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Abstract
The ability to interact and understand the environ-
ment is a fundamental prerequisite for a wide range
of applications from robotics to augmented real-
ity. In particular, predicting how deformable ob-
jects will react to applied forces in real time is a
significant challenge. This is further confounded
by the fact that shape information about encoun-
tered objects in the real world is often impaired by
occlusions, noise and missing regions e.g. a robot
manipulating an object will only be able to observe
a partial view of the entire solid. In this work we
present a framework, 3D-PhysNet, which is able
to predict how a three-dimensional solid will de-
form under an applied force using intuitive physics
modelling. In particular, we propose a new method
to encode the physical properties of the material
and the applied force, enabling generalisation over
materials. The key is to combine deep variational
autoencoders with adversarial training, conditioned
on the applied force and the material properties. We
further propose a cascaded architecture that takes a
single 2.5D depth view of the object and predicts its
deformation. Training data is provided by a physics
simulator. The network is fast enough to be used in
real-time applications from partial views. Experi-
mental results show the viability and the generali-
sation properties of the proposed architecture.

1 Introduction
The capacity to employ common-sense reasoning, analogous
to human intuition, is necessary for unconstrained interaction
with an arbitrary environment. In particular, the ability to
understand the effect of applied forces on objects is vital for
general purpose robotic applications. Traditionally, mobile
navigation approaches consider all objects as static, rigid ob-
stacles. Similarly, in robotic grasping applications, objects
are often considered rigid and non-deformable at the percep-
tion level, with the resultant deformations only taken into ac-
count at the later control stage. However in the real world,
many objects are non-rigid and change in shape/size when
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subjected to external forces. The ability to infer likely de-
formations is of great use for predictive control. Forward
simulators based on Finite Element Models (FEM) are typ-
ically used to compute body deformations. Although they
are highly accurate, a full mesh representation of a solid is
required, unable to work with incomplete depth views of an
object, such as those available to a robot in the real world.
Moreover, they are computationally costly, unable to be used
in real-time. As an alternative, we explore conditional deep
models to learn the underlying physics of deformation.

Latent space generative models like Generative Adversar-
ial Networks (GANs) and Variational AutoEncoders (VAEs)
learn a mapping from a latent encoding space to a data space.
The latent space learned by these models is often organised
in a near-linear fashion, so that neighbouring points in latent
space map to similar points in data space. Generative net-
works have been applied with success to the problem of re-
constructing 3D objects from partial views or synthesizing
3D objects [Yang et al., 2017; Han et al., 2017].

Conditional Variational Autoencoders (cVAEs) offer a nat-
ural way to encode the effects of physical properties and ap-
plied forces. On the other hand, a useful property of GANs
is that the discriminator network implicitly learns a rich,
feature-level similarity metric.VAE-GANs, first introduced in
[Larsen et al., 2016], combine the ability of VAEs to encode
data into a latent space and the ability of GANs to produce
sharper, high quality models.

We propose a novel deep network that combines a varia-
tional autoencoder and a discriminator, trained on synthetic
data from an FEM-based physics simulator. Given a single
depth image of the deformable object and conditioning input
which includes the properties of the material, the strength of
the force, and the location of the force, the network is able
to output a predicted 3-D deformation of the solid. This pre-
diction can then be used for tasks as diverse as robot ma-
nipulation and grasping, terrain deformation assessment, and
in general for predicting the effect of forces on non-rigid ob-
jects in the context of end-to-end learning of intuitive physical
models of the environment.

The main intuition is that it is possible for the network
to learn the properties of the body of interest from physical
quantities that describe the elasticity and compression prop-
erties of the material. This enables the network to generalise
over a wide range of materials, relaxing the need for a large
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training set.
The material composition of an object can be estimated

from RGB images using available approaches such as the
recent Differential Angular Imaging for Material Recogni-
tion framework [Xue et al., 2017], which was trained on
the GTOS (Ground Terrain in Outdoor Scenes) material re-
flectance database, containing 40 material classes.

The conditions can be entered as real values in an efficient
way, enabling arbitrarily fine-grained values. A single pre-
diction is more than three orders of magnitudes faster that an
equivalent FEM simulation, at the cost of lower resolution;
this makes the approach useful for online evaluation for time-
sensitive tasks.

We evaluate the proposed approach on both synthetic and
real objects, and discuss the effect of different encodings of
the conditions.

