6: Reset the environment
7: Obtain the initial observation
8: for step = 1, T do
9: Infer switching [Qpolicy,QP] = Q(xt ,σ |θ Q)

10: σt = argmax([Qpolicy,QP])
11: if σt == 1 then
12: Sample policy action at = π(xt |θ π)+ ε

13: else
14: Sample action at from external controller
15: end if
16: Execute at and obtain rt ,xt+1
17: Store transition (xt ,at ,rt ,xt+1,σt) in R
18: Sample N transitions (xi,ai,ri,xi+1,σt) in R
19: Optimise critic-DQN by minimising Eq. 4
20: Update the policy according to Eq. 5
21: Update the target networks
22: end for
23: end for
24: end procedure

rather than a. According to [25], compared with Q-value,
estimating advantage largely reduces the variance and is
essential for fast learning especially for approaches based
on policy gradient. The entire critic branch is denoted as
A(x,a|θ A) while the part before estimating the advantage is
denoted as QA(x,a|θ A).

The DQN branch estimates and compares the Q-values for
either using the policy from the actor network or applying
actions from the external controller based on the state in-
puts. It greedily switches to the one with a higher Q-value
estimate. The DQN branch is denoted as Q(x,σ |θ Q).

C. Gradients for Training

The learning samples can be defined as a tuple
(xt ,at ,rt ,xt+1,σt), where σt is a binary variable, indicating
the switching action. Among these variables, at will only
affect the update for the critic branch while σt is only for
the DQN branch.

In the critic-DQN, both branches optimize their network
parameters through boot-strapping. This means they learn
from the temporal-difference (TD) error of the Q-value esti-
mation with Eq. 2. More specifically, weights are optimized
based on the following loss function L:

yA
i = ri + γQA′(xi+1,π

′(xi+1|θ π ′)|θ A′)

yQ
i = ri + γQ′(xi+1,argmax

σ

Q(xt+1,σt+1|θ Q))|θ Q′)

L =
1
N
(∑

i
(yA−QA(xi,ai|θ A))2 +(yQ−Q(xi,σi|θ Q))2).

(4)
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Fig. 3: The three Stage simulation worlds used for training. The
gray rectangles are obstacles while the blue one is the robot. The
target position is randomly generated for each episode.
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the network at each training step.

where QA′ , Q′ are target networks for the two branches and
i is the indices of samples in the batch. Note that the critic
branch is updated through its Q value estimation instead of
the final output advantage which is used for generating policy
gradient.

For the actor network, its weights are adjusted with policy
gradients which are defined in Eq. 3. It requires the critic
branch to first compute the gradients of its advantage output
Aπ(x,a) w.r.t. the action a. This is then transferred to the
actor network to calculate the gradients w.r.t. the network
parameters θ π . It can be derived as follows:

Oθ π π ≈ E[Oθ π A(x,a|θ A)|x=xt ,a=π(xt |θ π )] =

E[OaA(x,a|θ A)|x=xt ,a=π(xt )Oθ π π(x|θ π)|x=xt ].
(5)

Algorithm 1 outlines the entire training process of AsD-
DPG.

V. EXPERIMENTS

Several experiments are conducted to evaluate the perfor-
mance of the proposed AsDDPG against the original DDPG
for the robot navigation problem. We train the networks in
the Stage and Gazebo simulators and test the learned policy
in a real world scenario.

For the training in the Stage simulator, there are three
environments as shown in Fig.3. Both DDPG and AsDDPG
are trained with the same reward function. Specifically, it
contains a sparse part Rreach and Rcrash, where the robot
obtains a large positive reward for reaching the goal and
a large negative reward for colliding with an obstacle, and a
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Fig. 5: The usage of the policy network within an episode through
the entire training procedure respectively in two different simulation
worlds.

dense part as

rt =


Rcrash, if crashes
Rreach, if reaches the goal
γp((dt−1−dt)4t−C), otherwise

where dt−1 and dt indicate the distance between robot and
target at two consecutive time stamps,4t represents the time
for each step, C is a constant used as time penalty. and γp
is a discount factor.

The default value of γp is 1 for using policy network.
But its value can be set to a smaller number (e.g. 0.5)
for penalizing the usage of external controller when the
dense reward is positive. This serves for two purposes: i)
experiencing with the policy network more frequently and
ii) learning faster on how to work independently of the
external controller. Theoretically, the network can learn to
gradually diminish the usage of the external controller since
there is always a better policy instead of utilizing the external
controller in terms of reward.

