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Abstract— Localisation is of importance for many applica-
tions. Our motivating scenarios are short-term construction
work and emergency rescue. Not only is accuracy necessary,
these scenarios also require rapid setup and robustness to envi-
ronmental conditions. These requirements preclude the use of
many traditional methods e.g. vision-based, laser-based, Ultra-
wide band (UWB) and Global Positioning System (GPS)-based
localisation systems. To solve these challenges, we introduce
iMag, an accurate and rapidly deployable inertial magneto-
inductive (MI) localisation system. It localises monitored work-
ers using a single MI transmitter and inertial measurement
units with minimal setup effort. However, MI location estimates
can be distorted and ambiguous. To solve this problem, we
suggest a novel method to use MI devices for sensing environ-
mental distortions, and use these to correctly close inertial loops.
By applying robust simultaneous localisation and mapping
(SLAM), our proposed localisation method achieves excellent
tracking accuracy, and can improve performance significantly
compared with only using an inertial measurement unit (IMU)
and MI device for localisation.

Keywords: Magneto-inductive device; Inertial measurements;
Localisation; SLAM

I. INTRODUCTION

This paper proposes iMag, an accurate, robust and fast
setup Simultaneous Localisation and Mapping (SLAM) sys-
tem. We aim to estimate the location of monitored people in
challenging environments, i.e. areas where traditional RF or
vision based systems fail or are not sufficiently robust. Per-
sonal localisation systems have a broad range of applications,
such as emergency response [24], indoor location based
service [33], [22] or construction site safety [27]. iMag uses
inertial measurements for pedestrian dead reckoning, and
uses Magneto-Inductive (MI) measurements for loop closure
and correcting accumulated drift from inertial sensors. A
key feature of our proposed method is the ability to drop
a single transmitter in the area of interest and immediately
start tracking. This is in stark contrast to other approaches
e.g. Ultra-wideband (UWB) which need a large number of
non-colocated anchors to be surveyed in place.

Motivating Scenario: short-term construction work.
Official government reports indicate that workforce fatalities
or injuries to railway workers occur due to insufficient
warning when plant machinery or a train approaches [5],
[6]. Here is an example scenario. Ten workers arrive at
a railway construction site within a tunnel at 8:00 am. A
localisation system needs to be set up to warn workers when
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Fig. 1. Motivating scenario: short-term construction work (a) near a rail
track (b) on road.

they enter in a static danger zone or when their working
area becomes a danger zone due to an incoming train.
The plan is to commence work by 8:15 am, after a short
site inspection. Many localisation techniques can achieve
sub-metre accuracy, such as those using Global Position-
ing System (GPS) [12] , laser [9], camera [20] or UWB
[11]. However, these techniques either require extensive site
surveys and map-construction (e.g. UWB, camera, laser), or
do not work well within enclosed areas like tunnels (e.g.
GPS). The traditional method of ensuring track-worker safety
is largely manual, through protection officers acting as a
lookout and using the Autoprowa warning system [2], i.e.
a light and horn, to warn construction workers. This needs
additional labour, but more importantly, lookouts need to be
alert for an entire shift. Furthermore, bad weather like fog
also severely affects the lookout range of protection officers.
GPS is popular for outdoor localisation applications [1], [4],
but its positioning is only relatively accurate in very clear
sky view. UWB is a promising technology for localisation
with centimetre-level accuracy, but it is time consuming
to deploy infrastructure. The basic principle behind UWB
localisation is a triangulation method using range from
receivers to transmitters. In other words, it requires multiple
transmitters deployed on the field (at least 3 transmitters
for 2D localisation or 4 transmitters for 3D localisation).
In short-term construction work, installing and configuring
an UWB localisation system is time-consuming and tedious.
Obstacles, such as vegetation and machinery, can also easily
attenuate UWB signals, limiting their use in these scenarios.

