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1 Introduction

Many security protocols have appeared in the academic literature, with var-
ious goals, such as establishing a cryptographic key, or achieving authentica-
tion (where an agent becomes sure of the identity of the other agent taking
part in the protocol). These protocols are supposed to succeed even in the
presence of a malicious agent, called an intruder ; this intruder is assumed to
have complete control over the communications network, and so can inter-
cept messages, and introduce new messages into the system using information
from messages he has previously seen. Unfortunately, a large proportion of
the protocols that have been suggested do not succeed in their stated goals!

Over the last few years, a method for analyzing security protocols using
the process algebra CSP [Hoa85] and its model checker FDR [Ros94] has
been developed [Ros95, Low96, LR97]. Briefly:

• Each agent taking part in the protocol is modelled as a CSP process;

• The most general intruder who can interact with the protocol is also
modelled as a CSP process;

• The resulting system is tested against specifications representing de-
sired security properties, such as “correctly achieves authentication”, or
“ensures secrecy”; FDR searches the state space to investigate whether
any insecure traces (i.e. sequences of messages) can occur;

• If FDR finds that the specification is not met then it returns a trace of
the system that does not satisfy the specification; this trace corresponds
to an attack upon the protocol.

This method has proved remarkably successful, and has been applied to
find attacks upon a number of protocols [Low96, LR97]. However, the task
of producing the CSP description of the system is very time-consuming, and
only possible for people well practiced in CSP—and even the experts will
often make mistakes that prove hard to spot.

Casper simplifies this process. The user specifies the protocol using a
more abstract notation, similar to the notation appearing in the academic
literature, and Casper compiles this into CSP code, suitable for checking
using FDR.

This version of the manual assumes some familiarity with FDR, at least
to the level covered by the first three parts of the FDR2 manual [For97].

In the next section we give a gentle introduction to the Casper syntax by
informally explaining an example input file. In Section 3 we describe how
to use Casper to compile the CSP code from the input file, how to run the
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code using FDR, and how to interpret the output. In Section 4, we present
a case study of the Wide Mouthed Frog protocol. In Section 5 we describe
how to model some more features that often crop up in security protocols.
In Section 9 we describe an extension to Casper that supports the simplifying
transformations of [HL99]. We sum up in Section 10.

2 An example input file

An example input file is given in Appendix A and is included in the file
NS3.spl in the standard Casper distribution and in the Casper example li-
brary [Cas98]. This file gives a definition of the 3 message version of the
Needham-Schroeder Public Key Protocol [NS78]. This protocol would nor-
mally be described as in Figure 1, where PK (A) represents A’s public key,
and {m}k represents message m encrypted with key k .

1 . A → B : A,B , {na,A}PK (B)

2 . B → A : B ,A, {na, nb}PK (A)

3 . A → B : A,B , {nb}PK (B)

Figure 1: The Needham-Schroeder Public Key Protocol

In the protocol, A seeks to establish a connection with B , and to achieve
mutual authentication (both agents should become sure as to the identity
of the other agent). The protocol begins with A selecting a nonce na, and
sending it along with its identity to B (message 1), encrypted using B ’s
public key. When B receives this message, it decrypts the message to obtain
the nonce na. It then returns the nonce na, along with a new nonce nb,
to A, encrypted with A’s key (message 2). When A receives this message he
should be assured that he is talking to B , since only B should be able to
decrypt message 1 to obtain na. A then returns the nonce nb to B , encrypted
with B ’s key. When B receives this message, it would seem that he should
be assured that he is talking to A, since only A should be able to decrypt
message 2 to obtain nb.

We consider a protocol description in “standard notation” to be a tem-
plate, parameterized by the free variables appearing within it; these variables
are instantiated with actual values in runs, normally different values in dif-
ferent runs. We adopt the following conventions in this paper: free variables
representing agents’ identities will be represented by a single capital letter
while free variables representing other data items will be represented by small
letters; when we instantiate these free variables with actual values, we will
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represent agents’ identities by proper names while other data items will have
names beginning with a capital letter.

In defining the Casper input format, we have had to make various design
decisions. Our philosophy has been to try to make the syntax as close as pos-
sible to the standard way of describing protocols, with as few special cases
as possible. We have tried to define a set of default actions (made precise
below) that are as close as possible to what would be expected by some-
body familiar with security protocols: for example, when an agent receives
a message containing a variable that he has seen in an earlier message, he
should check that the value he receives matches the value he saw earlier; the
protocol tester should not have to make this test explicit.

On the other hand, we have not tried to cover cases where the actions to
be taken by the agents are not obvious; to do so would be to run the risk
of having the agents perform actions different from those expected by the
protocol tester. In such cases, the actions should be made explicit; failure to
do so should cause Casper to raise an error message.

2.1 Overview of input file

FDR operates by explicitly enumerating and then exploring the state space
of the system in question. Hence, it can only deal with finite state systems—
typically up to a few million states—and so this method can only be used
to check a particular (typically fairly small) system running the protocol, for
example, with a single initiator and a single responder, rather than being
able to check an arbitrary system with an arbitrary number of initiators and
responders; similarly, FDR can only deal with systems where the underlying
atomic datatypes—for example, the types of nonces or keys—are themselves
finite.

It is my experience that most attacks upon protocols can be found by
considering a fairly small system. (The question of proving the security of an
arbitrarily sized system from the security of a particular system is the topic
of current research; see [Low96, Low98] for approaches to this problem.)

Because of the above observations, the Casper input file must define not
only the operation of the protocol, but also the system to be checked. There-
fore, the input file contains two distinct parts:

• A definition of the way in which the protocol operates, describing the
messages passed between the agents, the tests performed by the agents,
the types of the data items used, the initial knowledge of the agents, a
specification of what the protocol is supposed to achieve, and a defini-
tion of any algebraic equivalences over the types used.
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• A definition of the actual system to be checked, defining the agents
taking part in the actual system and the roles they play, the actual
datatypes to be used, and the intruder’s abilities.

The first part can be thought of as a function that returns a model of a
system running the protocol; the second part can then be thought of as
defining a particular image of that function, by instantiating the parameters
of the protocol.

The two parts are themselves further subdivided by section headers; these
are lines beginning with “#”. Comments may be added to the file by begin-
ning the relevant lines with “--”. Any logical line may be split across two
or more physical lines by preceding any non-logical linebreak by a backslash
(“\”).

2.2 The protocol definition

The first part of the input file defines the generic operation of the protocol.

2.2.1 Protocol description

The main part of the definition of the protocol is the definition of the
sequence of messages in the protocol. This appears under the heading
#Protocol description.

The notation used is similar to the standard method of describing pro-
tocols, as in Figure 1. However, we have to adopt the notation slightly to
make the definition fully formal.

In order to represent the protocol in ascii, we use the notation {m}{k} for
message m encrypted with key k , denoted by {m}k in Figure 1. Thus the
three messages can be represented by:

1. A -> B : {na, A}{PK(B)}

2. B -> A : {na, nb}{PK(A)}

3. A -> B : {nb}{PK(B)}

Casper adds extra fields to each message, representing the (apparent) sender
and (intended) receiver, so there is no need to include these explicitly in
the normal case where the intruder can be expected to know all the agents’
identities (but see Section 5.8 for a discussion of this point).

We also need some way of starting the protocol run off. How does A know
that he should run the protocol with B? We assume that the run is initiated
by A receiving some message from a user, or the environment, including B ’s
identity. We represent this by an extra message in the protocol description:



2.2 The protocol definition 5

0. -> A : A, B

The absence of a sender field in the above line represents that this message is
sent by the environment. We assume that such messages cannot be overheard
by the intruder; neither can they be faked.

The complete protocol description then takes the form:

#Protocol description

0. -> A : B

1. A -> B : {na, A}{PK(B)}

2. B -> A : {na, nb}{PK(A)}

3. A -> B : {nb}{PK(B)}

2.2.2 Free variables

The types of the variables and functions that are used in the protocol defini-
tion are defined under the heading “#Free variables”; this definition takes
the following form:

#Free variables

A, B : Agent

na, nb : Nonce

PK : Agent -> PublicKey

SK : Agent -> SecretKey

For example, in the protocol description, the variables na and nb should be
taken to be of type Nonce. This information is used in defining the types of
valid messages in the system. The functions PK and SK return an agent’s
public key and secret key, respectively; these functions will be defined later.

We term these “free variables” because they will be instantiated with
actual values when we consider an actual system running the protocol.

Under the same heading is a definition of which keys are inverses of which
others:

InverseKeys = (PK, SK)

The above line means that the functions PK and SK , when applied to the
same identity, return keys that are inverses of each other; so for every agent A,
PK (A) (A’s public key) and SK (A) (A’s secret key) are inverses of one
another.
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2.2.3 Processes

Each agent running in the system will be represented by a CSP process. The
names of the CSP processes representing the agents are defined as below:

#Processes

INITIATOR(A,na) knows PK, SK(A)

RESPONDER(B,nb) knows PK, SK(B)

These lines have several tasks:

• They give names to the roles played by the different agents (here
INITIATOR and RESPONDER). These names are also used as the
names of the CSP processes that represent the agents. For example,
the agent represented by A in the protocol description will be repre-
sented by a CSP process INITIATOR, parameterized by the arguments
A and na.

• The parameters and the variables following the keyword “knows” de-
fine the knowledge that the agent in question is expected to have at
the beginning of the protocol run. For example, the initiator A is
expected to know his own identity A, the nonce na, the public key
function PK (i.e. he can look up public keys in some table), and his
own secret key SK (A). The first parameter should be the string that
represents the agent in the protocol description (section 2.2.1), and will
be instantiated with the agent’s identity.

This information is used to check that the protocol definition is feasible,
in the sense that agents only send messages that they could be expected
to create and only receive messages that they could be expected to
decrypt.

• Later (under the #System heading, below), we will instantiate the pa-
rameters with actual values, so as to define a system and define the
data values that each agent should use in their runs. For example,
suppose we define a system with a particular initiator Alice: that is we
instantiate the variable A with the value Alice. Then we would expect
that in each run, Alice would use a different nonce in each run: that
is na would be instantiated with different values in each run. On the
other hand, the data items PK and SK (A) do not appear as parame-
ters, because we would expect the same values to be used in every run
(SK (A) depending upon the identity A).
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Whenever an agent sends a message, it should be the case that the agent
possesses all the components necessary to produce it; for example, B is able
to send message 2 because he knows na (learnt from message 1), nb (from his
parameter list), and PK (A) (from his knowledge of PK and A). Similarly,
if it is the intention that an agent should decrypt an encrypted component
that he receives, then he should possess the decrypting key.

An agent will accept a message it receives if all fields represented by
variables already in the agent’s knowledge contain the expected values; for
example, in message 2 above, A will accept any value for nb, but will only
accept the value for na that matches the value in his current knowledge (that
is, the same value that A sent in message 1), and will only accept a message
that is encrypted with PK (A) (his public key).

2.2.4 Specifications

The requirements of the protocol are specified under the #Specification

heading, as below:

#Specification

Secret(A, na, [B])

Secret(B, nb, [A])

Agreement(A,B,[na,nb])

Agreement(B,A,[na,nb])

The lines starting Secret specify that certain data items should be secret.
The first secret specification above may be paraphrased as:

A thinks that na is a secret that can be known to only himself
and B .

Of course, if B happens to be the intruder then there is nothing to prevent
him passing the secret on to others. However, this line will cause a CSP
specification to be generated with the meaning: if A runs the protocol, ap-
parently with B , and B is not the intruder, then the intruder will never learn
the value of na.

The lines starting Agreement are authentication specifications. The first
specifies that A is correctly authenticated to B , and the two agents agree on
the data values na and nb. More formally, it specifies:
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If:
responder B completes a protocol run, apparently with A, using
the data values na and nb

then:
the same agent A has previously been running the protocol, ap-
parently with B , with A taking the role of initiator, using the
same nonces; and further each such run of B corresponds to a
unique run of A.

This is a particular form of authentication; we discuss various other forms in
Section 5.4.

