
Analysing TLS in the Strand Spaces Model

Allaa Kamil Gavin Lowe∗

April 18, 2011

Abstract

In this paper, we analyse the Transport Layer Security (TLS) pro-
tocol (in particular, bilateral TLS in public-key mode) within the
strand spaces setting. In [BL03] Broadfoot and Lowe suggested an
abstraction of TLS. The abstraction models the security services that
appear to be provided by the protocol to the high-level security layers.
The outcome of our analysis provides a formalisation of the security
services provided by TLS and proves that, under reasonable assump-
tions, the abstract model suggested by Broadfoot and Lowe is correct.
To that end, we reduce the complexity of the protocol using fault-
preserving simplifying transformations. We extend the strand spaces
model in order to include the cryptographic operations used in TLS
and facilitate its analysis. Finally, we use the extended strand spaces
model to fully analyse the public-key mode of bilateral TLS with its
two main components: the Handshake and Record Layer protocols.

1 Introduction

For the last two decades, the area of formal verification of security protocols
has been extensively researched. Many verification and analysis methods
have been developed (e.g. [BAN89, Low96, THG98, Bla09]) and used suc-
cessfully to analyse a number of standard security protocols. Despite these
advances, many practical security systems cannot be verified using these
techniques. Such systems are usually built as large security architectures
and comprise many interacting components. The existing verification tech-
niques do not scale well to handle such large architectures.

∗Authors’ address: Department of Computer Science, University of Oxford, Wolf-
son Building, Parks Road, Oxford, OX1 3QD, United Kingdom, e-mail allaa.kamil,
gavin.lowe@cs.ox.ac.uk.

1

A security protocol is a sequence of messages exchanged between two
or more agents to satisfy a pre-defined security goal. The goal should be
reached even in the presence of a penetrator whose capabilities depend on
the surrounding environment in which the security protocol is executed.

There are two different threat models for analysing security protocols.
In both models, the penetrator is assumed to be in complete control of the
network and may overhear, inject, and intercept any message sent on the
network, as well as participating in protocol runs using his own identity. The
difference between the models lies in how they treat cryptography.

In the Dolev-Yao model [DY83] —the model we use in this paper— the
penetrator cannot perform cryptanalysis on the cipher texts used, since we
assume perfect cryptography. In other words, the Dolev-Yao model abstracts
away from the details of cryptographic primitives such as hashing, encryption,
and signature. This layer of abstraction has facilitated the security analysis of
cryptographic protocols and improved the scalability of automated analysis
techniques.

This contrasts with computational models of cryptography, which model
cryptography more faithfully, e.g. [LMMS98, Can01]: messages are modelled
as probability distributions over bit-strings, and the penetrator is modelled
as a probabilistic polynomial-time Turing machine. This approach gives
stronger results than in the Dolev-Yao model — but at the cost of extra
complexity within proofs. In recent years there has been much interesting
work trying to link the two approaches, e.g. [AR00, BP05, CW05].

Many practical security systems are built from layered security protocols,
with a high-level security layer running on top of one or more lower-level
secure transport protocols. The secure transport protocols provide a secure
channel to the higher layer. In principle, such a system can be analysed
by explicitly modelling the whole layered architecture. However, this direct
approach has clear disadvantages in terms of model complexity and analy-
sis inefficiency. To analyse layered security architectures, we can adopt a
layered approach that uses the same concept used in the Dolev-Yao model:
adding a new layer of abstraction to simplify the analysis [BL03, Cre04]. This
approach comprises the following steps:

• Analyse the low-level secure transport protocol within the Dolev-Yao
model and formalise the security services it provides for the high-level
security layers;

• Abstract away from the details of the implementation of the secure
transport protocol and just model the services it provides — that is,
model it as an abstract secure channel;

2

• Analyse the high-level layers using the new layer of abstraction devel-
oped, and hence verify the whole security architecture.

The current paper addresses the first of these points. We analyse the
Transport Layer Security (TLS) Protocol [DA99], and formalise the security
services it provides. The TLS protocol has been our choice for analysis since
it is an industry standard used in almost every online financial transaction.
We restrict ourselves to the public-key mode (as opposed to Diffie-Hellman
or Fortezza modes) of TLS in this paper. The verification method used is
the strand spaces model [THG98].

In [BL03], Broadfoot and Lowe adopted the above approach to analyse
layered security architectures and suggested an abstraction of TLS as a low-
level secure channel. The abstraction models the security services that appear
to be provided by TLS for the high-level security layer, sometimes referred
to as the Application Layer. In the current paper, we take this abstraction
as our starting point.

In more recent work, we have developed this approach further, corre-
sponding to the second and third points above. In [KL09] we develop an
abstract strand spaces model for reasoning about layered security protocols.
The model abstracts away from the implementation of the secure channel and
models the service it provides. It models high-level actions that a penetrator
might be able to perform, such as faking messages or learning the content of
messages. Properties of particular secure transport protocols are captured
by restricting the penetrator actions available; for example, when modelling
TLS, all faking and learning would be prevented. This abstraction is proved
sound in [KL10]. Examples using this approach are described in [Kam09].

In addition to its benefits in terms of modelling simplicity and automated
analysis efficiency [BL03], this layered approach has huge advantages in terms
of re-usability. Once an abstract model of a secure channel is developed, it can
be reused in the verification of different security architectures with different
high-level protocols. Similarly, if we prove the correctness of a high-level
protocol on a certain secure channel, the same proof applies, under certain
conditions, if the protocol is run on a secure channel that provides the same
(or stronger) security services but has a different implementation.

Since its development in 1999, TLS has been analysed many times, e.g.
[Pau99, DCVP04]. However, to our knowledge, no previous analysis has been
able to completely verify the protocol or formally describe the security ser-
vices it provides for the Application Layer. By examining the TLS protocol,
the challenges that face its formal analysis become clear:

Size. The TLS protocol is considerably larger than most of the protocols
in the academic literature in terms of number and length of messages

3

exchanged. Yasinsac and Childs [YC05] estimate that any form of the
TLS protocol is ten to fifteen times larger than the majority of the
protocols listed in the canonical security protocol collection by Clark
and Jacob [CJ97].

Cryptographic complexity. Many security verification techniques lack
the functionality to deal appropriately with some of the cryptographic
operations used in TLS, e.g. using session keys generated by pseudo-
random functions. Such operations complicate the protocol model and,
consequently, the analysis of the protocol.

Multi-layer interaction. The TLS Protocol is primarily designed to pro-
vide security services for the messages exchanged in the Application
Layer. The syntactic structure of the application protocol is not speci-
fied by the protocol. Indeed, the Application Layer messages could leak
keys used by the Handshake and Record Layer protocols, and therefore
cause their failure to achieve their security goals; more subtly, multi-
layer attacks may happen, where a message from one layer is replayed
and interpreted as being a message from the other layer, leading to
an attack. Until now, no one has verified the combination of the two
layers, and the possibility of interactions between them.

In our analysis of TLS, we tackle each of these difficulties. We deal with
the problem of protocol size by using fault-preserving simplifying transfor-
mations [HL01] to reduce the number and length of messages. We tackle the
problem of cryptographic complexity by extending the strand spaces model
to incorporate the cryptographic operations used in TLS in order to be able
to reason formally about them. Finally, we consider multi-layer interaction
by carefully stating some general assumptions about the syntactic structure
of the Application Layer messages; in particular, these assumptions forbid
running TLS itself as the Application Layer protocol, i.e. layering TLS on
top of itself.

We prove the following properties of TLS, each subject to certain assump-
tions:

Prefix authentication If a client c receives a sequence of messages in the
Application Layer, apparently from server s , then s must have sent
those messages earlier in the same order, intended for c, and vice versa.

Secrecy The penetrator does not learn the data sent in the Application
Layer.

4

Session independence The penetrator cannot replay messages containing
Application Layer data from a session between two honest agents into
a sesion where he is taking part using his own identity.

Interference freedom TLS does not interfere with the Application Layer
protocol; this means that when we analyse the Application Layer pro-
tocol we can abstract away the details of TLS and just consider the
services it provides.

TLS involves authenticating the peers’ identities using public key cryp-
tography. This authentication can be unilateral, i.e. only the server is authen-
ticated, or bilateral, i.e. the client and the server are mutually authenticated.
In this paper we only consider the TLS protocol in the bilateral authentica-
tion mode; we believe it would be reasonably straightforward to adapt our
analysis to the unilateral mode. As noted above, we also do not consider the
case where the shared secret is negotiated using Diffie-Hellman or Fortezza
exchange [DA99].

This paper is organised in five sections. In Section 2 we give an overview
of the TLS protocol and its security goals. In Section 3 we explain the strand
spaces model. We also describe the extensions and modifications we made to
the model to facilitate the analysis of TLS. In Section 4 we analyse the TLS
protocol using the strand spaces model and formalise the security services it
provides. Finally, in Section 5, we discuss how our work compares to previous
work on the analysis of TLS, and we sum up our results.

2 TLS: Protocol Overview

According to the TLS specification document [DA99], the primary goal of
TLS is to provide confidentiality and data integrity between two communi-
cating applications. The protocol defines two primary roles for the communi-
cating parties: a client role and a server role. The client is the principal that
initiates the secure communication while the server responds to the client’s
request.

TLS operates on top of some reliable transport protocol (e.g. Transmission
Control Protocol (TCP)) and below some higher-level application protocol
which can be a general-purpose protocol, e.g. Hyper Text Transport Protocol
(HTTP), or a special-purpose application security protocol such as an e-
commerce protocol. In other words, TLS uses transport protocols to establish
a secure channel on behalf of higher-level application protocols. TLS itself
consists of four sub-protocols.

5

• The Handshake Protocol is used by the communicating parties to agree
on the cryptographic keys and other cryptographic parameters that will
be used in the initiated session, and to authenticate both parties.

• The Change Cipher Spec Protocol is used by the sending party to notify
the receiving party that the subsequent messages should be protected
by the negotiated cryptographic parameters. It uses a single byte with
value 1 to indicate the transition.

• The Alert Protocol provides exception handling for TLS-secured con-
nections.

• The Record Layer Protocol encapsulates messages from higher layer
protocols including messages from the Handshake, Change Cipher Spec,
Alert, and application protocols. The data stream is fragmented into a
series of records, which are protected by the cryptographic parameters
agreed upon in the Handshake protocol, and passed to a transport layer
protocol for transmission.

From a security point of view, the TLS Protocol is composed of two main
components, the Record Layer Protocol and the Handshake Protocol.

We do not consider session re-negotiation in this paper. Recently, an
attack was found on re-negotiation [Ext09], which exploits that there is no
cryptographic binding between the two sessions. A recent Internet Engineer-
ing Task Force RFC [RRDO10] seeks to fix this.

In the following subsections we describe the Record Layer and Handshake
Protocols. We then perform various simplifications on the protocols, which
will simplify our subsequent analysis. We will formalise the relationship be-
tween the full and simplified protocols in Section 3.3, once we have presented
the relevant background material on strand spaces.

2.1 The Record Layer

As mentioned before, the Record Layer Protocol encapsulates all messages
of the higher-layers. These messages are fragmented into records and com-
pressed. If the records are exchanged after a run of the Change Cipher Spec
Protocol, then they go through the following cryptographic operations before
being transmitted via a transport layer protocol:

• Message authentication codes MACs are computed over the messages.
TLS uses the standard message authentication code HMAC, which re-
quires two parameters: a secret parameter and a data parameter. Dur-
ing the Handshake Protocol, two MAC keys, denoted cm and sm, are

6

generated for the client and server, respectively, to be used as secret
parameters. The format of the application message after applying the
MACs becomes:

MAC record := HMAC (mk , {i , t}),

where mk is a MAC key (cm or sm), i is a sequence number that
orders the messages sent by the server and the client into two separate
streams, and t is a Application Layer message.

• Encryption is applied using two symmetric encryption keys for the
client and server, denoted by ce and se, respectively, which are gener-
ated during the Handshake protocol.

The final Record Layer messages take the form:

[t , i]mk ,ek = {t ,HMAC (mk , {i , t})}ek ,

where mk is a MAC key (cm or sm, respectively) and ek is a symmetric
encryption key (ce or se, respectively).

2.2 The Handshake Protocol

According to the TLS version 1.0 specification document [DA99], the Hand-
shake Protocol provides a connection that reliably negotiates a shared secret
and authenticates the peers’ identities using public key cryptography. This
authentication can be unilateral or bilateral. We only consider the TLS Pro-
tocol in the bilateral mode.

We now describe the steps of the Handshake Protocol.

ClientHello This is the first message sent by a client in the TLS Handshake
Protocol. It communicates the client’s connection preferences to the server.
These preferences include: client version, the highest TLS version supported
by the client; cipher suites, the list of cryptographic algorithms supported
by the client (e.g. RSA, Diffie-Hellman) in decreasing order of preference;
and compression methods, the list of compression algorithms supported by
the client in decreasing order of preference. The message also includes a
fresh random number referred to as the client nonce, and an optional session
identification number sessionID that is used for session resumption purposes.

ClientHello. c −→ s : client version, client nonce, sessionID length,
sessionID , cipher suite length, cipher suites ,
compression length, compression methods

7

ServerHello With this message, the server makes its choice out of the
preferences offered by the client, including the cipher suite and compression
algorithm that will be used for this connection. The message also includes a
fresh random number referred to as the server nonce, and returns the non-
zero session identification number sessionID received from the client if a
previous session is to be resumed.

ServerHello. s −→ c : server version, server nonce, sessionID length,
sessionID , cipher suite, compression method

ServerCertificate This message contains a chain of X.509 certificates,
server cert chain, presented in order, with the first one being the certificate
that belongs to the server itself. This step is mandatory for the server during
the handshake phase; it has to send its certificate in order to authenticate
itself to the client.

ServerCertificate. s −→ c : cert chain length, server cert chain

ServerKeyExchange This message includes the server’s key exchange pa-
rameters. Recall that we are considering only the public-key mode of TLS
in this paper, so the key exchange parameters are simply the server’s pub-
lic key. (Alternative modes pass Diffie-Hellman or Fortezza parameters.)
This public key is concatenated with the client nonce and server nonce.
The concatenated terms are hashed and signed by the signature key SK (s)
that corresponds to the public key provided in the ServerCertificate mes-
sage. The signed term is denoted by signed parameters and has the form:
{Hash(client nonce, server nonce,PK (s))}SK (s).

ServerKeyExchange. s −→ c : PK (s), signed parameters

CertificateRequest This message is optional and is sent by the server to
ask the client to send its certificate. The message includes the list of certifi-
cate types acceptable by the server, cert types, and the certificate authorities
recognised by the server, cert auths.

CertificateReq. s −→ c : cert type length, cert types ,
cert auths length, cert auths

ServerHelloDone This message is sent by the server simply to indicate
the conclusion of a handshake negotiation. The content parameters field of
this message is empty.

