
Authority Analysis for Least Privilege
Environments

Toby Murray and Gavin Lowe

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

{toby.murray, gavin.lowe}@comlab.ox.ac.uk

Abstract. The rise of limited-privilege environments has been accom-
panied by the emergence of vulnerabilities in which a subject is able to
maliciously wield their limited privileges to indirectly cause unwanted ef-
fects. Unfortunately, conventional safety analyses for access control sys-
tems are ill-equipped to deal with this problem because they do not
detect the indirect effects that a subject can cause, but merely the per-
missions a subject can acquire.
We present a technique that characterises a subject’s authority as all of
the effects they can cause to occur. Our technique is based on an analysis
of causation, applied to a CSP model of a system. These analyses can
be expressed as CSP refinements and, hence, automatically performed
by a refinement-checker such as FDR. We demonstrate the ability of
our technique to successfully identify excess authority by examining the
“Confused Deputy” scenario, whose vulnerability goes undetected with
conventional safety analyses.

Key words: Access control, authority, causation, least privilege, formal
definition, automatic verification, CSP, model checking, security.

1 Introduction

1.1 The Rise of Least Privilege

There appears to be a growing consensus that a failure to adhere to the principle
of least privilege [25] has led current mainstream computing systems to be far less
secure than they might have been. Executable email attachments are dangerous
because, when opened by a user on current conventional operating systems,
they are allowed to cause any effect that the user herself is allowed to cause. The
severity of a remote code-execution vulnerability in a network-facing application
is proportional to the privileges granted to that application.

Recently, many different solutions have been proposed and implemented in
an attempt to rectify this situation. Some [19, 32, 12, 27, 11, 35] have provided
startlingly clear examples of what the future might hold for secure computing
if current applications and systems were reimplemented on top of architectures
that naturally support the principle of least privilege. Other attempts [33, 3, 15,

20, 31, 26] have shown the challenges involved in trying to retrofit least privilege
to the current mainstream computing base.

A common feature of all of these systems is the means to confine the set of
permissions available to a running instance of an application. By permissions, we
mean the set of objects in the system that the instance can access, or interact
with, directly. In order to adhere to the principle of least privilege, instances
are initially given minimal sets of permissions. While an instance is running it
may acquire new permissions as its function alters. For example, when a user
opens a new document in a word processor, the word processor might be granted
the permission to read the file that contains the document. Indeed, in order to
adhere to the principle of least privilege, an instance must be able to acquire
new privileges as it is running. Otherwise, instances must be given the union of
all permissions they might ever need, completely violating the principle of least
privilege.

However, this leads to a potential problem. If instances can acquire new
permissions, how can one be sure that a running instance cannot acquire a
permission that it should not be allowed to have? For example, how can one be
sure that a word processor won’t be able to obtain the permission to write to
the kernel binary?

This is an instance of the safety problem [7] for access control systems, which
seeks to determine whether a particular subject can ever acquire a particular
permission. Many formal models and decision procedures have been proposed [7,
1, 30, 9] in order to reason about this problem. When designing and analysing a
limited-privilege system, it is imperative to be able to apply safety analyses in
order to show that a running instance cannot obtain extra privileges in excess
of the minimum required to perform its function at the current time.

1.2 Re-Enter An Old Attack

Unfortunately, as limited-privilege solutions are becoming more widely available,
we are beginning to see classes of attack emerging that had previously been
confined to the academic community [6]. These are attacks in which one subject s
is able to use their permission to access another subject t to cause t to perform
some action on s’s behalf that violates the principle of least privilege.

The prototypical example [6] of this attack carries the name “Confused
Deputy”. In this attack, one subject, Alice, has access to another subject, Carol,
a compiler. Alice has permission to invoke Carol with an output filename. Carol
has permission to write to a special purpose billing file, Bill, in which Carol main-
tains a log of her own usage. By invoking Carol with the name of Bill, Alice can
indirectly cause Bill to be overwritten, despite the fact that Alice does not have
permission to write to Bill. Here Carol’s permission is being used incorrectly on
behalf of Alice.

A real-world example of this scenario is described by Spiessens [28]. Here, a
user of a dynamic-firewall application grants network access to all instances of
the ssh program, in order to allow her to connect securely to remote machines
without having to click through a firewall dialogue each time. Unfortunately,

in doing so, she has turned ssh into the ultimate confused deputy. Any other
application that can execute ssh can now gain indirect access to an encrypted,
authenticated channel to any remote host on the Internet. Among other things,
this provides a useful path of egress for any piece of spyware on the system.
Here ssh’s permission is being used incorrectly on behalf of a malicious piece of
spyware.

Another example [34] of this attack involves the User Account Control [33]
(UAC) feature of Windows Vista. Under UAC, when an ordinary application
tries to perform a sensitive function that requires administrator privileges, UAC
displays a dialogue that may allow the user to grant the privileges to the appli-
cation. Applications that are part of the operating system produce a dialogue
labelled “Windows needs your permission to continue”. The executable Run-
LegacyCPLElevated allows legacy dynamic libraries to be identified by UAC as
part of the operating system. RunLegacyCPLElevated is invoked with a dynamic
library filename as its argument, which it then executes on the invoker’s behalf,
thereby allowing the executing code to be identified as part of Windows. We
argue that RunLegacyCPLElevated is a confused deputy. A subject, Dave, with
the permission to execute RunLegacyCPLElevated and to write dynamic libraries
to disk now has the indirect ability to cause arbitrary code to be executed that
will be identified by UAC as part of Windows. Here RunLegacyCPLElevated’s
permission is being used incorrectly on behalf of Dave.