Many SLAM systems also fuse various types of mea-
surements. Among them, camera-inertial and laser-inertial
methods are popular and able to attain superior performance.
However, both of them still have drawbacks. Bad weather
(e.g. fog, rain and snow), low visual texture/features in



the surrounding environment (e.g. dust and muddy ground)
and poor lighting conditions contrive to impact even the
most sophisticated vision based localisation methods. Fur-
thermore, dynamic environments, e.g. moving workers, can
create difficulties for laser based applications. Lastly, vision
and laser based techniques require the device to be worn for
the duration of a shift in dusty conditions.

Magneto-Induction (MI) uses very low frequency (e.g.
2.5 kHz) that are generated at a transmitter. They have a
number of key advantages over electromagnetic (RF, vision,
laser) based techniques in that they allow through-obstacle
localisation without requiring a line-of-sight connection [16].
In addition, as we use a triaxial transmitter and receiver,
only a pair of devices is required to determine 3-D position
and orientation. However, MI localisation systems are still
challenging due to its difficulty of obtaining an accurate
localisation estimate, especially at longer ranges. One locali-
sation system [10] is proposed based on MI and inertial mea-
surements, and it uses a particle filter for data fusion. How-
ever, it requires careful environmental surveying, i.e. time-
consuming configuration for each MI transmitter/receiver
pair and each specific environment. It is infeasible to exploit
this method for rapidly deployable localisation.

We investigate an alternative and innovative method for
using MI devices. In our method, we no longer conduct
environmental surveying. Instead, we leverage MI devices
to sense environmental distortions and create unique spa-
tially linked signatures. These unique features are used for
loop-closure and calibrating biased pedestrian navigation
trajectories from inertial measurements. A robust SLAM
framework is employed in order to improve localisation
accuracy.

To summarise, the contributions of this paper are:
• We first propose an innovative method to enable a MI

device to sense environmentally induced distortions.
Spatial signatures are created by MI measurements to
enable minimal effort for configuring MI devices. We
take advantage of these features for loop closure and
calibrating trajectories.

• We study the performance of MI estimates in typical
environments, and demonstrate that MI measurements
are highly jeopardised by ambiguity issues. We propose
an inertial measurement based method to mitigate severe
MI ambiguity issues.

• We propose the iMag SLAM system, which performs
data fusion using MI and inertial measurements to
achieve robust localisation with high accuracy.

• A prototype SLAM system has been implemented. Only
one MI transmitter is deployed in the area of interest,
which enables rapid setup. Extensive experiments are
performed near a railway and at our campus to evaluate
our proposed method.

The rest of this paper is organised as follows. Related work
is demonstrated in Section II. Section III presents the system
overview of our proposed localisation method. Section IV
shows the details of the method using MI and inertial
measurements for sensing environments and localisation.

Evaluations are shown in Section V. Finally, we conclude
this paper and present the future work in Section VI.

II. RELATED WORK

In this section, we outline related research in three main
areas: MI applications, high-resolution localisation, and wire-
less signal based localisation methods.

A. Magneto-Inductive Localisation

Recently, a number of MI-based devices have been de-
signed for localisation. [18] designs a magnetic device for
proximity detection for indoor applications. [25] uses MI-
based signal to monitor the locations of underground animals.
As the magnetic signal can penetrate soil and water, it
achieves good accuracy and outperforms all other existing
methods. [28], [29] also obtain an MI-based range first and
then uses triangulation to estimate the location of monitored
people.

We are not the first to apply inertial measurements with
MI. [10] implements a 3-D inertial-MI system and performs
data fusion using a simple particle filter model. They use
inertial measurements along with the absolute positioning
from MI signal, which needs careful calibration for each
receiver-transmitter pair. On the contrary, our method takes
advantage of the unique spatial features, so there is no
need to have prior knowledge of a device and its operating
environment.

B. High-resolution Sensor based Localisation Methods

There are many localisation systems based on high-
resolution sensors, e.g. camera [20] and laser [9]. They can
achieve centimetre accuracy in ideal conditions, but they
have some key disadvantages that make them not particularly
well suited to this application. Camera-based localisation is
sensitive to poor lighting conditions, occlusions and dust.
Similarly, laser based localisation is costly and can struggle
with highly dynamic environments.