2.3 The system definition

The second part of the input file deals with the actual system to be checked.

2.3.1 Type definitions

The types of variables to be used in the actual system to be checked are
defined in a similar way to the types of the free variables:

#Actual variables

Alice, Bob, Mallory : Agent

Na, Nb, Nm : Nonce

Thus we will be dealing with a system with three agents (Mallory will be the
intruder), and three nonces; the public and secret keys of these agents are
defined in the #Functions section, below.

I normally use the convention that free variables representing agents are
denoted by a single capital letter (A, B , etc.) while actual variables repre-
senting agents are denoted by real names (Alice, Bob, etc.). Similarly, free
variables representing other data items are denoted by small letters (e.g. na)
while the corresponding actual values are denoted by identifiers starting with
a capital letter (e.g. Na).

2.3.2 Functions

Any functions used by the agents in the protocol description have to be
defined under the #Functions heading:

#Functions

symbolic PK, SK
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The above defines the functions PK (which returns an agent’s public key)
and SK (which returns an agent’s secret key) to be symbolic: this means
that Casper produces its own values to represent the results of function ap-
plications.

2.3.3 System definition

The most important part of the system definition covers which agents should
be present in the system to be checked. This is done by listing the agents,
with the parameters suitable instantiated, as follows:

#System

INITIATOR(Alice, Na)

RESPONDER(Bob, Nb)

Thus we consider a system with a single initiator, Alice (taking the role of A
in the protocol description), and a single responder, Bob, who can each run
the protocol once; they use nonces Na and Nb. The types of the parameters of
the processes should match the types of the parameters of the corresponding
processes defined under the #Processes heading (Section 2.2.3).

2.3.4 The intruder

Finally, the operation of the intruder is specified by giving his identity, and
the set of data values that he knows initially:

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Nm, PK, SK(Mallory)}

The above defines the intruder’s identity to be Mallory , and defines that
the intruder initially knows all the agents’ identities, a single nonce Nm,
the public key function PK , and his own secret key SKm. The inclusion of
the function PK in the intruder’s knowledge means that he can immediately
calculate PK (Alice), PK (Bob) and PK (Mallory).

Exercise 2.1 Copy the input file NS3.spl, and then edit it so as to
describe the following protocol:

1 . A → B : A,B , {na}PK (B)

2 . B → A : B ,A, {na, nb,B}PK (A)

3 . A → B : A,B , {nb}PK (B)

♣
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Exercise 2.2 In some protocols, nonces are considered to be predictable:
that is, an intruder may be able to predict which nonces other agents are
about to use. How may we model predictable nonces within Casper? ♣

Exercise 2.3 In the above description of the Needham-Schroeder Public
Key Protocol, B ’s public key PK (B) was not included in the parameters
of the process INITIATOR under the #Processes heading; instead, A was
assumed to know the function PK , and calculated PK (B) to send message 1.
What would be the effect of including pkb as a parameter of INITIATOR
under the #Processes heading, and then instantiating this with PKb (=
PK (Bob)) under the #System heading? ♣

Answers to the exercises appear in Appendix B.

3 Using Casper

There are two ways of using Casper: making use of the graphical front end
CasperFDR to interface with FDR; or as a stand-alone Haskell script.

3.1 Using CasperFDR

CasperFDR is started by executing the shell script CasperFDR. A filename
(without the “.spl” suffix) may be provided on the command line; if a
filename is not provided, then a file selection window will appear. CasperFDR

takes a few seconds to initialise.
The main CasperFDR window has three buttons. The compile button

compiles the script into CSP, producing input similar to the following:

Casper version 1.5

Parsing...

Type checking...

Consistency checking...

Compiling...

Writing output...

Output written to NS3.csp

Done

Compiling creates refinement assertions corresponding to the specifica-
tions from the input file. For example, three refinement assertions are created
for the file from Section 2:
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SECRET_SPEC [T= SYSTEM_S

AuthenticateINITIATORToRESPONDERAgreement_na_nb [T= SYSTEM_1

AuthenticateRESPONDERToINITIATORAgreement_na_nb [T= SYSTEM_2

The first assertion corresponds to the secrecy specifications; the second as-
sertion corresponds to the specification concerning authentication of the ini-
tiator to the responder; the third assertion corresponds to the specification
concerning authentication of the responder to the initiator.

The check button invokes FDR to check all the assertions. The output
for the example file is given in Figure 2.

The first check, concerning secrecy, fails. Two descriptions of the attack
appear on the screen. The former description describes the attack at a high
level, talking about the beliefs and knowledge of the agents: in this case,
the error is that Mallory learns Nb, which Bob thought should have been
kept secret. The latter description describes the individual messages that
are sent during the attack. The notation I_Alice represents the intruder
taking Alice’s identity, either to fake a message (as in the second message 1)
or to intercept a message intended for Alice (as in the first message 2). This
attack can be re-written as follows, labelling the two runs α and β, writing
for example β.2 for message 2 of run β:

α.1 . Alice → Mallory : {Na,Alice}PK (Mallory)

β.1 . IAlice → Bob : {Na,Alice}PK (Bob)

β.2 . Bob → IAlice : {Na,Nb}PK (Alice)

α.2 . Mallory → Alice : {Na,Nb}PK (Alice)

α.3 . Alice → Mallory : {Nb}PK (Mallory)

β.3 . IAlice → Bob : {Nb}PK (Bob)

This is the attack from [Low95].
The second assertion checked concerns authentication of the initiator to

the responder. This also fails. Bob believes that he has successfully com-
pleted a run of the protocol with Alice (using nonces Na and Nb), but Alice
does not believe that she has been running the protocol with Bob. The attack
is essentially the same as the previous.

Checking the final assertion, concerning authentication of the responder
to the initiator, fails to find an attack.

The file menu in the CasperFDR window allows the user to select a new
file, open an FDR status window (to see output from FDR during checking),
or quit.
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Starting FDR

Checking /auto/users/gavinl/Security/Casper/Manual/NS3.csp

Checking assertion SECRET_SPEC [T= SYSTEM_S

Attack found:

Top level trace:

Alice believes Na is a secret shared with Mallory

Bob believes Nb is a secret shared with Alice

The intruder knows Nb

System level:

0. -> Alice : Mallory

1. Alice -> I_Mallory : {Na, Alice}{PK(Mallory)}

1. I_Alice -> Bob : {Na, Alice}{PK(Bob)}

2. Bob -> I_Alice : {Na, Nb}{PK(Alice)}

2. I_Mallory -> Alice : {Na, Nb}{PK(Alice)}

3. Alice -> I_Mallory : {Nb}{PK(Mallory)}

3. I_Alice -> Bob : {Nb}{PK(Bob)}

The intruder knows Nb

Checking assertion AuthenticateINITIATORToRESPONDERAgreement_na_nb [T= SYSTEM_1

Attack found:

Top level trace:

Alice believes she is running the protocol, taking role INITIATOR, with

Mallory, using data items Na, Nb

Bob believes he has completed a run of the protocol, taking role RESPONDER,

with Alice, using data items Na, Nb

System level:

0. -> Alice : Mallory

1. Alice -> I_Mallory : {Na, Alice}{PK(Mallory)}

1. I_Alice -> Bob : {Na, Alice}{PK(Bob)}

2. Bob -> I_Alice : {Na, Nb}{PK(Alice)}

2. I_Mallory -> Alice : {Na, Nb}{PK(Alice)}

3. Alice -> I_Mallory : {Nb}{PK(Mallory)}

3. I_Alice -> Bob : {Nb}{PK(Bob)}

Checking assertion AuthenticateRESPONDERToINITIATORAgreement_na_nb [T= SYSTEM_2

No attack found

Done

Figure 2: Output from CasperFDR during checking
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3.2 Running Casper

The compiler is written in the functional programming language Haskell.
Executing the shell script casper will start up Haskell, and load in the Casper

files.
The compiler is then run by typing compile "filename", where the path

for the input file is given by filename.spl. Note that the quotes are necessary.
The suffix spl stands for Security Protocol Language.

This creates an output file in filename.csp. For example, running the
compiler on the example of the 3 message Needham-Schroeder Public Key
Protocol gives the following output:

? compile "NS3"

Parsing...

Type checking...

Compiling...

Writing output...

Output written to NS3.csp

Alternatively, the function vcompile may be used in the same way;
vcompile additionally writes a copy of the CSP code on the screen.

3.3 Running the output file with FDR

The output file can be loaded into FDR in the normal way. This produces
the same three assertions as described in Section 3.1. Each can be checked
using FDR If FDR finds an attack, then the FDR debugger can be used to
find the corresponding CSP trace.

In the running example, testing the first assertion—concerning secrecy—
finds that the refinement fails. The debugger shows that the right hand side
will perform the following trace (with taus not shown):

signal.Claim_Secret.Alice.Na.{Mallory}

signal.Claim_Secret.Bob.Nb.{Alice}

leak.Nb

The Casper package includes a function interpret, which can be used to
interpret the output from FDR. This function is used by typing “interpret”
at the Casper prompt (followed by return), pasting in the trace from the FDR
debugger, and then typing a blank line (this might require you to hit return
twice: once to end the last line from the debugger, and once for the blank
line). A description of the attack will then appear on the screen. For the
trace above, the following is printed:
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Alice believes Na is a secret shared with Mallory

Bob believes Nb is a secret shared with Alice

The intruder knows Nb

This is the same error as described above.
The CSP definition of the system hides most of the details at the top level.

However, moving down two levels in the debug tree, to the process SYSTEM,
gives the following trace:

env.Alice.(Env0,Mallory,<>)

intercept.Alice.Mallory.(Msg1,Encrypt.(PK_.Mallory,<Na,Alice>),<>)

fake.Alice.Bob.(Msg1,Encrypt.(PK_.Bob,<Na,Alice>),<>)

intercept.Bob.Alice.(Msg2,Encrypt.(PK_.Alice,<Na,Nb>),<>)

fake.Mallory.Alice.(Msg2,Encrypt.(PK_.Alice,<Na,Nb>),<>)

intercept.Alice.Mallory.(Msg3,Encrypt.(PK_.Mallory,<Nb>),<Na>)

fake.Alice.Bob.(Msg3,Encrypt.(PK_.Bob,<Nb>),<Na>)

leak.Nb

We can use interpret to interpret this trace:

0. -> Alice : Mallory

1. Alice -> I_Mallory : {Na, Alice}{PK_(Mallory)}

1. I_Alice -> Bob : {Na, Alice}{PK_(Bob)}

2. Bob -> I_Alice : {Na, Nb}{PK_(Alice)}

2. I_Mallory -> Alice : {Na, Nb}{PK_(Alice)}

3. Alice -> I_Mallory : {Nb}{PK_(Mallory)}

3. I_Alice -> Bob : {Nb}{PK_(Bob)}

The intruder knows Nb

Again, this is the same attack as described above.
The other assertions can be checked, and any attacks interpreted, in the

same way.
The Casper package also includes a function linterpret that produces

an interpretation of the attack as LATEX source, suitable for use with the
package protdesc.sty, which is included in the distribution.

Exercise 3.1 Run CasperFDR on your answer to Exercise 1 of Section 2.
You should detect an attack; try to understand it. Alternatively, run Casper

on the script, run FDR on the output file produced, and use the debugger
and the interpret function to understand the attack. ♣
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4 Case study: The Wide-mouthed-frog Pro-

tocol

In this section we describe how to deal with some more protocol features, and
illustrate some of the issues involved in modelling protocols by considering
the example of the Wide-mouthed-frog Protocol of [BAN89]. The protocol
can be described as follows:

1 . A → S : {ts1 ,B , kab}SKey(A)

2 . S → B : {ts2 ,A, kab}SKey(B) .

Here the server shares keys SKey(A) and SKey(B) with A and B , respec-
tively; the protocol aims to establish a session key kab and to authenticate A
to B . A invents a session key and sends it to S along with a timestamp ts1 ;
S then forwards the key to B along with a new timestamp ts2 .