Current models for the analysis of the safety problem are ill-equipped to rea-
son about the indirect effects that a subject can cause by use of its permissions.
We refer to all such indirect effects as a subject’s authority. Traditional safety
analyses are limited to reasoning about authority in terms of the direct permis-
sions a subject can acquire. As shown by the examples above, this can grossly
underestimate a subject’s total authority. As we shall demonstrate later, in the
first example a simple safety analysis fails to reveal that Alice has authority to
overwrite Bill, since Alice never has permission to overwrite Bill. Similarly, a sim-
ple safety analysis would fail to reveal the excess authority in the second and
third examples as well.

These vulnerabilities highlight the importance of the principle of least au-
thority [18, 17]. It is not enough to simply limit a subject’s permissions in order
to enforce meaningful least privilege. As we shall see later on, in the Confused
Deputy scenario, limiting Alice’s permissions to the smallest reasonable set still
provides Alice with excess authority. In order to provide meaningful security, we
require methods that can correctly analyse and detect excess authority once a
subject’s permissions have been minimised.

1.3 Contribution

In this paper, we present a technique specifically designed to reason about the
indirect effects that a subject may be able to cause, in order to give an upper
bound on the subject’s authority. We use the process algebra CSP [21], and
its stable-failures denotational semantics, to model and reason about causation
and thereby define those actions that a subject may indirectly cause to occur.

CSP has been successfully applied to reasoning about many security-relevant
systems, problems and properties including the safety problem in access control
systems [10, 2], information flow [16], cryptographic protocols [23] and real-world
security policies [22]. We begin with a brief overview of the syntax and semantics
of CSP in Section 2.

In Section 3 we define authority in terms of all the events an object can
cause to occur. Excess authority, then, is authority not allowed by the security
policy. We give a straightforward definition of causation, which we call Traces-
Causation. Unfortunately, this definition suffers from the refinement paradox:
there are processes in which a particular event e cannot be caused by some
object o, but that have refinements in which o can cause e to occur. We argue
that this is undesirable, and that we should consider a definition of causation that
holds whenever a process has a refinement for which Traces-Causation holds. We
then give an alternative, equivalent, characterisation of causation, in terms of
the traces and failures of the process.

In Section 4 we show how this property can be tested for using a model
checker such as FDR [14]. In Section 5 we model the Confused Deputy scenario;
we show how a simple safety analysis fails to detect the attack, but that our
technique accurately detects Alice’s authority to cause Bill to be overwritten. In
Section 6 we sum up, compare and contrast our technique to related work, and
consider some areas for future work.

2 A brief overview of CSP

In this section we give a brief overview of CSP. More details can be obtained
elsewhere [21].

CSP is a process algebra, with various semantics, for describing and reason-
ing about concurrent systems. A system modelled in CSP comprises a set of
concurrently executing processes. Each process usually models some particular
component of the system in question. Processes execute by performing events.
An event represents an atomic communication; this might either be between
two processes or between a process and the environment. Processes communi-
cate with each other by synchronising on common events. We write Σ for the
set of all visible events.

2.1 Syntax

The process STOP can perform no events. The process a → P can perform the
event a, and then act like P . The process ?a : A → Pa offers the set of events A;
if a particular event a is performed, the process then acts like Pa. (The prefixing
operator “→” binds tighter than all other operators.)

CSP allows multi-part events where each part is separated by an infix dot
“.”, such as the event up.3. The process up?a : A → Pa initially offers the
set of events {up.a | a ∈ A}. The output operator “!” is used to offer specific
events to the environment. The process move?x:X!3 → P initially offers the set

of events {move.x.3 | x ∈ X}. The notation {|move|} denotes the set of events
whose first part is move. The first part of a multi-part event is sometimes called
a channel.

The process P � Q represents an external choice between P and Q; the
initial events of both processes are offered to the environment; when an event is
performed, that resolves the choice. P u Q represents an internal or nondeter-
ministic choice between P and Q; the process can act like either P or Q, with
the choice being made according to some criteria that we do not model. The
process P <I b>I Q acts like P if the boolean condition b is true; otherwise it acts
like Q.

The process CHAOSA is the most nondeterministic, nondivergent process
with alphabet A; it can perform any sequence of events from A, and refuse any
events.

If c is a channel, then c.P represents the process that acts like P except every
event x is renamed to c.x.

P ‖
A

Q represents the parallel composition of P and Q, synchronising on events

from A. For a set of processes, {P1, . . . , Pn}, and a set of alphabets {A1, . . . , An}
(each a subset of Σ), ‖

1≤i≤n
(Pi, Ai) represents the parallel composition of the Pi,

where each Pi is allowed to perform events only from the set Ai, and all pro-
cesses that share a common event must synchronise on it. P ||| Q represents the
interleaving of P and Q, i.e., parallel composition with no synchronisation.

2.2 Semantics

A trace is a sequence of visible events that a process can perform. We write
traces(P) for the set of all traces of P .

We write traces within angle brackets (〈. . .〉). sˆt denotes the concatenation
of s and t. s |̀ A denotes the trace obtained by taking s and removing all events
not in A. s\A denotes the opposite: the trace obtained by taking s and removing
all events in A: s \ A = s |̀ (Σ − A). Trace s is said to be a prefix of t, written
s ≤ t, if there exists a sequence u, where t = sˆu. Within traces, the special
event

√
represents termination, and can occur only at the end of a trace.