The main contributions of this work are:

• 3D-PhysNet, a novel architecture for learning non-rigid
body deformations of 3D objects with a conditional
VAE-GAN architecture

• We also propose a Cascaded-3D-PhysNet, with a 3D re-
construction GAN followed by a cVAE-GAN, for pre-
dicting deformations from a single depth image

• A natural way of conditioning the network on continu-
ous, real valued physical quantities that reflect the real
world, rather than discrete material classes

• To our best knowledge, this is the first work on learn-
ing 3D deformations from arbitrarily rotated depth im-
age views

2 Related Work
Intuitive Physics
In [Frank et al., 2014] the authors estimated the elasticity pa-
rameters of an object by interacting with it and by correlating
applied forces and the resulting surface deformations.

In [Wu et al., 2015] the authors first proposed to use
deep generative networks for learning intuitive physics from
videos, such as the effect of gravity and friction on objects
rolling down a slope. The key idea was based on inverting a
physics engine to obtain model dynamics from observations.
Deep networks have been subsequently used for predicting
the stability of tower blocks [Lerer et al., 2016] and object
dynamics [Mottaghi et al., 2016].

Predicting how actions affect the world is an open chal-
lenge. In [Finn et al., 2016] a deep model was trained in an
unsupervised way to predict action-conditioned future video
images of moving objects, using a technique called Con-
volutional Dynamic Neural Advection (CDNA) and action-
conditioned LSTMs. Another approach to predicting future
video snippets given conditions was proposed in [Vondrick et
al., 2016]. Applications of intuitive physics to robotics have
been recently explored in [Byravan and Fox, 2017]. The net-
work predicts rigid body motions from 3-D point cloud inputs
given a force vector applied to it, using a layer that encodes
per-pixel SE(3) transformations.

Recently, [Wu et al., 2017] decouples the future predic-
tion problem by learning an abstract physical representation

of the world using a perception network, and using the physi-
cal representation as input to a physics engine and and a ren-
dering engine in order to generate visual data, that can be then
matched to the visual input.

Generative Networks
Deep generative models such as GANs [Goodfellow et al.,
2014] and VAEs [Kingma and Welling, 2013] have recently
shown outstanding results in high-dimensional representa-
tions and generalisation ability. GANs have been successfully
applied in a number of different domains such as natural lan-
guage understanding [Bingning Wang, 2017], learning of la-
tent spaces [Chen et al., 2016] and 3-D reconstruction [Yang
et al., 2017].

In the original GAN formulation the discriminator network
is trained to classify real and fake examples. However, the
loss function can be difficult to converge and training is of-
ten unstable. WGAN [Arjovsky et al., 2017] proposed to
use Wasserstein distance with weight clipping for stabilizing
training. Recently, [Gulrajani et al., 2017] proposed to penal-
ize the norm of the discriminator gradient with respect to its
input, further improving training stability.

In Conditional GANs (cGANs) the generated output is con-
ditioned on external conditional information. cGANs ad-
dresses problems where the input-to-output mapping is of the
type one-to-many.

Invertible conditional GANs (IcGANs) [Perarnau et al.,
2016] combine an autoencoder with a cGAN and have been
shown to be able to learn a good latent representation of the
inputs. Conditional GANs have been recently used to learn
mappings between input and output images with both paired
[Isola et al., 2016] and unpaired [Zhu et al., 2017] images.

Combining variational autoencoders with adversarial train-
ing has also gained popularity [Larsen et al., 2016; Bao et al.,
2017]. The idea is to exploit the feature representation in the
GAN discriminator to complement the VAE reconstruction
loss.

3 The Proposed Approach
3.1 Problem formulation
The problem of predicting 3D deformations from incomplete
depth views can be split into two problems: learning a recon-
struction frec from an input depth view I to a full 3D shape
X , and learning a smooth mapping fdef that maps a 3D shape
X into a deformed 3D shape Y , given a condition y. In our
case, I , X and Z are discretized into voxel grids of dimen-
sions 643, while the condition is a vector of n real values,
therefore the problem is defined as:

X = frec(I) (X, I ∈ Z64
2

3
, Z2 = 0, 1), (1)

Y = fdef (X, y) (X,Y ∈ Z64
2

3
, Z2 = 0, 1, y ∈ Rn). (2)

3.2 Main Framework
Figure 1 shows the architecture of the proposed 3D-PhysNet.
It is composed of two main networks: a generator network
G and a discriminator network D, that are competing against
each other.
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Figure 1: The 3D-PhysNet architecture. Blue blocks represent the
encoder E and generator G networks; green blocks represent the dis-
criminator network D.

