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Figure 1. Our method 3D-RecGAN reconstructs a full 3D shape from a single 2.5D depth view.

Abstract

In this paper, we propose a novel 3D-RecGAN approach,

which reconstructs the complete 3D structure of a given ob-

ject from a single arbitrary depth view using generative ad-

versarial networks. Unlike the existing work which typically

requires multiple views of the same object or class labels

to recover the full 3D geometry, the proposed 3D-RecGAN

only takes the voxel grid representation of a depth view of

the object as input, and is able to generate the complete

3D occupancy grid by filling in the occluded/missing re-

gions. The key idea is to combine the generative capabilities

of autoencoders and the conditional Generative Adversar-

ial Networks (GAN) framework, to infer accurate and fine-

grained 3D structures of objects in high-dimensional voxel

space. Extensive experiments on large synthetic datasets

show that the proposed 3D-RecGAN significantly outper-

forms the state of the art in single view 3D object recon-

struction, and is able to reconstruct unseen types of objects.

Our code and data are available at: https://github.

com/Yang7879/3D-RecGAN .

1. Introduction

The ability to reconstruct the complete and accurate 3D

geometry of an object is essential for a broad spectrum

of scenarios, from AR/VR applications [46] and semantic

understanding, to robot grasping [58] and obstacle avoid-

ance. One class of popular approaches is to use the off-

the-shelf low-cost depth sensing devices such as Kinect and

RealSense cameras to recover the 3D model of an object

from captured depth images. Most of those approaches typ-

ically sample multiple depth images from different views of

the object to create the complete 3D structure [37] [39] [53].

However, in practice it is not always feasible to scan all sur-

faces of the object, which leads to incomplete models with

occluded regions and large holes. In addition, acquiring and

processing multiple depth views require significant compu-

tational power, which is not ideal in many applications that

require real-time response.

In this paper, we aim to tackle the problem of inferring

the complete 3D model of an object using a single depth

view. This is a very challenging task, since the partial obser-

vation of the object (i.e. a depth image from one viewing an-

gle) can be theoretically associated with infinite number of

possible 3D models. Traditional reconstruction approaches

typically use interpolation techniques such as plane fitting

[51] or Poisson surface estimation [23] [24] to estimate the

underlying 3D structure. However, they can only recover

very limited occluded/missing regions, e.g. small holes or

gaps due to quantization artifacts, sensor noise and insuffi-
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cient geometry information.

Interestingly, humans are surprisingly talent at such am-

biguity by implicitly leveraging prior knowledge. For ex-

ample, given a view of a chair with two rear legs occluded

by front legs, humans are easily able to guess the most likely

shape behind the visible parts. Recent advances in deep

neural nets and data driven approaches are suitable to deal

with such a task.

In this paper, we aim to acquire the complete 3D geom-

etry of an object given a single depth view. By utilizing the

high performance of 3D convolutional neural nets and large

open datasets of 3D models, our approach learns a smooth

function to map a 2.5D view to a complete 3D shape. Par-

ticularly, we train an end-to-end model which estimates full

volumetric occupancy from only one 2.5D depth view of

an object, thus predicting occluded structures from a partial

scan.

While state-of-the-art deep learning approaches [7] [61]

[6] [58] [62] for 3D shape reconstruction achieve encourag-

ing and compelling results, they are limited to a very small

resolution, typically less than 403 voxel grids. As a result,

the learnt 3D shape tends to be coarse and inaccurate. How-

ever, to increase the model resolution without sacrificing

recovery accuracy is challenging, as even a slightly higher

resolution would exponentially increase the search space of

potential 2.5D to 3D mapping functions, resulting in diffi-

culties in convergence of neural nets.

Recently, deep generative models achieve impressive

success in modeling complex high-dimensional data dis-

tribution, among which Generative Adversarial Networks

(GANs) [14] and Variational Autoencoders (VAEs) [27]

emerge as two powerful frameworks for generative learn-

ing, including image and text generation [41] [20], and la-

tent space learning [5] [28]. In the past two years, a number

of works [13] [60] [15] [21] apply such generative models to

learn latent space to represent 3D object shapes, and then to

solve simple discriminative tasks such as new image gener-

ation, object classification, recognition and shape retrieval.