A stable failure is a pair (s,X), where s is some trace that P can perform,
and X is a set of events that P can stably refuse after performing s: i.e., after s,
P can reach a state where no internal activity is possible and none of the events
from X is possible. We write failures(P) for the set of all stable failures of P .

A divergence is a trace after which a process can diverge, i.e., perform an
infinite amount of internal activity. We write divergences(P) for the set of di-
vergences of P . All of the processes we consider in this paper are divergence free.
In this case the traces and stable failures are related by:

traces(P) = {s | (s,X) ∈ failures(P)}.

Within the failures-divergences semantics of CSP, a process is represented by
its failures and its divergences. The following axioms hold for the failures F and
divergences D of a process P .

F1. traces(P) = {t | (t, X) ∈ F} is non-empty and prefix closed.
F2. (v,X) ∈ F ∧ Y ⊆ X ⇒ (v, Y) ∈ F .
F3. (v,X) ∈ F ∧ vˆ〈a〉 /∈ traces(P) ⇒ (v,X ∪ {a}) ∈ F .
F4. vˆ(

√
) ∈ traces(P) ⇒ (v,Σ) ∈ F .

D1. s ∈ D ∩Σ∗ ∧ t ∈ Σ∗
√
⇒ sˆt ∈ D.

D2. s ∈ D ⇒ (s,X) ∈ F .
D3. sˆ〈

√
〉 ∈ D ⇒ s ∈ D.

We say that process Q refines process P , written P v Q, when

failures(Q) ⊆ failures(P) ∧ divergences(Q) ⊆ divergences(P).

3 Characterising Authority

In this section, we produce a semantic characterisation of causation.
The systems we model comprise a set of objects. (By object, we mean both

subjects and objects as defined in the standard access control literature: we
make no distinction between the two.) Each object has a set of events that
constitute its alphabet. These are the events that the object is able to partake
in. Intuitively, if some object can perform some events from its alphabet that
can, perhaps indirectly, cause some other event e to occur, then that object has
authority to cause e.

We assume that the system is modelled by a CSP process. For simplicity, we
restrict ourselves to divergence-free processes in this paper (i.e. those that can
never perform an infinite amount of internal activity without communicating
with their environment), and assume a finite alphabet.

3.1 Defining Causation

We base our understanding of causation on Lewis’ counterfactual definition [13]
that states that x causes y if y would be possible if x had occurred, but y
would not be possible if x had not occurred. This leads to a simple definition
for causation that can be applied to the traces of a process P . An object o with
alphabet A can cause some event e to occur if there is some trace s after which
e can follow, but when the events of A are removed from s, e cannot follow. We
define the predicate TCP (A, e) (Traces-Causation) to capture this.

TCP (A, e) =̂ ∃ s • sˆ〈e〉 ∈ traces(P) ∧ (s \A)ˆ〈e〉 /∈ traces(P).

Often, we will be interested in the negation of this predicate, i.e. when the event e
cannot be caused by any object with alphabet A. Thus, we define the predicate

NTCP (A, e) =̂ ¬TCP (A, e).

Unfortunately, this definition is too strong when applied to nondeterministic
processes. Consider the process

P = a → b → STOP u b → STOP,

and suppose the nondeterminism is resolved to the left. In this case, a can
certainly cause b to occur; however, P doesn’t satisfy the above definition of
causation since both 〈a, b〉 and 〈b〉 are in traces(P).

The problem here is that P is refined by processes, such as Q = a → b →
STOP , in which a can cause b to occur. The refinements of P represent all of
the possible ways in which nondeterminism in P can be resolved. As argued
in [16], it is important to be able to detect when some property does not hold
for a refinement of P , despite the fact that it does hold for P itself. P will often
represent the design of a system, rather than its implementation; in this case,
nondeterminism in P might represent underspecification which is to be resolved
when the system is implemented. At other times, P might represent a model of a
system in which nondeterminism is used to abstract away from low-level details
of the real system in question. In both cases, it’s important to be sure that,
however the nondeterminism is resolved, the original property will still hold.

This realisation leads to the predicate CP (A, e) that holds precisely when P
has a refinement for which TCP (A, e) holds:

CP (A, e) =̂ ∃Q • P v Q ∧ TCQ(A, e).

The predicate
NCP (A, e) =̂ ¬CP (A, e)

captures the negation of CP (A, e). Thus, NC is the refinement-closure of NTC:

NCP (A, e) ≡ ∀Q • P v Q ⇒ NTCQ(A, e).

The above property appears difficult to test, because of the quantification
over all refinements of P . In order to derive a method for testing if a process
satisfies NC, we give an alternative characterisation of causation. Here, an event
e can be caused by an object o with alphabet A if there exists some trace of the
system, in which o participates, after which e can follow; but when the events of A
are removed, it’s possible that e cannot follow, in the sense that e or an earlier
event can be refused. We define the predicate FCP (A, e) (Failures-Causation)
as follows:

FCP (A, e) =̂ ∃ s, t • sˆtˆ〈e〉 ∈ traces(P) ∧ s |̀ A 6= 〈〉 ∧
(s \A, {first(t \Aˆ〈e〉)}) ∈ failures(P).

Notice that the process P defined above does satisfy this definition of cau-
sation. We can see that FCP ({a}, b) holds by taking s = 〈a〉 and t = 〈〉, since
〈a, b〉 ∈ traces(P) and (〈〉, {b}) ∈ failures(P).

We will show, below, that CP (A, e) ≡ FCP (A, e). We begin by showing that,
under FC, non-causation is refinement-closed.

Lemma 1. If ¬FCP (A, e) and Q w P then ¬FCQ(A, e).