ServerHelloDone. s −→ c :

8

ClientCertificate This message is sent by the client after receiving a
ServerHelloDone message if the server has previously sent a Certificate-
Request message. The message includes the certificate chain of the client.

ClientCertificate. c −→ s : cert chain length, client cert chain

ClientKeyExchange Just as the ServerkeyExchange message provides
the key information for the server, the ClientKeyExchange tells the server
the client’s key information. In public-key mode, the message contains the
premaster secret which is used later to generate the session keys. The pre-
master secret is encrypted, together with the latest TLS version the client
supports client version, under the public key of the server. (Alternative
modes pass Diffie-Hellman or Fortezza parameters.)

ClientKeyExchange. c −→ s :
{client version, premaster secret}PK (s)

CertificateVerify By sending CertificateVerify, the client proves that
it possesses the secret key that corresponds to the public key included
in the ClientCertificate message. The message contains a signed hash
of all the handshake messages exchanged prior to this message, denoted
handshake messages [1 − 8]. The signature is then verified by the server.

CertificateVerify. c −→ s :
{Verifying Hash(handshake messages [1 − 8])}SK (c)

Key generation The previous messages have the aim of establishing the
premaster secret as a shared secret, together with agreement on the client’s
and server’s nonces. The keys subsequently used in the Record Layer are
formed from these three values. In slightly more detail, the master secret
is calculated from the premaster secret and the two nonces using a pseudo-
random function PRF :

master secret = PRF (premaster secret , “master secret”,
client nonce, server nonce).

The key material is then calculated from the master secret and the two nonces
using a further application of “PRF”. Finally, the key material is split to
provide the client’s and server’s encryption keys ce and se, MAC keys cm
and sm, and initialisation vectors for block chaining. See [DA99, Tho00] for
the gory details.

The subsequent messages are passed to the Record Layer to be protected
using the negotiated cipher suite. The recipients must verify that the contents
are correct.

9

ClientFinished The ClientFinished message is sent by the client to
prove that the handshake negotiation has been successful and that the ne-
gotiated cipher suite is in effect. The message includes a digest (using the
pseudo-random function PRF) of the negotiated master secret along with
all the prior handshake messages (handshake messages [1 − 9]) hashed using
the functions SHA and MD5 . This is encapsulated inside a Record Layer
message (the “0” represents that this is the zeroth message in this stream).

ClientFinished. c −→ s : [PRF (master secret , “client finished”,
MD5 (handshake messages [1 − 9]),
SHA(handshake messages [1 − 9])),

0]cm,ce

ServerFinished This is the last message of the handshake exchange. It is
sent by the server to prove that the handshake negotiation has been successful
and that the negotiated cipher suite is in effect. The message is very similar
to the ClientFinished message.

ServerFinished. s −→ c : [PRF (master secret , “server finished”,
MD5 (handshake messages [1 − 10]),
SHA(handshake messages [1 − 10])),

0]sm,se

The ClientFinished and ServerFinished messages provide confirma-
tion that the handshake has been successful and that the client and server
agree upon the keys, but do not otherwise add much to the protocol.

Once a side has sent its Finished message and received and validated the
Finished message from its peer, it may begin to send and receive application
data over the established connection.

2.3 Simplifying the Handshake Protocol

We now transform the protocol, to simplify the subsequent analysis. These
transformations follow the theory of fault-preserving simplifying transfor-
mations from [HL01]: they remove redundant information present in the
protocol, whilst not losing any possible attacks. The end result is a fault-
preserved version of the original protocol, whereby any attack on the original
corresponds to an attack upon the simplified version. In [HL01], certain
transformations were proved to preserve faults in this way. Later, we will
prove that the simplified protocol is secure, and hence deduce that the orig-
inal protocol is also secure. We will formalise the relationship between the
full and simplified protocols in Section 3.3.

10

Like most industrial protocols, TLS contains a number of fields that are
included for functionality rather than security. Some messages also include
more hashings than are necessary. This added complexity makes analysis
more difficult.

We transform the protocol to remove some atomic fields from the protocol
(the removing atomic fields transformation from [HL01]). Intuitively, these
transformations can only be applied on values upon which we do not check
for agreement, such as message length, cipher suite length, cipher suite, con-
tent type, etc. We also remove the session-related fields sessionID and ses-
sionID length since we do not consider session resumption in our analysis.
Within the public key certificates, we remove all fields except the public key
and the identity of the principal. In addition, we assume that the public key
certificates include public keys suitable for encryption. Therefore, the fields
parameters and signed parameters are not needed. Applying this transfor-
mation, some of the messages become empty and are completely removed.
For clarity, all the fields in the protocol are now given shorter names.

We now transform the protocol to replace certain applications of hash
functions h(m) by their unhashed versions m (the removing hash functions
transformation from [HL01]). We apply this transformation to remove from
the Finished messages the applications of the applications of MD5 and SHA,
and the application of PRF that produces the master secret. The resulting
messages contain much duplication, so we remove the duplicates (the coalesce
messages transformation from [HL01]). We encapsulate the result using two
functions:

PRFcf (pm, prev) = PRF (pm, “client finished”, prev),

PRFsf (pm, prev) = PRF (pm, “server finished”, prev).

We similarly encapsulate the production of the encryption and MAC keys
into four functions:

cm := G0 (pm, rc, rs), sm := G1 (pm, rc, rs),
ce := G2 (pm, rc, rs), se := G3 (pm, rc, rs).

We assume these functions have the properties of cryptographic hash func-
tions (i.e. preimage resistance, second-preimage resistance and collision re-
sistance [MvOV97]) in what follows.

11

The simplified version of the Handshake Protocol is then as follows:

Message 1. c −→ s : rc

Message 2. s −→ c : rs

Message 3. s −→ c : server certificate chain
Message 4. c −→ s : client certificate chain
Message 5. c −→ s : {pm}PK (s)

Message 6. c −→ s : {VH (prev5)}SK (c)

Message 7. c −→ s : [PRF cf (pm, prev6), 0]cm,ce

Message 8. s −→ c : [PRF sf (pm, prev7), 0]sm,se

where VH , PRF cf and PRF sf are cryptographic hash functions, and prev5 ,
prev6 and prev7 represent the previous five, six and seven messages.

Certificate chains We now describe the certificate chains in more detail.
The certificate chain is a list of public key certificates. The first certificate is
that of the sender of the message. Each certificate except the last is signed
(certified) by the secret key corresponding to the following certificate. The
final certificate is (expected to be) that of the root certificate authority, and
is self-signed (i.e. signed by the secret key corresponding to the public key
that it certifies).

Given the simplifications we have made to the certificates above, the
certificate chain for principal p, with certificates signed by v0 (the root au-
thority), v1 , . . . , vn−1 is expected to be of the form

{p,PK (p)}SK (vn−1), {vn−1 ,PK (vn−1)}SK (vn−2), . . . ,
{v1 ,PK (v1)}SK (v0), {v0 ,PK (v0)}SK (v0),

where n ≥ 1 . However, we do not want to assume ab initio that the chain
is of that form, for to do so would be to assume that the penetrator cannot
interfere with the certificate chain, to generate fake certificates. We therefore
take the certificate chain to be of the form

{p, kp}k−1
n−1

, {vn−1 , kn−1}k−1
n−2

, . . . , {v1 , k1}k−1
0
, {v0 , k0}k−1

0
,

(where k−1 represents the secret key corresponding to public key k) and we
will seek to prove (under suitable assumptions) that kp = PK (p).

3 The Strand Spaces Model, and its use in

Modelling TLS

In this section, we describe the strand spaces model [THG98] and the ex-
tensions we made to the original model to facilitate the analysis of TLS. In

12

addition, we explain how TLS can be specified in the extended model. We
also describe some of the techniques and results of the original model, and
state their correctness in the extended model; in particular, we describe au-
thentication tests [GT02, DGT07b], which are used in our analysis of TLS
in the next section. Further, we adapt the idea of fault-preserving trans-
formations from [HL01] to the strand spaces setting, and hence justify the
simplifications we made to TLS above.

3.1 Basics of Strand Spaces

The strand spaces model was developed by Thayer et al. [THG98] to reason
about the correctness of security protocols. In this section we describe the
basics of the model and the extensions we made in order to represent the
cryptographic operations used in TLS. Most of the definitions of this section
are taken from [THG98] and [GT02].

3.1.1 The Term Algebra

Let A be the set of possible messages that can be exchanged between prin-
cipals in a protocol. The elements of A are usually referred to as terms.
In the original Strand Spaces model [THG98], A is freely generated from
two disjoint sets, T (representing tags, texts, nonces, and principals) and K
(representing keys) by means of concatenation and encryption.

Keys can be generated using a key generation functions from some set kgf.
Each G ∈ kgf generates keys from atoms: G : T ×T . . .×T → K. We assume
each key generation function is injective (i.e. collision-free), and distinct key
generation functions have disjoint ranges. If a key k is in ran G for some
G ∈ kgf, we say that k is complex ; otherwise, k is simple. If k = G(t1 , . . . , tn)
then we say that t1 , . . . , tn are ingredients of k .

To provide a mathematical model of TLS, we specialize the term alge-
bra A. The set K of keys used in TLS is partitioned into four sets: the
set of public keys, KPub ; the set of secret keys, KSec; the set of MAC keys,
KMAC ⊂

⋃
{ran(G) | G ∈ kgf}; and the set of symmetric encryption keys,

KSym ⊂
⋃
{ran(G) | G ∈ kgf}.

The set K of keys is equipped with a unary injective symmetric operator
inv : K → K; inv(k) is usually denoted k−1 . We assume k ∈ KPub iff
k−1 ∈ KSec, and if k ∈ KSym then k−1 = k .

Let Tname ⊆ T be the set of agent names. The functions PK :
Tname → KPub and SK : Tname → KSec are injective mappings to asso-
ciate each principal with a public key and a secret key respectively such that
∀a : Tname • (PK (a))−1 = SK (a).

13

We adopt the following conventions on variables. Variables c, s , p, v and
ca range over Tname ; k , kc, ks , etc, range over KPub ; ce and se range over
KSym while cm and sm range over KMAC ; h ranges over the set Hash of hash
functions, and G ranges over the set kgf of key generating functions; rc, rs ,
pm range over T and are used as fresh values; prevn refers to the sequence
of the n previous messages. Note that terms like rc, kc are just variables
and have no trusted relation to the agent c. On the other hand, a term like
PK (c) is the result of applying the function PK to the argument c and,
therefore, it reliably refers to the public key of c.

The TLS protocol uses one-way hash functions to achieve two distinct
purposes: to digest messages and to generate keys. We discussed the latter
above. We model digesting as a constructor over the term algebra, in addition
to the standard constructors of encryption and concatenation:

Definition 1 Compound terms are built by three constructors:

• encr : K ×A → A representing encryption.

• join : A×A → A representing concatenation.

• hash : Hash × A → A representing hashing to digest messages, where
Hash is a set of hash functions.

Conventionally, {t}k is used to indicate that a term t is encrypted with
a key K and t0 ̂ t1 to denote the concatenation of t0 and t1 .

Note that, while we define the hash operation as a constructor, we assume
that key generation functions G ∈ kgf are functions that generate atoms
(keys). This assumption seems to be justified since complex keys are used
as atoms rather than as hashed terms after being constructed. The need to
distinguish between hashing and key generation will become clearer when we
explain the Normal Form Lemma in Section 3.2.

To model TLS, we define: the hash functions VH ,PRFcf ,PRFsf ,
HMAC ∈ Hash; the key generation functions G0 ,G1 ∈ kgf such that their
ranges are subsets of KMAC ; and the key generation functions G2 ,G3 ∈ kgf
such that their ranges are subsets of KSym .

We now define some basic concepts closely related to the term algebra.

Definition 2 The subterm relation v is defined inductively, as the least
reflexive transitive relation such that:

• r v r ;

• r v {t}k if r v t ;

• r v t0 ̂ t1 if r v t0 or r v t1 ;.

14

Note that the subterms of a term t are just those terms that can feasibly be
extracted from t given knowledge of appropriate keys, so does not include
encrypting keys or the contents of hashed terms.

Definition 3 [GT02] A term t ′ is a component of t if t ′ is not of the
form t0 ̂ t1 (so is an atomic value, a hash value, or an encryption), and t is
constructed by concatenating t ′ with arbitrary terms.

3.1.2 Strands, Nodes, and Bundles

A participant in a protocol can either send or receive terms. In the strand
spaces model, a positive term is used to represent a transmission while a
negative term is used to denote reception. A strand is a sequence of message
transmissions and receptions. A strand space is a set of strands.

Definition 4 [THG98] A directed term is a pair 〈σ, a〉 with σ ∈ {+,−}
and a ∈ A. A directed term is written as +t or −t . (±A)∗ is the set of
finite sequences of directed terms. A typical element of (±A)∗ is denoted by
〈〈σ1 , a1 〉, ..., 〈σn , an〉〉. A strand space over A is a set Σ with a trace mapping
tr : Σ → (±A)∗. Fix a strand space Σ .

1. A node is a pair 〈st , i〉, with st ∈ Σ and i an integer satisfying 1 ≤ i ≤
length(tr(st)). The set of nodes is denoted by N . We will say the node
〈st , i〉 belongs to the strand st .

2. There is an edge n1 → n2 if and only if msg(n1) = +a and msg(n2) =
−a for some a ∈ A. The edge means that node n1 sends the message a,
which is received by n2 , recording a potential causal link between those
strands.

3. When n1 = 〈st , i〉, and n2 = 〈st , i + 1 〉 are members of N , there is
an edge n1 ⇒ n2 . The edge expresses that n1 is an immediate causal
predecessor of n2 on the strand st . n ′ ⇒+ n is used to denote that n ′

precedes n (not necessarily immediately) on the same strand.

4. An undirected term t occurs in n ∈ N iff t v msg(n).

5. Suppose I is a set of undirected terms. The node n ∈ N is an entry
point for I iff msg(n) = +t for some t ∈ I, and whenever n ′ ⇒+ n,
msg(n ′) /∈ I.

6. An undirected term t originates on n ∈ N iff n is an entry point for
the set I = {t ′ | t v t ′}.

15

7. An undirected term t is uniquely originating in a set of nodes S ⊂ N iff
there is a unique n ∈ S such that t originates on n. (A term originating
uniquely in a set of nodes can play the role of a nonce or a session key
in that structure.)

8. An undirected term t is non-originating in a set of nodes S ⊂ N iff
there is no n ∈ S such that t originates on n. (Long term keys are
normally non-originating.)

We now define strands for the roles of the TLS Protocol. We start by
defining a function RECMS that models the changes the Record Layer applies
to a stream of Application Layer messages. The function takes as its inputs
the MAC key of the sending agent, the encryption key of the sending agent,
the MAC key of the receiving agent, the encryption key of the receiving agent,
and the sequence Sms of messages sent and received in the Application Layer
payload. A sequence number is assigned to each message in Sms such that
sent and received messages are ordered in two separate streams.