However, 3D shape reconstruction, as a more difficult gen-

erative task, has yet to be fully explored.

In this paper, we propose 3D-RecGAN, a novel model

that combines both an autoencoder and GAN to generate a

full 3D structure conditioned on a single 2.5D view. Par-

ticularly, our model first encodes the 2.5D view to a low-

dimensional latent space vector which implicitly represents

general 3D geometric structures, then decodes it back to re-

cover the most likely complete 3D structure. The rough 3D

structure is then feed into a conditional discriminator which

is adversarially trained to distinguish whether the coarse 3D

shape is plausible or not.The autoencoder is able to approxi-

mate the corresponding shape, while the adversarial training

tends to add fine details to the estimated shape. To ensure

the final generated 3D shape corresponds to the input single

partial 2.5D view, adversarial training of our model is based

on conditional GAN [33] instead of random guessing.

Our contributions are as follows:

(1) We formulate a novel generative model to recon-

struct the full 3D structure using a single arbitrary depth

view. By drawing on both autoencoder and GAN, our ap-

proach is end-to-end trainable with high level of general-

ity. Particularly, our model consumes a simple occupancy

grid map without requiring object class labels or any an-

notations, while predicting a compelling shape with a high

resolution of 643 voxel grid.

(2) We exploit conditional GAN during training to re-

fine 3D shape estimates from autoencoder. Key contribu-

tion here is the use of a latent distribution rather than a

binary variable from the discriminator to train both dis-

criminator and autoencoder. Using a latent distribution of

high-dimensional real or fake 3D reconstructed shapes from

discriminator significantly stabilizes the training of GAN,

while using the standard binary variable 0/1 for training

leads to the GAN crash easily.

(3) We conduct extensive experiments for single cate-

gory and multi-category reconstruction, outperforming the

state of the art. Besides, our approach is also able to gener-

alize previously unseen object categories.

We evaluate our approach on synthetic datasets from vir-

tually scanned 3D CAD models. Ideally, this task should be

evaluated on real world 2.5D depth views, but it is very chal-

lenging to obtain the ground truth of 3D shape with regard

to a specific 2.5D view for both training and evaluation. To

the best of our knowledge, there are no good open datasets

which have the ground truth for occluded/missing parts and

holes for each 2.5D view in real world. Extensive exper-

iments demonstrate that our 3D-RecGAN outperforms the

state of the art by a large margin. Our reconstruction results

are not only quantitatively more accurate, but also qualita-

tively with more details. An example of chair completion is

shown in Figure 1.

2. Related Work

We review different pipelines for 3D reconstruction or

shape completion. Both conventional geometry based and

the state-of-the-art deep learning based approaches are cov-

ered.

(1) 3D Model/Shape Fitting. [35] uses plane fitting to

complete small missing regions, while [32] [34] [40] [48]

[52] [56] applies shape symmetry to fill in holes. Although

these methods show good results, relying on predefined ge-

ometric regularities fundamentally limits the structure space

to hand-crafted shapes. Besides, these approaches are likely

to fail when missing or occluded regions are relatively big.

Another similar fitting pipeline is to leverage database pri-

ors. Given a partial shape input, [25] [29] [36] [45] [47] try

to retrieve an identical or most likely CAD model and align

it with the partial scan. However, these approaches explic-
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itly assume the database contains identical or very similar

shapes, thus being unable to generalize novel objects or cat-

egories.

(2) Multi-view Reconstruction. Traditionally, 3D

dense recovery requires a collection of images [19]. Ge-

ometric shape is recovered by dense feature extraction and

matching [38], or by directly minimizing reprojection er-

rors [2]. Basically, these methods are used for traditional

SfM and visual SLAM, which is unable to build 3D struc-

tures for featureless regions such as white walls. Recently,

[12] [42] [57] [54] [8] [6] [43] [49] [31] leverage deep neu-

ral nets to learn a 3D shape from multiple images. Although

most of them do not directly require 3D ground-truth labels

for supervision during training, they rely on additional sig-

nals such as contextual or camera information to supervise

the view consistency. Obviously, extra efforts are required

to acquire such additional signals. Additionally, resolution

of the recovered occupancy shape is usually up to a small

scale of 323.