C. Wireless Signal Based Localisation Methods

WiFi signals are widely available in office and residential
environments, and as a result, many solutions have been
proposed for fusing WiFi and inertial measurements, such
as [14], [15], [17]. However, WiFi is highly affected by
multipath and would require a number of transmitters to
be installed in the operating area. In addition, accuracy of
WiFi based systems is typically in the 3-5 m region, due to
variance in RSSI measurements and sensitivity to orientation
and obstacles.

As an alternative spatially varying signal, the earth’s
magnetic field has been explored as a positioning modality.
This is because it is influenced by ferrous objects in the
surrounding environment, such as reinforcing steel inside
buildings that distorts the earth’s magnetic field. [32], [13],
[26], [21], [31] combine these spatial features and inertial
measurements for positioning. However, it is difficult to ex-
ploit these signatures in outdoor environment, where motion
is less constrained and the signatures are less informative.
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Fig. 2. System Flow Chart

UWB is an emerging state-of-the-art localisation infras-
tructure. It can achieve centimetre-level accuracy. With iner-
tial measurements, it can track activity and gesture as well
as localisation [30]. UWB does require a good transmitter
geometry to be installed in the operating area, have a good
line-of-sight, and the weak signals are easily blocked by
obstacles and vegetation, impacting its robustness.

III. SYSTEM OVERVIEW

To address the key challenges faced by teams of construc-
tion workers, the proposed system must satisfy the following
three requirements:
• Localisation accuracy: workers must be positioned with

metre level accuracy
• Robustness: the system must be immune to poor visual

conditions and changes in the operating environment
• Rapidly deployable: the system must be easy to initialise

to ensure low effort compliance and adoption
A system flow chart of our proposed localisation method

is shown in Figure 2. Inertial measurements (i.e. acceleration
and angular rate measurements) and MI measurements are
first collected. Acceleration and angular rate come from a
foot-mounted inertial measurement unit (IMU). A standard
zero velocity update (ZUPT) [19] based tracker generates an
inertial trajectory, which is subject to cumulative drift.

A single MI transmitter is placed in the Area of Interest,
with each worker wearing a small MI receiver. The MI
received signals are first cross-correlated with a reference
template to extract the channel matrix. From the channel
matrix and a standard physical model, a user’s position is
estimated. Note however, that this is typically incorrect due
to distortions in the MI field. Furthermore, due to the long
integration time (1 second in this case), motion induces
random quadrant ambiguities i.e. x and y co-ordinates can be
rotated by multiples of 90 degrees. It is clearly impossible
to move from one side of the transmitter to the other in
the matter of a second because of the dynamics of human
motion, and thus these are first corrected with the aid of the
inertial observations, giving rise to a distorted MI trajectory.
This distorted trajectory is metrically compromised, but

temporally stable and thus can serve as an indicator of loop
closure. The loop closures from MI and the drifting inertial
odometry are then passed into a Robust SLAM estimator to
determine an accurate trajectory.

IV. INERTIAL MAGNETO-INDUCTIVE LOCALISATION

In this section, we present the details of our proposed
inertial magneto-inductive localisation system, iMag.

iMag uses a foot-mounted IMU, processed by the ZUPT
algorithm. Overall, the performance of foot-mounted inertial
navigation is good, but due to sensor noise and bias, the
trajectory will slowly drift over time.

To overcome this cumulative drift, iMag uses MI mea-
surements to detect loop closures and hence correct long-
term errors in inertial odometry. An MI transmitter consists
of three orthogonal coils which are tuned to resonance and
are driven with a coded binary phase shift keying (BPSK)
message. This code is chosen to have good cross-correlation
properties, to increase the range of detectability. The MI
receiver similarly consists of three orthogonal sensors (again
coils in our case), which are connected to low noise am-
plifiers and a wide dynamic range ADC. The wide dynamic
range is necessary to handle the high path-loss exponent - due
to the near-field coupling, the field roll-off is 60 dB/decade,
rather than the more typically encountered 40 dB/decade for
electromagnetic propagation. The triaxial signals are then
cross-correlated with the template code in order to estimate
the channel matrix.