Definition 5 RECMS : (KMAC ×KSym×KMAC ×KSym)→ (±A)∗ → (±A)∗

is defined as follows:

RECMS (ks1 , ks2 , kr1 , kr2) Sms = RECMS ′ (ks1 , ks2 , kr1 , kr2) (1 , 1) Sms ,

RECMS ′ (ks1 , ks2 , kr1 , kr2) (i , j) 〈〉 = 〈〉,
RECMS ′ (ks1 , ks2 , kr1 , kr2) (i , j) (〈(+m, i)〉 _ Sms) =
〈+[m, i]ks1 ,ks2 〉 _ RECMS ′ (ks1 , ks2 , kr1 , kr2) (i + 1 , j) Sms ,

RECMS ′ (ks1 , ks2 , kr1 , kr2) (i , j) (〈(−m, i)〉 _ Sms) =
〈−[m, i]kr1 ,kr2 〉 _ RECMS ′ (ks1 , ks2 , kr1 , kr2) (i , j + 1) Sms ,

[M , n]mk ,ek = {M ,HMAC (mk , {n,M })}ek .

We also define some notation to help with defining certificate chains.

Definition 6 If

ch = 〈(pn , kn), (pn−1 , kn−1), . . . , (p1 , k1), (p0 , k0)〉

is a sequence of (principal, public key) pairs, with n ≥ 1 , then we write

cert chain(ch) =
{pn ̂kn}k−1

n−1
̂{pn−1 ̂kn−1}k−1

n−2
̂ . . .̂{p1 ̂k1}k−1

0
̂{p0 ̂k0}k−1

0

for the corresponding certificate chain.

16

As explained in Section 2, the TLS protocol has two primary roles, the
client c and the server s ; we also include in the model a secondary role of
certificate authorities, which originate public key certificates. We define a
set of strands for each of these roles.

Definition 7 Suppose chs , chc are as in Definition 6, with first(chs) = (s , ks),
first(chc) = (c,PK (c)). Let Client [c, s , rc, rs , ks , chs , chc, pm, Sms] be the set
of client strands whose trace is:

〈 + rc,
− rs ,
− cert chain(chs),
+ cert chain(chc),
+ {pm}ks ,
+ {VH (prev5)}SK (c) ,

+ [PRF cf (pm ̂prev6), 0]cm,ce ,
− [PRF sf (pm ̂prev7), 0]sm,se 〉

_RECMS (cm, ce, sm, se) Sms .

(Note that the assumption first(chs) = (s , ks), first(chc) = (c,PK (c)) ap-
plies for every Client [c, s , rc, rs , ks , chs , chc, pm, Sms] strand we consider from
now on.)

Definition 8 Suppose chs , chc are as in Definition 6, with first(chs) =
(s ,PK (s)), first(chc) = (c, kc). Let Server [s , c, rc, rs , chs , chc, kc, pm, Sms]
be the set of server strands whose trace is:

〈 − rc,
+ rs ,
+ cert chain(chs),
− cert chain(chc),
− {pm}PK (s) ,

− {VH (prev5)}k−1
c
,

− [PRF cf (pm ̂prev6), 0]cm,ce ,
+ [PRF sf (pm ̂prev7), 0]sm,se 〉

_RECMS (sm, se, cm, ce) Sms .

Definition 9 Let CA[ca, a] be the set of certificate authority strands whose
trace is:

〈 + {PK (a)̂a}SK (ca) 〉.

17

For simplicity, we assume that the public key certificates are obtained by
the client and server strands before the Handshake exchange.

When talking about collections of strands, we will sometimes use an as-
terisk (∗) as a wild-card; for example, Client [c, s , rc, rs , ks , chs , chc, ∗, ∗] is
shorthand for

⋃
pm,Sms Client [c, s , rc, rs , ks , chs , chc, pm, Sms]. We shall refer

to regular primary nodes according to their position in a client or a server
strand; for example writing Client2 for the second node in a client strand
(where the strand is clear from the context).

The setN of nodes together with both sets of edges n1 → n2 and n1 ⇒ n2

forms a directed graph 〈N , (→ ∪ ⇒)〉. A bundle is a finite subgraph of
〈N , (→ ∪ ⇒)〉 for which we can regard the edges as expressing the causal
dependencies of the nodes.

Definition 10 [THG98] Suppose →B ⊂ →, ⇒B ⊂ ⇒, and B = 〈NB,
(→B ∪ ⇒B)〉 is a subgraph of 〈N , (→ ∪ ⇒)〉. B is a bundle if (1) NB and
(→B ∪ ⇒B) are finite; (2) If n2 ∈ NB and msg(n2) is negative, then there is a
unique n1 such that n1 →B n2 ; (3) If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2 ;
and (4) B is acyclic.

Figure 1 illustrates a bundle representing a single run of the Handshake
Protocol.

C S

Client1 • rc //

��

•
��

Server1

Client2 • oo rs

��

•
��

Server2

Client3 • oo cert chain(chs)

��

•
��

Server3

Client4 • cert chain(chc) //

��

•
��

Server4

Client5 •
{pm}PK(s) //

��

•
��

Server5

Client6 •
{VH (prev5)}SK(c) //

��

•
��

Server6

Client7 •
[PRF cf (pmbprev6),0]cm,ce //

��

•
��

Server7

Client8 • oo
[PRF sf (pmbprev7),0]sm,se • Server8

Figure 1: A bundle representing a single execution of the Handshake Proto-
col.

Definition 11 [THG98] A node n is in a bundle B = 〈NB,→B ∪ ⇒B〉,
written n ∈ B, if n ∈ NB. The B-height of a strand st is the largest i such
that 〈st , i〉 ∈ B.

18

For example, the bundle height of each strand in Figure 1 is 8 . We say that
a strand st is in B if at least some of its nodes are in B, i.e. its B-height is
positive.

Definition 12 If B = 〈NB,→B ∪ ⇒B〉 is a bundle then �B = (→B ∪ ⇒B)∗.

�B can be considered as a causal precedence relationship, because n �B n ′

holds iff it is possible to get from n to n ′ by following zero or more →B or
⇒B steps, and therefore n’s occurrence causally contributes to the occurrence
of n ′ [THG98].

Proposition 13 [THG98] Let B be a bundle. Then �B is a partial order,
i.e. a reflexive, antisymmetric, transitive relation. Every non-empty subset
of the nodes in B has a �B-minimal member.

3.1.3 The Penetrator

We now define the powers of the penetrator in the extended algebra.
The powers of the penetrator (sometimes referred to as the intruder or

adversary) are characterised by three ingredients [THG98]:

• the set KP of keys known initially to the penetrator;

• the set TP of other atomic messages known initially to the penetrator;

• the set of strands that allow the penetrator to generate new messages
from the messages he knows initially and the messages he intercepts;
this provides the penetrator with the powers specified by the Dolev-Yao
model [DY83].

The set of penetrator strands is extended to reflect the extensions we made
to the term algebra. We add strands corresponding to hashing and key gen-
eration. The fact that there are no strands to undo these operations captures
their one-way nature. The fact that the operators are treated algebraically
(and that their arguments are required for the penetrator to produce their
output) captures their collision resistance.

Definition 14 A penetrator trace is one of the following:

M. Text message: 〈+r〉 where r ∈ TP .

K. Key: 〈+k〉 where k ∈ KP .

C. Concatenation: 〈−t0 ,−t1 ,+t0 ̂ t1 〉.

19

S. Separation into components: 〈−t0 ̂ t1 ,+t0 ,+t1 〉.
E. Encryption: 〈−k ,−t ,+ {t}k〉 where k ∈ K.

D. Decryption: 〈−k−1 ,−{t}k ,+t〉 where k ∈ K.

H. Hashing: 〈−t ,+hash(h, t)〉 where h ∈ Hash.

KG. Key generation: 〈−r1 , . . . ,−rn ,+G(r1 , . . . , rn)〉, where r1 , . . . , rn ∈ T
are atoms, and G ∈ kgf.

A node is referred to as a penetrator node if it lies on a penetrator strand;
otherwise it is called a regular node. An infiltrated TLS strand space contains
the regular strands defined previously in addition to the above penetrator
strands.

Since the behaviour of the penetrator is only specified by the above traces,
it may vary arbitrarily between bundles that have the same regular strands.
Such bundles are still considered equivalent. Bundle equivalence is defined
formally as follows [GT02]:

Definition 15 Bundles B, B′ on a strand space Σ are equivalent iff they
have the same regular nodes.

3.2 The Normal Form Lemma

In Section 3.1.3, we specified that the penetrator can perform several op-
erations represented by strands; these operations can be carried out in any
order. This is complicated by the unbounded number of protocol sessions.
Consequently, the presence of the penetrator can make the problem of secu-
rity protocols analysis difficult.

In [GT02, GT00a], Guttman and Thayer restrict the order of the penetra-
tor strands in order to assist the analysis of security protocols. An essential
element in this restriction is the Normal Form Lemma. In this section we ex-
tend this restriction to the extended penetrator model developed previously.
We follow closely the reasoning of Thayer et al. in [GT02] and therefore
complete proofs are not provided.

Firstly, we remove some of the redundancies in the penetrator’s behaviour
without weakening his powers. There are two types of redundancies [GT02]:

1. E-D redundancies: Here the penetrator encrypts a value h with a key K ,
and then decrypts with the corresponding key K−1 . This type of re-
dundancy can be eliminated as shown in Figure 2.

20

2. C-S redundancies: Here the penetrator concatenates two values t0 and
t1 to form t0 ̂ t1 , and then separates the concatenated term into its
subterms. This type of redundancy can be eliminated as shown in
Figure 3.

E

◦ k // •
��

D

◦ t // •
��

• oo k−1

��

◦

• {t}k // •
��
• t // ◦

◦ k // •
��

◦ t //

++XXXXXXXXXXXXXXXXXXXX •
��

• oo k−1♣ ◦

• {t}k♣ //

◦

♣ Discarded messages

Figure 2: E-D redundancies and how to eliminate them [GT02].

By eliminating the above redundancies we end up with an equivalent
bundle since we only remove penetrator nodes:

Proposition 16 [GT02] Every bundle is equivalent to a bundle with no
redundancies of type C-S and E-D.

The penetrator’s activity can be described using the notion of a path
[GT02]. A path p through the bundle B is any finite sequence of nodes and
edges where for each consecutive pair m and n either m ⇒+ n with msg(m)
negative and msg(n) positive, or else m → n. A penetrator path is one in
which all nodes other than possibly the first or the last node are penetrator
nodes.

In order to restrict the pattern of penetrator paths, we use the notion
of constructive and destructive edges. Our definition of constructive and
destructive edges is slightly different from the one provided in [GT02] since
we refer to the extended penetrator model in Definition 14.

21

C

◦ t0 // •
��

◦ t1 // •
��

S

• t0bt1 // •
��
• t0 //

��

◦

• t1 // ◦

◦ t0 //

**TTTTTTTTTTTTTTTTTTTT •
��

◦ t1 //

**TTTTTTTTTTTTTTTTTTTT •
��
• t0bt1♣ //

◦

◦

♣ Discarded messages

Figure 3: C-S redundancies and how to eliminate them [GT02].

Definition 17 A ⇒+ edge is constructive if it is a part of an E, C, or H
strand. It is destructive if it is part of a D, S, or KG strand. A penetrator
node is initial if it is a K or M node.

Although the strands H and KG are cryptographically quite similar, we
define H to be constructive and the key generation strands KG, to be destruc-
tive. The reason for this will become clear below.

Proposition 18 In a bundle, a constructive edge immediately followed by
a destructive edge has one of the following two forms:

1. Part of an E strand immediately followed by part of a D strand;

2. Part of a C strand immediately followed by part of an S strand.

Proof: This result is proved in [GT02] without the H and KG strands. The
extension to these latter strands is straightforward: the output of an H strand
cannot be passed to a destructive edge, since hash functions are uninvertible;
the input of a KG cannot be provided by a constructive edge, since the inputs
to key generation strands are atoms. �

22

Note that this result would not be true if we had defined edges that are
part of KG strands to be constructive, since these strands can generate keys
that can be used as key edges for D strands (See Figure 4), in which case a
constructive edge would be followed by a destructive edge, and the Normal
Form Lemma, below, would not hold.

KG

◦ r1 // •
��

◦ r2 // •
��

D

◦ r3 // •
��

• oo {t}K

��

◦

• K−1
// •

��
• t // ◦

Figure 4: Considering KG strands as constructive, the Normal Form Lemma
would not hold for the above bundle.

Definition 19 [GT02] A bundle B is normal if for every penetrator path
of B, every destructive edge precedes every constructive edge.

Proposition 20 (Penetrator Normal Form Lemma) For every bun-
dle B there exists an equivalent normal bundle B′.

The proof is the same as in [GT02], and follows from Propositions 16 and 18.

3.3 Fault-Preserving Simplifying Transformations

We now adapt the theory of fault-preserving simplifying transformations
from [HL01] to the strand spaces model, and hence explain the relation-
ship between our strand spaces model of the simplified protocol and a more
faithful model of the full protocol.

Definition 21 If t ∈ A is a term, and S ⊆ A is a set of terms, we write S ` t
if there is a web of penetrator strands (i.e. a collection of strands, connected
by → edges) that produces t , where S gives the inputs to the web, i.e. the
terms received from outside the web and the terms on the initial penetrator
strands (i.e. M and K strands).

23

A transformation on a protocol can be defined by a renaming function
f : A → A over terms. The idea is that all the messages in the protocol are
renamed according to f . We will require two properties of the transforma-
tion f . Firstly, f must preserve deductions:1

∀S ⊆ A, t ∈ A • S ` t ⇒ f (S) ` f (t). (1)

The second property concerns the initial knowledge of the penetrator. When
the transformed protocol is analysed, the penetrator’s initial knowledge
TP ∪ KP should be replaced by a new value T ′P ∪ K′P such that:

f (TP ∪ KP) ⊆ T ′P ∪ K′P . (2)

Proposition 22 Suppose B is a bundle with initial penetrator knowledge
TP ∪ KP . Suppose f satisfies equations (1) and (2) (for T ′P and K′P). Then
there is a bundle B′ with initial penetrator knowledge T ′P ∪ K′P obtained by
renaming terms on regular strands by f ; i.e. there is a bijection φ from the
regular nodes of B to those of B′ such that msg(φ(n)) = f (msg(n)) for each
regular node n in B. Further, if term t appears on a penetrator node in B,
then f (t) appears on a penetrator node in B′.

Proof: We construct the regular strands of B′ by renaming the regular
strands of B under f . For each initial penetrator strand in B with term t ,
we add a corresponding initial penetrator strand with term f (t) in B′; equa-
tion (2) justifies this. Let φ be the corresponding bijection from the regular
and initial nodes of B to those of B′, so msg(φ(n)) = f (msg(n)) for each
regular or initial node n in B.