As explained in Section 2, FDR cannot be used to consider the most
general system running the protocol. Instead, we have to consider particular
systems. We will consider four different systems running the protocol. FDR
finds that there is no attack upon the first system, but finds three different
attacks on the other systems. Part of the skill in using Casper is to know what
systems to try checking. Larger systems require considerably more time to
check (the rate of increase varies from protocol to protocol) so a pragmatic
approach is to start with a small system, and work up, which is what we do
here. The systems we check below have, admittedly, been tailored slightly to
discovering certain attacks; however, the first three systems are among the
first few I would try if coming at this protocol “blind”.

4.1 Modelling the protocol

Most of the modelling of the protocol is straight-forward; below, we concen-
trate on the parts that require techniques not discussed above.

The free variables are declared as follows:

#Free variables

A, B : Agent

S : Server

SKey : Agent -> ServerKey

kab : SessionKey

ts, ts’ : TimeStamp

InverseKeys = (SKey, SKey)

As explained in Section 2, most type names can be chosen by the user; one
exception to this rule concerns timestamps, which must be represented by the
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type TimeStamp. Note that the InverseKeys line declares that keys returned
by the SKey function are self-inverse, i.e. symmetric.

The agents taking part in the protocol can be defined as follows:

#Processes

INITIATOR(A,S,kab) knows SKey(A)

RESPONDER(B) knows SKey(B)

SERVER(S) knows SKey

Note that the server is assumed to know all the keys he shares with other
agents, so we specify that he knows all of the SKey function. However,
A and B only know the key that they personally share with the server,
i.e. SKey(A) and SKey(B), respectively.

The exchange of messages can then be defined by:

#Protocol description

0. -> A : B

1. A -> S : {B, ts, kab}{SKey(A)}

[ts==now or ts+1==now]

2. S -> B : {A, ts’, kab}{SKey(B)}

[ts’==now or ts’+1==now]

The lines within square brackets represent tests that are performed by the
agent who receives the message on the previous line; if the test fails, the
agent aborts the run. Within tests, the distinguished variable now represents
the current time. When S receives message 1 he checks that the timestamp
is recent—either the current time or the previous time; if the test fails then S
refuses to accept this message, and aborts the run. B makes a similar check
when he receives message 2.

When an agent sends a timestamped message (as with messages 1 and 2
above), the value of the timestamp will be set to the current time.

We consider now the specification for the protocol. It would seem that
if a responder B completes a run of the protocol apparently with A, then A
should have been running the protocol within the previous two time units:
the tests performed on the timestamps allow for a delay of one time unit per
message (this assumes that there is negligible delay between S checking mes-
sage 1 and sending message 2; we formalize this assumption below). Further,
the two agents should agree on the value of kab. Our specification is a timed
version of the Agreement specification of Section 2:

#Specification

TimedAgreement(A,B,2,[kab])
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The above specification can be paraphrased as: “If responder B completes
a protocol run, apparently with A, then the same agent A has been running
the protocol with B within the last 2 time units, and both agents agreed as
to which roles they took, and upon the value of kab; and further each such
run of A corresponds to a unique run of B .”

4.2 First system

It is normally a good idea to start off by checking a small system, because
more often than not this will uncover any attacks. We therefore consider a
system with a single initiator, Alice, and a single responder, Bob, each of
whom can run the protocol once.

#System

INITIATOR(Alice, Sam, Kab)

RESPONDER(Bob)

SERVER(Sam)

The actual variables in the system are defined by:

#Actual variables

Alice, Bob, Mallory : Agent

Sam : Server

Kas, Kbs, Kms : ServerKey

Kab : SessionKey

The time domain to be considered is also defined under the #Actual

variables heading; it should be defined to be a contiguous subsequence of
the integers, as below. In this case, we choose a very small (one point!)
time domain, so as to make checking as fast as possible. It is also necessary
to make an implementation assumption about how long any particular run
should last; this is defined by the variable MaxRunTime; if any run lasts for
longer than this time, then the agent involved should timeout and abort the
run.

TimeStamp = 0 .. 0

MaxRunTime = 0

The function SKey , which returns the key an agent shares with the server,
is defined by:

#Functions

SKey(Alice) = Kas

SKey(Bob) = Kbs

SKey(Mallory) = Kms
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We assume that the intruder initially knows all the agents’ identities and
his own key:

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, SKey(Mallory)}

When the above file is compiled using Casper, and then checked using
FDR, FDR fails to find any attack upon this small system.

4.3 Second system

We now consider a slightly different system, where the agent Alice can run
the protocol once as initiator and once as responder, possibly concurrently.
We suppose that Bob is absent, so doesn’t run the protocol.

#System

INITIATOR(Alice, Sam, Kab)

RESPONDER(Alice)

SERVER(Sam)

Note that this change to the system involves changing precisely one line of
the input file.

When we check this system, FDR discovers that the protocol does not
correctly authenticate the initiator Bob to responder Alice. By exploring the
debug tree and using interpret we can discover that the attack takes the
following form:

α.1 . Alice → Sam : {Bob, 0 ,Kab}SKey(Alice)

β.2 . MSam → Alice : {Bob, 0 ,Kab}SKey(Alice) .

The intruder simply replays Alice’s first message back at her, which she
interprets as being message 2 of a run initiated by Bob.

4.4 Third system

We will now consider a slightly different system, where the responder Bob
can run the protocol twice, sequentially:

#System

INITIATOR(Alice, Sam, Kab)

RESPONDER(Bob) ; RESPONDER(Bob)

SERVER(Sam)
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When we check this system, FDR tells us that Alice is not correctly
authenticated. Using the debugger and interpret gives the following:

Alice believes she is running the protocol, taking role INITIATOR,

with Bob, using data items Kab

Bob believes he has completed a run of the protocol, taking role

RESPONDER, with Alice, using data items Kab

Bob believes he has completed a run of the protocol, taking role

RESPONDER, with Alice, using data items Kab

Clearly the problem is that Bob thinks he has completed two runs of the
protocol, while Alice only wanted to perform a single run.

Exploring the debug tree further, we can find that the attack takes the
following form:

α.1 . Alice → Sam : {Bob, 0 ,Kab}SKey(Alice)

α.2 . Sam → Bob : {Alice, 0 ,Kab}SKey(Bob)

β.2 MSam → Bob : {Alice, 0 ,Kab}SKey(Bob) .

The intruder simply replays the message from Sam to Bob, so that Bob
thinks that Alice is trying to establish a second session.

4.5 Fourth system

We now seek an attack that breaks the 2 time unit limit. To do this, we
should consider a larger time domain:

TimeStamp = 0 .. 3

We will consider a system where initiator Alice and responder Bob each run
the protocol once, but where the server can run the protocol three times:

#System

INITIATOR(Alice, Sam, Kab)

RESPONDER(Bob)

SERVER(Sam) ; SERVER(Sam) ; SERVER(Sam)

When this system is checked, FDR finds that initiator Alice is not au-
thenticated according to the above timed specification. Using the debugger
and interpret produces the following result:

Alice believes she is running the protocol, taking role INITIATOR,

with Bob, using data items Kab

Time passes
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Time passes

Time passes

Bob believes he has completed a run of the protocol, taking role

RESPONDER, with Alice, using data items Kab

Each “time passes” represents one unit of time passing. Bob completes his
protocol run three time units after Alice was running the protocol.

Exploring the debug tree, we can find that the attack takes the following
form:

α.1 . Alice → Sam : {Bob, 0 ,Kab}SKey(Alice)

α.2 . Sam → MBob : {Alice, 0 ,Kab}SKey(Bob)

tock
β.1 . MBob → Sam : {Alice, 0 ,Kab}SKey(Bob)

β.2 . Sam → MAlice : {Bob, 1 ,Kab}SKey(Alice)

tock
γ.1 . MAlice → Sam : {Bob, 1 ,Kab}SKey(Alice)

γ.2 . Sam → MBob : {Alice, 2 ,Kab}SKey(Bob)

tock
δ.1 . MSam → Bob : {Alice, 2 ,Kab}SKey(Bob).

The intruder plays ping-pong with the server, continually replaying messages
so that the timestamp is updated each time. It should be obvious how the
intruder could continue such an exchange for longer, so as to break a timed
specification with a weaker time constraint. This attack was described by
Anderson and Needham in [AN95].

4.6 Timestamp Details

Timestamps are implemented internally within Casper using the concept of
agestamps where each timestamp actually specifies how long ago it was cre-
ated. This allows for a more accurate simulation of an infinite time domain
than using absolute timestamps would allow. To implement this it was as-
sumed that no time elapses between an agent receiving a message and sending
a response. This means that time can only pass whilst the message is being
held by the intruder.

In order to test protocols that use timestamps correctly the following
rules of thumb should be obeyed. The maximum run time should be set
to one and all checks of the form [ts == now ] should allow a timestamp
to either be now or now − 1 . The time domain should then be chosen to
be one greater than this, so typically the time bound should be specified as
MinTime = 0 ,MaxTime = 2 .
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Since agestamps are used rather than timestamps Casper will report
timestamps with negative values in counterexample traces. This indicates
how old the message is so an agestamp of value −1 indicates that one time
unit has passed since the timestamp was created.

5 Carrying on

In this section we explain how to handle a few features that often crop up in
protocols.

5.1 The % notation

It will often be the case that the sender and receiver of a message treat that
message differently. For example, in many protocols an agent receives an
encrypted message that it does not decrypt, but instead simply forwards it
to a third party. This is the case in the standard Yahalom protocol:

1 . a → b : na
2 . b → s : {a, na, nb}ServerKey(b)

3 . s → a : {b, kab, na, nb}ServerKey(a), {a, kab}ServerKey(b)

4 . a → b : {a, kab}ServerKey(b), {nb}kab .

a does not decrypt the second component of message 3, but simply forwards
it to b in message 4.

Casper expects agents receiving messages to be able to decrypt them (this
helps to trap many user errors); hence we need some way of indicating to
Casper that certain messages really aren’t intended to be decrypted: this is
the role of the %-notation. We write m % v, where m is a message and v is
a variable, to denote that the recipient of the message should not attempt to
decrypt the message m, but instead store it in the variable v . Similarly, we
write v % m to indicate that the sender should send the message stored in
the variable v , but the recipient should expect a message of the form given
by m. For example, we would model the standard Yahalom protocol using a
script with a #Protocol description section as follows:

#Protocol description

0. -> a : b

1. a -> b : na

2. b -> s : {a, na, nb}{ServerKey(b)}

3 . s -> a : {b, kab, na, nb}{ServerKey(a)}, \

{a, kab}{ServerKey(b)} % v

4. a -> b : v % {a, kab}{ServerKey(b)}, {nb}{kab}
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a stores the second component of message 3 in the variable v and forwards
it to b in message 4.

In an implementation, the agents would not be able to tell whether the
message they receive is of the expected form. We therefore allow the agents to
accept an arbitrary message of the expected type, or a special value Garbage,
representing a random sequence of bits invented by the intruder.

The %-notation can be used not only for the case where a message is
simply forwarded without decryption, but also more generally where the
sender and receiver treat the message differently. For example, consider the
following version of the 7 message Needham Schroeder Public Key Protocol:

1 . a → s : b
2 . s → a : {b,PK (b)}SSK (s)

3 . a → b : a, b, {na, a}PK (b)

4 . b → s : a
5 . s → b : {a,PK (a)}SSK (a)

6 . b → a : b, a, {na, nb, b}PK (a)

7 . a → b : a, b, {nb}PK (b) .

The purpose of message 2 is for a to obtain b’s public key. However, writing
PK (b) in the protocol description is rather misleading: a should be willing
to accept any key, call it pkb, in this message, and then use that key pkb for
the rest of the protocol. We hope that the form of message 2 ensures that the
key that a receives really is PK (b), but this is something we need to check;
indeed, in Exercise 2 we will see an example where this is not the case.