(3) Single-view Reconstruction. Predicting a complete

3D object model from a single view is a long-standing and

very challenging task. When reconstructing a specific ob-

ject category, model templates can be used. For example,

morphable 3D models are exploited for face recovery [3]

[9]. This concept was extended to reconstruct simple ob-

jects in [22]. For general and complex object completion,

recent machine learning approaches achieve promising re-

sults. Firman et al. [11] trained a random decision forest

to predict unknown voxels. 3D ShapeNets [61] is amongst

the early work using deep networks to predict multiple 3D

solutions from a single partial view. Fan et al. [10] also

adopted a similar strategy to generate multiple plausible 3D

point clouds from a single image. However, that strategy is

significantly less efficient than directly training an end-to-

end predictor [7]. VConv-DAE [46] can be used for shape

completion, but it is originally designed for shape denoising

rather than partial range scans. Wu et al. proposed 3D-INN

[59] to estimate a 3D skeleton from single image, which

is far from recovering an accurate and complete 3D struc-

ture. Dai et al. developed 3D-EPN [7] to complete an ob-

ject’s shape using deep nets to both predict a 323 occupancy

grid and then synthesize a higher resolution model based on

a shape database. While it achieves promising results, it

is not an end-to-end system and it relies on a prior model

database. Perspective Transformer Nets [62] and the recent

WS-GAN [18] are introduced to learn 3D object structures

up to a 323 resolution occupancy grid. Although they do not

need explicit 3D labels for supervision, it requires a large

number of 2D silhouettes or masks and specific camera pa-

rameters. In addition, the training procedure of [62] is two-

stage, rather than end-to-end. Song et al. [50] proposed

SSCNet for both 3D scene completion and semantic label

prediction. Although it outputs a high resolution occupancy

map, it requires strong voxel-level annotations for supervi-

sion. It also needs special map encoding techniques such as

elimination of both view dependency and strong gradients

on TSDF. [55] [43] use tree structures, while [16] applies

Hibert Maps for 3D map representation to recover the 3D

shape, thus being able to produce a relatively higher res-

olution of 3D shape. However, their deep networks only

consist of a 3D encoder and decoder, without taking advan-

tage of adversarial learning. Varley et al. [58] provides an

architecture for 3D shape completion from a single depth

view, producing an up to 403 occupancy grid. Although

reconstruction results are encouraging, the network is not

scalable to higher resolution 3D shape because of the heavy

fully connected layers.

3. 3D-RecGAN

3.1. Overview

Our method aims to predict a complete 3D shape of an

object, which takes only an arbitrary single 2.5D depth view

as input. The output 3D shape is automatically aligned with

the corresponding 2.5D partial scan. To achieve this task,

each object model is represented in a 3D voxel grid. We

only use the simple occupancy information for map encod-

ing, where 1 represents an occupied cell and 0 remains an

empty cell. Specifically, both the input, denoted as I , and

output 3D shape, denoted as Y , are 643 occupancy grids in

our networks. The input shape is directly calculated from

a single depth image. To generate ground true training and

evaluation pairs, we virtually scan 3D objects from Mod-

elNet40 [61]. Figure 2 is the t-SNE visualization of par-

tial 2.5D views and the corresponding full 3D shapes for

multiple general chair and bed models. Each green dot rep-

resents the t-SNE embedding of a 2.5D view, whilst a red

dot is the embedding of corresponding 3D shapes. It can be

seen that multiple categories inherently have similar 2.5D to

3D mapping relationships. Essentially, our neural network

is to learn a smooth function, denoted as f , which maps

green dots to red dots in high dimensional space as shown

in Equation 1. The function f is parametrized by convolu-

tional layers in general.

Figure 2. t-SNE embeddings of 2.5D partial views and 3D com-

plete shapes of multiple object categories.
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Figure 3. Overview of network architecture for training.

Figure 4. Overview of network architecture for testing.