Once we have the channel estimates, we use the theory in
[16], [10] to obtain 3-D position estimates1. Note however,
that these position estimates are distorted by nearby ferrous
objects. The distortions mainly cause arbitrary rotations of
the position estimates. However, we note that these distor-
tions are constant over time i.e. if the same point is revisited,
then the same distorted position estimate will be obtained.
It is this property that we aim to exploit to provide accurate
long-term tracking.

However, before we use MI estimates for localisation or
sensing environment, three issues have to be addressed: (1)
location distortion, (2) coordinate ambiguity, and (3) MI data
association failure. These arise mainly because of environ-
mental noise, motion of the user, and the configuration of the
MI system. Previous research [10] requires labour-expensive
calibration of MI transmitter-receiver pairs to solve these
issues for each environment. Rather than explicit calibration,
we are the first to study the feasibility of exploiting these
distortions to indirectly sense the operating environment and
create spatially linked MI features.

To demonstrate some of the issues facing MI observations,
we conduct an outdoor experiment to illustrate them.

We put one MI transmitter about 10 m away from the MI
receiver, with a ground truth location of (5.5,9.1), as shown
in Figure 3(a). Using the data process described in [10], we
find MI estimates are ambiguous, i.e. locations are estimated

1The magnetic dipole equations are introduced in [16] and applied in [10]
for 3-D localisation.
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Fig. 3. Experiment results showing MI issues (a) Ground truth. (b) Original MI estimates. (c) Optimised MI estimates using ambiguity remover (d) MI
estimates showing distortion from ground-truth
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Fig. 4. An example of obtaining current MI location estimate

in different quadrants (shown in Figure 3(b)) instead of one.
We thus propose a simple technique to remove quadrant
ambiguity, as detailed below.

Coordinate Ambiguity Removal
One issue for the application of MI measurements is

a quadrant coordinate ambiguity as shown in Figure 3(b).
Theoretically, MI measurements should only be impacted by
a hemispherical ambiguity. However, due to noise impacting
the channel matrix pseudo-inverse, MI devices may still
create ambiguous observations, especially when the height
above ground is small. These quadrant ambiguities manifest
as flips across the x axis or y axis.

To remove the coordinate ambiguity, additional knowledge
needs to be provided. We propose to use an inertial trajectory
based MI ambiguity remover. Its task is to find the maximum
likelihood of the current i-th MI estimate m̂i according to
the previous estimate m̂i−1 and the displacement obtained
from inertial measurements. Figure 4 shows an example of
obtaining current MI location estimate from displacement
calculated by inertial measurements and previous MI esti-
mates. Specifically, the i-th MI estimate can be calculated
by m̂i = argmin

m(c)i

‖m̂i−1−m(c)i‖2, where m(c)i is the i-th MI

estimate in c-th quadrant.
We conduct a further experiment to illustrate its perfor-

mance. The monitored person carries an MI receiver and
walks in a square shape in an outdoor environment, stopping
occasionally. The ground truth is shown in Figure 5(a), and
Figure 5(b) depicts the original estimates. Without ambiguity

removal, the MI observations are unusable as spatial features.
After applying our proposed ambiguity remover, Figure 5(c)
demonstrates a much cleaner trajectory. This shows the
following observations: (1) our proposed method is able to
sanitise MI observations; (2) this experiment further shows
distortion of MI estimates even in outdoor environments;
(3) MI signals generate unique spatial features - when the
monitored person stops, MI estimates also deliver consistent
estimates, as shown by the tight clustering of points.

Exploiting distorted locations
Instead of trying to overcome distortions and restore

absolute MI positions, we simply accept that MI locations
are not directly relatable to real-world co-ordinates through a
pre-defined physical model. We consider MI estimates as ob-
servations in specific positions, termed as “MI observations”,
i.e. spatial features.

Even with the ambiguity removal method, obtained coordi-
nates still do not match the ground truth, as shown in Figure
3(d). However, this observation also indicates another impor-
tant fact, i.e. even though MI estimates cannot determine the
correct global location, they are unique to a specific location.
In other words, they have good discriminative power to
indicate when a monitored person returns to the same point.
Therefore, a single MI transmitter-receiver pair along with
motion updates from inertial measurements are able to be
used for accurate localisation, meeting the requirements of
rapid deployment.