For the connecting penetrator strands, consider a particular term t ′ re-
ceived at a regular node n ′ in B′. Let t and n be the corresponding term
and node in B, so t ′ = f (t), n ′ = φ(n). In B, t is formed by the pene-
trator from the terms on the regular and initial nodes {n0 | n0 �B n}, i.e.
{msg(n0) | n0 �B n} ` t . Hence by equation (1), {f (msg(n0)) | n0 �B n} `
f (t); i.e. {msg(φ(n0)) | n0 �B n} ` t ′. Hence we can produce penetrator
strands in B′ to produce t ′ from the corresponding regular and initial strands
{φ(n0)) | n0 �B n}.

Finally, for each term t that appears on a penetrator node in B, we can
similarly produce penetrator strands in B′ to produce f (t). �

1We lift f to sets by point-wise application.

24

(We consider B and B′ to be in distinct strand spaces, as they contain different
types of strands.)

In [HL01], various transformations are shown to satisfy equations (1)
and (2)2; these include the transformations we used on TLS in Section 2.3
(namely remove atomic fields, remove hash functions, and coalesce messages).
Hence, for every bundle corresponding to the full TLS protocol, there is a
corresponding bundle for the simplified protocol, where terms on regular
strands have been appropriately renamed.

We would like to deduce properties ψ for all bundles B of the full protocol
by proving corresponding properties ψ′ for all bundles B′ of the simplified
protocol. This deduction will be valid for properties such that a failure of ψ
in the original bundle B implies a failure of ψ′ in the transformed bundle B′
of Proposition 22.

In particular, many properties state that certain terms may not appear
on penetrator nodes, i.e. the penetrator may not learn these terms. Propo-
sition 22 shows that the appearance of such a term t in a bundle of the full
protocol would be reflected by the appearance of the term f (t) in a bundle
of the simplified protocol. Hence if we verify that no such term f (t) appears
in bundles of the simplified protocol, we may deduce the desired property of
the full protocol.

Similarly, many properties state that bundles may not contain particular
combinations of regular strands, such as a client strand with no corresponding
server strand. Failures of such properties will normally be preserved by
the transformation, since Proposition 22 shows that the regular strands are
preserved by the transformation, modulo renaming by f : hence in order to
deduce such a property in the full protocol, essentially the same property
needs to be verified in the simplified protocol. If it is required that particular
strands agree upon the values of certain terms (such as keys), then we should
choose f to be injective on those terms (so that the strands for the simplified
protocol agree upon those terms only if the strands of the full protocol do).

In our analysis of TLS, many of the properties (all properties up to
Lemma 42) will be of one of the forms described in the previous two para-
graphs. Our analysis will therefore show that corresponding results hold for
the full protocol. It is important here that our simplifying transformations
are injective on the critical terms, such as keying material.

Unfortunately, our later results (about the Record Layer) cannot be han-
dled in the same way, since failures of the properties in the full protocol
are not necessarily reflected by failures of corresponding properties in the

2The relation ` was defined differently in [HL01] from how we defined it above; however,
it is straightforward to prove that the two definitions are equivalent.

25

simplified protocol. There are essentially two reasons for this:

• Our simplifying function might not be injective on the Record Layer
messages, in particular if their payloads may contain fields that we
remove in the simplifications, such as cipher suites.

• Some of the later theorems talk about paths in bundles, and Proposi-
tion 22 says nothing about the preservation of paths.

However, for these later results, essentially the same proofs hold for both
the full and simplified protocols: these proofs talk only about Record Layer
messages, and the simplifications to Record Layer messages have been very
minor (most of the simplifications are to the Handshake messages). We
present just the proofs for the simplified protocol, for ease of exposition.

3.4 Specifying Authentication and Secrecy Goals

A regular strand represents a principal’s local view of a protocol execution,
i.e. the messages sent and received by that principal. Security protocol goals
are inferences that principal can make about the strands of other principals
and the behaviour of the penetrator [Gut01].

An authentication goal is an inference about what another regular prin-
cipal must have done. This inference has four elements [Gut01]:

• The principal’s strand: The messages sent and received by a principal
are the principal’s source of knowledge about what has happened so
far in the protocol.

• The specification of the protocol: These describe the behaviour of the
regular strands.

• The penetrator powers: These define what the penetrator can or cannot
do.

• Origination assumptions: The unique origination of nonces and session
keys and the non-origination of long-term secrets are vital to prove
authentication goals.

From these elements, the causal laws included in the definition of bundles
(Definition 10) are used to infer the traces of other strands. The results of
authentication inferences take the form [Gut01]: for all bundles B and all
strands st , there exists a strand st ′ such that

26

if st ∈ R has B-height i ,
and some origination assumptions hold,
then st ′ ∈ R′ and st ′ has B-height j ,

where R and R′ are sets of roles. Such an authentication property is invariant
under bundle equivalence, since it asserts that certain regular nodes must be
present in bundles regardless of the presence of penetrator nodes [GT02].

To illustrate an authentication goal, consider a bundle B in a TLS
strand space. Then the Handshake goal of authenticating the server
to the client can be captured as follows: if stc is a client strand in
Client [c, s , rc, rs , ks , chs , chc, pm, ∗] of B-height at least 8, pm is uniquely orig-
inating on 〈stc, 5 〉, and ks is non-originating in B, then there exists a server
strand sts ∈ Server [s , c, rc, rs ,PK (c), chs , chc, pm, ∗] of B-height at least 8.

On the other hand, a secrecy goal is an inference about what the pen-
etrator cannot have done. Secrecy goals are verified by proving, following
some origination assumptions, that terms that are intended to remain secret
are not said in public in any bundle. It follows that the penetrator could
not have derived them because if he did, then there would exist a bundle in
which he also utters them. Secrecy inferences take the form [Gut01]: for all
bundles B and all regular strands st

if st ∈ R has B-height i ,
and some origination assumptions hold,
then there is no node n ∈ B such that msg(n) = t .

The term t is either a parameter of R, or a term whose ingredients are
parameters of R. If the above secrecy property holds in all bundles equivalent
to B, then the value remains secret because the penetrator is unable to derive
it without further cooperation from regular strands [GT02]. For example the
secrecy of the premaster secret can be specified in the following form: for all
bundles B, if stc is a client strand in Client [c, s , rc, rs , ks , chs , chc, pm, ∗] with
B-height at least 8 , pm is uniquely originating on 〈stc, 5 〉, and SK (c), SK (s)
are non-originating in B, then for all nodes n ∈ B, msg(n) 6= pm.

3.5 Proving Secrecy and Authentication

In this section, we discuss techniques to prove secrecy and authentication
within the strand spaces setting. We start by defining the set of safe keys
that are not available to the penetrator. We then present authentication
tests.

27

3.5.1 Safe Keys

We can define the set of safe keys whose secrecy is preserved. We begin by
defining some concepts that we will use. We say that a term t0 occurs only
within a set of encrypted terms R and hashes in t if in the abstract syntax
tree of t , every path from the root to an occurrence of t0 as a subterm
of t traverses some t1 ∈ R before reaching t0 [DGT07a]. Note that this
includes the possibility that t0 does not occur at all in t . Recall also that
the body t0 of a hashed term t = hash(h, t0) is not considered a subterm
of t , so this condition includes the possibility that t0 occurs only within
hashes; similarly, recall that the encrypting key in an encrypted term is not
considered a subterm. So, for example, t0 occurs only within {{t0}k} and
hashes in hash(h, t0) ̂ {t0}k ̂ {a}t0 . We define the property formally as
follows:

Definition 23 We say that t0 occurs only within R and hashes in t , where
R is a set of terms, if:

1. t0 6v t ; or

2. t ∈ R; or

3. t 6= t0 and either (a) t = {t1}k and t0 occurs only within R and hashes
in t1 ; or (b) t = t1 ̂ t2 and t0 occurs only within R and hashes in both
t1 and t2 .

We say that t0 occurs only within R and hashes in B, if for every positive
regular node n ∈ B, and for every component t of n, t0 occurs only within R
and hashes in t . We say that t0 occurs only within hashes in B if it occurs
only within {} and hashes in B.

On the other hand, t0 occurs outside R and hashes in t if t0 is a subterm
of t and t0 does not occur only within R and hashes in t . This means that
t0 v t and there is a path from the root to an occurrence of t0 as a subterm
of t that traverses no t1 ∈ R [DGT07a].

We can now define the set S of safe keys, i.e., keys that the penetrator
cannot obtain. Our definition differs from that in [Gut01] since it identifies
when a complex key is safe. We first define the set of safe atoms (which
includes complex keys), i.e., those atoms that the penetrator cannot obtain;
we then restrict this to keys to find the safe keys. A safe atom: (1) is
not initially known by the penetrator; (2) occurs only hashed or encrypted
with the inverse of a safe key; and (3) if it is complex, has at least one safe
ingredient.

Definition 24 Let M(B) be the set of safe atoms, defined by M(B) =⋃
iMi(B), where Mi(B) is defined inductively as follows:

28

• a ∈ M0 (B) iff: (1) a /∈ Kp ∪ Tp ; (2) a occurs only within hashes in B
(recall that this could mean that a does not occur at all); and (3) a is
not complex.

• Mi+1 (B) =Mi(B) ∪Xi+1 (B), where a ∈ Xi+1 (B) iff: (1) a /∈ Kp ∪ Tp ;
(2) a occurs only within the set of terms {{t}k | k−1 ∈ Mi(B)} and
hashes in B; and (3) if a is complex, of the form G(r1 , . . . , rn), then at
least one of the ingredients r1 , . . . , rn is in Mi(B).

Define the set S(B) of safe keys by S(B) =M(B) ∩ K.

We say that atom a occurs safely if it is a member of M(B). To prove
that a occurs safely, we show that it is not initially known by the penetrator,
and that its occurrence in every component is protected by a hash or an
encryption with some key k such that k−1 ∈ Mi(B); in most protocols, i is
typically 0 or 1 .

Proposition 25 Let B be a bundle and r an atom such that r /∈ Kp ∪ Tp ,
and r occurs safely in B; then for every equivalent bundle B′ there is no node
n ∈ B′ such that msg(n) = r .

Proof: (sketch). We can prove by induction on i that if r is an atom in
Mi(B) and r /∈ Kp ∪Tp , then for every equivalent bundle B′ there is no node
n ∈ B′ such that msg(n) = r . The proof proceeds by a straightforward case
analysis over the ways in which r could be produced. �

3.5.2 Authentication Tests

In [GT00a], Thayer and Guttman introduced the concept of Authentication
Tests to prove the authentication goals of security protocols. The Authen-
tication Tests are based on the fact that security protocols follow specific
challenge-response patterns to achieve authentication. Informally, a princi-
pal creates and sends a message t1 containing a uniquely originating value r
and then receives r back in a transformed form t2 . If a safe key is necessary
to transform t1 to t2 , then we can conclude that some regular participant
possessing the relevant key has transformed t1 . Authentication tests can be
used in two different ways:

• An outgoing test: r is sent in an encrypted form and the challenge is
to decrypt it;

• An incoming test: The challenge is to create an encrypted value con-
taining r using a safe key to prove that the encrypted term has not
originated on a penetrator node.

29

The Authentication Tests theorems [GT00a, DGT07b, DGT07a] specify
the conditions under which we can infer that certain regular nodes exist in
the bundle. They proved to be among the most powerful tools of the strand
space model because of their simplicity.

In Section 4.3 we will apply the Incoming Test to the Handshake Protocol;
we do not use the Outgoing Test, so do not discuss it further here. We extend
the Incoming Test to include hashed values.

The Incoming Authentication Test [DGT07a] Suppose that n1 ∈ B is
negative, t = {t0}K v msg(n1), and K ∈ S(B). Then there exists a regular
m1 ≺B n1 such that t originates on m1 .

Proof: (Based on [DGT07a].) Let Φ = {n ∈ B | t v msg(n)}. Φ is
non-empty since n1 ∈ Φ, so has at least one �B-minimal element, denoted
by m1 . Suppose, for a contradiction, that m1 is a penetrator node. Since
t v msg(m1) we can deduce that m1 must be a positive node on an E strand
with a key edge K . But this contradicts the assumption that K ∈ S(B).
Therefore, m1 must be a regular node. �

The node m1 is called an incoming transforming node and n1 as an incom-
ing test node [DGT07b]. In Lemma 38 we show that Client8 is an incoming
test node, and use this to establish authentication guarantees for the client.
Similarly, in Lemma 39 we show that Server6 is an incoming test node, and
use this to establish authentication guarantees for the server.

4 Security Analysis of TLS

In this section we analyse TLS, and then formalise and prove the security
services it provides. We use the simplified version of TLS provided in Sec-
tion 2 and the extended strand spaces framework developed in Section 3 to
analyse TLS.

In Section 4.1 we review Broadfoot and Lowe’s abstraction of the security
services provided by TLS, and show how it can be captured in the Strand
Spaces Model. In Section 4.2 we state the assumptions we use in the analysis:
these assumptions concern origination of terms, and the independence of the
Handshake and Application Layer protocols. In Section 4.3 we analyse the
Handshake protocol, obtaining guarantees for both the client and the server.
In Section 4.4 we analyse the Record Layer, verifying authentication, secrecy
and session independence properties. Finally, in Section 4.5 we prove a result
that shows that (under certain assumptions) TLS does not interfere with the
Application Layer protocol that is layered on top of it.

Our proof is modular in the following sense:

30

• The analysis of the Handshake Protocol is independent of the Record
Layer Protocol, other than as captured by the assumptions stated in
Section 4.2; this analysis could, therefore, be re-used if the Handshake
Protocol were combined with an alternative Record Layer Protocol.

• The analysis of the Record Layer Protocol is independent of the Hand-
shake Protocol, other than the assumptions stated in Section 4.2, and
that it assumes the secrecy and authentication properties we prove of
the Handshake Protocol; this analysis could, therefore, be re-used if the
Record Layer Protocol were combined with an alternative Handshake
Protocol that achieves the same secrecy and authentication properties.

4.1 Requirements for TLS

In this section we describe the requirements for TLS, which we verify in
later sections. The requirements are based on Broadfoot and Lowe’s abstract
model of TLS from [BL03], which describes the security services those authors
believe TLS provides. Those requirements were presented as a trace-based
specification, i.e. a specification in terms of a property that all traces of TLS
should satisfy; we describe below how those requirements should be adapted
to the strand spaces model.

Let Agent be the set of all agents, partitioned into two sets: Honest
of honest agents, and Dishonest of dishonest agents. The communications
are assumed to be grouped in sessions, of type Session. Communications are
described in terms of two channels: send .A.B .s .m represents the Application
Layer at A passing the message m to TLS to be sent to B as part of session s ;
and receive.B .A.s .m represents TLS passing the message m, (apparently)
received from A, to the Application Layer at B as part of session s .