Broadly, the generator maps the undistorted 3-D model into
a deformed 3-D model, conditioned on the supplied parame-
ters. The discriminator is used during training only and is
a classifier that determines whether its input is drawn from
the ground-truth or the output of the generator. The generator
and discriminator are adversarial i.e. they each get better over
time. We now describe each network in detail.

3.3 Generator
The network takes as input a voxel grid of size 64×64×64,
representing a 3-D point cloud. which is obtained by voxeliz-
ing the input 2.5D depth image.

The generator is implemented as a variational autoencoder
network that is able to learn a normally distributed latent rep-
resentation from the input voxel grid. To facilitate the repli-
cation of local structures and object details the convolutional
and deconvolutional layers have skip connections between
the input and the output samples.

The encoder E has five 3-D convolutional layers.The en-
coder is followed by a fully-connected layer flattening the 3-
D representation into a 1-dimensional vector, in turn followed
by two layers µ and σ, representing the reparameterized mix-
ture of gaussians from which we extract random samples.

The condition vector encapsulates the material elasticity
properties, the magnitude of the force, the location of the
force (see Section 3.5), and is concatenated with the latent
vector.

The generator G follows the inverse of the encoder, com-
posed of five deconvolutional layers which are followed by
ReLU activations except for the last layer which is followed
by a sigmoid function. The details of E and D are shown in
Table 1.

The loss LV AE for the variational autoencoder is:

LV AE = Lae + Lprior, (3)

Encoder E

[ input ] 64× 64× 64
[ layer 1 ] Conv. 43, Stride 23, Max pool. 23, ReLU activ.
· · ·
[ layer 5 ] Conv. 43, Stride 23, Max pool. 23, Sigmoid activ.
[ layer 6 ] FC 5000 Dense ReLU
[ layer 7 ] µ FC 800 σ FC 800

Generator G

[ layer 1 ] FC 32768 Dense ReLU
[ layer 2 ] Deconv. 43, Stride 23, ReLU activ. CONCAT
· · ·
[ layer 5 ] Deconv. 43, Stride 23, ReLU activ. CONCAT
[ layer 6 ] Deconv. 43, Stride 23, Sigmoid activ. CONCAT

Discriminator D

[ input ] 64× 64× 64 CONCAT
[ layer 1 ] Conv. 43, Stride 23, Max pool. 23, ReLU activ.
[ layer 2 ] Conv. 43, Stride 23, Max pool. 23, ReLU activ.
CONCAT
· · ·
[ layer 5 ] Conv. 43, Stride 23, Max pool. 23, Sigmoid activ.
[ layer 6 ] FC 32768

Table 1: Implementation details for the generator and the discrimi-
nator networks.

where Lae is a specialized form of Binary Cross-Entropy
(BCE), as in [Brock et al., 2016], and is given by:

Lae = −αt log(o)− (1− α)(1− t) log(1− o), (4)

where t is the true binary value for each voxel (0,1), o is the
output value predicted by E and is in the range (0,1), α is a
parameter that balances false positives against false negatives.

The second term of the loss is the Kullback-Leibler diver-
gence of the latent representation from a normal distribution:

Lprior = DKL(N(µ, σ)||N(0, I)) (5)

The adversarial loss for the generator is described by:

Lg
gan = −E [D(o|x)] (6)

The total loss is:

Lg = βLV AE + (1− β)Lg
gan, (7)

where β is a weight that balances the VAE loss and the GAN
loss. Intuitively, the VAE loss guides the coarse 3D recon-
struction of the object, and is important in the first phase of
training, while the GAN loss is useful for learning to gener-
ate more plausible predictions, in particular the subtle shape
deformations caused by the condition vector.

3.4 Discriminator
The role of the discriminator is to evaluate whether the pre-
dicted deformations from the generator are realistic, by clas-
sifying them as real or fake compared to the real input.



Similar to the encoder, it is composed of five 3-D convolu-
tional layers. Implementation details reported in Table 1.