Proof. Suppose, for a contradiction, that ¬FCP (A, e), Q w P and FCQ(A, e).
Then for some s, t:

sˆtˆ〈e〉 ∈ traces(Q) ∧ s |̀ A 6= 〈〉 ∧ (s \A, {first(t \Aˆ〈e〉)}) ∈ failures(Q).

But traces(Q) ⊆ traces(P) ∧ failures(Q) ⊆ failures(P) so

sˆtˆ〈e〉 ∈ traces(P) ∧ s |̀ A 6= 〈〉 ∧ (s \A, {first(t \Aˆ〈e〉)}) ∈ failures(P),

contradicting ¬FCP (A, e). ut

We now show that for divergence-free processes, Traces-Causation implies
Failures-Causation.

Lemma 2. If Q is non-divergent and TCQ(A, e) then FCQ(A, e).

Proof. Consider a divergence-free process Q for which TCQ(A, e) holds. Then
there is some trace s such that

sˆ〈e〉 ∈ traces(Q) ∧ (s \A)ˆ〈e〉 /∈ traces(Q).

Thus s 6= s \A, so s |̀ A 6= 〈〉. Partition s about its first event a from A, into the
sequence tˆ〈a〉ˆu so

s = tˆ〈a〉ˆu ∧ a ∈ A ∧ t |̀ A = 〈〉.

Then

sˆ〈e〉 = tˆ〈a〉ˆuˆ〈e〉 ∈ traces(Q) ∧ (s \A)ˆ〈e〉 = tˆ(u \A)ˆ〈e〉 /∈ traces(Q).

Now, t ∈ traces(Q), so let v be the longest prefix of u such that tˆ(v \ A) ∈
traces(Q), and let w be the remainder of u:

vˆw = u ∧ tˆ(v \A) ∈ traces(Q) ∧ tˆ(v \A)ˆ〈first(w \Aˆ〈e〉)〉 /∈ traces(Q).

Now Q is divergence-free, so (tˆ(v \ A), {}) ∈ failures(Q), and hence by Ax-
iom F3 (see Section 2),

(tˆ(v \A), {first(w \Aˆ〈e〉)}) ∈ failures(Q).

Combining the above results we have

tˆ〈a〉ˆvˆwˆ〈e〉 ∈ traces(Q) ∧
((tˆ〈a〉ˆv) \A, {first(w \Aˆ〈e〉)}) ∈ failures(Q),

and hence FCQ(A, e) holds. ut

We now use these lemmas to prove that Causation and Failures-Causation
are equivalent:

Theorem 1. For any divergence-free process, P :

CP (A, e) ≡ FCP (A, e).

Proof. We begin by showing that CP (A, e) ⇒ FCP (A, e). So suppose that
CP (A, e), i.e., that there exists Q w P such that TCQ(A, e). Then Q must
also be divergence-free, so by Lemma 2, FCQ(A, e) holds. Hence, by Lemma 1,
FCP (A, e) holds.

Conversely, suppose FCP (A, e) holds. Then for some s and t:

sˆtˆ〈e〉 ∈ traces(P) ∧ s |̀ A 6= 〈〉 ∧ (s \A, {c}) ∈ failures(P),
where c = first(t \Aˆ〈e〉).

We construct a process Q that refines P and such that TCQ(A, e). Define Q to
be the divergence-free process that has the same failures as P , except with all
those corresponding to the trace s \Aˆ〈c〉 removed:

failures(Q) = failures(P)−
{(s \Aˆ〈c〉ˆt, X) | t ∈ Σ∗, X ⊆ Σ} −
{(s \A,X) | (s \A,X ∪ {c}) /∈ failures(P)}.

Lemma 3, which follows, shows that such a process exists.
Observe that P v Q since failures(Q) ⊆ failures(P).
Now, Q is divergence-free, so traces(Q) = {v | (v,X) ∈ failures(Q)}. Hence

sˆtˆ〈e〉 ∈ traces(Q),

since this is not one of the traces removed. Also, s\Aˆ〈c〉 ≤ (s\A)ˆ(t\A)ˆ〈e〉 =
(sˆt) \Aˆ〈e〉 so

(sˆt) \Aˆ〈e〉 /∈ traces(Q).

Hence, TCQ(A, e) holds. ut

Finally, we must show that the process Q constructed in Theorem 1 exists.
We will need the following result from [21, Section 9.3]:

Theorem 2. Assuming the alphabet Σ is finite, for any choice of (F,D) that
satisfies the axioms (see Section 2) of the failures-divergences model of CSP,
there is a CSP process Q whose failures and divergences are F and D respectively.

Hence it will be enough to show that failures(Q) and divergences(Q) satisfy
the axioms.

Lemma 3. failures(Q), as defined in Theorem 1, and divergences(Q) = {}
satisfy the axioms F1–F4 and D1–D3 of the failures-divergences model.

Proof. Observe that since divergences(Q) = {}, Axioms D1–D3 hold trivially.
We consider each of the remaining axioms in turn. Note that

traces(Q) = traces(P)− {s \Aˆ〈c〉ˆt | t ∈ Σ∗}.

Axiom F1. Clearly traces(Q) is non-empty: it contains, at least, the empty
trace. It is prefix-closed since traces(P) is, and we remove an extensions-closed
set of traces.

Axiom F2. Q satisfies F2 since P does, and whenever we remove a failure, we
remove all failures with larger refusal sets.

Axiom F3. Suppose (v,X) ∈ failures(Q) and v ˆ 〈a〉 /∈ traces(Q). Then
(v,X) ∈ failures(P). We perform a case analysis.