Loop-closure extraction
When a monitored person re-enters a known area, the

current spatial features match previous ones stored in a
map. The repeated MI observations can close an estimated
trajectory loop and adjust the biased inertial trajectory.

Our MI devices have an update rate of approximately
1.4 Hz, which means it can obtain an estimate every ap-
proximately 0.7 second. The disadvantage of low sampling
rate is two-fold. Firstly, the device rotation over this period
can result in an incorrect MI channel estimation, due to the
signal smearing between the axes, corrupting the channel
matrix. Secondly, the collection density of the MI spatial
features is low, i.e. we have sparse features to use as loop-
closure keypoints. However, we note that the MI distortions
lie on a smooth surface i.e. it is only large ferrous objects in
the environment that can distort the MI field. The resultant
field is an additive contribution from the MI source and the
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distorters.
Due to the smoothness of the location distortions, MI

estimates can be interpolated by a linear model. A simple
approach would be to upsample MI measurements into a
denser grid, which would allow for more frequent loop-
closure detections, as shown in Figure 6(a). Since the MI
estimation rate is lower than inertial measurements, we can
conduct linear interpolation for MI estimation, using the
inertial measurement distance to distribute the points. An
Euclidean distance threshold can be set to determine whether
two points are in the same location or not, to detect potential
loop-closures.

However, we propose a more computationally efficient
method, which detects intersections of two line segments
whose end points are neighbouring MI estimates, and we
call this “cross-point” method. We use a curve intersection
detection method in [3], as shown in Figure 6(b) .

Here we present the details of this method. We have
two line segments Mi and M j (obtained from inertial tra-
jectories) with end points which are neighbouring MI es-
timates. The end points of Mi and M j are (mi(1),mi(2)),
(mi+1(1),mi+1(2)) and (m j(1),m j(2)), (m j+1(1),m j+1(2))
respectively. There are four unknowns here d1, d2, x0 and y0.
(x0,y0) is the intersection point. d1 and d2 are the distance
between starting points and intersection points relative to the
length of two segments. The relation among these variables
are shown in the simultaneous equations in Equation (1).

(mi+1(1)−mi(1))×d1 = x0−mi(1)
(mi+1(2)−mi(2))×d1 = y0−mi(2)
(m j+1(1)−m j(1))×d2 = x0−m j(1)
(m j+1(2)−m j(2))×d2 = y0−m j(2)

(1)

In matrix form, we have A×U = B, where A, U and B
are shown in Equation (2), Equation (3) and Equation (4).

U is the unknown matrix, and can be solved by U = B\A.

A =


mi+1(1)−mi(1) 0 −1 0

0 mi+1(2)−mi(2) −1 0
m j+1(1)−m j(1) 0 0 −1

0 m j+1(2)−m j(2) 0 −1

 (2)

U =
[
d1 d2 x0 y0

]T (3)

B =
[
−mi(1) −mi(2) −m j(1) −m j(2)

]T (4)

After solving the equation, we need to check d1 and d2 to
find if these two line segments have an intersection or not.
If both d1 and d2 are between 0 and 1, it means these two
line segments intersect, and (x0,y0) is the intersection point.

The key advantage of the cross-point method is that it
is approximately an order of magnitude faster than dense
interpolation. This is important for a real-time localisation
system, especially when a large number of candidate loop-
closure points are being searched.

Map-building
Our system uses a robust GraphSLAM optimiser g2o

[23]. This robust optimiser considers two joint parts for
optimisation from odometry and loop closing constraints
respectively. Scaling factors for information matrices are
added to the loop closing constraints to increase robustness
to outliers.

V. EVALUATION

In this section, we evaluate the performance of our pro-
posed iMag.

We perform experiments near a railway (Experiment 1
shown in Figure 7(a)) as well as at our campus, an outdoor
environment with little vegetation (Experiments 2&3 shown
in Figure 7(b)). Both of the experimental areas are a 40 m ×
40 m open space. The reason we conduct experiments at our
campus is the availability of the RTK GPS [12] signal, which
is used for recording ground truth. Alongside the railway
line, we found that RTK GPS coverage was patchy.