The discriminator takes as input pairs of ‘real’ ground truth
voxel grids as informed by the physics simulator and ‘fake’
generated voxel grids from the generator, in addition to the
condition. The condition is reshaped so that it can be con-
catenated with the voxel grid. As the problem of shape de-
formation is high-dimensional, instead of outputting a binary
value, the discriminator outputs a dense vector representing
voxel similarities. The loss is based on WGAN-GP [Gul-
rajani et al., 2017] which adopts Wasserstein Distance as a
metric of similarity:

Ld
gan = E [D(o|x)]− E [D(t|x)] +

λE
[
(||∇ôD(ô|x)||2 − 1)

2
]
, (8)

where ô = ηx+ (1− ε)o, η ∈ [0, 1].

3.5 Encoding physical properties
In 3D-PhysNet, we take the novel approach of using the con-
tinuous material properties as the conditioning input, rather
than the material class. This is more generalisable and can
be arbitrarily quantized, enabling deformation estimation for
previously unseen materials.
fdef describes the deformation of a solid, which can be

defined as
fdef : x 7→ x+ d,

where x is the set of points representing the undeformed solid
and d represents a deformation field. In our case we make
the assumption that the body is composed of a homogeneous
material, isotropic and linearly elastic.

For continuous media the following relationship (an ex-
tension of the well-known Hooke’s Law for uniaxial defor-
mation) relates applied force (stress) to resultant deformation
(strain):

σ = Cε,

where σ is the stress tensor, ε is the strain tensor and C is the
Cauchy tensor mapping strain to stress.Under the assumption
that the material is isotropic, C only depends on two physical
parameters: the Young’s modulus E and Poisson’s ratio ν.

The Young’s modulus describes the force needed to enlarge
or compress a material by a fixed amount and is defined by the
ratio of stress to strain in the direction of the applied force. In
practice, E denotes the stiffness (or its reciprocal, elasticity)
of a material.

The Poisson’s ratio denotes the negative ratio of the trans-
verse strain over the axial strain. When a material is com-
pressed in one direction, an expansion is observed in the other
two perpendicular dimensions, and vice versa. In practice, ν
denotes the compressibility of a material. Since we assume
the material is isotropic, the Poisson’s ratio is the same for
every direction of compression/expansion (Figure 2).

The choice of parameter sampling for the condition vector
is critical and dependent on the problem of interest. Young’s
modulus is measured in GigaPascals (GPa) in the SI system
and is in the range (0,∞). For this reason, we fix an upper
bound of 23, which corresponds to the elasticity of concrete.

L
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ΔL’

F F
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L

Figure 2: Poisson’s ratio ν (left) and Young’s modulus E (right)
explained. ν shows how, given an applied force F which stretches
the object along one axis, a resultant compression occurs along the
other two axes. E on the other hand represents the ratio of stress
∆L/L and strain F/A.
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Figure 3: Cascaded configuration with 3D reconstruction network
(red) and 3D-PhysNet network (blue).

Since E varies over several orders of magnitude, we sample
our training set logarithmically over the range and scale to
[0, 1]. The Poisson’s ratio varies in the range [0, 0.5]. Rubber
has a Poisson’s ratio of 0.5 (perfect volume conservation),
while most materials are in the range 0.25 to 0.48. We there-
fore sample ν linearly over the full range.

3.6 Cascaded-3D-PhysNet
We also propose a cascaded framework, Cascaded-3D-
PhysNet, in which the output of a 3D reconstruction net-
work is fed into the input of 3D-PhysNet, as shown in Fig-
ure 3. In this configuration we factor the learning of the
mapping functions (Section 3.1) into two separate, indepen-
dently trained problems, the first performing 3-D reconstruc-
tion from a 2.5D point cloud and the second responsible for
deforming the 3-D model. In our experimental results sec-
tion we demonstrate that this cascaded approach is superior
to directly inputting 2.5D partial views into 3D-PhysNet and
attempting to perform both reconstruction and deformation in
a single network. Our intuition is that the latent encoding pro-
vided by the GAN is more suited for learning high resolution
reconstruction, subject to arbitrary rotation, whereas the nor-
mal encoding of the VAE is better suited for representing the
physically-based smooth functions representing the material
properties and applied force. We are agnostic to the recon-
struction network used, in our approach we adopt the recent
3D-RecGAN framework [Yang et al., 2017]. To simplify the
task of 3D-PhysNet PCA is to used to align the rotated shape
along its principal axes.