The following Casper protocol description treats PK (b) (and PK (a)) as
required:

#Protocol description

0. -> a : b

1. a -> s : b

2. s -> a : {b, PK(b) % pkb}{SSK(s)}

3. a -> b : {na, a}{pkb % PK(b)}

4. b -> s : a

5. s -> b : {a, PK(a) % pka}{SSK(s)}

6. b -> a : {na, nb, b}{pka % PK(a)}

7. a -> b : {nb}{pkb % PK(b)}

The %-notation can also be used to model protocols that make use of
either key certificates or tickets. For example, the Kehne-Langendorfer-
Scoenwalder protocol has two phases:
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• An initial exchange between A and B , which establishes a ticket of the
form {A, kab}Private(B) where kab is a session key, and Private(B) is a
key known only to B1;

• A re-authentication phase, where the ticket is re-used to re-establish
authentication.

We can model the second phase as follows:

#Protocol description

0. -> A : B, Shared(A,B) % kab, {A, Shared(A,B)}{Private(B)} % tickb

1. A -> B : na, tickb % {A, kab}{Private(B)}

2. B -> A : nb, {na}{kab}

3. A -> B : {nb}{kab}

A receives three things in message 0:

• The identity of the agent B with whom A will run the protocol, as
normal;

• The key kab to be used in the exchange, which we model as the result
of a function application Shared(A,B);

• A ticket of the form {A, Shared(A,B)}Private(B) which A stores in the
variable tickb.

One can think of an environmental message such as this as representing an
agent retrieving information from wherever it is stored.

Exercise 5.1 Produce a Casper script to model the Yahalom-BAN proto-
col:

1 . a → b : na
2 . b → s : nb, {a, na}ServerKey(b)

3 . s → a : nb, {b, kab, na}ServerKey(a), {a, kab, nb}ServerKey(b)

4 . a → b : {a, kab, nb}ServerKey(b), {nb}kab .

♣

1In the original version of the protocol, the ticket included a timestamp, which we omit

here for simplicity.
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Exercise 5.2 Adapt the script for the seven message adapted Needham
Schroeder Public Key Protocol to remove the identities from within the en-
crypted components of the key delivery messages, messages 3 and 6:

1 . a → s : b
2 . s → a : {PK (b)}SSK (s)

3 . a → b : a, b, {na, a}PK (b)

4 . b → s : a
5 . s → b : {PK (a)}SSK (a)

6 . b → a : b, a, {na, nb, b}PK (a)

7 . a → b : a, b, {nb}PK (b) .

Analyse this protocol using Casper and FDR. ♣

5.2 Vernam encryption

The notation m (+) m’ represents the bit-wise exclusive-or, also known as
Vernam encryption, of m and m ′. The receiver of a message containing a
Vernam encryption should be able to create at least one of m and m ′ so as
to obtain the other.

Exercise 5.3 Consider the TMN protocol from [TMN90]:

1 . A → S : B , {ka}pks

2 . S → B : A
3 . B → S : A, {kb}pks

4 . S → A : ka ⊕ kb

where pks is the public key of server s , ka and kb are session keys, and
the intention is to establish a new session key kb shared between A and B .
Use Casper and FDR to analyse this protocol; you should discover an attack.
Suggest how to adapt the protocol to prevent this attack, and then investigate
whether the adapted protocol is secure. ♣

5.3 Hash functions

Hash functions used in a Casper script should be declared as having the
type HashFunction in the #Free variables section. Then f(m) represents
the application of f to message m. In such cases, both the sender and the
recipient should be able to create f (m); the recipient will only accept a value
for this message if the value received matches the value he calculates for
himself. It is assumed that all hash functions are known to all agents.
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5.4 Protocol specifications

Casper supports a number of different forms of specification for protocols, as
follows:

• Secret(A, s, [B1,...,Bn]) specifies that in any completed run, A
can expect the value of the variable s to be a secret; B1 , . . . ,Bn are the
variables representing the roles with whom the secret is shared. More
precisely, this specification fails if A can complete a run, where none
of the roles B1 , . . . ,Bn is legitimately taken by the intruder, but the
intruder learns the value A gives to s .

• StrongSecret(A, s, [B1,...,Bn]) is similar to Secret(A, s, [B1,

...,Bn]), except it also includes incomplete runs. Thus, this specifi-
cation fails if A can take part in a run—complete or not—where none
of the roles B1 , . . . ,Bn is taken by the intruder, but the intruder learns
the value A gives to s . It is arguable whether one should consider a
failure of secrecy on an incomplete run to be an attack, because A will
probably not do anything with the value of s if the run is incomplete;
however, we should probably be aware of such behaviours. (Our main
reason for including this specification form is that it is the form of
secrecy considered in [Low98].)

• Agreement(A, B, [v1,...,vn]) specifies that A is correctly authen-
ticated to B , and the agents agree upon v1 , . . . , vn ; more precisely, if
B thinks he has successfully completed a run of the protocol with A,
then A has previously been running the protocol, apparently with B ,
and both agents agreed as to which roles they took, and both agents
agreed as to the values of the variables v1 , . . . , vn , and there is a one-one
relationship between the runs of B and the runs of A.

• The specification NonInjectiveAgreement(A, B, [v1,...,vn])

means that if B thinks he has successfully completed a run of the
protocol with A, then A has previously been running the protocol,
apparently with B , and both agents agreed as to which roles they took,
and both agents agreed as to the values of the variables v1 , . . . , vn .
Note that several runs of B may correspond to the same run of A.

• The specification WeakAgreement(A, B) means that if B thinks he
has successfully completed a run of the protocol with A, then A has
previously been running the protocol, apparently with B . Note that A
and B may disagree as to which role each was taking.
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• The specification Aliveness(A, B) means that if B thinks he has suc-
cessfully completed a run of the protocol with A, then A has previously
been running the protocol. Note that A may have thought he was run-
ning the protocol with someone other than B .

• The specification TimedAgreement(A, B, t, [v1,...,vn]) is a timed
version of Agreement(A, B, [v1,...,vn]) where, in addition, A’s run
was within the previous t time units of B completing his run; by con-
trast, the Agreement specification macro places no constraints on the
amount of time between the runs.

• Similarly, TimedNonInjectiveAgreement(A, B, t, [v1,...,vn]),
TimedWeakAgreement(A, B, t), and TimedAliveness(A, B, t) are
timed versions of NonInjectiveAgreement(A, B, [v1,...,vn]),
WeakAgreement(A, B), and Aliveness(A, B).

The different authentication specifications are discussed in more detail
in [Low97].

5.5 Splitting large messages

If a protocol involves a particularly large message, then the resulting message
space that FDR has to produce will be extremely large. In these circum-
stances, it is a good idea to split such large messages. For example, consider
the Yahalom protocol, which could be written using the Casper notation as:

#Protocol description

0. -> A : B

1. A -> B : na

2. B -> S : nb, {A, na}{SKey(B)}

3. S -> A : nb, {B, kab, na}{SKey(A)}, {A, kab, nb}{SKey(B)} % enc

4. A -> B : enc % {A, kab, nb}{SKey(B)}, {nb}{kab}

If we consider a small system with 3 agents, 3 shared keys, 3 nonces, and
2 session keys, then message 3 can take 8910 = 3 4 .2 .(3 3 .2 + 1 ) different
forms. It is better to write the protocol as:

#Protocol description

0. -> A : B

1. A -> B : na

2. B -> S : nb, {A, na}{SKey(B)}

3a. S -> A : nb, {B, kab, na}{SKey(A)}

3b. S -> A : {A, kab, nb}{SKey(B)} % enc
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4a. A -> B : enc % {A, kab, nb}{SKey(B)}

4b. A -> B : {nb}{kab}

Here we have split message 3 into two messages (now numbered 3a and 3b),
and we have split message 4 into two messages (now numbered 4a and 4b).
A few moments thought should convince you that this approach will identify
the same attacks. (The above protocol is included in the Casper example
library [Cas98].)

The one proviso to this approach is that if an agent learns a key in one
part of the original message, that he then uses to decrypt another part of
the message, then when the message is split, the parts must be ordered
appropriately: in the above example, message 4a must precede message 4b,
because B learns kab from message 4a, which he needs in order to decrypt
message 4b.

It is also worth mentioning that splitting messages too much will in-
crease the time taken by a check, because it will increase the number of
ways in which simultaneous runs can be interleaved. It would probably be
counter-productive to split message 2 above; it is arguable whether splitting
message 3a further would be useful. (As a rule of thumb, I tend to split mes-
sages if they have more than about 100–200 possible forms, although more
experience on this question would be useful.)

5.6 Agents withdrawing

Sometimes it is desirable to model the situation where agents can abort a
run part way through, and then start a new run (where the agent is defined
by a sequential composition within the #System section). This is done by
putting the line

WithdrawOption = True

within the #System section. (The default is WithdrawOption = False,
i.e. that agents do not abort runs part way through.)
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5.7 Delaying decryption

Consider the following, simplified version of the SPLICE protocol
of [YOM90]:

1 . A → S : B .n1
2 . S → A : {S .A.n1 .PK (B)}SK (S)

3 . A → B : {A.{n2}PK (B)}SK (A)

4 . B → S : A.n3
5 . S → B : {S .B .n3 .PK (A)}SK (S)

6 . B → A : {B .n2}PK (A)

In messages 1 and 2, A obtains B ’s public key from the key server S . In
message 3, A sends a message to B , signed with his secret key. B then
obtains A’s public key in messages 4 and 5, and so can check message 3.
Finally, B returns a message to A.

The important point to note here is that B cannot immediately decrypt
message 3—he does not obtain A’s public key until message 5. We model
this within Casper by having B store the value of message 3 in a variable enc
(using the % notation); B decrypting this message and performing the ap-
propriate checks only after receiving message 5:

0. -> A : B

1. A -> S : B, n1

2. S -> A : {S, A, n1, PK(B) % pkb}{SSK(S)}

3. A -> B : {A, ts, {n2}{pkb % PK(B)}}{SK(A)} % v

4. B -> S : A, n3

5. S -> B : {S, B, n3, PK(A) % pka}{SSK(S)}

[decryptable(v, pka) and nth(decrypt(v,pka), 1) == A and \

nth(decrypt(v,pka), 2) == now and \

decryptable(nth(decrypt(v,pka), 3), SK(B))]

<n2 := nth (decrypt (nth(decrypt(v,pka), 3), SK(B)), 1)>

6. B -> A : {B, n2}{pka % PK(A)}

In the test following message 5 and the assignment preceding message 6 we
have made use of a few functions provided by Casper:

• The function decryptable takes a message and a key and tests whether
the message may be decrypted with the key; that is, it tests whether
the message is encrypted with the inverse of the key.

• The function decrypt takes a message and a key, and decrypts the
message with the key; it should be applied only when the key is the
correct decrypting key.
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• The function head returns the first field from a message.

• The function nth( ,n) returns the nth field from a message.

Thus, the test following message 5 checks that: message 3 was encrypted with
the inverse of the key received in message 5 (which B expects to be A’s public
key); that the first field inside the encryption was A’s identity; and that the
second field was encrypted with B ’s public key. The assignment preceding
message 6 assigns n2 to the contents of the inner encrypted component.

The way in which B processes message 3 when he receives the key in
message 5 is of a fairly standard form, so I intend to introduce a primitive
action unpack and check, representing this processing, in a future release
of Casper.

5.8 Detecting type flaws

Up until now, we have been assuming that the different data types within a
system were disjoint. That is, we have been considering systems where the
atomic data items carried typing information, so that an agent receiving a
data item could tell whether it was, for example, a nonce, an agent’s identity,
or a key. However, some protocol implementations do not achieve this, and
as a result the protocols are open to attack.