The authentication and integrity requirements from [BL03] are that
within each session between A and B , the messages accepted by the Ap-
plication Layer of B as being from A are guaranteed to be sent by A, in-
tended for B , and sent in that particular order. Using CSP notation with
the above channels, the sequence of messages accepted by B from A in ses-
sion s is denoted tr ↓ receive.B .A.s (i.e. the sequence of data passed on
channel receive.B .A.s); likewise, the sequence of messages sent by A to B in
session s is denoted tr ↓ send .A.B .s . Hence the authentication and integrity
requirements are expressed as follows:

∀A,B : Honest ; s : Session; tr : Traces•
tr ↓ receive.B .A.s ≤ tr ↓ send .A.B .s ,

where ≤ denotes the prefix relation and Traces is the set of traces exhibited
by the system. This property is called stream or prefix authentication.

31

We now consider how the above requirement can be expressed in the
strand spaces model. In strand spaces, a regular strand representing an hon-
est agent models the transmissions and receptions involving that agent in a
session [Hea02]. Consequently, if A,B are honest agents, send .A.B .s .t cor-
responds to a positive node n in a regular strand stA representing A such
that stA is apparently communicating with B , such that msg(n) is of the
form +[t , i]km,ke for some km ∈ KMAC , ke ∈ KEnc, and i > 0 . Similarly,
receive.B .A.s .t corresponds to a negative node n in a regular strand stB rep-
resenting B such that stB is apparently communicating with A, and msg(n)
is of the form −[t , i]km,ke . Two messages can be considered part of the same
session iff they are on the same regular strand.

Given a client strand in Client [c, s , ∗, ∗, ∗, ∗, ∗, ∗, Sms] or server strand
in Server [s , c, ∗, ∗, ∗, ∗, ∗, ∗, Sms], we write sent(Sms) and received(Sms) for
the sent and received messages of Sms :3

sent(Sms) := 〈m | +m ←− Sms〉,
received(Sms) := 〈m | −m ←− Sms〉.

We will then capture the stream authentication property by proving (The-
orem 1) that, subject to some assumptions:

• for each client strand stc ∈ Client [c, s , rc, rs , ks , chs , chc, pm, Sms],
there is a unique server strand sts ∈ Server [s , c, rc, rs , kc, chs , chc,
pm, Sms ′] such that received(Sms) ≤ sent(Sms ′), and

• for each server strand sts ∈ Server [s , c, rc, rs , kc, chs , chc, pm, Sms],
there is a unique client strand stc ∈ Client [c, s , rc, rs , ks , chs , chc,
pm, Sms ′] such that received(Sms) ≤ sent(Sms ′).

The confidentiality requirement from [BL03] is that if the penetrator P
is able to cause an honest agent A to accept a message m from him, then
m can be produced from the penetrator’s initial knowledge PIK and those
messages that have previously been deliberately sent to him:

∀A : Honest ; P : Dishonest ; s : Session; m : Message; tr : Traces •
tr ′_〈receive.A.P .s .m〉 ≤ tr ⇒ PIK ∪ sentToPenetrator(tr ′) ` m.

(3)

S ` m represents the ability of the penetrator to deduce message m from
the set of messages S ; and sentToPenetrator(tr) is the set of messages de-
liberately sent to the penetrator (when he engages in TLS using one of his
identities).

3We use standard functional programming notation for sequence comprehensions, as
in, e.g. Haskell.

32

In fact, TLS does not satisfy property (3)! Suppose the penetrator ob-
serves the client handshake nonce rc from a regular strand, and then uses
it as the message m that he sends to some regular agent A using his own
identity; then this contradicts (3), since PIK ∪ sentToPenetrator(tr ′) 6` rc.
This illustrates that information can leak from the Handshake Protocol to
the Application Protocol (although in a fairly unimportant way). In [BL03],
this problem was recognised and avoided by explicitly including such nonces
in the penetrator’s initial knowledge. However, such an approach does not
seem appropriate to our analysis in the current paper. Instead we prove that
TLS satisfies properties that are very similar in spirit to this property.

The formalism (3) actually captures two rather different properties. First
it captures the intuitive notion of confidentiality: that the penetrator cannot
extract the contents of a record layer message — for if he could, he would be
able to embed that contents within a message that he sends using his own
identity, contradicting (3). Within the strand spaces model, we capture this
property by proving (Theorem 2) that, subject to some assumptions, there
is no path that starts at a Record Layer node n in a regular client or server
strand, and includes a penetrator node whose message is a subterm of the
Application Layer message of n.

The second property captured by (3) is non-hijackability (or session in-
dependence): If a TLS session is initiated with the penetrator using one of
his identities, he cannot hijack any Application Layer messages observed in
another TLS session between honest agents, and replay it in his own session;
i.e., the two sessions are independent. To illustrate this idea, consider an al-
ternative secure transport protocol that encodes application layer message m
from B to A as {{m}PK (A)}SK (B); then the penetrator could replace B ’s sig-
nature with his own to produce {{m}PK (A)}SK (P), and then send that to A
using his own identity; this would contradict (3).

We prove (Theorem 3) that, again subject to some assumptions, if a pene-
trator path starts at a regular Record Layer node n in a strand stA apparently
communicating with a regular strand stB , and ends at a regular Record Layer
node n ′, then n ′ must be in stB and stB is apparently communicating with stA.
This implies that if a penetrator path p ends at a negative regular node n ′′

that lies in a regular strand apparently communicating with the penetrator,
then the message is created using only terms that the penetrator knows.

As noted above, information can leak from the Handshake Protocol to
the Application Protocol, so that the Handshake Protocol interferes with the
Application Protocol. We end by showing (Theorem 4) that, again subject
to some assumptions, such interference is incidental: there is a bundle that is
equivalent from the point of view of the Application Layer, without any such
interference. This result can be used to justify an analysis of the Application

33

Layer protocol that abstracts away from the implementation of TLS and just
models the services it provides.

In the following sections, we use the strand spaces model to prove that
TLS provides stream authentication, secrecy, session independence and in-
terference freedom for Application Layer messages.

4.2 Assumptions

In Section 1 we explained that one of the main problems that complicates
the analysis of TLS is multi-layer interaction. We also stated that, since the
syntactic structure of Application Layer messages is not specified by TLS,
the Application Layer messages could, in principle, leak keys used by the
Handshake and Record Layer Protocols. Furthermore, multi-layer attacks
may happen, where a message from one layer is replayed and interpreted as
being a message of the other layer, leading to an attack.

It is clear from the previous discussion that we should place sufficient
conditions upon the syntactic structure of the Application Layer messages
such that the correctness of TLS is independent of the Application Layer
payload. Some of these conditions are merely origination assumptions which
are necessary for proving authentication and secrecy, and others are mostly
adapted from the concept of disjoint encryption [THG99, GT00b], which
addresses the problem of protocol composition.

4.2.1 Origination Assumptions

Firstly, we lift the concepts of nodes, terms, and origination to the Applica-
tion Layer level.

Definition 26 Let Σ be a TLS space and N be the regular nodes in Σ .

• a node n is a Record Layer node iff n ∈ N and there is an integer i > 0
and a term t ∈ A such that msg(n) = ±[t , i]mk ,ek where mk ∈ KMAC

and ek ∈ KSym . The Application Layer term of n is then given by:
appmsg(n) = t .

• An undirected term t originates in the Application Layer iff there exists
a positive Record Layer node n such that t v appmsg(n), and for every
Record Layer node n ′ such that n ′ ⇒+ n, t 6v appmsg(n ′).

We now state our assumptions using the concepts defined above. First,
the fresh values used in the TLS Handshake Protocol are uniquely originat-
ing.

34

Assumption 27 For every regular client strand stc ∈ Client [c, ∗, rc, ∗,
∗, ∗, ∗, pm, ∗] such that SK (c) /∈ Kp , rc originates uniquely on 〈stc, 1 〉,
and pm originates uniquely on 〈stc, 5 〉. For every server strand sts ∈
Server [s , ∗, ∗, rs , ∗, ∗, ∗, ∗, ∗] such that SK (s) /∈ Kp , rs originates uniquely
on node 〈sts , 2 〉.

Secret keys and the premaster secret do not originate on regular Record
Layer nodes:

Assumption 28 None of the following originates in the Application Layer:

• secret keys from KSec;

• terms of the form G0 (∗, ∗, ∗), G1 (∗, ∗, ∗), G2 (∗, ∗, ∗) or G3 (∗, ∗, ∗);
• the premaster secret pm used in any Client strand’s handshake.

In particular, this prevents the premaster secret that was used in the hand-
shake subsequently being used within the Application Layer.

Any public key certificate that originates at a Record Layer node or a
Certificate node (node 3 or 4 of a client or server strand) has the correct
association between principal and public key, or is signed by a compromised
key.

Assumption 29 Let B be a bundle in Σ , and n ∈ B a Record Layer node,
or the third or fourth node of a client or server strand. If {pk̂a}sk v msg(n)
then pk = PK (a) or sk ∈ KP .

4.2.2 Disjoint Encryption Assumptions

We now adapt disjoint encryption assumptions from [GT00b, GT02], to pre-
vent interactions between the two layers of TLS. In particular, these assump-
tions forbid layering TLS on top of itself. To see why such assumptions are
necessary, suppose the Application Layer Protocol contains a simple nonce
challenge of the following form:

Message 1. a −→ b : {x}PK (b)

Message 2. b −→ a : x

The penetrator can simply intercept message 5 of the Handshake Protocol
and send it to the server as message 1 of the Application protocol; the vari-
able x gets bound to the value of the premaster secret, and so the premaster
secret is revealed in message 2.

In what follows, we write ΣH for the Handshake Protocol nodes, and ΣRL

for the Record Layer nodes.

35

Definition 30 {t}K is a shared encryption in a TLS space if there exist
a Handshake node n1 ∈ ΣH and a Record Layer node n2 ∈ ΣRL such that
{t}K v msg(n1) and {t}K v appmsg(n2).

In [GT00b], Guttman and Thayer state that the simplest way to prevent
multi-protocol harmful interactions would be to require that the parallel pro-
tocols do not use the same ciphertext as a part of any message. However, they
argue that such a condition would prevent using public key certificates, for
example, between different protocols. Such shared encryptions are harmless
because they contain public values. This also applies to multi-layer interac-
tion. On the other hand, layering protocols that extract private values from
within shared encryptions, or repackage their private contents are potentially
insecure. The following assumption captures the limitations we place upon
shared encryptions.

Assumption 31 Let Σ be a TLS space. We assume the following:

1. The Application Layer protocol does not remove pm from the protection
of the encryption with the server’s key4: for every n ⇒+ n ′ ∈ ΣRL, if
n is negative, appmsg(n) contains a subterm of the form {pm}ks (for
any pm and ks), and n ′ is positive, then every occurrence of pm within
appmsg(n ′) is within a subterm {pm}ks .

2. For every node n ∈ ΣRL, no subterm of appmsg(n) is of the form
{VH (prev5)}kc (for any prev5 and kc).

3. For every node n ∈ ΣRL, no subterm of appmsg(n) is of the form
[M , i]mk ,ek (for any M , i , mk and ek).

4.3 Security Analysis of the Handshake Protocol

We fix a TLS strand space Σ satisfying the above assumptions.

4.3.1 Public Key Infrastructure

We start by establishing the correctness of the public key infrastructure used
to bootstrap the communication, i.e. each public key is reliably associated
with its owner, and hence the corresponding secret key is not compromised.

In the following lemma, we prove that if a long term secret key is not
initially known by the penetrator, then it is permanently safe.

4The statement of this assumption is based on the simplified version of TLS we are
considering; in the full version, message 5 is of the form {3 .1̂pm}ks

(the “3.1” is a version
number), so the assumption would have to be changed appropriately.

36

Lemma 32 Let B be a bundle in Σ . Then for all n ∈ B, if msg(n) ∈ Ksec

then msg(n) ∈ KP .

Proof: Let k be a secret key. Examining the Handshake Protocol, k does
not originate on a regular Handshake node. Using Assumption 28, there is
no regular node n2 such that k originates in the Application Layer on n2 .
Therefore, k originates on no regular node. It follows that, if k v msg(n),
then k originates on a penetrator node, and consequently, k ∈ KP . �

We now present two lemmas to prove that the certificates used by the
participants in the protocol are valid and therefore each public key is correctly
associated with its owner.

Lemma 33 Let B be a bundle in Σ . For every n ∈ B, for every public key
certificate {pk ̂a}sk v msg(n), either pk = PK (a) or sk ∈ KP .

Proof: A certificate {pk ̂a}sk can originate in one of the following strands:

1. A regular CA strand st ∈ CA[ca, a]. In this case the certificate reliably
associates each principal with its correct public key, i.e. pk = PK (a).

2. A regular strand on a Record Layer node or a Certificate node. In
this case Assumption 29 gives us the desired result.

3. A penetrator E strand. By Lemma 32, a penetrator can only use an
initially known secret key to sign the certificate and therefore sk ∈ KP .

�

Definition 34 We say that the chain ch = 〈(p, kp), (v , kv)〉̂ch ′ is uncom-
promised, written uncomp(ch), if kv /∈ KP .

Lemma 35 Let B be a bundle in Σ .

1. For every client strand stc ∈ Client [c, s , ∗, ∗, ks , chs , ∗, ∗, ∗] in B, if
SK (c) /∈ KP , and uncomp(chs), then ks = PK (s).

2. For every server strand sts ∈ Server [s , c, ∗, ∗, ∗, chc, kc, ∗, ∗] in B, if
SK (s) /∈ KP , and uncomp(chc), then kc = PK (c).

Proof: Each regular strand specified above can only accept a public key
certificate signed by a secret key kv that is not in KP . By Lemma 33, if the
certificate is signed by an uncompromised key then the public key included
in the certificate is reliably associated with its owner. �

37

Note that the above lemma only insists that the key that verifies the prin-
cipal’s public key is uncompromised: it allows for compromised keys further
up the chain. At first sight, this might suggest that the rest of the certificate
chain is unnecessary. However, in implementations, the certificate chain, to-
gether with certificate revocation lists, etc., is designed to provide evidence
that the verifying key indeed belongs to the verifier, and so is uncompro-
mised. If keys further up the chain are compromised and on revocation lists,
then an implementations is likely to reject the chain, anyway, since it will be
lacking evidence that the key is uncompromised.

4.3.2 The Client’s Guarantees

Firstly, we prove the secrecy of the premaster secret.

Lemma 36 Let B be a bundle in Σ , and let stc ∈ Client [c, s , rc, rs , ks ,
chs , chc, pm, Sms] be a regular client strand in B such that uncomp(chs) and
SK (s) /∈ KP . Then for all nodes n ∈ B, msg(n) 6= pm.

Proof: If we prove that premaster secret only occurs safely in Σ then we
have proved its secrecy by Proposition 25.

Let R be the set of terms R = {{t}K | K−1 is safe}. Let S
be the set of regular nodes such that S = {n | pm occurs outside R
and hashes in msg(n)}. Suppose, for a contradiction, that S is non-empty.
Then by bundle induction (Proposition 13), it has a �-minimal element m,
which is positive. By Assumption 27, pm originates uniquely on Client5 .
Therefore, Client5 � m. We perform a case analysis over m.