4 Experiments
4.1 Physics engine and dataset generation
The physics engine is used to generate pairs of input and
ground truth voxel grids and the corresponding condition



vectors for training. In this work we used the COMSOL
Multiphysics software in order to generate the training voxel
grids, but the network is agnostic to the simulator. The one-
dimensional condition vector is obtained by concatenating the
object’s Young’s modulus, the Poisson’s ratio, the location of
the force and its magnitude.

In order to generate our dataset for each object, we vary
the Young’s modulus and the Poisson’s ratio over their whole
range, using different sampling approaches, as discussed in
the results. We vary the force magnitude over 30 values and
the point of application of the force over 10 positions along
the top of the object. We generate a second dataset in which
we stretch the object along the x-y-z axes. For each axis we
stretch over 8 scales. The finite element meshes used for the
dataset generation contain on average 3200 triangles. We use
a MUMPS solver on an Intel Xeon CPU with a corresponding
simulation time for each sample of over 60 s.

We then extract a set of partial views for each sample. We
create a virtual depth camera and rotate the object over a to-
tal of 125 different angles, with 5 uniformly sampled angles
around each rotation axis. For each rotation, a partial voxel
grid is extracted representing a partial view. The total num-
ber of samples is 50000. The full generated datasets will be
released for the sake of reproducibility and testing.

4.2 Implementation details and evaluation setup
The network was implemented with Tensorflow 1.4 and
trained on a single Nvidia Pascal Titan X GPU. The network
was trained with a batch size of 8 using the Adam optimizer,
with lr = 5e − 5, β1 = 0.5, β2 = 0.999,ε = 1e − 8. λ is
set to 10 in Eq. 8. The prediction time for a single input is
35.7ms, which is more than three orders of magnitude faster
than an equivalent FEM simulation, allowing for real-time
deformation estimation.

In the cascaded configuration we use 3D-RecGAN [Yang
et al., 2017] for shape reconstruction from rotated partial
viewpoints. The network has a comparable prediction time.

We use voxel Intersection-Over-Union (IOU) between two
voxel grids as our accuracy metric. IOU is defined as:

IOU =

∑
ijk [1(Yijk > p) ∗ 1(Xijk)]∑

ijk [1(1(Yijk > p) + 1(Xijk))]

where 1 is an indicator function, Yijk is the predicted voxel
value at position (i, j, k), Xijk is the true value of voxel
(i, j, k), and p is the threshold for voxelization. In our exper-
iments, p is set as 0.8. The higher the IOU value, the better
the reconstruction of a 3D model.

4.3 Results and Discussion
Latent representation and encoding of physical
parameters
In this experiment we compare the VAE latent encoding with
a baseline inspired by IcGAN [Perarnau et al., 2016]. We also
show the effects of the joint distribution over physical param-
eters on training time and convergence. The convolutional
layers of the GAN are the same as in our approach, while the
latent vector in the GAN is a vector of dimension 5000. All
other parameters, as well as the discriminator loss function,
are the same as 3D-PhysNet.
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Figure 4: Comparison with baseline and effects of the joint distribu-
tion over elasticity parameters.

We simulate a bridge-like structure, and we first uni-
formly sample E over 400 values keeping ν constant (termed
1×400), then jointly vary both E and ν over 20 values
(termed 20×20). Figure 4 shows the results of the four cases.

The baseline approach does not converge with the 1×400
dataset, while it eventually converges with the 20×20 one.
The poor convergence can be intuitively explained by the fact
that no implicit distribution is imposed on IcGAN and it needs
to learn the mapping from each value to a particular deforma-
tion. For the case of sampling over 400 values of E the di-
mensionality is too high for it to converge, whereas for 20×20
the sparser sampling in each dimension allows it to converge
after 25k iterations.

3D-PhysNet is able to converge quickly and predict de-
formation regardless of the dataset. This demonstrates that
the normally distributed representation of the latent variables
in the VAE is more suited to represent the smooth underly-
ing function capturing the relationships between the condi-
tions and deformation, compared with the arbitrary vector
used in IcGAN. The learning curve for the 20×20 dataset
is marginally faster, possibly due to an underlying joint-
relationship between E and ν and the resultant Cauchy stress
tensor.

Generalisation over physical parameters and scales
In this experiment we analyse the ability of the network to
generalise over the various conditions.

