Towards a Synchronous Game Semantics*

Mohamed N. Menaa
&
Dan Ghica

University of Birmingham

GaloP
28 March 2009

* (Work in progress)

Synchrony

The Perfectly Synchronous Concurrency Model

Based on the synchronous hypothesis: concurrent processes can compute
and communicate in zero time (on a level of abstraction).

Synchronous Languages

Computation proceeds in a sequence of atomic macro-steps (rounds) within
which micro-steps are considered simultaneous, cyclically:

1. read the inputs
2. compute
3. produce the outputs

1 — Game Semantics is Asynchronous

Concurrent Game Semantics

Game semantics of Concurrent Algol [GMO07]
» Language constants interpreted by saturated strategies
» record all sequential observations of parallel interactions.
Definition
o : Ais saturated iff
1. If 8o.my.mo.81 € o and Aa(mq) = Aa(m2) then so.Me.my.81 € o
2. If s9.p.0.51 € 0 and sp.0.p.51 € Pathen sp.0.p.51 € o

Asynchrony in Game Semantics

Saturated strategies capture the intuition that in a concurrent (asynchronous)
setting, some of the ordering of events in a play is arbitrary:

» Arbitrary delays on communication channels.

mi m ~mm,m.m

True Concurrency

In some execution models (e.g. clocked digital hardware), concurrent events

are truly simultaneous.
[01*
0>

01 || 02 ~ (04, 02)

2 — Synchronous Interpretations of Asynchronous
Primitives

I/O Simultaneity

[seq : comy x com, = coms]

Rs3.R1.D1.R>.D,.D;5

I/O Simultaneity

[seq : comy x com, = coms]

In a synchronous setting:
(Rs, R1).(D1, R2).(D2, D)

Round Abstraction

» Given an output variable x on an asynchronous module P, next x for
P is the module obtained by collapsing all computational steps occuring
between two changes in x into a single computational step [AH99].

» Use a variant where every output in a round marker, to systematically
derive synchronous strategies for primitive that have an asynchronous
definitions.

Round generation

» if 51.0.p.5; € o then sy.{0,p).s2 € RA(o)
> if 51.p1.p2.S2 € o then s1.(p1, p2).S2 € RA(0)

I/O Simultaneity

[seq : com; x com, = coms]

In a synchronous setting:
(Rs, R1). (Di, Rz) .(D2, D)
—_——

round

O/ Simultaneity

[seq : com; x com, = coms]

(A3, R1).(D1, Rz2).(D2, D3)
(Rs, R1, D1, R).(D2, Ds)

O/ Simultaneity

[seq : com; x com, = coms]

(Rs, R1).(Dy, R2).(D2, Ds)
(Rs, R1, D1, R).(D2, Ds)
<R37 H1>-<D17 R27 D27 D3>

O/ Simultaneity

[seq : com; x com, = coms]

(Rs, R1).(D1, R2).(D>, Ds)
(Rs, R1, D1, Ro).(D», D3)
(Rs, R1).(D1, R, D>, D3)

(Rs, R1, D1, Rz, D2, Ds)

Round Abstraction

Instant feedback

> if 51.p.0.52 € RA(c) then s1.(p, 0).52 € RA(0)
> if 51.01.02.52 € RA(o) then s1.(01, 02).52 € RA(0)

Strategy Derivation Through Round Abstraction

[if : (exps x comz x coms) — comy]

R4.Q1.T1.R2.02.04 A (R4 Q1).(T1,R2).(D2, D4)

(R4,Q1, T1, R2).(D2, D4)
(R4, Q1).(T1, R2, D2, D4)
(R4,Q1,T1,R2, D2, D4)

Strategy Derivation Through Round Abstraction

[if : (exps x comz x coms) — comy]

R4.Q1.F1.R3.D3.04 A (R4 Q1).(F1,R3).(D3, D4)

(R4, Q1, F1,R3).(D3, D4)
(R4, Q1).(F1, R3, D3, D4)
(R4, Q1, F1,R3, D3, D4)

3 — Synchronous Interpretations of Synchronous
Primitives

Synchronous Primitives

Strategies for synchronous primitives can be formulated.

Synchronous Primitives

Strategies for synchronous primitives can be formulated.

Esterel [BMR83]

Programs typically consist of several processes composed in parallel and
synchronising using signals.

» Processes: sequential threads of execution.
» Signals: broadcast events of Boolean nature.

Synchronous Primitives

Strategies for synchronous primitives can be formulated.

Esterel [BMR83]

Programs typically consist of several processes composed in parallel and
synchronising using signals.

» Processes: sequential threads of execution.
» Signals: broadcast events of Boolean nature.

Some candidates (from Esterel)

> pause

»pllg

> emit S

» present S then p else g end
> await S

» suspend p when S

Synchronous Primitives

» ReactiveML [MP05] extends ML with such synchronous primitives by
adding entities that are orthogonal to the type system.

> Processes.
> Signals.

Synchronous Primitives

» ReactiveML [MP05] extends ML with such synchronous primitives by
adding entities that are orthogonal to the type system.

> Proeesses — strategies.
> Sighals — moves.

Synchronous Primitives

» ReactiveML [MP05] extends ML with such synchronous primitives by
adding entities that are orthogonal to the type system.

> Proeesses — strategies.

> Sighals — moves.
» Use start and end of computation as signals.

The Semantics of await

trap T in
loop
pause;
present S then exit T else nothing end
end

The Semantics of await

trap T in
loop
pause;
present S then exit T else nothing end
end

» Variant: await the start of a command.
» A semantic version of a pointcut in Aspect-oriented Programming.