Within Casper, it is possible to define that a particular data item can be
interpreted as being of more than one type by including the name of that data
item within more than one type definition line in the #Actual variables

section. For example, we can define that Bob’s identity could be interpreted
as being either an agent’s identity or a nonce via the lines:

#Actual variables

Alice, Bob, Mallory : Agent

Nb, Nb’, Bob : Nonce

Exercise 5.4 Consider the seven message version of the Needham-
Schroeder Public Key Protocol:

1 . a → s : b
2 . s → a : {b,PK (b)}SSK (s)

3 . a → b : a, b, {na , a}PK (b)

4 . b → s : a
5 . s → b : {a,PK (a)}SSK (a)

6 . b → a : b, a, {na , nb}PK (a)

7 . a → b : a, b, {nb}PK (b) .
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Code up this protocol, using a system where two agents Alice and Bob can
both run the protocol once as responder (but not as initiator), and the key
server can run the protocol once. Also, allow Bob’s nonce to be interpreted
as an agent’s identity. It is reasonable to assume that the key server knows
the identities of all genuine agents, so would not accept Bob’s nonce as being
an agent’s identity; how can we model this? FDR should find an attack upon
the resulting system. ♣

Note that the attack found in the above exercise would not work if mes-
sage 3 included the sender’s identity as plaintext: the intruder would not
be able to create message β.3 , because he does not know the identity of
the apparent sender Nb. When not considering type flaws it is normal to
omit plaintext sender and receiver fields, because it is normal to assume that
the intruder knows all the agents’ identities; however, when considering type
flaws, it can be important to include these identities.

Note that giving data items multiple types can greatly increase the state
space to be checked, so this technique should be used with some caution.

More than a little guess work is required in deciding which data items
should be given multiple types, in order to have a good chance of finding an
attack. This question certainly requires more research, but a good rule of
thumb would be to try and spot whether part of a message may be inter-
preted as coming from a different message when a data item is interpreted
as being of a different type. For example, in the attack on the Needham-
Schroeder Public Key Protocol discussed in question 4, a message 6 of the
form {Nm,Nb}PK (A) was interpreted as being part of a message 3 when the
nonce Nb was interpreted as being an agent’s identity.

5.9 Algebraic equivalences

Many cryptographic functions have interesting algebraic properties. These
are defined in a separate section, under the #Equivalences heading.

As an example, the lines:

#Equivalences

forall k1, k2, m . {{m}{k1}}{k2} = {{m}{k2}}{k1}

would express the property that the encryption property used is commuta-
tive, written mathematically as:

∀k1 , k2 ,m r {{m}k1}k2 = {{m}k2}k1 .

Within such lines, bound variables for which no type is given—each of k1 ,
k2 and m in this case—are interpreted as ranging over all messages. If such an
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equivalence only applies for some of the variables being of a particular type,
then such variables should be typed within the quantification, for example:

forall k1, k2 : SomeKeyType; m . {{m}{k1}}{k2} = {{m}{k2}}{k1}

Exercise 5.5 Investigate the following protocol:

1 . a → b : {{a, kab}PK (b)}SK (a)

2 . b → a : {{b, kab}PK (a)}SK (b)

where PK and SK return an agent’s public and secret key, respectively, and
where the intention is to establish a shared session key kab, in a setting where
the encryption used is commutative. ♣

5.10 Intruder deductions

It is sometimes useful to be able to define additional ways in which the
intruder can deduce new messages. Each deduction defines a way in which
the intruder can deduce some message from some collection of other messages
that he knows. Each deduction is defined around a turnstile (|-), with the
message to the right of the turnstile represents the new message that the
intruder can deduce, and the messages to the left represent the messages
needed for this deduction. For example:

forall k1, k2: SessionKey; pks : ServerPublicKey . \

{k1}{pks}, {k2}{pks} |- k1 (+) k2

Exercise 5.6 The above deduction is relevant to the TMN protocol (see
Exercise 3 of this section); if the intruder knows two distinct session keys
both encrypted with the same server’s public key, then he can replay them
at the server, and use the server as an oracle to learn the Vernam encryption
of the session keys. Investigate the effect of modelling the TMN protocol,
using a system without a server, but where the intruder is given the above
extra deduction. ♣

5.11 Key compromise

Some protocols are subject to key compromise attacks, where a key is
compromised—either through cryptographic techniques, or through the key
being stolen—and then used to lead to a failure of authentication in a sub-
sequent session.

All keys of a particular type can be declared to be compromisable by
including a line like the following in the #Intruder Information section:
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Crackable = SessionKey

The key will be compromised and passed to the intruder when all agents
whose runs overlap in time with any agent using that key have finished their
runs.

Exercise 5.7 Use Casper to model the following slightly simplified version
of the Needham-Schroeder Shared Key Protocol:

1 . A → S : A,B , na
2 . S → A : {na,B , kab}SKey(A)

3 . S → B : {kab,A}SKey(B)

4 . B → A : {nb}kab

5 . A → B : {nb, nb}kab

Specify that session key, such as kab, are crackable. You should find an attack
upon this protocol. ♣

In protocols using timestamps, it is convenient to specify that keys are
compromised after a particular period of time. This can be done using a line
such as:

Crackable = SessionKey (3)

which specifies that the key is compromised after 3 time units.

Exercise 5.8 Adapt the TMN Protocol script from Section 4.5 to specify
that session keys can be compromised after three time units. You should find
an attack upon the protocol. ♣

5.12 Password guessing attacks

Some protocols make use of poorly-chosen secrets, such as passwords, which
might be guessed by an intruder, who is then able to verify that guess. For
example, such a verification might be by the intruder using the guessed value
to decrypt a message to find a value that he has already seen. See [Low02]
for a description of other ways in which such guesses can be verified.

Values of certain types can be specified to be guessable by including a
line like the following in the #Intruder Information section:

Guessable = Password

When dealing with guessable types, Casper produces an extra refinement
assertion to find whether the intruder can guess a value and then verify his
guess. In most protocols, such a correct guess will also lead to further security
failures.
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Exercise 5.9 The Encrypted Key Exchange Protocol (EKE) seeks to
achieve key establishment and mutual authentication using a poorly-chosen
password:

1 . a → b : a, {pk}passwd(a,b)

2 . b → a : {{k}pk}passwd(a,b)

3 . a → b : {na}k

4 . b → a : {na, nb}k

5 . a → b : {nb}k

Here passwd(a, b) is a potentially poorly-chosen password shared between a
and b, pk is an asymmetric key created by a, and k is a symmetric key
created by b.

Model and analyse this protocol.
Then adapt the protocol so that pk is replaced by a symmetric key; you

should find an attack. ♣

6 Secure channels

Some security protocols are designed to be layered on top of a secure trans-
port protocol, such as TLS, which provides additional security services, acting
as some kind of secure channel over which the messages are passed.

There are two distinct way to specify the services provided by such secure
channels, each within a #Channels section.

6.1 Old-style secure channels

The original style of designating the properties of channels allowed the fol-
lowing two properties to be specified:

secret: the intruder cannot learn the contents of a message sent over the
channel;

authenticated: if agent b receives messages on the channel apparently
from a, then a really did send the messages, intended for b, and b
receives a prefix of the messages sent by a.

For example

#Channels

authenticated

secret
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All channels in the system are given these properties. See [BL03] for more
details of these properties.

Under this style is is also possible to use the following designator:

direct: messsages may be sent directly between hoenst agents, rather than
having to pass via the intruder; this gives shorter, clearer counter-
example traces in some cases, but leads to a larger state space.

6.2 New-style secure channels

The more recent style of designating secure channels allows each message to
be designated as being over a secure channel that provides one or more of
the following services:

Confidentiality (C ): The contents of the message are kept confidential
from the intruder;

No faking (NF ): The intruder cannot fake messages on this channel;

No redirecting (NR): The intruder cannot redirect a message so that it
is received by an agent other than that for whom it was originally
intended;

No honest redirecting (NR−); The intruder cannot redirect messages,
except when the message was originally intended for him;

No reascribing (NRA): The intruder cannot reascribe a message, so that
it appears to come from an agent other than the original sender;

No honest reascribing (NRA−): The intruder cannot reascribe a mes-
sage, other than so that it appears to come from himself.

See [Dil08, DL08] for further description of these properties.
For each message in the protocol, the user should list the properties

of the channel that the message is carried on. For example, the following
channels section specifies the use of C ∧ NR− on the channel for message 2,
and NF ∧ NRA− on the channel for messages 1 and 3.

#Channels

1 NF NRA-

2 C NR-

3 NF NRA-
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The channel properties must be listed for each message individually, and
must be listed in the order C, NF, NRA(-), NR(-).

The script below illustrates the technique on a version of the SAML Sin-
gle Sign On protocol (note that this is not a realistic model of the protocol).
A user wants to authenticate herself to a service provider, with the help of
an identity provider. The user and identity provider have pre-existing shared
secrets, so are able to establish confidential authenticated channels (that sat-
isfy C ∧ NF ∧ NRA− ∧ NR−) in each direction (e.g. bilateral TLS); the
service provider and identity provider each has some means of authenticat-
ing himself (e.g. a public key certificate) so are likewise able to establish
confidential authenticated channels in each direction; the service provider
has some means of authenticating himself (e.g. a public key certificate) so is
able to establish a one-way authenticated channel (that satisfies C ∧ NR−;
e.g. unilateral TLS) to the user, but the user cannot directly authenticate
herself to the service provider.

-- SAML Single Sign On (SSO) protocol

#Free variables

u : User

sp : ServiceProvider

idp : IdProvider

m : Message

nidp : Nonce

a : Artifact

PK : IdProvider -> PublicKey

SK : IdProvider -> SecretKey

InverseKeys = (PK, SK)

#Protocol description

0. -> u : sp, idp

-- Request for a resource: I am ’u’, I want to access ’sp’

1. u -> idp : u, sp

-- <AuthnResponse>

2. idp -> u : a, idp, sp, u

3. u -> sp : a, sp, idp, u

4. sp -> idp : a, u, sp, idp

5. idp -> sp : {u, sp, idp, nidp}{SK(idp)}

6. sp -> u : m
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#Processes

USER(u) knows PK

SERVICEPROVIDER(sp, m) knows PK

IDPROVIDER(idp, a, nidp) knows PK, SK(idp)

#Channels

1 C NF NRA- NR-

2 C NF NRA- NR-

3 C NR-

4 C NF NRA- NR-

5 C NF NRA- NR-

6 C NF NRA- NR-

#Specification

Secret(sp, m, [u])

Secret(u, m, [sp])

Agreement(sp, idp, [u, a])

Agreement(idp, sp, [u, a, nidp])

Agreement(sp, u, [m, idp])

Agreement(u, sp, [idp])

Agreement(idp, u, [sp])

Agreement(u, idp, [sp])

#Actual variables

Alice, Mallory : User

Dustin, Mallory : ServiceProvider

Sam : IdProvider

M, M’, Mm : Message

A, A’, Am : Artifact

Nidp, Nidp’, Nm : Nonce

#Functions

symbolic PK, SK

#System

USER(Alice); USER(Alice)

SERVICEPROVIDER(Dustin, M); SERVICEPROVIDER(Dustin, M’)

IDPROVIDER(Sam, A, Nidp); IDPROVIDER(Sam, A’, Nidp’)

#Intruder Information

Intruder = Mallory
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IntruderKnowledge = {Alice, Dustin, Mallory, Sam, Am, Nm, Mm, PK}

Some secure transport protocols link messages together into sessions, so
that the intruder cannot combine messages sent in different sessions so that
they are received in the same session. In some cases, the relationship be-
tween sessions is injective: each session of one agent corresponds to a single
session of another. Further, some secure transport protocols provide sym-
metric sessions: if messages sent by A in session sA are received by B in
session sB , then messages sent by B in session sB are receives by A in ses-
sion sA. Finally, some secure transport protocols ensure that messages are
received in the same order in which they are sent, for example by including
an authenticated message number; we call this the stream property. Again,
see [Dil08, DL08] for more details.

In order to use the session and stream properties the user should use
the keywords Session and Stream, optionally followed by one of the key-
words injective or symmetric, followed by a list of the message numbers
that should be joined into a single session. When two agents communicate
on session channels (even on non-symmetric session channels), it is not nec-
essary to create different sessions for each agent; the list of all messages sent
by both agents should be included in the session. For example, the following
session description specifies that messages 1, 2 and 3 are sent in a single,
injective, session channel.

Session injective 1,2,3

The script below illustrates the use of session channels within the OpenID
protocol.