• Case m = Client5 . Then msg(m) = {pm}ks . By Lemma 35, ks =
PK (s). Given that SK (s) /∈ KP , m /∈ S .

• Case m is some other regular Handshake node. By inspection of the
Handshake protocol, no such node transforms a message to send pm
outside of R and hashes, so m /∈ S .

• Case m is a positive Record Layer node. pm does not originate in the
Application Layer, by Assumption 28. Further, by clause 1 of Assump-
tion 31, no Application Layer edge transforms a shared encryption so
that pm occurs outside R and hashes. Consequently, m /∈ S .

Hence S is empty and pm occurs safely in Σ . �

We now show that the session keys remain secret.

Lemma 37 Let B be a bundle in Σ , and let st ∈ Client [c, s , rc, rs ,
ks , chs , chc, pm, Sms] be a regular client strand such that SK (s) /∈ Kp

38

and uncomp(chs). Then for all nodes n ∈ B, msg(n) /∈ {G0 (pm, rc, rs),
G1 (pm, rc, rs),G2 (pm, rc, rs),G3 (pm, rc, rs)}.

Proof: Examining the protocol, terms of the form G∗(∗, ∗, ∗) are only uttered
within hashes in the initial Handshake. Also, by Assumption 28 no such
term originates in the Application Layer. It follows from the secrecy of
the premaster secret (Lemma 36) and the definition of safe keys (Definition
24) that the session keys G0 (pm, rc, rs), G1 (pm, rc, rs), G2 (pm, rc, rs), and
G3 (pm, rc, rs) are safe. �

We now prove that the server is authenticated to the client, and they
agree on their identities, the nonces and the premaster secret.

Lemma 38 Let B be a bundle in Σ , and stc ∈ Client [c, s , rc, rs , ks , chs , chc,
pm, ∗] be a client strand of B-height at least 8, such that SK (s) /∈ Kp and
uncomp(chs). Then there exists a unique server strand sts ∈ Server [s , c,
rc, rs ,PK (c), chs , chc, pm, ∗] of B-height at least 8.

Proof: We prove that msg(Client8) = [PRF sf (pm ̂prev7), 0]sm,se is an in-
coming authentication test. By Lemma 37, sm and se remain secret. There-
fore, the term [PRF sf (pm ̂prev7), 0]sm,se must have originated in some reg-
ular node n. By clause 3 of Assumption 31, n is not a Record Layer node.
Hence, by inspection of the Handshake protocol, n can only be Server8 in
some server strand sts ∈ Server [s ′, c ′, r ′c, r

′
s , k
′
c, ch ′c, ch ′s , pm ′, ∗].

We can deduce that s ′ = s , c ′ = c, r ′c = rc, r ′s = rs , k ′c = PK (c),
and pm ′ = pm, since all of these variables are included in prev7 ; and
we can deduce that ch ′s = chs and ch ′c = chc since cert chain(chs) and
cert chain(chc) are included in prev7 (and cert chain is injective). There-
fore, sts ∈ Server [s , c, rc, rs ,PK (c), chs , chc, pm, ∗].

Now we want to prove that such sts is unique. By Assumption 27, rs

originates uniquely in Σ in a server strand. Hence, there can be at most one
such sts . �

Recall that in Section 2.3 we simplified the protocol to remove a number
of fields that we deemed unimportant for security purposes. It it clear that
if we had kept any of these fields in the protocol, the above argument could
also be used to show that the principals agreed upon the values of such fields
(since they would have been included in prev7). In particular, this would
show that the protocol is not prone to a ciphersuite rollback attack, where
the penetrator changes cipher suites in the ClientHello message, causing
the principals to accept a weaker ciphersuite than they would otherwise have
done; early versions of SSL (the predecessor of TLS) were subject to such
attacks [WS96].

39

4.3.3 The Server’s Guarantees

Having established the client’s guarantees, we now prove the server’s guar-
antees: the authentication of the client to the server, and the secrecy of the
session keys used by the server.

Lemma 39 Let B be a bundle in Σ , and sts ∈ Server [s , c, rc, rs , kc, chs , chc,
pm, ∗] be a server strand of B-height at least 6 , such that SK (c) /∈ Kp and
uncomp(chc). Then there exists a unique client strand stc ∈ Client [c, s , rc, rs ,
PK (s), chs , chc, pm, ∗] of B-height at least 6 .

Proof: As in Lemma 38, we show that Server6 forms an incoming test node.
By Lemma 35, kc = PK (c), and so {VH (prev5)}k−1

c
is a test component

in Server6 . Using the Incoming Authentication Test, there exists a positive
regular node m1 ∈ B such that {VH (prev5)}kc originates on m1 .

By clause 2 of Assumption 31, m1 cannot be a Record Layer node. Hence,
by inspection of the Handshake protocol, m1 = Client6 for some client strand
stc ∈ Client [c ′, s ′, r ′c, r

′
s , k
′
s , ch ′s , ch ′c, pm ′, ∗]. As in Lemma 38 it is easy to

prove that kc = PK (c), c′ = c, r ′c = rc, r ′s = rs , s ′ = s , k ′s = PK (s),
ch ′s = chs , ch ′c = chc, and pm ′ = pm. Therefore, stc ∈ Client [c, s , rc, rs ,
PK (s), chs , chc, pm, ∗].

Now we want to prove that such stc is unique. By Assumption 27, pm
originates uniquely in Σ in stc; hence, there can be at most one such stc.
(We could, alternatively, have used the unique origination of the client’s
nonce (Assumption 27) to establish the uniqueness of the client strand.)

�

Lemma 40 Let B be a bundle in Σ , and st ∈ Server [s , c, rc, rs , kc, chs , chc,
pm, Sms ′] a server strand such that SK (s), SK (c) /∈ Kp , uncomp(chs)
and uncomp(chc). Then for all nodes n ∈ B, msg(n) /∈ {G0 (pm, rc, rs),
G1 (pm, rc, rs),G2 (pm, rc, rs),G3 (pm, rc, rs)}.

Proof: The proof here is very similar to the proof of Lemma 37. The secrecy
of the premaster secret pm, used to construct the keys, follows from the fact
that pm is secret from the client’s point of view by Lemma 36, and that the
server and the client agree on the value of pm by Lemma 39. �

Note the difference between the conditions required by the client’s and
server’s secrecy guarantees (Lemmas 37 and 40, respectively). The client
only requires the server’s secret key to be uncompromised, while the server
requires the client’s secret key and his own secret key to be uncompromised.

40

4.4 Security Analysis of the Record Layer

In the previous section we proved that the initial handshake results in four
secret authenticated session keys. In this section we formalise and prove the
security services provided by the Record Layer.

Our proof is modular in the sense that our analysis of the Record Layer
replies only upon the results we have established for the Handshake Protocol
(Lemmas 37–40) and the independence assumptions from Section 4.2. This
shows that the Record Layer Protocol could be used with any handshake
protocol that satisfies these results and assumptions (suitably adapted to
the new protocol).

4.4.1 Prefix Authentication

We prove that the Record Layer provides an authenticated stream for each
participant, i.e. if the client receives a sequence of messages in the Application
Layer, then the server must have sent these messages earlier in the same order,
and vice versa.

We start by proving that any two sets of session keys used by different
strands for sending messages in the Record Layer are completely disjoint.
Define keys(st) to be the set of session keys for out-going messages for the
regular strand st .

Definition 41 Let B be a bundle in Σ , and st be a regular strand in B:

• If st ∈ Client [∗, ∗, rc, rs , ∗, ∗, ∗, pm, ∗], then keys(st) = {G0 (pm, rc, rs),
G2 (pm, rc, rs)},
• If st ∈ Server [∗, ∗, rc, rs , ∗, ∗, ∗, pm, ∗], then keys(st) = {G1 (pm, rc, rs),

G3 (pm, rc, rs)}.

Lemma 42 Let B be a bundle in Σ , and st1 and st2 be primary regular
strands of B-height at least 8. Then st1 6= st2 ⇒ keys(st1) ∩ keys(st2) = {}.

Proof: Let st1 ∈ Client [c1 , s1 , rc1 , rs1 , ∗, ∗, ∗, pm1 , ∗] and st2 ∈ Client [c2 , s2 ,
rc2 , rs2 , ∗, ∗, ∗, pm2 , ∗] be distinct regular client strands. Then

keys(st1) = {G0 (pm1 , rc1 , rs1),G2 (pm1 , rc1 , rs1)},
keys(st2) = {G0 (pm2 , rc2 , rs2),G2 (pm2 , rc2 , rs2)}.

By assumption (Section 3.1.1), the ranges of G0 and G2 are disjoint.
Therefore, keys constructed using G0 are distinct from keys constructed
using G2 . By Assumption 27, pm1 6= pm2 since st1 6= st2 . Also

41

by assumption (Section 3.1.1), key generation functions are collision free,
and hence G0 (pm1 , rc1 , rs1) 6= G0 (pm2 , rc2 , rs2) and G2 (pm1 , rc1 , rs1) 6=
G2 (pm2 , rc2 , rs2). Hence keys(st1) ∩ keys(st2) = {}.

The result can be proved in a similar way for other combinations of TLS
primary strands, i.e. a server strand and a client strand, and two server
strands. �

We now show that each message received by a principal in the Application
Layer is authenticated, i.e. has been sent earlier by the expected sender and
was intended for that principal.

Lemma 43 Let B be a bundle in Σ , and stc ∈ Client [c, s , rc, rs , ks , chs , chc,
pm, Sms] a client strand such that SK (s) /∈ KP and uncomp(chs). Let n be
a node in stc such that msg(n) = −[t , i]se,sm for i > 0 . Then there exists
a node n ′ in the unique corresponding server strand sts ∈ Server [s , c, rc, rs ,
ks , chs , chc, pm, Sms ′] such that msg(n ′) = +[t , i]se,sm .

Proof: By Lemma 38, the server strand sts ∈ Server [s , c, rc, rs , ks , chs , chc,
pm, ∗] exists and is unique. Recall that a message received by a client in the
Record Layer is of the form:

−[t , i]se,sm = −{t ,Hmac(sm, {i , t})}se .

By Lemma 37 the server session keys se and sm are safe, i.e. only known
to the client and the server. It follows from the Incoming Authentication
Test that a term in the form {t ′}se can only originate in a regular strand. In
particular, it can originate only in the strand sts by Lemma 42. �

Lemma 44 Let B be a bundle in Σ , and sts ∈ Server [s , c, rc, rs , ks , chs , chc,
pm, Sms] a server strand such that SK (c), SK (s) /∈ KP , uncomp(chc) and
uncomp(chs). Let n be a node in sts such that msg(n) = −[t , i]ce,cm for
i > 0 . Then there exists a node n ′ in the unique corresponding client strand
stc ∈ Client [c, s , rc, rs , ks , chs , chc, pm, Sms ′] such that msg(n ′) = +[t , i]ce,cm .

Proof: The proof is similar to the previous lemma, and uses Lemmas 39, 40,
and 42. �

We now prove that if a principal receives a stream of messages in the
Application Layer, then the corresponding principal must have sent the same
messages in the same order earlier. We write #Sms for the length of Sms .

Theorem 1 Let B be a bundle in Σ .

42

1. For each client strand stc ∈ Client [c, s , rc, rs , ks , chs , chc, pm, Sms] of B-
height 8 + #Sms , and such that SK (s) /∈ KP and uncomp(chs), there
is a unique server strand sts ∈ Server [s , c, rc, rs , kc, chs , chc, pm, Sms ′]
such that received(Sms) ≤ sent(Sms ′).

2. For each server strand sts ∈ Server [s , c, rc, rs , kc, chs , chc, pm, Sms] of
B-height 8 + #Sms , and such that SK (c), SK (s) /∈ KP , uncomp(chc)
and uncomp(chs), there is a unique client strand stc ∈ Client [c, s , rc, rs ,
ks , chs , chc, pm, Sms ′] such that received(Sms) ≤ sent(Sms ′).

Proof: We prove the first part of the theorem; the second part can be proved
in a similar way.

We have chosen the B-height of the client strand such that the whole
strand is included in B. By Lemma 43, there is a unique server strand
sts ∈ Server [s , c, rc, rs , ks , chs , chc, pm, Sms ′] such that for each message
−[t , i]ce,cm received by the client strand, the server sent +[t , i]se,sm . Fur-
ther, the i determine the order in which the messages are sent and re-
ceived. It follows that the messages in received(Sms) must be in sent(Sms ′),
and t must have the same index i in both sequences. It follows that
received(Sms) ≤ sent(Sms ′). �

Recall that we are considering a simplified version of the full TLS protocol.
Essentially the same properties as in Theorem 1 hold for full TLS (obviously,
the strands mentioned in the theorem have to be replaced with strands of the
full protocol, and the “8” replaced by “11” to account for the messages we
have dropped). It is easy to check that the proofs of the above theorem and
of the contributing Lemmas 43 and 44 still hold for the full protocol: these
proofs do not depend upon the messages that we have simplified (other than
the fact that these messages are disjoint from the Record Layer messages).

Recall also that we are not considering session re-negotiation in this paper.
If we were, the statement of the above theorem would need to be adapted. As
noted in Section 2, a recent attack shows that there is no cryptographic bind-
ing between the sessions before and after a re-negotiation, so the messages
received in those sessions might originate from different strands.

4.4.2 Secrecy

We now prove that the Record Layer provides secrecy for the Application
Layer. Since Application Layer messages may contain terms that are known
to the penetrator before starting the Application Layer exchange, such as
identities, certificates, etc., the Record Layer cannot guarantee that the pen-
etrator does not know any of the contents of the Application Layer messages.
The secrecy provided by the Record Layer guarantees that the penetrator

43

cannot learn anything “new” from messages exchanged in the Application
Layer between two regular strands.

Theorem 2 Let B be a normal bundle in Σ .

1. For each client strand stc ∈ Client [c, s , rc, rs , ks , chs , chc, pm, Sms] such
that SK (s) /∈ KP and uncomp(chs), there is no penetrator path that
starts at a Record Layer node n ′ ∈ stc and includes a penetrator node
n such that msg(n) v appmsg(n ′).

2. For each server strand sts ∈ Server [s , c, rc, rs , kc, chs , chc, pm, Sms] such
that SK (c), SK (s) /∈ KP , uncomp(chc) and uncomp(chs), there is no
penetrator path that starts at a Record Layer node n ′ ∈ sts and includes
a penetrator node n such that msg(n) v appmsg(n ′).

The theorem talks about normal bundles. For non-normal bundles the result
does not hold if the record node contains some term t already known to
the penetrator: the penetrator can pair msg(n ′) with t , and then split them
again to obtain t . By restricting to normal bundles we prevent such paths,
and show the penetrator cannot extract terms from msg(n ′).
Proof: We prove the first part; the second part is very similar.

Let us assume, for a contradiction, that there is such a penetrator path
from n ′ to n. Let appmsg(n ′) = t . From Definition 5,

msg(n ′) = + {t ,Hmac(cm, {i , t})}ce .