The Semantics of await

trap T in
loop
pause;
present S then exit T else nothing end
end

» Variant: await the start of a command.
» A semantic version of a pointcut in Aspect-oriented Programming.

await: com = com
rO

P
d

The Semantics of await

. <«R— €«R;— .
awaited H i awaiting
—D1» —D3>»

i “«R;—
| | cop
i D, > ’

await: comy = come X coms

The Semantics of await

) Ri— «R;— .
awaited H i awaiting
_D1 I E_D3_>

: «R,—
! ! copy

await: comy = come X coms

d d

(R2, R1).(D1, R2)
(R2, R1,D1, R2)

The Semantics of await

awaited awaiting

await: comy = come X coms

r r d
d d

(R2, R1).(D1, R2)
(R2, R1,D1, R2)

A3

The Semantics of await
awaited

awaiting

copy

await: comy = come X coms

r r d
d d

(R2, R1).(D1, R2)
(R2,R1,D1, R2)

R3.(R2, R1, D3)

The Semantics of await

awaited awaiting

await: comy = come X coms

r r d
d d

(R2, R1).(D1, R2)
(R2,R1,D1, R2)

R3.(R2, R1, D3).(D1, D2)

The Semantics of await

awaited awaiting

await: comy = come X coms

r r d
d d

(R2, R1).(D1, R2)
(R2, R1,D1, R2)

R3.(R2, R1, D3).(D1, D2)

R3.(R2, R1, D3, D1, D2)
(R3, R2, R1, D3).(D1, D2)
(R3, R2, R1, D3, D1, D2)

4 — Categorical Structure

Synchronous Traces

Plays represented using synchronous traces.

Definition
Atrace t € U, where U is an arbitrary set of traces over a set of labels L, is a
triple (E, <g, A : E — L) where

» Eis a set of events,

» =< is a total preorder between events signifying temporal precedence.
The equivalence relation ~¢, which means the simultaneous occurrence

of two events, is defined as:
Vabc Eea<gbAb<ras axehb

») is a function mapping events to labels in a set L.

Category

» Objects: sets of labels.
» Morphisms: sets of synchronous traces between sets of labels.

Composition

b
(e
vs}
<

—C—

Definition
U:A— Band V: B — C are two arbitrary sets of synchronous traces. Their
composition is a set of traces U; V : A — C defined as:
uv :{t’ € @A+C | dt e eA+B+C'
outaTae(t) e Un
outgtete(t) e VA

t' = outyie °(H)}

o Ho v el w o

Identity

>
S
>

Definition

e
IDp ={(E,<g, A\ E > A+ A) | Ik eNe E={1,2,... 2k},
Vi< 2k e e(i) 2g e(i+1)A
(iisodd = e(i) =g e(i + 1))A
(outy ™2 o o €)(i) = (outy ™ o X0 €)(i + 1)}

A«{ u u }»B

ID— -

Tensor

>
cC
|
|
ve]
|

Definition

A tensor is a bifunctor ® : S x S — S defined as
» On objects: A B= A+ B.
» On morphisms: U: A— B, V:C— D

U®V ={teOasicip|outas(t) € UAnoutc,p(t) € V}

Arrow

Definition
The arrow is a functor =: S® x S — S with the same definitions as ®.
In a polarised setting, its definitions are:

» On objects: A= B=B+ A"
» On morphisms: U=V =V ® U*
where * reverses the |/O polarities of labels.

Evaluation

A1:|
—Ay*— evaIA,B B—

Definition

Eval is a morphism evals 5 : A® (A = B) — B that satisfies the following
universal property: for every morphism f: A® X — B in S there exists a
unique morphism h: X — A=- Bsuch that f = evalag o (IDa ® h). ltis

defined as:

evalA,B = {t S 9A1 +Ag+B;+B, | OUtA1+A2(t) S /DA1_¢_A2 A\ OUtB1 +52(f) S /DB1+32}

Evaluation - Universal Property

Vf:A® X — B, 13h: X — A= B such that:

f= evaIA,B o (IdA ® h)

evalpp

—Aq IDa Aq
— A—]
f |—B— = A
—X— h
X
LB,

B—

Evaluation - Universal Property

Vf:A® X — B, 13h: X — A= B such that:
f= evaIA,B o (IdA ® h)

B—

evaIA,B

—Aq IDa Aq
— A—]
—_ A
f lLs— =
—X— h
X
B,

(Compact) Closed monoidal category

Outlook

» Closed monoidal category provides the right structural properties.
» Extend it with Cartesian product.
» Definability as a test for the choice of primitives.

Outlook

» Closed monoidal category provides the right structural properties.
» Extend it with Cartesian product.
» Definability as a test for the choice of primitives.

THANKS!

References

@ Alur, R & Henzinger, T. A. (1999), “Reactive Modules”, Formal Methods
in System Design, 15, pp. 7—48.

@ Berry, G., Moisan, S. & Rigault, J-P. (1983), “Esterel: Towards a
Synchronous and Semantically Sound High-Level Language for
Real-Time Applications”, Proc. IEEE Real-Time Systems Symposium,
pp. 30—40.

[d Ghica, D. R. & Murawski, A. S. (2008), “Angelic Semantics of
Fine-Grained Concurrency”, Annals of Pure and Applied Logic, 151(2-3),
pp. 89—114.

@ Mandel, L. & Pouzet, M. (2005), “ReactiveML, a Reactive Extension to
ML, Proc. Principles and Practice of Declarative Programming, pp.
82-93.

	Game Semantics is Asynchronous
	Synchronous Interpretations of Asynchronous Primitives
	Synchronous Interpretations of Synchronous Primitives
	Categorical Structure
	Outlook