-- OpenID authentication protocol

#Free variables

u : User

rp : RelyingParty

op : OpenID

m : Message

nk : Nonce

k : HashKey

h : HashFunction

k1 : NullKey

PK : OpenID -> NullKey

SK : OpenID -> NullKey
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InverseKeys = (PK, SK)

#Protocol description

0. -> u : rp

1. u -> op : rp

2. op -> u : rp,nk,h(k,u) % hash

3. u -> rp : op,nk,(hash % h(k,u)) % hashrp

4. rp -> u : u

5. u -> rp : op

6. rp -> op : u,nk,hashrp % h(k,u)

7. op -> rp : u

8. rp -> u : m

#Processes

USER(u, op)

RELYINGPARTY(rp, m)

OPENID(op, nk, k)

#Channels

Session symmetric 1,2

Session symmetric 3,8

Session symmetric 6,7

Session 4,5

1 C NF NRA NR

2 C NF NRA NR

3 C NR-

6 C NR-

7 NF NRA-

8 NF NRA-

#Specification

Agreement(u, rp, [op, nk])

Agreement(rp, u, [m, op, nk])

Agreement(u, op, [rp, nk])

Agreement(op, u, [rp, nk])

Agreement(op, rp, [u, nk])

Agreement(rp, op, [u, nk])

#Actual variables

Alice, Mallory : User

Richard, Mallory : RelyingParty
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Olive, Mallory : OpenID

M1, M2, Mm : Message

NK1, NK2, Nm : Nonce

K1, K2, Km : HashKey

#Functions

symbolic PK, SK

#System

USER(Alice, Olive); USER(Alice, Olive)

RELYINGPARTY(Richard, M1); RELYINGPARTY(Richard, M2)

OPENID(Olive, NK1, K1); OPENID(Olive, NK2, K2)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Richard, Olive, Mallory, Nm, Mm, Km}

The old-style designation of secret is equivalent to C NRA NR-; the old-
style designation of authenticated is equivalent to NF NRA NR and Stream.

7 Using data independence techniques

In [Ros98], Roscoe showed how techniques borrowed from data independence
and related fields can be used to achieve the illusion that agents can call
upon an infinite supply of different nonces, keys, etc., even though the actual
types used for these values remain finite. It is thus possible to create models
of protocols in which agents do not have to stop after a small number of
sequential runs.

In [Kle08] Kleiner used data independence methods to extend the work
of Roscoe to allow an unbounded number of parallel sessions with the same
agent to occur. Informally the idea is that agents in the system are inter-
nalised into the intruder; these agents are referred to as internal agents. This
effectively means that the intruder is given an oracle of the behaviour of the
internal agents.

In this section, we describe how these techniques can be used from within
Casper.

7.1 How to use data independence techniques

A complete input script using data independence techniques is given in Ap-
pendix A.2. We describe below the essential data independence features.
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The first change comes within the #Processes section. Variables of data
independent types are indicated using the generates keyword: values for
such variables will be freshly generated. For example, within the script of
Appendix A.2, this section is as follows:

#Processes

INITIATOR(A) knows SKey(A) generates na

RESPONDER(B,S) knows SKey(B) generates nb

SERVER(S) knows SKey generates kab

The values na, nb and kab are of data independent types, and so are freshly
generated for each run. By contrast, if this protocol was being modelled
without the use of data independence techniques then this section would be
defined as follows:

INITIATOR(A, na) knows SKey(A)

RESPONDER(B, nb) knows SKey(B)

SERVER(S, kab) knows SKey

Use of data independence techniques also affects the #Free variables

section. Each free variable can now be specified with a subtype; if this is done
then internal agents will only use actual variables that have the same subtype
for that free variable. The #Actual variables section is also altered with
each data independent variable not only receiving a subtype but also a status
that is one of the following:

InternalKnown The variable should be used by internalised agents when
communicating with an agent they think is dishonest (i.e. Known as in
known to the intruder).

InternalUnknown The variable should be used by internalised agents when
communicating with an agent they think is honest.

External The variable should be used by external agents only.

For example, the nonces in the Needham-Schroeder Public Key protocol
could be declared as follows:

#Free variables

...

na: Nonce [NonceNA]

nb : Nonce [NonceNB]

...
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#Actual variables

...

Np : Nonce (InternalKnown)

Na1, Na2 : Nonce (InternalUnknown) [NonceNA]

Nb1, Nb2 : Nonce (InternalUnknown) [NonceNB]

Ne1, Ne2 : Nonce (External)

...

Note that if a variable (either actual or free) has no subtype then it is assumed
that it is a member of every subtype. For details of how many variables of
each type are required see Section 7.2.

The last required alteration that is required is to add the flag
UnboundParallel = True to the #Intruder information section of the in-
put script.

7.2 Assumptions and Threshold Theorems

In this section we detail the assumptions that the data-independent model
makes and the minimum number of actual variables required to prove a
protocol is correct. In particular, if no attacks are found against a system
that satisfies these assumptions and has sufficient actual variables then no
attack exists on a system that contains an unbounded number of agents
running this protocol using infinite types.

The data-independent model makes one assumption in addition to the
Dolev-Yao assumptions; namely that there exist no inequality tests in the
protocol. For example, it is frequently assumed that an agent will not open
a session with itself and thus tests such as [a != b] are included. However,
in the data-independent model a test of this sort is prohibited.

The minimum number of actual variables that are required depends on
the type of specification being tested. We first consider secrecy specifications
such as Secret(b, v, as) for which the following are required:

• One external instance of b;

• Two agent identities, one honest and one dishonest;

• Two actual variables, S and P that are InternalUnknown and
InternalKnown respectively; S should be of the type and subtype of v .
P should be of every type and subtype that is not the type or subtype
of v ;

• Sufficient External values such that external agents do not generate
the same values for data-independent variables;
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We illustrate the minimum number of required variables by considering
the simplified Yahalom protocol, as presented below:

1 . a → b : na
2 . b → s : {a, na, nb}ServerKey(b)

3a. s → a : {b, kab, na, nb}ServerKey(a)

3b. s → b : {a, kab}ServerKey(b)

4 . a → b : {nb}kab.

Below is the the system setup and minimum number of variables as dictated
by the above thresholds for the specification Secret(b, kab, [a, s]).

#Free variables

a, b : Agent

s : Server

na: Nonce [NonceNA]

nb : Nonce [NonceNB]

kab : SessionKey

ServerKey : Agent -> ServerKeys

InverseKeys = (kab, kab), (ServerKey, ServerKey)

#Processes

INITIATOR(a,na) knows ServerKey(a) generates na

RESPONDER(b,s,nb) knows ServerKey(b) generates nb

SERVER(s,kab) knows ServerKey generates kab

#Actual variables

Alice, Mallory : Agent

Alice : Server

vSecret : SessionKey (InternalUnknown)

vPublic : SessionKey (InternalKnown)

vPublic : Nonce (InternalKnown)

vPublic : Nonce (InternalUnknown)

Ne1 : Nonce (External)

InverseKeys = (vSecret,vSecret)

#Inline functions

symbolic ServerKey

#System

RESPONDER(Alice, Alice, Ne1)
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We now present the thresholds for the authentication specifications.
Consider specifications of the form NonInjectiveAgreement(a,b,vs),
Agreement(a,b,vs), WeakAgreement(a,b) and Aliveness(a,b); the sys-
tem should be constructed as follows:

• For non-injective, aliveness and weak agreement specifications one ex-
ternal b should be constructed and for injective specifications two ex-
ternal b’s should be constructed (the arguments to the external b’s
should differ only in data independent values);

• Two agent identities, one honest and one dishonest;

• Sufficient External values such that external agents do not generate
the same values for data-independent variables;

• For every variable v in vs a unique InternalUnknown value vs ;

• A variable p that is of every type and subtype and has status
InternalUnknown and InternalKnown.

As an example we again consider the simplified Yahalom protocol for the
specification Agreement(a,b,[kab]).

#Free variables

a, b : Agent

s : Server

na: Nonce [NonceNA]

nb : Nonce [NonceNB]

kab : SessionKey

ServerKey : Agent -> ServerKeys

InverseKeys = (kab, kab), (ServerKey, ServerKey)

#Processes

INITIATOR(a,na) knows ServerKey(a) generates na

RESPONDER(b,s,nb) knows ServerKey(b) generates nb

SERVER(s,kab) knows ServerKey generates kab

#Actual variables

Alice, Mallory : Agent

Alice : Server

vSecret : SessionKey (InternalUnknown)

* vPublic : SessionKey (InternalUnknown)

vPublic : SessionKey (InternalKnown)
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vPublic : Nonce (InternalKnown)

vPublic : Nonce (InternalUnknown)

* Ne1, Ne2 : Nonce (External)

InverseKeys = (vSecret,vSecret)

#Inline functions

symbolic ServerKey

#System

RESPONDER(Alice, Sam, Ne1)

* RESPONDER(Alice, Sam, Ne2)

Lines that have been changed or added compared to the secrecy specification
above have been marked with a *.

Whilst the above represents the minimum number of variables required it
is recommended that more values are provided in order to avoid type-flaw and
certain secrecy attacks. For example, in the above vPublic is both a session
key and a nonce and therefore some false attacks may be introduced. Also,
above there is an overlap between InternalUnknown and InternalKnown

session keys. This can lead to false attacks on protocols such as the one
below:

1 . a → b : na
2 . b → s : {a, na, nb}ServerKey(b)

3a. s → a : nb, {b, kab, na}ServerKey(a)

3b. s → b : {a, kab}ServerKey(b)

4 . a → b : {nb}kab.

Since nb is not transmitted encrypted if kab were an InternalKnown value
the intruder could generate message 4 thus leading to a non-injective au-
thentication attack. However, this attack should be regarded as false as,
providing kab is freshly generated by the server, kab would not be known to
the intruder.

To avoid the problems above the following system would be recommended
for analysing the simplified Yahalom protocol.

#Actual variables

Alice, Mallory : Agent

Alice : Server

Kabs1, Kabs2 : SessionKey (InternalUnknown)

Kabp : SessionKey (InternalKnown)

Ni1 : Nonce (InternalKnown)

Ni1 : Nonce (InternalUnknown)
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Ne1, Ne2 : Nonce (External)

InverseKeys = (vSecret,vSecret)

#Inline functions

symbolic ServerKey

#System

RESPONDER(Alice, Sam, Ne1)

RESPONDER(Alice, Sam, Ne2)

Note that the types now share no variables in common and there is no overlap
between InternalUnknown and InternalKnown values for kab.

7.3 System Generation

The task of specifying the actual variables and external agents can be onerous
and therefore Casper has the ability to automatically generate the actual vari-
ables and the external agent definitions. To do this, the #Actual variables

section should be left blank aside from the type of the intruder. The flag
GenerateSystem = True should then be specified in the #System section.
An example is show below for the simplified Yahalom protocol above:

#Actual variables

Mallory : Agent

#Inline functions

symbolic ServerKey

#System

GenerateSystem = True

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {ServerKey(Mallory)}

UnboundParallel = True

Note that if multiple specifications are in the same file then they all must
require the same agent to be external. Hence, all specifications must be of
the form Agreement( ,b, ) or Secret(b, , ) for some b.

The system that is generated is designed in such a way to avoid any type
flaw attacks as mentioned above. However, it does not, by default, eliminate
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false attacks that occur as a result of an overlap between InternalUnknown

and InternalKnown values. To eliminate false attacks due to a variable v that
overlaps place a secrecy specification of the form Secret(a,v,as) for appro-
priate a and as in the same file. This will cause the resulting generated sys-
tem to have no overlap between the InternalUnknown and InternalKnown

values.

7.4 Repeat Sections

A repeat section within a protocol is a section that is repeated a potentially
unbounded number of times. For example, consider the following modified
version of the KSL protocol (u is a user, as is the authentication server and
s is a server that u wishes to be authenticated to):

1 . u → as : s ,ma
2a. as → u : {ma, ts , s , kab}UKey(u)

2b. as → u : {ma, ts , kab, u}SKey(s)

4 . u → s : {ma, ts , kab, u}SKey(s)

5 . s → u : nb, {ma, u}kab

6 . u → s : {s , nb}kab.