– Case vˆ〈a〉 6= s \ Aˆ〈c〉. Then vˆ〈a〉 /∈ traces(P), and so (v,X ∪ {a}) ∈
failures(P), since P satisfies F3. And hence (v,X ∪ {a}) ∈ failures(Q),
by construction.

– Case v = s \ A ∧ a = c. Recall that (s \ A, {c}) ∈ failures(P). Hence
(s \ A,X ∪ {c}) ∈ failures(P), by Axiom F2. And hence (v,X ∪ {a}) =
(s \A,X ∪ {c}) ∈ failures(Q), by construction.

Axiom F4. Suppose v ˆ 〈
√
〉 ∈ traces(Q). Then v ˆ 〈

√
〉 ∈ traces(P) and

s \Aˆ〈c〉 6≤ v. Then (v,Σ) ∈ failures(P) since P satisfies F4. Hence (v,Σ) ∈
failures(Q), by construction, whether or not v equals s \A. ut

4 Testing for Authority

We now construct a refinement test, which can be automatically carried out by a
model checker such as FDR [14], that checks whether NCP (A, e) holds, i.e., that
checks that an object with alphabet A cannot cause e to occur. Note that we
restrict ourselves to finite-state processes, where this question is decidable. We
generalise the test from a single event e to a set of events B, where A∩B = {}:
we define NCP (A,B) =̂ ∀ e ∈ B • NCP (A, e).

The test works as follows. We run two copies of P in parallel, in a harness,
with a controller (or scheduler). Initially, we allow only the left-hand copy of P
to perform A events, and force both copies to do the same non-A events. At some
point, after the left-hand copy has done at least one event from A, and has just
performed some event c /∈ A, we pause the right-hand copy of P . At this point,
the left-hand copy will have performed some trace sˆ〈c〉 with s |̀ A 6= 〈〉 and
the right-hand copy will have performed s \ A. Following the definition of FC,
we continue to run the left-hand copy until it has performed a trace sˆtˆ〈e〉,
for some e ∈ B and trace t; since c /∈ A we will have c = first(t \ Aˆ〈e〉). At
this point we restart the right-hand copy of P and test whether it can refuse the
event c; if so, FCP (A,B) holds.

The events of the left- and right-hand copies of P are distinguished by using
a renaming transformation that has each copy perform its events on separate
fresh channels, left and right. The harness in which the two copies of P are run
with the controller is defined as follows.

Harness(P) = (left.P ||| right.P) ‖
{|left,right|}

Ctrl1.

Here, left.P (right.P) denotes the process that performs the event left.x (right.x)
whenever P performs x. The controller process, Ctrl1, is defined as follows.

Ctrl1 = left?c → (Ctrl2<I c ∈ A>I right.c → Ctrl1),
Ctrl2 = left?c → (Ctrl2<I c ∈ A>I (right.c → Ctrl2 u ping → Ctrl3(c))) ,

Ctrl3(c) = Ctrl5(c)<I c ∈ B>I Ctrl4(c),
Ctrl4(c) = left?d → (Ctrl5(c)<I d ∈ B>I Ctrl4(c)),
Ctrl5(c) = ping → right.c → STOP.

The controller initially forces the right-hand copy of P to perform the same
events as the left-hand copy, until the latter performs an event from A. The
controller then (in state Ctrl2) continues to force the right-hand copy to perform
the same non-A events as the left-hand copy, except after a non-A event c it
can (nondeterministically) choose to pause the right-hand copy, signalled by the
event ping. It then continues to run the left-hand copy until it performs an event
from B; if c itself is in B, then this is immediate (states Ctrl3 and Ctrl4).
The right-hand copy is then re-awoken (in state Ctrl5), also signalled by the
event ping, in order to test whether it can refuse c.

Spec1 is the most general process that mirrors the behaviour of the harness,
except that it never refuses the final event right.c.

Spec1 = left?c → (Spec2<I c ∈ A>I (right.c → Spec1 u STOP)) u STOP,

Spec2 = left?c →
(Spec2<I c ∈ A>I (right.c → Spec2 u ping → Spec3(c) u STOP))

u STOP,

Spec3(c) = Spec5(c)<I c ∈ B>I Spec4(c),
Spec4(c) = left?d → (Spec5(c)<I d ∈ B>I Spec4(c)) u STOP,

Spec5(c) = ping → right.c → STOP.

The states of the specification correspond to the states of the controller.
Notice that Spec5 cannot refuse to perform right.c. Thus, Harness(P) will refine
Spec1 if and only if the right-hand copy of P can never refuse the final c event,
i.e., if and only if NCP (A,B) holds. Thus

Spec1 v Harness(P) ≡ NCP (A,B).

The refinement can be tested using a model checker like FDR. If the refine-
ment fails, FDR will produce a counter-example; the ping events in the counter-
example mark the points at which the right-hand copy of P was paused and
restarted, and hence aid in its interpretation.

If P has N states then the size of Harness(P) is O(N2), since it runs two
copies of P . In most cases, however, the size of Harness(P) should be signif-
icantly less than O(N2). This is because for each state of the first copy of P ,
there is likely to be a fairly small number of states that the second copy of P
can be in at the same time. If this number is bounded by some constant k, then
the total number of states is O(k.N). Hence, in most cases, the time to perform
the test should grow linearly with the size of P .

5 Analysing The Confused Deputy

Having described and explained our technique, we now demonstrate its utility
for reasoning about Alice’s excess authority in the Confused Deputy scenario
described in Section 1. First, we model the system in CSP. We then show how
a simple safety analysis fails to detect Alice’s authority to overwrite Bill, before
demonstrating how to accurately detect Alice’s excess authority using a refine-
ment check of the sort described in Section 4.