Since B is normal and msg(n) v t , the first⇒ edge in the path from n ′ to n
must be a decryption edge in a D strand. It follows that the key node of this
D strand has message ce. But this contradicts Lemma 37. �

As with Theorem 1, essentially the same theorem as Theorem 2 holds for
full TLS: the proof maps back to the full protocol.

It is worth making clear what the above theorem does not say. First,
the theorem does not show that the protocol provides so-called strong se-
crecy [Bla04, Aba97], where the penetrator should be able to detect no dif-
ference between different values of the Application Layer message.

We believe that strong secrecy does hold for TLS; note in particular that if
an agent sends the same message twice within the same session (so encrypted
with the same key), then they will use different sequence numbers, and so
produce different ciphertexts, so the penetrator will not be able to detect that
the same ciphertext was sent twice. Extending the Strand Spaces Model to
verify strong secrecy properties seems like an interesting challenge, which we
leave for future work.

Further, TLS does not guard against implicit flows of information caused
by the functionality of the Application Layer protocol layered on top of TLS.

44

As a simple example, suppose a certain message in the Application Layer
protocol may be either “abort” or “continue”, and that subsequent messages
are sent only if this message is “continue”: then clearly the penetrator may
deduce the contents of the message by observing the presence of subsequent
messages.

Cortier et al. [CRZ06] carry out a systematic investigation of the rela-
tionship between the two properties, although in the context of probabilistic
encryption (which is not used in TLS).

4.4.3 Session Independence

In Theorem 1 we proved that the penetrator cannot replay messages from
one session between regular strands into another session between regular
strands. But can he replay messages from a session between regular strands
into a session where he is taking part using his own identity? In this section
we show that he cannot. More precisely, we show that a penetrator path that
starts at a Record Layer node in a session between regular strands can lead
to a regular node n ′ only if n ′ lies on the other strand in the same session.
Hence different sessions are independent.

Theorem 3 Let B be a normal bundle in Σ .

1. Suppose stc ∈ Client [c, s , rc, rs , ks , chs , chc, pm, Sms] is a regular client
strand such that SK (s) /∈ KP and uncomp(chs). Suppose there is a
penetrator path p that starts at a Record Layer node n ∈ stc and ends
at another regular node n ′. Then n ′ is on the corresponding server
strand sts ∈ Server [s , c, rc, rs ,PK (c), chs , chc, pm, ∗], as in Theorem 1.

2. Suppose sts ∈ Server [s , c, rc, rs , kc, chs , chc, pm, Sms] is a regular server
strand such that SK (c), SK (s) /∈ KP , uncomp(chc) and uncomp(chs).
Suppose there is a penetrator path p that starts at a Record Layer node
n ∈ sts and ends at another regular node n ′. Then n ′ is on the corre-
sponding client strand stc ∈ Client [c, s , rc, rs ,PK (s), chs , chc, pm, ∗], as
in Theorem 1.

As with Theorem 2, this theorem restricts attention to normal bundles, to
ignore paths that do not represent a causal link.
Proof: We prove the first part of the theorem; the second part is similar.

Consider the form of the penetrator path starting at n and ending at n ′

(recalling that B is normal). The path cannot contains a node n ′′ such that
msg(n ′′) is a proper subterm of msg(n): using precisely the same argument
as in the proof of Theorem 2, the penetrator is unable to decrypt msg(n).
Further, msg(n) cannot be a proper subterm of msg(n ′): examining the

45

protocol, no Handshake node contains a Record Layer message as a proper
subterm; and by Assumption 3, no Record Layer node contains a Record
Layer message as a proper subterm. Hence msg(n) = msg(n ′), and so n ′ is
a Record Layer node.

Clearly n ′ must be on a strand that uses the same session keys
as stc. Hence, by the unique origination of the premaster secret and
the server’s nonce, this strand must be the corresponding server strand
sts ∈ Server [s , c, rc, rs , ks , chs , chc, pm, ∗], as given in Theorem 1. �

As with the earlier theorems, essentially the same theorem as above holds
for full TLS: again, the proof maps back to the full protocol.

4.5 Interference freedom

We now consider another property provided by TLS. Informally, the property
shows that TLS does not interfere with the Application Layer protocol; this
means that when we analyse the Application Layer protocol we can abstract
away the details of TLS and just consider the services it provides.

We define bundles to be interference-free, as follows. The condition says
that no multi-layer attacks exist.

Definition 45 Let B be a bundle. B is interference-free iff for every pen-
etrator path p in B that starts at a regular node n1 and ends at a regular
Record Layer node n2 :

1. n1 is a Record Layer node such that appmsg(n1) = appmsg(n2); or

2. n1 is a Record Layer node, and p traverses two nodes n ′1 and n ′2 such
that n ′1 � n ′2 , msg(n ′1) = appmsg(n1), and msg(n ′2) = appmsg(n2); or

3. p traverses either the key edge of an E strand used in record-layer con-
struction of msg(n2), or the key edge of a D strand used in the record-
layer unpacking of msg(n1).

Note that, in contrast to earlier results, this definition makes no assump-
tions about long-term keys not being compromised. Case 1 describes the
normal case of messages being transmitted unchanged. Case 2 describes the
case where the penetrator is able to extract the application message from
msg(n1), and construct msg(n2): clearly he must know the relevant keys,
either because he is using his own identity within TLS, or because of com-
promised keys. Case 3 describes the case where the penetrator uses data
learnt from n1 as keying material; again, this will be because he is using
his own identity within TLS, or because of compromised keys. In the case
where there are no compromised keys, this adds up to saying that the Appli-
cation Layer messages that the penetrator sends using his own identity can

46

be produced from the messages that have been sent to him and his initial
knowledge: this is effectively what equation (3) from Section 4.1 said.

Not every TLS bundle is interference-free. For example, the penetrator
may learn handshake keying material (the client’s nonce, the server’s nonce
or the premaster secret) and then replay it as part of the application layer
payload. Alternatively, he may learn a nonce or premaster secret from a
Record Layer message (sent to him, or corresponding to a strand for which
he has compromised the long-term key), and replay it in the handshake. We
define such paths as follows.

Definition 46 Let B be a normal bundle, a an atomic term, and p a path
in B that starts at a regular node n1 and ends at a regular node n2 .

• We say that p is an application-to-handshake crossing path for a if n1 is
a Record Layer node, a v appmsg(n1), n2 is a Handshake node, and
a appears as handshake keying material in n2 .

• We say that p is an handshake-to-application crossing path for a if n1 is
a Handshake node, a appears as handshake keying material in n1 , n2 is
a Record Layer node, and a v appmsg(n2).

Nevertheless, there is a sense in which these crossing paths are irrelevant:
we will show (Lemma 49, below) that the penetrator could have produced
similar behaviours but using new values for a within the nodes n2 . More
precisely, we will show that for every TLS bundle B, there is an interference-
free bundle B′ that captures the same Application Layer behaviour. Formally,
B and B′ will be abstractly equivalent:

Definition 47 Bundles B and B′ are abstractly equivalent iff there is a
bijection φ between the regular nodes of B and B′, such that

1. appmsg(n) = appmsg(φ(n)) for all Record Layer nodes n ∈ B;

2. n ⇒+ n ′ iff φ(n)⇒+ φ(n ′), for all n, n ′ ∈ B;

3. φmaps Client [c, s , ∗, ∗, ∗, ∗, ∗, ∗, ∗] strands to Client [c, s , ∗, ∗, ∗, ∗, ∗, ∗, ∗]
strands, and maps Server [s , c, ∗, ∗, ∗, ∗, ∗, ∗, ∗] strands to Server [s , c, ∗,
∗, ∗, ∗, ∗, ∗, ∗] strands.

4. For all atomic terms a, a originates in the application layer at n in B
iff a originates in the application layer at φ(n) in B′.

In [KL09] we introduced a technique for reasoning about layered security
protocols that abstracts away from the implementation of the secure trans-
port protocol and just models the security services it provides. In [KL10]
we proved that this approach is sound under the assumption that for every

47

bundle, there is an abstractly equivalent interference-free bundle. Hence our
aim here is to prove that TLS satisfies this property.

We need to make some additional assumptions about the Application
Layer protocol: our earlier assumptions ensured that the Application Layer
protocol did not interfere with TLS; these new assumptions ensure that TLS
does not interfere with the Application Layer protocol.

Assumption 48 We assume the following:

1. The Application and Handshake protocols satisfy disjoint encryption:
no encrypted or hashed subterm of a handshake message is a subterm
of an Application Layer message, with the exception that we do allow
Application Layer messages to contain public key certificates that satisfy
Assumption 29.

2. The client and server nonces do not originate in the Application Layer
(we already assumed the same for the premaster secret).

3. All identities and public keys are within the penetrator’s initial knowl-
edge Tp ∪ Kp .

4. The Handshake Protocol is independent of the keying material used:
formally, Σ is closed under consistent renaming of keying material and
the keys generated from them.

5. For every valid public key certificate {PK (a)̂a}sk that appears within
some Application Layer message, there is a corresponding CA strand
CA[ca, a] where sk = SK (ca).

(Assumption 48 is “local” to the current section.)
We begin by considering crossing paths. We will show that we may always

find an abstractly equivalent bundle without such paths.

Lemma 49 Let B be a normal bundle in Σ . Then there is an abstractly
equivalent normal bundle B′ such that no atomic term a occurs both within
an Application Layer message and as handshake keying material.

Proof: For each atomic term a that occurs both within an Application Layer
message and as handshake keying material, pick a new atomic term aH . We
create a new bundle B′, informally by replacing all handshake keying uses of a
by aH . More precisely, whenever a occurs in a regular strand in a handshake
keying position, we rename it to aH . We replace all occurrences of each key
generated using a by a key correspondingly generated using aH (such keys
will be new, by the assumptions about key generating functions). We leave
a unchanged within Application Layer messages. These regular strands are

48

still valid strands because we have assumed that keying material is not passed
from the handshake to the Application Layer protocol, and that Σ is closed
under renaming of keying material.

If a originates in B as an Application Layer term, we add M or K strands
to originate aH ; if a originates in B as handshake keying material (so the
originating instance has been renamed to aH), we add M or K strands to
originate a. Note that the terms corresponding to these new strands do not
originate on regular strands, so unique origination is preserved.

We adapt the penetrator strands of B to fit B′. For non-crossing strands,
we simply rename appropriate occurrences of a to aH . Consider now crossing
paths for a in B. If a is the premaster secret then, by the disjoint encryp-
tion assumption, any application-to-handshake crossing path must encrypt a
to create a ClientKeyExchange message, and any handshake-to-application
crossing path must remove a from its encryption in the ClientKeyExchange
message. Hence, whether a is the premaster secret or a nonce, a occurs as
the message of some node in the path.

Pick a particular crossing path p for a. Since B is normal, p starts with a
(possibly empty) destructive subpath and continues with a (possibly empty)
constructive subpath. We perform a case analysis.

• Suppose p is an application-to-handshake crossing path. We rename a
to aH within the constructive subpath of p (we do not need the de-
structive subpath); if a originated as an application layer term in B, we
provide aH from the M or K strand; if a originated as handshake keying
material in B, we provide aH from the first handshake-to-application
crossing path.

• Now suppose p is a handshake-to-application crossing path. We need
only the constructive subpath of p; if a originated as handshake keying
material in B, we provide a from the M or K strand; if a originated as an
Application Layer term in B, we provide aH from the first application-
to-handshake crossing path.

The transformations above can be repeated for each path (duplicating
strands if they are part of several paths). Let B′ be the resulting bundle.
Bundles B and B′ are abstractly equivalent, since we have not changed the
application layer behaviour of regular strands. Further, the transformations
have preserved the property of being normal. �

Theorem 4 Let B be a bundle in Σ . Then B is abstractly equivalent to a
normal interference-free bundle B′.

49

Proof: Without loss of generality, assume B is normal (or else consider an
equivalent normal bundle). We describe how to construct the corresponding
bundle B′. Begin by transforming the bundle, as in Lemma 49, so that
no atomic term a occurs both within an Application Layer message and as
handshake keying material.

Let p be a path that starts at a regular node n1 on strand st1 , and ends at
a regular Record Layer node n2 on strand st2 . If p traverses the key edge of
a record-layer E or D strand, then it satisfies case 3 of Definition 45, and we
are done. Otherwise, since B is normal, p consists of a destructive subpath
followed by a constructive subpath; let n be the “inflection” node, i.e. the
intermediate node between the subpaths, so msg(n1) w msg(n) v msg(n2).

If msg(n) = msg(n2) then, since no Record Layer message is a proper
subterm of another TLS message, we must also have msg(n1) = msg(n), and
so case 1 of Definition 45 holds.

Otherwise, because of the form of Record Layer messages, the final step
of p must be an E strand, encrypting some term t1 = t̂HMAC (mk î t̂) with
some key ek , where t = appmsg(n2). By assumption, p does not follow the
key edge. Without loss of generality, we may assume that t1 is formed from
a C strand; if not, we can add an S and a C strand to split and immediately
re-combine t1 . Let n ′2 be the node that provides t to the C strand, so
msg(n ′2) = appmsg(n2). If p traverses the edge providing the HMAC term,
then we can transform the bundle so that the penetrator creates this HMAC
term using an H strand with input from n ′2 : note that the penetrator has
produced ek , which he must have done using a KG strand; hence he can
similarly produce mk using a KG strand. In each case, then, the transformed
path includes n ′2 .

Now consider the node n1 where p starts. We perform a case analysis.

• Suppose n1 is on a Handshake node. Consider what information p
contributes from n1 to n2 , i.e. the term of the inflection node.

– It cannot contribute any handshake keying material, because of the
earlier transformation corresponding to Lemma 49.

– Further, it cannot contribute any encrypted term other than public
key certificates, because of the disjoint encryption assumption.

– Suppose p contributes identities of principals or public keys; recall
that these were assumed to be in TP ∪ KP ; we can therefore trans-
form p by removing the destructive subpath, and providing these
terms from M and K strands.

– Suppose p contributes one or more public key certificates of the form
{pk ̂ a}sk ; recall (Assumption 29) that we assume pk = PK (a)
or sk ∈ KP ; in the former case we can transform p to provide

50

the certificate from a CA strand; in the latter case, the penetrator
can construct the certificate himself using an E strand with inputs
from M and K strands.

• Otherwise n1 is on a Record Layer node. Because of the disjoint encryp-
tion assumptions, p must start by extracting appmsg(n1). Let n ′1 be
the node where msg(n ′1) = appmsg(n1). Hence case 2 of Definition 45
holds.

Finally note that the transformations above can be repeated for each
path (duplicating strands if they are part of several paths). Let B′ be the
resulting bundle. Bundles B and B′ are abstractly equivalent, since we have
not changed the Application Layer behaviour of regular strands. Further,
the transformations have preserved the property of being normal. �

As with the earlier theorems, a corresponding theorem as above holds for
full TLS: essentially the same proofs for this theorem and the contributing
Lemma 49 hold for the full protocol. If the Record Layer messages contain
any terms of the types that we removed in the simplifications (e.g. cipher
suites), then we have to assume that those terms are in TP , so they can be
introduced in M strands, as we did with principals’ identities and public keys.