Messages 4–6 are intended to be performed repeatedly until the ticket expires.
If you were to analyse the protocol using the standard data independence
methods you would find no attacks against the protocol. However, there
exists an injective authentication attack against the repeated authentication
section as shown below:

α.1 . Alice → Sam : Bob,Ma
α.2a. Sam → Alice : {Ma, 0 ,Bob,Kab}UKey(Alice)

α.2b. Sam → Alice : {Ma, 0 ,Kab,Alice}SKey(Bob)

α.4 . Alice → Bob : {Ma, 0 ,Kab,Alice}SKey(Bob)

α.5 . Bob → Alice : Nb1 , {Ma,Alice}kab

α.6 . Alice → Bob : {Bob,Nb1}kab

β.4 . Alice → IBob : {Ma, 0 ,Kab,Alice}SKey(Bob)

β.5 . IBob → Alice : Nb1 , {Ma,Alice}kab

β.6 . Alice → IBob : {Bob,Nb1}kab.

Hence, Agreement(s, u, [kab]) does not hold in this protocol.
Casper can detect this attack if GenerateSystemForRepeatSection =

4 to 6 is specified instead of GenerateSystem = True. When this flag is
specified the system construction is altered; rather than ensuring that all
data-independent arguments to external processes are disjoint it instead does
the following. If a data-independent argument to the external process is first
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used in the non-repeat section then an InternalUnknown value is picked (and
the same value is picked for all external instances); otherwise, an external
value is picked as before.

By forcing the external processes to use InternalUnknown values for vari-
ables introduced outside of the repeat section we ensure that the internal
agents are capable of performing the same repeat section with variables dif-
fering only when they are introduced in the repeat section. Therefore, as
the internal agents simulate an unbounded number of runs this simulates an
unbounded number of repeat sessions.

7.5 Minimising state space explosion

When applying these techniques, one runs into problems with the size of the
state space of the protocol model. We describe now several techniques for
managing this state space explosion within data independence scripts.

Authentication specifications that test for agreement on many variables
can be very slow and demanding on memory to test. To speed up the checks
a specification such as Agreement(a,b,vs) can be split up into two different
specifications; Agreement(a,b,vs1) and Agreement(a,b,vs2) where vs =

vs1++vs2. Also, the use of % notation should be avoided as much as possible
as the use of it dramatically increases the amount of memory that is required.

Testing protocols that contain timed specifications such as
TimedAgreement(a,b,t,vs) can be very slow, especially if t is greater
than 2. It is recommended that this specification is instead split up into
two different checks; Agreement(a,b,vs) and TimedAgreement(a,b,t,[]).
The Agreement specification can then be split up further as mentioned
above.

Close inspection of the threshold theorems should show that as the num-
ber of authentication specifications in a single file rises so to does the number
of values that are required to show the protocol is secure. Since increasing the
number of values in the system can cause the checking time to rise greatly
it can help to split specifications into several input files that can be run
independently.

Lastly, whilst the GenerateSystem flag is extremely useful and makes
using the data-independent model substantially easier it does not produce
the minimum number of variables. It may be possible to reduce the number
of variables required by collapsing some of the types which must be done by
hand. It is recommended that the user starts off with the minimum number
of values as dictated by the above threshold theorems and then adds variables
as necessary to remove the false attacks.
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7.6 Current limitations

The current limitations upon the models using the data independence tech-
niques are as follows:

• No algebraic equivalences can be defined;

• Secure channels cannot be used;

• Guessing attacks cannot be modelled;

• Crackables are not allowed.

Note also that the counterexamples given by casperFDR are not very
informative because any interaction with an internal agent will appear as
I(Agent). Therefore, if a protocol is found to be insecure then it is recom-
mended that the user attempts to build a small system using the standard
model that exhibits the problem.

8 Specifying Properties using Temporal

Logic

Whilst most secrecy and authentication properties of security protocols can
be captured using Casper’s Secret and Agreement specifications there are
some properties that cannot. For example, the specification if Bob receives a
message 3 then previously Alice sends a message 2 or Sam sends a message
2 is not testable because of the disjunction. Furthermore, the authentication
properties apply only to complete runs of the protocol which is not true of
the temporal specifications; since any message may be specified partial runs
of the protocol are also considered. Casper therefore allows specifications
to be entered in a restricted temporal logic consisting of just one temporal
operator, previously (written as ⋄ below) along with conjunction, disjunction
and implication.

Here we provide a brief description of the semantics, for the full details of
the input syntax see Section C.6. A temporal logic specification is a formula
of the form p ⇒ q where:

• p is any formula built from ∧, ∨ and ⋄ such that p is not a disjunction
(for specifications such as p ∨ q ⇒ r the specification should be split
into two specifications, p ⇒ r and q ⇒ r);

• q is any formula built from ∧, ∨ and ⋄.
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Also, in the model that we consider the sending and receiving of messages
is considered atomic and therefore no more than one atomic event can occur
at any given time unit. Therefore, specifications such as ⋄(p ∧ q) are not
allowed (instead users can write ⋄p ∧ ⋄q). Lastly, ⋄ binds weakest of all
meaning that ⋄p ∨ q is equal to ⋄(p ∨ q).

The atomic events that we allow are the sending or receiving of a message
along with a list of the variables that should be bound. Some example events
include:

a sends message 2 containing na, nb

A sends message 2 to b containing Na for na, nb

A receives message 2 from B containing Na for Na, Nb for Nb

Note that the sender and receiver of a message and any variable in the
containing clause may be either an actual variable or a free variable. Whilst
most of the time free variables will be preferable it can result in checks taking
too long; if this is the case it is recommended that the user instead substitutes
some free variables for actual variables.

The list of bound variables in the events allows the user to force messages
to contain the same data item; in particular any data items in the same scope
are required to match. For example, in the specification:

if a receives message 2 from b containing na then

previously b sends message 1 containing na, a

the na and a are required to be the same. However, in the specification

if a receives message 3 from b containing na then

(previously b sends message 1 containing na, nb, a)

and (previously a sends message 2 containing nb)

the nb is not required to be the same. The scope of the variables can be
defined as follows:

• Any free variable on the left hand side of an implication is in scope on
the right hand side;

• In a formula such as p ∧ ⋄q any free variable in p is in scope within q .

An example input file is shown below for the Needham-Schroeder Public
Key protocol containing some temporal logic specifications:

-- Needham Schroeder Public Key Protocol, 3 message version

#Free variables
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a, b : Agent

na, nb : Nonce

PK : Agent -> PublicKey

SK : Agent -> SecretKey

InverseKeys = (PK, SK)

#Processes

INITIATOR(a,na) knows PK, SK(a)

RESPONDER(b,nb) knows PK, SK(b)

#Protocol description

0. -> a : b

1. a -> b : {na, a}{PK(b)}

2. b -> a : {na, nb}{PK(a)}

3. a -> b : {nb}{PK(b)}

#Specification

-- PASS

if B receives message 3 from A containing Nb for nb then

(previously A receives message 2 containing Nb for nb) and

(previously A sends message 3 containing Nb for nb)

-- PASS

if A receives message 2 from B containing Na for na,Nb for nb then

previously (

B sends message 2 to A containing Na for na,Nb for nb,A for a

and previously A receives message 0 containing B for b

)

#Actual variables

A, B, I : Agent

Na, Nb, Nm : Nonce

#Functions

symbolic PK, SK

#System
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INITIATOR(A, Na)

RESPONDER(B, Nb)

#Intruder Information

Intruder = I

IntruderKnowledge = {A, B, I, Nm, PK, SK(I)}

Temporal logic specifications may be used either with the normal models
or in conjunction with the data independent models. Note that when using
it with the data independent models the normal threshold theorems do not
apply and therefore the GenerateSystem flag may not be used. The external
agent should be picked to be the agent who sends or receives the event on
the left hand side of the if that is not contained within any previously

statement.

9 Simplifying transformations

Casper has been extended to implement the simplifying transformations de-
scribed in [HL99]. These transformations can be used to simplify a protocol
to make it easier to analyze. They have the property that if there is an at-
tack upon the original protocol, then there is also an attack on the simplified
version. We will assume some familiarity with the material in [HL99] in this
section.

The simplifying transformation extension to Casper can be used to define
a sequence of simplifications, which are then applied automatically to the pro-
tocol. The input script contains the first four sections of a standard Casper

script, together with an additional section, #Simplifications, containing a
list of the simplifications to be performed. An example #Simplifications

section is below, which illustrates the seven types of simplifying transforma-
tion currently supported:

#Simplifications

RemoveFields [Nonce, TimeStamp]

RemoveHashedFields f(Nonce, Agent)

RemoveEncryption {Nonce, Agent}{PublicKey}

RemoveHash f(Nonce, Nonce, TimeStamp)

SwapPairs (Nonce, Agent)

Coalese (Nonce, Nonce)

RemovePlainAndEnc
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All the simplifications are defined in terms of the type of the messages to
be simplified. Each simplification is applied uniformly to all the messages of
the protocol.

We describe each simplification in turn:

RemoveFields This simplification takes a list of types, and remove all fields
of those types from the protocol description. For example, the simplifi-
cation RemoveFields [Nonce, TimeStamp] will remove every instance
of a nonce or timestamp.

RemoveHashedFields This simplification removes some hashed messages
from the protocol description. For example, RemoveHashedFields

f(Nonce, Agent) will remove all messages of the form f (N ,A) for
N ∈ Nonce, A ∈ Agent .

RemoveEncryption This simplification strips off encryptions,
leaving just the body of a message. For example,
RemoveEncryption {Nonce, Agent}{PublicKey} will simplify
any message of the form {N ,A}K , for N ∈ Nonce, A ∈ Agent ,
K ∈ PublicKey , replacing it by N ,A.

RemoveHash This simplification strips off applications of hash functions,
leaving just the body. The example RemoveHash f(Nonce, Nonce,

TimeStamp) will simplify any message of the form f (N1 ,N2 ,T ) for
N1 ,N2 ∈ Nonce, T ∈ Timestamp, replacing it by N1 ,N2 ,T .

Coalesce This simplification takes a pair of types as an argument, and co-
alesces pairs of adjacent atoms of those types, replacing them by just
the first element. For example, Coalesce (Nonce, Nonce) will coa-
lesce adjacent pairs of nonces, replacing them by the first element of the
pair. This simplification should only be used (if the results of [HL99]
are to be applied) if the field removed is either in the intruder’s initial
knowledge, or equal to the value removed; it is up to the user to check
this condition.

SwapPairs This simplification takes a pair of types as an argument, and
swaps pairs of adjacent atoms of those types. For example, SwapPairs
(Nonce,Agent) swaps adjacent pairs of nonces and atoms.

RemovePlainAndEnc This simplification will simplify signed messages of the
form m, {m}k , for k a signature key, replacing them by just {m}k . It
is up to the user to ensure that all messages of this form are encrypted
with signature keys.
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A full sample input file can be found in Appendix A.3.
When Casper has been loaded, the command simplify "filename" will

apply the simplifications defined in the file filename.spl, and print the new
protocol description on the screen.

10 Conclusion

The Casper compiler has revolutionized our approach to analyzing protocols.
Previously, when we produced the CSP by hand, it would take about a day
to code up a protocol; now it takes only a few minutes. In particular, making
small changes to the protocol or the system to be checked typically requires
changes to only a couple of lines of the input file; when editing the CSP code
by hand, the changes necessary were spread throughout the file, and it was
hard to know whether you had remembered them all.

Also, it was easy to make mistakes when producing the CSP by hand,
and these mistakes were hard to spot. When using Casper, errors are less
common, most get caught by the compiler, and those errors that do get
through are easier to spot because the file is so much shorter.

I anticipate that the Casper compiler will continue to evolve in the future.
In particular, the following features are anticipated:

• Key compromise will be modelled;

• Non-atomic keys will be supported;

• A richer set of agent actions will be supported.