Y = f(I)
(

I, Y ∈ Z64
3

2
, where Z2 = {0, 1}

)

(1)

After generating training pairs, we feed them into our

networks. The first part of our network loosely follows the

idea of an autoencoder with U-net architecture [44]. The

autoencoder serves as a generator which is followed by a

conditional discriminator [33] for adversarial learning. In-

stead of reconstructing the original input and learning an

efficient encoding, the autoencoder in our network aims to

learn a correlation between partial and complete 3D struc-

tures. With the supervision of complete 3D labels, the au-

toencoder is able to learn a function f and generate a rea-

sonable 3D shape given a brand new partial 2.5D view. In

the testing phase, however, the results tend to be graining

and without fine details.

To address this issue, in the training phase, the recon-

structed 3D shape from the autoencoder is further fed into

a conditional discriminator to verify its plausibility. In par-

ticular, a partial 2.5D input view is paired with its corre-

sponding complete 3D shape, which is called the “real re-

construction”, while the partial 2.5D view is paired with its

corresponding output 3D shape from autoencoder, which

is called “fake reconstruction”. The discriminator aims to

discriminate all “fake reconstruction” against “real recon-

struction”. In the original GAN framework [14], the task of

discriminator is to simply classify real and fake input, but

its Jensen-Shannon divergence-based loss function is diffi-

cult to converge. The recent WGAN [1] leverages Wasser-

stein distance with weight clipping as a loss function to

stabilize the training procedure, whilst the extended work

WGAN-GP [17] further improves the training process us-

ing a gradient penalty with respect to its input. In our 3D-

RecGAN, we apply WGAN-GP as the loss function of our

conditional discriminator, which guarantees fast and stable

convergence. The overall network architecture for training

is shown in Figure 3, while the testing phase only needs the

well trained autoencoder as shown in Figure 4.

Overall, the main challenge of 3D reconstruction from an

arbitrary single view is to generate new information includ-

ing filling the missing and occluded regions from unseen

views, while keeping the estimated 3D shape correspond-

ing to the specific input 2.5D view. In the training phase,

our 3D-RecGAN firstly leverages the autoencoder to gener-

ate a reasonable “fake reconstruction”, then applies adver-

sarial learning to refine the “fake reconstruction” to make

it as similar to “real reconstruction” through jointly updat-

ing parameters of autoencoder. In the testing phase, given a

novel 2.5D view as input, the jointly trained autoencoder is

able to recover a full 3D model with satisfactory accuracy,

while the discriminator is no longer used.

3.2. Architecture

Figure 5 shows the detailed architecture of our proposed

3D-RecGAN. It consists of two main networks: the genera-

tor as in the top block and the discriminator as in the bottom

block.

The generator is based on autoencoder with skip-

connections between encoder and decoder. Unlike the

vanilla GAN generator which generates data from arbitrary

latent distributions, our 3D-RecGAN generator synthesizes

data from latent distribution of 2.5D views. Particularly, the

encoder has five 3D convolutional layers, each of which has

a bank of 4x4x4 filters with strides of 1x1x1, followed by

a leaky ReLU activation function and a max pooling layer

which has 2x2x2 filters and strides of 2x2x2. The number

of output channels of max pooling layer starts with 64, dou-

bling at each subsequent layer and ends up with 512. The

encoder is lastly followed by two fully-connected layers to

embed semantic information into latent space. The decoder

is composed of 5 symmetric up-convolutional layers which

are followed by ReLU activations except for the last layer

with sigmoid function. Skip-connections between encoder

and decoder guarantee propagation of local structures of the

input 2.5D view. It should be noted that without the two

fully connected layers and skip-connections, the vanilla au-

toencoder is unable to learn reasonable full 3D structures

as the latent space is limited and the local structure is not

preserved. During training, the generator is supervised sup-

plying by ground true 3D shapes. The loss function and

optimization methods are described in Section 3.3.