5 Conclusions and Related Work

In this paper we employed the strand spaces model to analyse and verify
the TLS protocol. To enable this analysis, we simplified the TLS protocol
using fault-preserving simplifying transformations [HL01]. In addition, we
extended the term algebra and the penetrator’s model in the strand spaces
framework to include the operation of generating complex keys using hash
functions. Finally, we analysed the TLS protocol using the adapted strand
spaces model. We started the analysis by placing some syntactic assump-
tions on the application protocols. We then adopted a modular verification
approach starting with the initial Handshake Protocol and then proceeding
to the Record Layer Protocol. We concluded our verification by formalising
the security services provided by TLS: mutual authentication, stream au-
thentication, confidentiality, session independence and interference freedom.
Consequently, we verified that the abstract model suggested by Broadfoot
and Lowe in [BL03] was correct under the stated assumptions of the analy-
sis. Adopting a modular analysis approach has reduced the complexity of the
analysis, provided a clearer and better understanding of the TLS Protocol,
and potentially allows for proof re-use.

Our current research focuses on utilizing the rich framework of strand

51

spaces to model a wide variety of secure channels [KL09, KL10, Kam09].
The model abstracts away from the implementation details of the secure
channels, and just models the security services they provide. The aim is to
facilitate the layered analysis approach described in the introduction, and to
enable its application to a wide variety of layered security architectures.

Although the main focus of our analysis is the TLS Protocol version 1.0,
the techniques used in this paper can be applied with minor modifications
to many variants of TLS that achieve different sets of security goals, such as
unilateral TLS.

Our analysis of TLS has improved on previous formal verifications of the
protocol: we know of no previous security proof of TLS that examines the
Record Layer Protocol. Consequently, the abstract security services provided
by TLS for the Application Layer have not been verified previously.

TLS has been analysed before using model checking techniques, for ex-
ample in [MSS98, DCVP04]. However, these techniques are constrained by
the intrinsic limitations of model checking such as state explosion and in-
completeness of results.

Many direct proof techniques have been used to verify TLS. Examples
include Protocol Composition Logic (PCL) [HSD+05] and equational reason-
ing [OF05]. Perhaps the most known attempt is the verification carried out
by Paulson [Pau99] using the inductive approach [Bel00] to analyse a sim-
plified version of TLS. The analysis took a moderate six man-weeks effort,
to model the protocol in HOL as inductive definitions, and just under three
minutes to generate the proofs in Isabelle. The abstract message exchange
was obtained by reverse engineering the TLS specification; unlike our use
of fault-preserving transformations, this does not guarantee that no attacks
are lost. Further, although the inductive proofs assume that “application
data does not contain secrets associated with TLS sessions, such as keys
and master-secrets”, they do not impose clear restrictions on the syntactic
structure of the Application Protocol to ensure this.

In [CK01] Canetti and Krawczyk consider key exchange protocols and
their use for building secure channels. The authors present a template
that describes how a key exchange protocol and an authenticated encryption
scheme can be used as building blocks for a secure channel. They consider a
key exchange protocol to be secure if, when the two parties involved in the
exchange complete the protocol, they arrive at authenticated secret session
keys. Then, they prove that, if these session keys are used in an Encrypt-
then-Authenticate protocol, the resulting channel is a secure channel that
provides both authentication and secrecy. This is very similar to the mod-
ular approach we adopted in analysing TLS. However, in TLS, the Record
Layer Protocol applies the authentication MAC function then encrypts the

52

Application Layer messages, the opposite order to in Canetti and Krawczyk’s
setting. In addition, Canetti and Krawczyk do not discuss other security
properties that can be provided by secure channels such as stream authenti-
cation and session independence. They also do not address the problem of
multi-layer interaction.

More recently, Gajek et al. [GMP+08] perform a security analysis of TLS
within the Universal Composable security framework [Can01]. Such an anal-
ysis appears to provide stronger guarantees about the protocol. However,
we believe that a Dolev-Yao-style proof, like the one in the current paper,
is better at identifying interactions between different parts of the protocol,
and identifying requirements upon the Application Layer protocol in order
for the two to not interfere.

Several researchers have considered composition of security protocols in a
broader sense. As noted earlier, Guttman and Thayer [GT00b] show that two
protocols are independent if they satisfy disjoint encryption, i.e. they share
no encrypted component. Cortier et al. [CDD07] prove a similar result, but
using distinct protocol tags for each protocol.

In [ACG+08], Andova et al. consider protocols that are composed se-
quentially, with data being passed from one to another. They show how
the security properties of the two component protocols combine. They make
an independence assumption about the two protocols, effectively that they
satisfy disjoint encryption.

Datta et al. [DDMP05, DDMR07] describe a logic for stating and proving
properties of protocols. The logic allows properties of sub-protocols to be
combined. Non-interference between protocols is achieved by stating and
verifying invariants that all sub-protocols must satisfy. The logic is used in
modular proofs in, e.g., [MP04, DDMP05, HSD+05, RDD+06].

Acknowledgements

We would like to thank the anonymous referees, Chris Dilloway, Tom Gibson-
Robinson and Sebastian Gajek for their many helpful comments on this work.
We would also like to thank Joshua Guttman for many useful discussions on
the strand space model, over several years. This work is partially funded
by a research studentship from the UK Engineering and Physical Sciences
Research Council (EPSRC).

53

References

[Aba97] Mart́ın Abadi. Secrecy by typing in security protocols. In Theoretical
Aspects of Computer Software, volume volume 1281 of LNCS, pages
611–638. Springer, 1997.

[ACG+08] S. Andova, C.J.F. Cremers, K. Gjøsteen, S. Mauw, S.F. Mjølsnes, and
S. Radomirović. A framework for compositional verification of security
protocols. Information and Computation, 206:425–459, February 2008.

[AR00] Mart́ın Abadi and Philip Rogaway. Reconciling two views of cryptog-
raphy (the computational soundess of formal encryption). In Proc. 1st
IFIP International Conference on Theoretical Computer Science (IFIP
TCS), volume 1862 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2000.

[BAN89] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.
In Proceedings of the Royal Society of London, volume 426, pages 233–
271, 1989.

[Bel00] G. Bella. Inductive Verification of Cryptographic Protocols. PhD the-
sis, University of Cambridge, March 2000.

[BL03] Philippa Broadfoot and Gavin Lowe. On distributed security trans-
actions that use secure transport protocols. Proceedings of the 16th
IEEE Computer Security Foundations Workshop (CSFW), 2003.

[Bla04] Bruno Blanchet. Automatic proof of strong secrecy for security pro-
tocols. In IEEE Symposium on Security and Privacy, pages 86–100,
2004.

[Bla09] Bruno Blanchet. Automatic verification of correspondences for secu-
rity protocols. Journal of Computer Security, 17(4):363–434, 2009.

[BP05] M. Backes and B. Pfitzmann. Relating symbolic and cryptographic
secrecy. IEEE Transactions on Dependable and Secure Computing,
2(2):109–123, 2005.

[Can01] R. Canetti. Universally compsable security: A new paradigm for cryp-
tographic protocols. In Proc. 42nd IEEE Symposium on Foundations
of Computer Science (FOCS), pages 136–145, 2001.

[CDD07] Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune. Safely
composing security protocols. In Proceedings of the 27th Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’07), volume 4855 of Lecture Notes in Computer Science,
pages 352–363. Springer, 2007.

54

[CJ97] John A. Clark and Jeremy L. Jacob. A survey of authentication pro-
tocol literature. Technical Report 1.0, University of York, 1997.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange proto-
cols and their use for building secure channels. In Proceedings of
the International Conference on the Theory and Application of Cryp-
tographic Techniques (EUROCRYPT), pages 453–474, London, UK,
2001. Springer-Verlag.

[Cre04] C.J.F. Cremers. Compositionality of security protocols: A research
agenda. In F. Gadducci and M. ter Beek, editors, Proceedings of the
1st VODCA Workshop, volume 142 of Electronic Notes in Theoretical
Computer Science, pages 99–110. Elsevier ScienceDirect, 2004.

[CRZ06] Véronique Cortier, Michaël Rusinowitch, and Eugen Zălinescu. Relat-
ing two standard notions of secrecy. In Proc. of the 20th Int. Confer-
ence Computer Science Logic (CSL’06), volume 4207 of Lecture Notes
in Computer Science, pages 303–318. Springer, 2006.

[CW05] Véronique Cortier and Bogdan Warinschi. Computationally sound,
automated proofs for security protocols. In Proc. 14th European Sym-
posium on Programming (ESOP’05), volume 3444 of Lecture Notes in
Computer Science, pages 157–171. Springer, 2005.

[DA99] T. Dierks and C. Allen. The TLS protocol: Version 1.0. request for
comments: 2246, available at http://www.ietf.org/rfc/rfc2246.
txt, 1999.

[DCVP04] Gregorio Diáz, Fernando Cuartero, Valentiń Valero, and Fernando
Pelayo. Automatic verification of the TLS handshake protocol. In
Proceedings of the 2004 ACM Symposium on Applied Computing
(SAC’04), pages 789–794, New York, NY, USA, 2004. ACM Press.

[DDMP05] A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. A derivation sys-
tem and compositional logic for security protocols. Journal of Com-
puter Security, 13(3):423–482, 2005.

[DDMR07] A. Datta, A. Derek, J.C. Mitchell, and A. Roy. Protocol composition
logic. Electronic Notes in Theoretical Computer Science, 172:311–358,
2007.

[DGT07a] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Com-
pleteness of the authentication tests. In Proceedings of the 12th Eu-
ropean Symposium On Research In Computer Security (ESORICS),
pages 106–121, 2007.

55

[DGT07b] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer.
Searching for shapes in cryptographic protocols. In Proceedings of
the 13th International Conference, Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 523–537, 2007.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, IT-29(2):198–
208, March 1983.

[Ext09] Authentication gap in TLS renegotiation. Extended Subset, http:
//extendedsubset.com/?p=8, 2009.

[GMP+08] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sad-
eghi, and Jörg Schwenk. Universally composable security analysis of
TLS. In Proc. 2nd Provable Security International Conference (Prov-
Sec’08), volume 5324 of LNCS. Springer, 2008.

[GT00a] Joshua D. Guttman and F. Javier Thayer. Authentication tests. In
IEEE Symposium on Security and Privacy, pages 96–109, 2000.

[GT00b] Joshua D. Guttman and F. Javier Thayer. Protocol independence
through disjoint encryption. In Proceedings of the 13th IEEE Com-
puter Security Foundations Workshop (CSFW), Washington, DC,
USA, 2000. IEEE Computer Society.

[GT02] Joshua D. Guttman and F. Javier Thayer. Authentication tests and
the structure of bundles. Theoretical Computer Science, 283(2):333–
380, 2002.

[Gut01] Joshua D. Guttman. Security goals: Packet trajectories and strand
spaces. Lecture Notes in Computer Science, 2171:197–263, 2001.

[Hea02] J. Heather. Strand spaces and rank functions: More than distant
cousins. In Proceedings of Computer Security Foundations Workshop
(CSFW 2002), pages 104–116. IEEE Computer Society, 2002.

[HL01] Mei Lin Hui and Gavin Lowe. Fault-preserving simplifying transfor-
mations for security protocols. Journal of Computer Security, 9(1,
2):3–46, 2001.

[HSD+05] Changhua He, Mukund Sundararajan, Anupam Datta, Ante Derek,
and John C. Mitchell. A modular correctness proof of IEEE 802.11i
and TLS. In Proceedings of the 12th ACM conference on Computer and
Communications Security (CCS), pages 2–15, New York, NY, USA,
2005. ACM Press.

[Kam09] Allaa Kamil. The Modelling and Analysis of Layered Security Archi-
tectures in Strand Spaces. DPhil, Oxford University, 2009.

56

[KL09] Allaa Kamil and Gavin Lowe. Specifying and modelling secure chan-
nels in strand spaces. In Piepaolo Degano and Joshua Guttman, edi-
tors, Formal Aspects in Security and Trust (FAST 2009), volume 5983
of Lecture Notes in Computer Science, pages 233–247. Springer, 2009.

[KL10] Allaa Kamil and Gavin Lowe. Understanding abstractions of secure
channels. In Piepaolo Degano, Sandro Etalle, and Joshua Guttman,
editors, Formal Aspects of Security and Trust (FAST 2010), volume
6561 of Lecture Notes in Computer Science, pages 50–64. Springer,
2010.

[LMMS98] P. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic
polynomial-time framework for protocol analysis. In Proc. 5th ACM
Comference on Computer and Communications Security (CCS), pages
112–121, 1998.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In Tiziana Margaria and Bernhard Steffen, edi-
tors, Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), volume 1055 of Lecture Notes in Computer Science,
pages 147–166. Springer-Verlag, 1996.

[MP04] Catherine Meadows and Dusko Pavlovic. Deriving, attacking and de-
fending the GDOI protocol. In Peter Ryan, Pierangela Samarati, Di-
eter Gollmann, and Refik Molva, editors, Proceedings of ESORICS
2004, volume 3193 of Lecture Notes in Computer Science, pages 53–
72. Springer Verlag, 2004.

[MSS98] J.C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of
SSL 3.0. In Proceedings of the 7th USENIX Security Symposium, 1998.

[MvOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[OF05] Kazuhiro Ogata and Kokichi Futatsugi. Equational approach to formal
analysis of TLS. In ICDCS ’05: Proceedings of the 25th IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS’05),
pages 795–804, Washington, DC, USA, 2005. IEEE Computer Society.

[Pau99] Lawrence C. Paulson. Inductive analysis of the internet protocol TLS.
ACM Transactions on Information and System Security, 2(3):332–351,
1999.

[RDD+06] A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P. Seifert. Secrecy
analysis in protocol composition logic. In Proceedings of 11th Annual
Asian Computing Science Conference, 2006.

57

[RRDO10] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer
Security (TLS) renegotiation indication extension. Internet Engi-
neering Task Force (IETF) Request for Comments: 5746, http:
//tools.ietf.org/html/rfc5746, 2010.

[THG98] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman.
Strand spaces: Why is a security protocol correct?. In IEEE Sym-
posium on Research in Security and Privacy, pages 160–171. IEEE
Computer Society Press, 1998.

[THG99] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Mixed
strand spaces. In Proceedings of the 1999 IEEE Computer Security
Foundations Workshop (CSFW). IEEE Computer Society, 1999.

[Tho00] Stephen Thomas. SSL and TLS: Securing the Web. Wiley, 2000.

[WS96] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 proto-
col. In Proceedings of the Second USENIX Workshop on Electronic
Commerce, 1996.

[YC05] Alec Yasinsac and Justin Childs. Formal analysis of modern security
protocols. Information Sciences, 171(1-3):189 – 211, 2005.

58