The reward function above does not necessarily provide an
objective performance metric since it is designed to alleviate
the training difficulty. Hence, in this experiment we use a
navigation task metric based on the time taken to reach
the goal and whether the robot reaches the goal. More
specifically, each step gives a time penalty of −0.01 and
reaching the goal gives a positive reward of 2.

A. Speeding up Training Procedure with Various Hyper-
parameters

A known problem of DDPG is the high sensitivity to net-
work hyper-parameters. Manually tuning hyper-parameters
to make DDPG converge is very time-consuming and is
something that ideally could be avoided. Therefore, in this
experiment, we examine networks with three distinct settings,
including two or three fully connected layers with 100
neurons in each layer or three layers with 256 neurons.

The resulting learning curves over more than 100k training
steps for the different hyper-parameters are shown in Fig. 4.
It demonstrates that AsDDPG outperforms DDPG in terms
of training efficiency, and is more stable than DDPG with
different network hyper-parameters. Note that DDPG with
three layers and 256 neurons per layer fails to learn a
reasonable policy.
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Fig. 6: The policy learned by the robot with various proportional controller at different stages of the training. Each image illustrates
the trajectories of the robot as well as the switching results between the external controller and policy network among 200 episodes,
respectively at the early, middle and late phases of the training procedure.

B. Impact of Controller Parameters
In this experiment, several models are trained with dif-

ferent controller parameters in two Stage worlds (Fig 3a
and Fig 3b) to investigate the sensitivity of the AsDDPG to
the controller parameters, i.e., how the controller parameters
affect the training. We also examine how often the critic-
DQN chooses the learned policy over the external controller,
studying whether it can gradually become independent and
learn a good policy.

The proportional controller P(Pl ,Pr) is configured with
two parameters. It controls linear and rotational velocity as
v = Pl ·xlocal and ω = Pr ·ylocal , where xlocal and ylocal are the
coordinates of the target in the robot’s local coordinate frame.
We investigate three settings of the controller by altering the
linear gain parameter, namely P(0.1,1), P(1,1) and P(10,1).
P(10,1) is the fastest controller, but suffers from overshoot-
ing of the target, requiring the robot to turn around. P(0.1,1)
is the slowest controller, making very gradual changes to
the robot’s speed with consequent slow acceleration. P(1,1)
is a controller that gives good performance without serous
overshoot.

Fig. 5 shows how the ratio between the policy and the
external controller chosen by the critic-DQN evolves over
time during training. Firstly, it can be seen that the critic-
DQN learns to sample less frequently from the controller
over time, with more actions coming from the policy, al-
though the parameters of the controller and the environment
decides how fast this trend can be. One obvious phenomenon
is that in both simulated worlds the network drops the slow
controller P(0.1,1) rapidly since it takes a longer time to

reach the goal in general and it is easy for the policy network
to overperform it. However, the ratio between policy and
controller for P(1,1) and P(10,1) differs in the two worlds.
In Fig. 6a and 6b this behaviour is presented in more detail
with robot’s trajectories at different training stages. These
also show how often the critic network chooses the controller
(blue trace) over the learned policy (red policy) as training
progresses.

According to the results shown in Fig. 6a, regardless
of the controller, the network first learns to apply its own
policy for the first few steps, as shown by a concentration
of red around the origin. This is because the total reward
is heavily influenced by the initial heading. Considering the
fastest controller P(10,1), it can be seen that initially the
robot sometimes circles around the target, due to excessive
speed. This problem is solved by the policy network by
choosing a better heading at the beginning, demonstrating
that the network can learn when to properly use the external
controller.

With P(1,1), it adopts a more accurate heading towards
the target and navigates to it straightly. In the middle stage,
the policy network learns a more smooth but less optimal
policy in terms of time. This could be a side effect of
penalizing the usage of the external controller through reward
function. However, we actually find this penalty essential for
stabilizing the switching strategy. Eventually, the path to the
target learned by the policy network becomes more straight
and optimal. Since P(1,1) is a good controller, the network
does not discard it until more than 8000 training episodes.

Fig. 6b shows the robot trajectories when training in the
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simple world environment. It can be seen that the network
learns some distinct behaviours. The external controller is
sampled less frequently than in the empty world even at the
beginning. This is reasonable since a pure PID controller
cannot deal with obstacle avoidance. Moreover, the learning
speed is different with different controllers. For example,
the network learns to go around obstacles more easily
with P(1,1) than with others. With P(10,1), the network
learns much slower due to the confusing guidance from the
controller. Although the network drops the controller early, it
retains some undesirable behaviours like hovering around the
target at the middle stage of training. However, it can be seen
that eventually the critic becomes almost 100% independent
after ≈8000 episodes.