5.1 Modelling the Scenario in CSP

We define a set of operations Op = {Read,Write,Append,Exec} and a set of ob-
jects Object = {Alice,Bill,Carol}1. We then define events of the form o1.o2.op
to represent object o1 performing operation op on object o2. The events asso-
ciated with an Exec operation also carry an object name, and are of the form
o1.o2.Exec.arg, representing object o1 executing object o2, passing the argu-
ment arg. Thus we use alphabet

{o1.o2.op | o1, o2 ∈ Object ∧ op ∈ {Read,Write,Append}} ∪
{o1.o2.Exec.arg | o1, o2 ∈ Object ∧ arg ∈ Object}.

An object o is involved in events that represent it operating on some other
object p, and events that represent p operating on it. Hence, the alphabet of
each o ∈ Object is defined as:

α(o) = {|o.p | p ∈ Object− {o}|} ∪ {|p.o | p ∈ Object− {o}|}.

Notice that the definition of α is such that an operation is only defined between
two distinct objects.

The configuration of permissions is defined by the acl function, which takes
an object and an operation and returns the set of objects who have permission to
perform that operation on that object: Carol has permission to write and append
to Bill; Alice has permission to execute Carol.

acl(Bill,Write) = {Carol}, acl(Bill,Append) = {Carol},
acl(Carol,Exec) = {Alice}, acl(other, other) = {}.

We define a set of parameterised CSP processes that represent the behaviour
of different types of entities within the system.

The Compiler process defines the behaviour of a compiler, with identity me,
that is able to be executed by any object with Exec permission as defined by its
access control list. Once invoked, it writes to the specified file, before appending
to its billing file, logF ile.

Compiler(me, logF ile) = ?s : acl(me,Exec)!me!Exec?file →
me.file.Write →
me.logF ile.Append → Compiler(me, logF ile).

1 Recall that we use the term “object” to include what are termed “subjects” in some
of the access control literature.

The File process defines the behaviour of a file, with identity me, that can
be written, appended or read by anyone with the appropriate permission.

File(me) = ?s : acl(me,Write)!me!Write → File(me) �
?s : acl(me,Append)!me!Append → File(me) �
?s : acl(me,Read)!me!Read → File(me).

The User process defines the behaviour of a user, with identity me, who tries
to execute any program they can, and to read, write and append to any file they
can. In this manner, we capture the most general behaviour of any user within
our model.

User(me) = me?prog!Exec?arg → User(me) �
me?file!Read → User(me) �
me?file!Write → User(me) �
me?file!Append → User(me).

The total system, System, is then the parallel composition of User(Alice),
File(Bill) and Compiler(Carol,Bill), with the above alphabets.

5.2 A Simple Safety Analysis

We can perform a simple safety analysis [7] to determine whether Alice can
ever obtain permission to overwrite Bill. This example uses static access control
lists, so clearly it is impossible for Alice to obtain permission to overwrite Bill.
However, in more complex examples, the configuration of permissions can change
over time, and so a safety analysis of the sort presented here is necessary to
determine whether a particular subject can ever acquire a particular permission.

In our example, were Alice able to obtain any permission to Bill, then System
would be able to perform some event in {|Alice.Bill|}. We can test whether System
is ever able to perform such an event by testing if it refines the most general
process that performs no such event:

Spec = CHAOSΣ−{|Alice.Bill|}.

FDR indicates that Spec vT System. As we expect, this simple safety analysis
reveals that Alice can never gain permission to overwrite Bill.

5.3 An Authority Analysis

We now analyse whether Alice has authority to cause Bill to be overwritten,
i.e., if she can cause some event from B = {o.Bill.Write | o ∈ Object}. We can
check that Alice has no such authority by testing the following refinement (with
A = α(Alice)):

Spec1 v Harness(System)

FDR completes the test in under a second and indicates that this refinement
does not hold. It provides the failure

(〈left.Alice.Carol.Exec.Bill, left.Carol.Bill.Write, ping, ping〉, {right.Carol.Bill.Write})

as a counter-example. As expected, the refinement-check reveals that by invoking
Carol with the name Bill, Alice can cause Bill to be overwritten (in the left-hand
copy), since Carol can refuse to write to Bill if not so invoked (in the right-hand
copy).

6 Discussion

The rise of least privilege environments necessitates techniques for formal anal-
ysis that can accurately reason about a subject’s authority, beyond the set of
permissions they can acquire. In particular, the emergence of instances of the
Confused Deputy vulnerability demonstrates the need to be able to detect a sub-
ject’s excess authority in spite of their minimal privileges. Safety analyses are
ill-equipped for this task because they are limited to characterising authority
in terms of acquirable permissions. As shown, this can grossly underestimate a
subject’s total authority.

We have presented a technique based on an analysis of causation for reason-
ing about authority in the presence of least-privilege. We have demonstrated its
utility for detecting a subject’s excess authority in the Confused Deputy sce-
nario. We hope that as least privilege environments become pervasive, that such
analyses will become as important as safety and information-flow analyses are
today, in order to ensure that the principle of least authority is upheld.

In the remainder of this section we discuss some related work and prospects
for extending the work of this paper.