The discriminator aims to distinguish whether the esti-

mated 3D shapes are plausible or not. Based on conditional

GAN, the discriminator takes both real reconstruction pairs

and fake reconstruction pairs as input. Particularly, it con-

sists of five 3D convolutional layers, each of which has a

bank of 4x4x4 filters with strides of 2x2x2, followed by a

ReLU activation function except for the last layer which is

followed by a sigmoid activation function. The number of

output channels of each layer is the same as that in the en-

coder part. Unlike the original GAN and conditional GAN,

our discriminator is not designed as a binary discrimina-

tor to simply classify fake against real reconstructions. The

reason is both real reconstruction pairs and fake reconstruc-

tion pairs are extremely high dimensional distributions, i.e.

2 ∗ 643 dimensions. To naively classify it as only two cate-
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Figure 5. 3D-RecGAN Architecture.

gories would result in it being unable to capture geometric

details of the object, and the discrimination loss is unlikely

to benefit the generator through back-propagation. Instead,

our discriminator is designed to output a long latent vector

which represents distributions of real and fake reconstruc-

tions. Therefore, our discriminator is to distinguish the dis-

tributions of latent representations of fake and real recon-

structions, while the generator is trained to make the two

distributions as similar as possible. We use WGAN-GP as

loss functions for our 3D-RecGAN.

3.3. Objectives

The objective function of our 3D-RecGAN includes two

main parts: an object reconstruction loss Lae for autoen-

coder based generator; the objective function Lgan for con-

ditional GAN.

(1) Lae For the generator, inspired by the work [4],

we use modified binary cross-entropy loss function in-

stead of the standard version. The standard binary cross-

entropy weights both false positive and false negative re-

sults equally. However, most of the voxel grid tends to be

empty and the network easily gets a false positive estima-

tion. In this regard, we impose a high penalty on false posi-

tive than false negative results. Particularly, a weight hyper-

parameter α is assigned to false positives, with (1 − α) for

false negative results, as shown in following Equation 2.

Lae = −αy log(y
′

)− (1− α)(1− y) log(1− y
′

) (2)

where y is the target value in {0,1} and y
′

is the estimated

value in (0,1) for each voxel from the autoencoder.

(2) Lgan For the discriminator, we leverage the state-

of-the-art WGAN-GP loss functions. Unlike the original

GAN loss function which presents an overall loss for both

real and fake inputs, we separately represent the loss func-

tion Lg
gan in Equation 3 for generating fake reconstruction

pairs and Ld
gan in Equation 4 for discriminating fake and

real reconstruction pairs. Detailed definitions and deriva-

tion of the loss functions can be found in [1] [17], but we

modify them for our conditional GAN settings.

Lg
gan = −E

[

D(y
′

|x)
]

(3)

Ld
gan = E

[

D(y
′

|x)
]

−E
[

D(y|x)
]

+λE

[

(

∥

∥∇ŷD(ŷ|x)
∥

∥

2
− 1

)2
]

(4)

where ŷ = ǫx+(1− ǫ)y
′

, ǫ ∼ U [0, 1]. λ controls the trade-

off between optimizing the gradient penalty and the original

objective in WGAN, x represents a voxel value, e.g.{0,1},

of an input 2.5D view, while y
′

is the estimated value in

(0,1) for the corresponding voxel from generator, and y is

the target value in {0,1} for the same voxel.

For the generator in our 3D-RecGAN network, there are

two loss functions, Lae and Lg
gan, to optimize. As we dis-

cussed in Section 3. Minimizing Lae tends to learn the

overall 3D shapes, whilst minimizing Lg
gan estimates more

plausible 3D structures conditioned on input 2.5D views. To

minimize Ld
gan is to improve the performance of discrimi-

nator to distinguish fake and real reconstruction pairs. To
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jointly optimize the generator, we assign weight β to Lae,

(1 − β) to Lg
gan. Overall, the loss functions for generator

and discriminator are as follows:

Lg = βLae + (1− β)Lg
gan (5)

Ld = Ld
gan (6)

3.4. Training

We adopt an end-to-end training procedure for the whole

network. To simultaneously optimize both generator and

discriminator, we alternate between one gradient descent

step on discriminator and then one step on generator. For

the WGAN-GP, λ is set as 10 for gradient penalty as in [17].