The goal of our experiments is to localise the monitored
person and evaluate the accuracy of our proposed methods.
We compare our proposed iMag with localisation methods
only using IMU or MI. The following metrics are used in
the experiments: (1) Cumulative distribution function (CDF):
The CDF of an error is a function whose value is the possibil-
ity that a corresponding estimate is less than or equal to the
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argument of that error; (2) Root Mean Square Error (RMSE):
(erms) is the mean tracking error over the entire trajectory,
defined as erms =

√
1

te−ts
Σ

te
t=ts ê(t)

2. ê(t) is the localisation

error for time t, expressed as ê(t) = ‖l̂(t)− lg(t)‖, where
l̂(t) and lg(t) are estimates and ground truth, respectively.

A. Hardware for Localisation

In this section, we describe the hardware we use for exper-
iments. Our prototype includes a laptop, an MI transmitter,
an MI receiver, and an IMU as shown in Figure 7(c). An
RTK GPS is also used for recording ground truth, which
can achieve 10 cm accuracy with a clear sky view.

In our prototype, a laptop is carried by the monitored
person to collect and process measurements. It has an Intel
Core i7 with 2.8 GHz processor and 16 GB Memory. The
operating system is Ubuntu 14.04.

The MI transmitter includes a 40 cm plastic cube former
which has three mutually orthogonal coils. Each coil is 25
turns of 1 mm diameter enamelled copper wire. Powered by a
1.2 Ah 12 V battery, three H-bridges amplify the modulated
BPSK signals generated by an STM32F4 microcontroller.
The message is modulated at a rate of 31.25 bps. The trans-
mitter operates at a nominal centre frequency of 2.5 kHz.

Similar to the MI transmitter, the MI receiver also equips
a 10 cm plastic cube former wrapped by three mutually
orthogonal coils of 150 turns/0.5 mm diameter enamelled
copper wire. An ADS1274I 24 bit ADC is used for digitising
received signals. An STM32F4 micro-controller then pro-
cesses the digital signals, dropping them down to baseband
and performing carrier wiping and phase recovery. A USB
cable is used to connect the MI receiver to the laptop in order
to transfer collected data and power the MI receiver.

The IMU we employ is the development board Xsens MTi-
3-8A7G6-DK [8]. In our system, it continuously supplies
inertial measurements, i.e. acceleration and angular rate, both
at 100 Hz. The IMU is firmly mounted on one foot of a
monitored person, and the inertial measurements are ported
to the laptop through a USB cable for further processing.

B. Experiment 1: Feature stability

We perform this experiment to show the feasibility and
efficacy of our proposed cross-point loop closure method
using MI observations. This experiment is conducted near
the railway line as shown in Figure 7(a), where significant

TABLE I
LOCALISATION ERROR OF EXPERIMENT 1

Method IMU MI iMag
erms 4.384 2.634 1.330

quantities of metal (i.e. a train, a railway track and a
transformer box ) are nearby. This experiment also aims to
show the ability to find unique MI spatial signatures in a
metal-rich environment.

We collect MI signals with the monitored person walking
in a “cross” shape as shown in Figure 8(a)2. To stretch our
proposed method to the limit, we synthesize a badly biased
IMU trajectory (see Figure 8(b)). In a 70 m path, the end
heading bias of our synthetic trajectory is approximately 12◦,
which is almost 5× more than the bias of a normal IMU [7].

Figure 8(c) demonstrates the MI observations after remov-
ing their ambiguity. Note how distorted the MI trajectory is.
Although it broadly resembles the ground truth, it is com-
pressed vertically and exhibits significant perturbations from
a straight line. However, when the user re-enters a previous
place (i.e. the origin), the MI observations are correctly able
to extract loop-closures, resulting in the corrected SLAM
trajectory in Figure 8(d). Table I shows that the eRMS of IMU,
MI and iMag method are 4.384 m, 2.634 m and 1.330 m,
respectively. Fusing measurement from MI and IMU, iMag
can achieve 69.6% and 49.5% improvement compared with
IMU and MI based localisation methods. Figure 8(e) shows
the CDF of errors using different methods. The results show
the 80th percentile localisation errors for IMU, MI and iMag
methods are 6.3 m, 3.1 m, and 1.5 m. In this metric, iMag
achieves 76.2% (compared with the IMU method) and 51.6%
(compared with the MI method) improvement.