6.1 Analysing Authority in Capability Systems

In the Confused Deputy example, it is interesting to consider how Alice might
be prevented from having authority to overwrite Bill. One solution might be
for Carol to check the filename she is passed when invoked and to not write to
this file if it is Bill. However this raises the question: what if the subject that
executes Carol has permission to write to Bill? Should Carol then write to Bill
on that subject’s behalf? Unfortunately, as noted by Spiessens [28], Carol does
not have the information available to make this determination. Even if she can
examine the access control list for Bill, it’s possible that Alice is executing her
on behalf of some other subject who does have the relevant permission.

When the Confused Deputy was first described [6], it was noted that this
problem largely disappears when considered within the context of an access
control system that unifies designation and permission, such as those based on
capabilities [4]. If Alice can designate Bill to Carol if and only if she herself has
permission to Bill, then Carol will write to Bill if and only if Alice has permission
to write to Bill, since Carol uses Alice’s designation when attempting to write
the output. Hence, another possible remedy would be to abandon the use of
identity-based access controls, such as the access control lists modelled in the
example, in favour of a capability-based approach.

Capability systems are interesting not only because they elegantly solve the
Confused Deputy problem. They also naturally support the construction of sys-
tems that adhere to the principle of least authority. Further, many of the com-
mon abstractions used in capability systems are designed to provide one object
with authority to access another, but not direct permission. Hence, being able
to reason about authority is crucial for an understanding of many of these ab-
stractions. For these reasons, capability systems present an attractive target for
the application of our techniques.

6.2 Pseudo-Permissions in Safety Analyses

Previous attempts to model and reason about authority include efforts based
on models for safety-analysis in which pseudo-permissions are used to model
authority. One such case is the use of de-facto rights in Take-Grant systems [1].
For example, a subject s with read permission to subject t, where t is writable
by subject r, has de-facto read permission to subject r. Unfortunately, the use of
de-facto rights fails to take into account the influence that t’s behaviour has on
s’s authority [28]. For example, t might behave in such a way as to prevent any
information flowing from r to s, in which case s has no authority to read r. Thus,
the use of de-facto rights necessarily over-estimates a subject’s total authority.
More generally, using pseudo-permissions to model aspects of authority requires
specific knowledge about how various permissions may interact with one another
in order to give rise to authority.

In contrast, our technique does not rely on any specific knowledge of the inter-
action between permissions, but rather extracts the causal relationships between
events from the semantics of a process. Our approach also allows the restrictive
behaviour of a subject to be explicitly modelled via appropriate CSP process
definitions. For example, by altering the definition of the Compiler process, we
could redefine Carol’s behaviour in the Confused Deputy example to not write to
the file designated by Alice if that file is Bill. An authority analysis would reveal
that Carol’s restricted behaviour reduces Alice’s authority, preventing her from
being able to cause Carol to overwrite Bill.

6.3 Non-Interference as the Absence of Authority

The property of non-interference [5] and related notions of information-flow can
be viewed as characterising the absence of any causal flow from High subjects
to Low subjects [24]. We believe that there is a connection between the absence
of causal flow and the absence of authority, as defined in this paper. Intuitively,
when applying our technique, one subject, High, has no authority over another,
Low, if High can never cause some event l ∈ α(Low) to occur. However, a lack
of information flow requires not only that High is unable to cause any event in
α(Low) from occurring, but also that High is unable to cause any event in α(Low)
from not occurring.

We intend to investigate further the relationship between our work and that
on information flow; in particular, there seem to be strong similarities with the
work of [16].

6.4 Knowledge-Behaviour Models

The work of Spiessens et al. [28] on Knowledge-Behaviour Models (KBMs) and
the SCOLL language seeks to reason about authority by explicitly taking into
account the possible restrictive effects that a subject’s behaviour can have on
another’s authority. This work directly inspired our work on using causal analyses
to characterise authority.

Here a subject’s permissions and behaviours are represented by a set of pred-
icates, with rules that define how new predicates can be derived from the current
set. SCOLL has been applied to reason about indirect authority; however, many
examples [28, 8, 29] measure authority in terms of acquirable permissions. As
noted in Section 1 and demonstrated by the analysis of the Confused Deputy
example in Section 5, this can greatly underestimate a subject’s total authority.

Despite this limitation, KBMs have been used to accurately model the Con-
fused Deputy scenario [28]. In order to model the scenario, a behaviour predicate
useForClient is introduced to describe Carol’s intent to use some designation on
Alice’s behalf. Testing whether useForClient(Bob) is derivable accurately detects
whether Carol is able to use the designation Bob on Alice’s behalf.

In this sense, the useForClient predicate can be viewed as a means to char-
acterise part of Alice’s authority, independently of the permissions Alice can ac-
quire. Unfortunately, this approach requires the incorporation of predicates, like
useForClient, that explicitly capture the notion of on whose behalf a subject
might be acting, in order to reason about authority. In contrast, our approach
requires no extra work to be undertaken, since it automatically determines on
whose behalf a subject might be acting.

References

1. Matt Bishop and Lawrence Snyder. The transfer of information and authority in
a protection system. In Proceedings of the Seventh ACM Symposium on Operating
Systems Principles, pages 45–54. ACM Press, 1979.

2. Jeremy Bryans. Reasoning about XACML policies using CSP. In SWS ’05: Pro-
ceedings of the 2005 workshop on Secure web services, pages 28–35. ACM Press,
2005.

3. Bruno Castro da Silva and Raul Fernando Weber. TuxGuardian: Um firrewall de
host voltado para o usuário final. In 5 Fórum Internacional de Software Livre,
2004. Available at: http://tuxguardian.sourceforge.net/tg-sbrc.pdf.

4. Jack B. Dennis and Earl C. Van Horn. Programming semantics for multipro-
grammed computations. Communications of the ACM, 9(3):143–154, March 1966.