α ends up as 0.85 for our modified cross entropy loss func-

tion, while β is 0.05 for the joint loss function Lg .

The Adam solver [26] is applied for both discriminator

and generator with batch size of 8. The other three Adam

parameters are set as default values, i.e. β1 is 0.9, β2 is

0.999 and ǫ is 1e-8. Learning rate is set to 0.0005 in the

first epoch, decaying to 0.0001 in the following epochs. As

we do not use dropout or batch normalization, the testing

phase is exactly the same as training stage without recon-

figuring network parameters. The whole network is trained

on a single Titan X GPU from scratch.

3.5. Data Synthesis

For the task of 3D dense reconstruction from a single

view, obtaining a large amount of training data is an obsta-

cle. Existing real RGB-D datasets for surface reconstruc-

tion suffer from occlusions and missing data and there is no

corresponding complete 3D structure for each single view.

The recent work 3D-EPN [7] synthesizes data for 3D object

completion, but their map encoding scheme is the compli-

cated TSDF which is different from our network require-

ment.

To tackle this issue, we use the ModelNet40 [61]

database to generate a large amount of training and testing

data with synthetically rendered depth images and the cor-

responding complete 3D shape ground truth. Particularly, a

subset of object categories is selected for our experiments.

For each category, we generate training data from around

200 CAD models in the train folder, while synthesizing test-

ing data from around 20 CAD models in the test folder. For

each CAD model, we create a virtual depth camera to scan

it from 125 different angles, 5 uniformly sampled views for

each of roll, pitch and yaw space. For each virtual scan,

both a depth image and the corresponding complete 3D vox-

elized structure are generated with regard to the same cam-

era angle. That depth image is simultaneously transformed

to a partial 2.5D voxel grid using virtual camera parameters.

Then a pair of partial 2.5D view and the complete 3D shape

is synthesized. Overall, around 20K training pairs and 2K

testing pairs are generated for each 3D object category. All

data are produced in Blender.

4. Evaluation

In this section, we evaluate our 3D-RecGAN with com-

parison to alternative approaches and an ablation study to

fully investigate the proposed network.

4.1. Metrics

We use two metrics to evaluate the performance of 3D

reconstruction. The first metric is voxel Intersection-over-

Union (IoU) between a predicted 3D voxel grid and its

ground true voxel grid. It is formally defined as follows:

IoU =

∑

ijk

[

I(y
′

ijk > p) ∗ I(yijk)
]

∑

ijk

[

I
(

I(y
′

ijk > p) + I(yijk)
)

]

where I() is an indicator function, (i,j,k) is the index of a

voxel in three dimensions, y
′

ijk is the predicted value at the

(i,j,k) voxel, yijk is the ground true value at (i,j,k), and p is

the threshold for voxelization. In all our experiments, p is

set as 0.5. If the predicted value is over 0.5, it is more likely

to be occupied from the probabilistic aspect. The higher the

IoU value, the better the reconstruction of a 3D model.

The second metric is the mean value of standard cross-

entropy loss (CE) between a reconstructed shape and the

ground true 3D model. It is formally presented as:

CE =
1

IJK

∑

ijk

[

yijk log(y
′

ijk) + (1− yijk) log(1− y
′

ijk)
]

where y
′

ijk and yijk are the same as defined in above IoU,

(I, J, K) are the voxel dimension sizes of output 3D models.

The lower CE value is, the better 3D prediction.

The above two metrics can evaluate the overall recon-

struction performance, but the reconstructed geometric de-

tails are unlikely to be well evaluated in such way. There-

fore, a large number of qualitative results from recon-

structed 3D models are visualized in Section 4.2.

4.2. Comparison

We compare against two alternative reconstruction meth-

ods. The first is the well-known traditional Poisson surface

reconstruction [23] [24], which is mostly used for complet-

ing surfaces on dense point clouds. The second is the state-

of-the-art deep learning based approach proposed by Var-

ley et al. in [58], which is most similar to our approach in

terms of input and output data encoding and the 3D com-

pletion task. It has encouraging reconstruction performance

because of its two fully connected layers [30] in the model,

but it is unable to deal with higher resolutions and it has less

generality for shape completion. We also compare against

the autoencoder alone in our network, i.e. without the GAN,

named as 3D-RecAE for short.
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Figure 6. Qualitative results of per-category reconstruction from different approaches.