For this experiment we train 3D-PhysNet with full 3D in-
puts and vary both E and ν over 20 values each. We then test
on unseen values of E and ν. The network converges after
14k iterations and has a resultant IOU of 0.98, demonstrating
good generalization to arbitrary materials. In all our experi-
ments the object is always resting on the ground.

We then evaluate the generalisation capabilities over scale
variations. It should be noted that the scale variations affect
the physics of the object, adding to the non-linearity of the
problem. The final average IOU for this experiment is 0.98;
some qualitative results are shown in Figure 5.

We then investigate the ability of the network to generalise
over force strength and location. We train our network on a
subset of the dataset composed by 310 samples: 31 different
force strengths and 10 points of applications equally spaced
over the top of the bridge. By encoding the force location as a
real number the network only achieves a final average IOU of
0.9, while a one-hot encoding of the force location achieves
an IOU of 0.95. This shows that the force location is the most



Figure 5: Generalisation over shape variations and applied forces.
Top row: undeformed object and applied force; middle: predicted
deformations; bottom row: ground truth.
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Figure 6: Learning curves from partial views.

challenging parameter, since the resulting deformations for
different positions of the force are widely different and not
smooth. Qualitative results are shown in Figure 5.

Prediction from partial views and cascaded architecture
In this experiment we motivate the use of a cascaded archi-
tecture for deformation prediction from partial views.

In Figure 6 we show the learning curves for 3D-PhysNet
and Cascaded-3D-PhysNet on the full dataset of rotated par-
tial views. For Cascaded-3D-PhysNet, we first train 3D-
RecGAN on 3D reconstruction only, then 3D-PhysNet on
the PCA-aligned outputs of 3D-RecGAN. We plot the two
learning curves consecutively for comparison with the other
approaches. It can be seen how 3D-RecGAN learns to re-
construct the objects fast, enabling 3D-PhysNet to converge
faster.

Some works on 3D reconstruction, such as 3D-IwGAN
[Smith and Meger, 2017], leave the object of interest still and
rotate the camera around it in order to extract partial 2.5D
views. This is a simplified way to extract viewpoints, and our
network achieves an accuracy comparable to learning from
full 3D objects. Figure 7 shows some qualitative results.

(a) Input view (b) 3D-PhysNet (c) Cascaded-
3D-PhysNet

(d) Ground
truth

Figure 7: Predicted deformations from partial viewpoints.

Multi-category and cross-category prediction
Finally, we show some qualitative prediction results and
cross-category prediction. The first two columns of Figure
8 shows prediction results on two different objects. To fur-
ther investigate the generality of our network we train on a
set of cylinder-like objects (second column) and then test on
completely unseen objects (last three columns of Figure 8).

We also show some preliminary results from real depth im-
ages in Figure 9. A single depth view of the real objects is
obtained using a Microsoft Kinect camera.

The results show how the network is able to learn from
simple primitives and generalise to unseen objects, both syn-
thetic and from the real world. Note how, albeit simplified in
its shape, the predicted shapes of the toys are being pushed by
the force (the feet are fixed to the ground) and a simulacrum
of the arms is present in the predicted shapes.

Figure 8: Examples of predicted deformations for different objects.
Top: undeformed object and applied force; middle: predicted defor-
mation; bottom: ground truth. The three columns on the right were
only trained on a set of cylinder-like objects.

Figure 9: Cross-category prediction on a real object. Left: depth
input image; middle: input voxel and predicted deformation; right:
actual deformation.

5 Conclusion
We presented an application of a conditional variational au-
toencoder architecture with adversarial training to the prob-
lem of predicting structural deformations of 3D shapes under
the effect of external applied forces, given a single depth im-
age. The intuition is that the network prediction can be con-
ditioned directly on the elasticity properties of the material,
as well as the applied force, enabling the network to learn
to approximate non-rigid body deformations of real materi-
als and objects. This makes the approach useful for a variety
of tasks in which it is needed to predict in advance the effect
of forces acting on the environment, as diverse as industrial
robotics, mobile robotics, structural monitoring, and in gen-
eral for applications that can benefit from knowledge of intu-
itive physics. The network was validated on a large dataset of



different objects and conditions. Future work will be devoted
to optimizing the architecture, increasing resolution, and ex-
ploring alternative data encodings, such as octrees, surfels,
etc.
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