5. J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy 1982, pages 11–20, 1982.

6. Norm Hardy. The confused deputy (or why capabilities might have been invented).
Operating Systems Review, 22(4):36–38, October 1988.

7. Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in op-
erating systems. Communications of the ACM, 1976.

8. Yves Jaradin, Fred Spiessens, and Peter Van Roy. SCOLL: A language for safe
capability based collaboration. Technical Report Research Report INFO-2005-10,
Université catholique de Louvain, 2005.

9. Eldar Kleiner and Tom Newcomb. On the decidability of the safety problem for
access control policies. In Sixth International Workshop on Automatic Verification
of Critical Systems (AVoCS 2006), pages 91–103, 2006.

10. Eldar Kleiner and Tom Newcomb. Using CSP to decide safety problems for access
control policies. Technical Report Research Report RR-06-04, Oxford University
Computing Laboratory, University of Oxford, January 2006.

11. Ivan Kristić. System security on the One Laptop per Child’s XO laptop: The
Bitfrost security platform, 2007. Available at: http://wiki.laptop.org/go/

Bitfrost.
12. Maxwell Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie Kohler,

David Mazières, Robert Morris, Michelle Osborne, Steve VanDeBogart, and David
Ziegler. Make least privilege a right (not a privilege). In Proceedings of the 10th
Workshop on Hot Topics in Operating Systems, June 2005.

13. David Lewis. Causation. Journal of Philosophy, 70(17):556–567, 1973.
14. Formal Systems (Europe) Limited. Failures divergences refinement: FDR2

user manual, 2005. Available at: http://www.fsel.com/documentation/fdr2/

fdr2manual.ps.
15. Peter Loscocco and Stephen Smalley. Integrating flexible support for security

policies into the Linux operating system. In Proceedings of the FREENIX Track:
2001 USENIX Annual Technical Conference (FREENIX ’01), 2001.

16. Gavin Lowe. On information flow and refinement-closure. In Proceedings of the
Workshop on Issues in the Theory of Security (WITS ’07), 2007.

17. Mark S. Miller and Jonathan S. Shapiro. Paradigm regained: Abstraction mech-
anisms for access control. In Proceedings of the 8th Asian Computing Science
Conference (ASIAN03), pages 224–242, December 2003.

18. Mark S. Miller, Bill Tulloh, and Jonathan S. Shapiro. The structure of author-
ity: Why security is not a separable concern. In Multiparadigm Programming in
Mozart/Oz, Second International Conference, MOZ 2004, Revised Selected and In-
vited Papers, LNCS 3389, pages 2–20. Springer, 2005.

19. Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access
Control and Concurrency Control. PhD thesis, Johns Hopkins University, Balti-
more, Maryland, USA, May 2006.

20. David S. Peterson, Matt Bishop, and Raju Pandey. A flexible containment mech-
anism for executing untrusted code. In Proceedings of the 11th USENIX Security
Symposium, 2002.

21. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River, NJ, USA, 1997.

22. Peter Ryan and Ragni Ryvold Arnesen. A process algebraic approach to security
policies. In DBSec, pages 301–312, 2002.

23. Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe.
Modelling and Analysis of Security Protocols: the CSP Approach. Addison Wesley,
2000.

24. Peter Y. A. Ryan. Mathematical models of computer security. In R. Gorrieri,
editor, Proceedings of the 2000 FOSAD Summer School, LNCS 2171. Springer,
2000.

25. Jerome H. Saltzer and Michael D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1208–1308, September 1975.

26. Mark Seaborn. Plash: tools for practical least privilege, 2007. Available at: http:
//plash.beasts.org.

27. Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast
capability system. In SOSP ’99: Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles, pages 170–185, 1999.

28. Alfred Spiessens. Patterns of Safe Collaboration. PhD thesis, Université catholique
de Louvain, Louvain-la-Neuve, Belgium, February 2007.

29. Fred Spiessens, Yves Jaradin, and Peter Van Roy. SCOLL and SCOLLAR: Safe
collaboration based on partial trust. Technical Report Research Report INFO-
2005-12, Université catholique de Louvain, 2005.

30. Fred Spiessens and Peter Van Roy. A practical formal model for safety analysis in
capability-based systems. In Trustworthy Global Computing, International Sympo-
sium, TGC 2005, Revised Selected Papers, LNCS 3705, pages 248–278. Springer,
2005.

31. Marc Stiegler, Alan H. Karp, Ka-Ping Yee, Tyler Close, and Mark S. Miller. Polaris:
Virus safe computing for Windows XP. Communications of the ACM, 49(9):83–
88, September 2006. Available at: http://www.hpl.hp.com/techreports/2004/
HPL-2004-221.html.

32. Marc Stiegler and Mark S. Miller. A capability based client: The DarpaBrowser.
Technical Report Focused Research Topic 5 / BAA-00-06- SNK, Combex, Inc.,
June 2002. Available at: http://www.combex.com/papers/darpa-report/index.
html.

33. Microsoft TechNet. User Account Control. Microsoft Corporation, 2007. Available
at: http://technet.microsoft.com/en-us/windowsvista/aa905113.aspx.

34. Ollie Whitehouse. An example of why UAC prompts in Vista can’t always be
trusted. posted to Symantec Security Risks Weblog, February 20, 2007 05:00 AM,
2007. Available at: http://www.symantec.com/enterprise/security response/

weblog/2007/02/an example of why uac prompts.html.
35. Ka-Ping Yee. Aligning security and usability. IEEE Security and Privacy, 2(5):48–

55, September/October 2004.