(1) Per-category Results. The networks are separately

trained and tested on three different categories with the

same network configurations. Table 1 shows the IoU and

CE results, and Figure 6 compares qualitative results from

different reconstruction approaches.

Table 1. Per-category IoU and CE Loss.

IoU CE Loss

trained/tested on chair stool toilet chair stool toilet

Poisson 0.180 0.189 0.150 - - -

Varley [58] 0.564 0.273 0.503 0.132 0.189 0.177

3D-RecAE 0.633 0.488 0.520 0.069 0.085 0.166

3D-RecGAN 0.661 0.501 0.569 0.074 0.083 0.157

Table 2. Multi-category IoU and CE Loss.

IoU CE Loss

trained/

tested on
chair/toilet

chair/toilet

/stool
chair/toilet

chair/toilet

/stool

Poisson 0.165 0.173 - -

Varley [58] 0.493 0.453 0.125 0.173

3D-RecAE 0.514 0.487 0.127 0.109

3D-RecGAN 0.554 0.513 0.117 0.101

(2) Multi-category Results. To study the generality, the

networks are trained and tested on multiple categories with-

out given any class labels. Table 2 shows the IoU and CE

results, and Figure 7 shows the qualitative results.

(3) Cross-category Results. To further investigate the

generality, the network is trained on one category, but tested

on another five different categories. Particularly, in Group

1, the network is trained on chair, tested on sofa, stool, ta-

ble, toilet, and TV stand; in Group 2, the network is trained

on stool, tested on chair, sofa, table, toilet, and TV stand;

in Group 3, the network is trained on toilet, tested on chair,

sofa, stool, table, and TV stand. Table 3 shows the IoU and

CE results; Figure 8, 9 and 10 compare qualitative cross-

category reconstruction results of Group 1, Group 2 and

Group 3 respectively.

Table 3. Cross-category IoU and CE Loss.

IoU CE Loss

Group1 Group2 Group3 Group1 Group2 Group3

Varley [58] 0.253 0.221 0.277 0.430 0.425 0.297

3D-RecAE 0.353 0.362 0.349 0.218 0.117 0.149

3D-RecGAN 0.356 0.369 0.351 0.264 0.345 0.162

Overall, the above extensive experiments for per-

category and multi-category object reconstruction demon-

strate that our proposed 3D-RecGAN is able to complete

partial 2.5D views with accurate structures and fine-grained

details, outperforming the state of the art by a large margin.

In addition, our 3D-RecGAN performs well in the challeng-

ing cross-category reconstruction task, which demonstrates
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Figure 7. Qualitative results of multi-category reconstruction from different approaches.

Figure 8. Cross-category reconstruction re-

sults of Group 1.

Figure 9. Cross-category reconstruction re-

sults of Group 2.

Figure 10. Cross-category reconstruction results

of Group 3.

that our novel model implicitly learns the geometric features

and their correlations among different object categories.

5. Conclusion

In this work, we proposed a novel framework 3D-

RecGAN that reconstructs the full 3D structure of an object

from an arbitrary depth view. By leveraging the generaliza-

tion capabilities of autoencoders and generative networks,

our 3D-RecGAN predicts accurate 3D structures with fine

details, outperforming the traditional Poisson algorithm and

the method in Varley et al.[58] in single-view shape com-

pletion for individual object category. We further tested

our network’s ability to perform reconstruction on multiple

categories without providing any object class labels during

training or testing, and it showed that our network is able

to predict satisfactory 3D shapes. Finally, we investigated

the network’s reconstruction performance on unseen cate-

gories of objects. We showed that even in very challenging

cases, the proposed approach can still predict plausible 3D

shapes. This confirms that our network has the capability

of learning general 3D latent features of the objects, rather

than simply fitting a function for the training datasets. In

summary, our network only requires a single depth view to

recover an accurate complete 3D shape with fine details.
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