This demonstrates that distorted MI observations are stable
and unique in metal-rich environments, and have excellent
discriminative power for loop-closure. The following exper-
iments were conducted in an open outdoor space where
the RTK GPS signal is available, and the inertial trajectory
comes from a foot-mounted IMU. Note however, that even
though these experiments were conducted in an open area,
there were metallic pipes and wires underneath the experi-

2Because this area is too close to a train and a transformer box, the RTK
GPS signal is missing in the experiment. Therefore, we manually label the
ground truth for this experiment.
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TABLE II
LOCALISATION ERROR OF EXPERIMENT 2

Method IMU MI iMag
erms 4.527 4.247 0.752

mental area.

C. Experiment 2: Loop Closure Robustness

The goal of this experiment is to evaluate the robustness of
MI observations to determine loop-closure points. The path
includes numerous repeated MI observations that will lead
to a large number of loop-closures as shown in Figure 9(a).
During this experiment, the monitored person is walking in
a square, which leads a 233.13 m path.

Figure 9(b) and Figure 9(c) demonstrate the IMU trajec-
tory and the MI trajectory, respectively. Note how the MI
trajectory resembles a square, but is distorted, particularly in
the corners.

Figure 9(d) shows the recovered trajectory after using
iMag method, which is virtually identical to the ground-truth
and has corrected the odometry drift.

Table II shows that the eRMS of IMU, MI and iMag
methods are 4.527 m, 4.247 m and 0.752 m, respectively.
Fusing measurements from MI and IMU, iMag can achieve
83.4% and 82.3% improvement compared with only using
IMU and MI methods. Figure 9(e) shows the CDF of errors
using different methods. The results show the 80th percentile
localisation errors for IMU, MI and iMag are 6.1 m, 5.4 m,
and 0.8 m. In this metric, iMag achieves 86.9% (compared
with IMU method), 85.2% (compared with MI method)
improvement.

D. Experiment 3: Random Walking

The goal of this experiment is to show the performance of
our proposed method with a more realistic motion trace. This
ground truth of this experiment is shown in Figure 10(a). The
monitored person walks randomly, which leads to a 311.95 m
path.

Figure 10(b) and Figure 10(c) demonstrate the IMU trajec-
tory and the MI trajectory, respectively. Figure 10(d) shows
the trajectory using iMag method.

Table III shows that the eRMS of IMU, MI and iMag
method are 3.491 m, 4.564 m and 2.453 m, respectively.
Fusing measurements from MI and IMU, it can achieve a
29.7% and a 61.6% improvement compared with IMU and

TABLE III
LOCALISATION ERROR OF EXPERIMENT 3

Method IMU MI iMag
erms 3.491 4.564 2.4532

MI based localisation methods. Figure 10(e) shows the CDF
of the different methods. The results show the 80th percentile
localisation errors for IMU, MI and iMag methods are 4.8m,
6.2 m, and 2.5 m. With this metric, iMag achieves 47.9%
(compared with IMU method) and a 59.7% (compared with
MI method) improvement. This experiment demonstrates that
even with long trajectories and sparse loop-closure points,
iMag can accurately track users.

VI. CONCLUSIONS

In this paper, we proposed the iMag SLAM system and
investigated its performance to meet the requirements of ac-
curate localisation and rapid setup. A novel method of using
low frequency magneto-inductive based positioning coupled
with inertial measurements demonstrates excellent accuracy,
irrespective of operating environment. Our prototype only
needs one MI transmitter deployed in the area of interest,
which allows for fast and easy setup, without any survey or
calibration. Our evaluations show that our proposed method
can achieve up to 86.9% and 85.2% improvement compared
with using only an IMU or MI device for localisation.
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