The experiments show that after a sufficient number of
training steps, the learned policies all can drop the external
controllers and are efficient to navigate the robot around
the obstacles. This verifies that the external controllers have
little impact on the final performance of the AsDDPG if the
networks are trained with sufficient episodes.

C. Training with Complex Environment and Sparse Reward

To further validate AsDDPG can learn a good policy by
leveraging an external controller, a more complex environ-
ment as shown in Fig.3c is applied together with a sparse
reward function. The dense reward function used in the
previous experiments alleviates the difficulty of training by
leading the robot to decrease its distance to the target for a
higher instant reward. But, at the same time, it induces the
network to learn a suboptimal policy w.r.t. time because it
is also driven by something else besides reaching the target
fastest. In this experiment, we use a reward function where
the dense part is simply a constant time penalty. This is a
challenging reward function for random exploration, as the
robot only receives a positive reward when it actually reaches
the target.

The performances of DDPG and AsDDPG are given in
Fig. 7. It can be seen that DDPG seldom learns a proper
policy to reach the goal and always collides with the ob-
stacles. More specifically, in the early stages, DDPG runs
out of time frequently, which is the worst case due to the

Fig. 8: Policies learned with dense and sparse reward functions
where sparse reward policy takes 43 steps (8.6 sec.) to reach the
goal while the dense reward policy takes 53 steps (10.6 sec.) longer.

Fig. 9: Gazebo Fig. 10: Real world

accumulative time penalty. After approximately 80k training
steps, it learns to crash to avoid the time penalty instead
of reaching the goal. In contrast, although AsDDPG also
runs out of time at the beginning, it transits to crashing as a
better strategy within only 3k steps, and eventually learns to
reach the goal for the maximal total reward. This further
verifies that the proposed AsDDPG can effectively speed
up the training and achieve a better performance with the
assistance from the external controller, even in complicated
environments with an extremely sparse reward function for
which a random exploration guided network can hardly learn
a good policy.

In addition, by using the sparse reward function, the
network learns to drive the robot faster and keep a reasonable
safe distance to the obstacles. This is shown in Fig. 8. With
the dense reward, the robot tend to smoothly skirt around the
obstacle by slowing down and executing a gentle rotation.
However, with a sparse reward, the network learns to plan
earlier to avoid obstacles, giving them a wider berth. As such,
the robot can travel at a maximum speed, even if the path to
the target is not the shortest.

D. Real World Tests

In the real world experiment, a Pioneer robot which is
equipped with a Hokuyo laser scanner is utilized. To localize
the robot based on an existing map, we apply the AMCL
ROS package. Since our network only acts as a local planner
for reaching a near goal without any collision, it is combined
with a global planner to achieve a complete navigation
system. More specifically, after receiving the destination, the
global planner generates a path to the target and each point
of the path is transfered into robot’s local frame as a network
input, together with the laser scans and the speed of the robot.

The simulated Gazebo environment shown in Fig. 9 is
used to traina network. Then, it is directly tested on the
real robot in the real world scenario with several obstacles
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Fig. 11: The trajectory of robot in the real world experiment.
The yellow rectangles are obstacles and blue circles indicate the
sequential targets.

(Fig. 10). In this experiment, a map without any obstacles
in the room is established and the robot is driven by the
learned policy to reach several target points successively
with obstacle avoidance. The robot trajectory and obstacles
overlaid on the map are illustrated in Fig. 11. The trajectory
of the robot is plotted as the red curves which can infer that
the robot can smoothly avoid all the obstacles and reach each
target successfully.

VI. CONCLUSIONS

In this paper, a novel algorithm named Assisted Deep
Deterministic Policy Gradient is proposed to tightly combine
Deep Reinforcement Learning with an existing controller,
achieving faster and more stable learning performance. It
harnesses the advantages of both Deep Deterministic Policy
Gradient and Deep Q Network. The extensive experiments
verify that it can accelerate and effectively stabilize the
training procedure for the network in the application of
robot navigation even with different hyper-parameters. Fur-
thermore, it can even enable the network to efficiently learn
a good policy for some challenging tasks, e.g., navigation in
a complex environment by only using a sparse reward. Real-
world experiment also demonstrates the effectiveness of the
policy learned by the network.

In the future, the algorithm will be applied in many other
scenarios such as robot arm manipulation.
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