I would be interested to receive requests for further features.
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A Example input scripts

A.1 A standard input script

-- Needham Schroeder Public Key Protocol, 3 message version

#Free variables

A, B : Agent

na, nb : Nonce

PK : Agent -> PublicKey

SK : Agent -> SecretKey

InverseKeys = (PK, SK)

#Processes

INITIATOR(A,na) knows PK, SK(A)

RESPONDER(B,nb) knows PK, SK(B)

#Protocol description

0. -> A : B

1. A -> B : {na, A}{PK(B)}

2. B -> A : {na, nb}{PK(A)}
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3. A -> B : {nb}{PK(B)}

#Specification

Secret(A, na, [B])

Secret(B, nb, [A])

Agreement(A,B,[na,nb])

Agreement(B,A,[na,nb])

#Actual variables

Alice, Bob, Mallory : Agent

Na, Nb, Nm : Nonce

#Functions

symbolic PK, SK

#System

INITIATOR(Alice, Na)

RESPONDER(Bob, Nb)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Nm, PK, SK(Mallory)}

A.2 An input script using data independence tech-
niques

-- Simplified version of Yahalom

#Free variables

a, b : Agent

s : Server

na: Nonce [NonceNA]

nb : Nonce [NonceNB]

kab : SessionKey

ServerKey : Agent -> ServerKeys

InverseKeys = (kab, kab), (ServerKey, ServerKey)

#Processes

INITIATOR(a,na) knows ServerKey(a) generates na

RESPONDER(b,s,nb) knows ServerKey(b) generates nb

SERVER(s,kab) knows ServerKey generates kab

#Protocol description

0. -> a : b
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1. a -> b : na

2. b -> s : {a, na, nb}{ServerKey(b)}

3a. s -> a : {b, kab, na, nb}{ServerKey(a)}

3b. s -> b : {a, kab}{ServerKey(b)}

4. a -> b : {nb}{kab}

#Specification

Secret(b, kab, [a,s])

Agreement(a, b, [na,nb])

Agreement(a, b, [kab])

#Actual variables

Alice, Bob, Mallory : Agent

Sam : Server

Kabp : SessionKey (InternalKnown)

Kabs1, Kabs2 : SessionKey (InternalUnknown)

Np : Nonce (InternalKnown)

Na1, Na2 : Nonce (InternalUnknown) [NonceNA]

Nb1, Nb2 : Nonce (InternalUnknown) [NonceNB]

Ne1, Ne2 : Nonce (External)

InverseKeys = (Kabp, Kabp), (Kabs1, Kabs1), (Kabs2, Kabs2)

#Inline functions

symbolic ServerKey

#System

RESPONDER(Bob, Sam, Ne1)

RESPONDER(Bob, Sam, Ne2)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, Np, ServerKey(Mallory)}

UnboundParallel = True

A.3 Simplifying transformations input script

#Free variables

A, B : Agent

na, nb : Nonce

PK : Agent -> PublicKey

SK : Agent -> SecretKey

kab : SessionKey
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ts : TimeStamp

InverseKeys = (PK, SK), (kab,kab)

f : HashFunction

#Processes

INITIATOR(A,na, kab) knows PK, SK(A)

RESPONDER(B,nb,kab) knows PK, SK(B)

#Protocol description

0. -> A : B

1. A -> B : {na, A,ts}{PK(B)}

2. B -> A : {na, nb, A,ts}{PK(A)}

3. A -> B : f(na, A, f(B))

4. B -> A : {na, A}{PK(A)}

#Specification

Secret(A, na, [B])

Agreement(A,B,[na,nb])

Agreement(B,A,[na,nb])

#Simplification

RemoveFields [TimeStamp]

SwapPairs (Nonce, Agent)

RemoveHash f(Agent)

B Answers to the exercises

B.1 Answers to exercises from Section 2

Answer to Exercise 1 The only necessary changes to the input file
are in the #Protocol description section, which should be edited to the
following:

#Protocol description

0. -> A : B

1. A -> B : {na}{PK(B)}

2. B -> A : {na, nb, B}{PK(A)}

3. A -> B : {nb}{PK(B)}

Answer to Exercise 2 Predictable nonces may be modelled by including
those nonces within the intruder’s initial knowledge. With the Needham-
Schroeder protocol, the nonces Na and Nb may be made predictable by
editing the #Intruder Information section to:
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#Intruder Information

Intruder = Mallory

IntruderKnowledge = \

{Alice, Bob, Mallory, Na, Nb, Nm, PK, SK(Mallory)}

Answer to Exercise 3 Having a line of the form
INITIATOR(Alice, Na, PKb) in the #System section would have the
effect that Alice would use Bob’s public key PKb in every run of the
protocol, including those runs with an agent other than Bob. This clearly
isn’t what we want.

In general, none of the parameters of a process should depend upon the
identity of the other agent taking part in the protocol run.

B.2 Answers to exercises from Section 3

Answer to Exercise 1 When FDR is used to test the assertion dealing
with secrecy, the test should fail. The attack can be interpreted as follows:

0 . → Alice : Bob
1 . Alice → IBob : {Na}PK (Bob)

1 . IMallory → Bob : {Na}PK (Bob)

Bob believes he is running the protocol, taking role RESPONDER,
with Mallory, using data items Na, Nb
2 . Bob → Mallory : {Na,Nb,Bob}PK (Mallory)

2 . IBob → Alice : {Na,Na,Bob}PK (Alice)

Alice believes Na is a secret shared with Bob
The intruder knows Na

Alice tries running the protocol with Bob, but Mallory intercepts the first
message 1. Mallory then forwards the encrypted component from the first
message to Bob, but under his own identity (second message 1 ). Bob sees
nothing wrong with this message, so he responds with a message 2, from
which Mallory can learn the value of Na. Finally, Mallory completes the
protocol run by faking a message 2 back to Alice.

When FDR is used to test the assertion dealing with authentication of
the responder Bob, the test should fail, giving an attack very similar to the
one above.

B.3 Answers to exercises from Section 5
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Answer to Exercise 1 The protocol decription should be changed to the
following:

#Protocol description

0. -> a : b

1. a -> b : na

2. b -> s : nb, {a, na}{ServerKey(b)}

3. s -> a : nb, {b, kab, na}{ServerKey(a)}, \

{a, kab, nb}{ServerKey(b)} % v

4. a -> b : v % {a, kab, nb}{ServerKey(b)}, {nb}{kab}

Analyzing this protocol gives the following attack:

0 . → Alice : Bob
1 . Alice → IBob : Na1
1 . IBob → Alice : Na1
2 . Alice → ISam : Na2 , {Bob,Na1}ServerKey(Alice)

2 . IAlice → Sam : Na1 , {Bob,Na1}ServerKey(Alice)

3 . Sam → IBob : Na1 , {Alice,Kab,Na1}ServerKey(Bob),

{Bob,Kab,Na1}ServerKey(Alice)

3 . ISam → Alice : Na1 , {Bob,Kab,Na1}ServerKey(Alice),

{Bob,Kab,Na1}ServerKey(Alice)

4 . Alice → IBob : {Bob,Kab,Na1}ServerKey(Alice), {Na1}Kab

Answer to Exercise 2 You should find that in each case the intruder is
able to change the identity on the public key requesting message so that the
key server delivers the wrong public key, namely the intruder’s.

Answer to Exercise 3 Your input script should look something like the
following:

-- TMN protocol

#Free variables

A, B : Agent

S : Server

pks : PublicKey

sks : SecretKey

ka, kb : SessionKey

InverseKeys = (pks, sks)

#Processes
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INITIATOR(A,S,pks,ka)

RESPONDER(B,S,pks,kb)

SERVER(S,sks)

#Protocol description

0. -> A : B

[A != B]

1. A -> S : B, {ka}{pks}

[A != B]

2. S -> B : A

[A != B]

3. B -> S : A, {kb}{pks}

4. S -> A : kb (+) ka

#Specification

Secret(A, ka, [B,S])

Secret(A, kb, [B,S])

Secret(B, kb, [A,S])

#Actual variables

Alice, Bob, Mallory : Agent

Sam : Server

PKs : PublicKey

SKs : SecretKey

Ka, Kb, Km : SessionKey

InverseKeys = (PKs, SKs)

#System

INITIATOR(Alice, Sam, PKs, Ka)

RESPONDER(Bob, Sam, PKs, Kb)

SERVER(Sam, SKs)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, PKs, Km}
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This should detect an attack; which can be interpreted as follows:

1 . IAlice → Sam : Bob, {Km}PKs

2 . Sam → Bob : Alice
Bob believes Kb is a secret shared with Sam, Alice
3 . Bob → Sam : Alice, {Kb}PKs

4 . Sam → IAlice : Km ⊕ Kb
The intruder knows Kb

This attack exploits the fact that message 1 is not authenticated. Removing
the specification Secret(B, kb, [A,S]) from the Casper script will lead to
the following attack being discovered:

0 . → Alice : Bob
1 . Alice → Sam : Bob, {Ka}PKs

2 . Sam → IBob : Alice
3 . IBob → Sam : Alice, {Km}PKs

4 . Sam → Alice : Km ⊕ Ka
Alice believes Ka is a secret shared with Bob, Sam
The intruder knows Ka

which exploits the fact that message 3 is not authenticated.
These attacks can be prevented by replacing the public key encryptions

in messages 1 and 3 by encryptions using keys shared between the sender
and the server. However, there are still attacks upon the resulting protocol.
We leave it up to the reader to investigate and then prevent these attacks.

Answer to Exercise 4 To ensure that the key server accepts only genuine
agents’ identities, we will define a function realAgent which tests whether its
argument really does represent an agent’s identity; the server should apply
this test to the identities it receives in messages 1 and 4.

We also want to restrict ourselves to searching for attacks where the user
requests a connection with a genuine agent—rather than a random number
that B happens to then choose as his nonce!—so this test is applied to the
value received in message 0; note that this should be thought of more as a
restriction on the environment than a test that A should actually perform.

The protocol and system definition is then straightforward:

-- Needham Schroeder Public Key Protocol,

-- 7 message version, with type flaw.

#Free variables
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A, B : Agent

na, nb : Nonce

pka, pkb : PublicKey

PK : Agent -> PublicKey

SK : Agent -> SecretKey

PKS : Server -> ServerPublicKey

SKS : Server -> ServerSecretKey

realAgent : Agent -> Bool

S: Server

InverseKeys = (PK,SK), (PKS, SKS)

#Processes

INITIATOR(A,na,S) knows SK(A), PKS

RESPONDER(B,nb,S) knows SK(B), PKS

SERVER(S) knows PK, SKS(S)

#Protocol description

0. -> A : B

[realAgent(B)]

1. A -> S : B

[realAgent(B)]

2. S -> A : {B, PK(B) % pkb}{SKS(S)}

3. A -> B : {na, A}{pkb % PK(B)}

4. B -> S : A

[realAgent(A)]

5. S -> B : {A, PK(A) % pka}{SKS(S)}

6. B -> A : {na, nb}{pka % PK(A)}

7. A -> B : {nb}{pkb % PK(B)}

#Specification

Secret(A, na, [B])

Secret(B, nb, [A])

Agreement(A, B, [na,nb])

Agreement(B, A, [na,nb])

#Actual variables

Alice, Bob, Mallory, Nb : Agent

Na, Nb, Nm : Nonce

Sam : Server

#Functions

symbolic PK, SK, PKS, SKS

realAgent(Alice) = true
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realAgent(Bob) = true

realAgent(Mallory) = true

realAgent(_) = false

#System

RESPONDER(Alice, Na, Sam)

RESPONDER(Bob, Nb, Sam)

SERVER(Sam)

#Intruder Information

Intruder = Mallory

IntruderKnowledge = \

{Alice, Bob, Mallory, Nm, Sam, PK, PKS, SK(Mallory)}

Note that we have defined Nb so that it can be interpreted as either a
nonce or an agent’s identity.

When FDR is used to check whether initiator Alice is correctly authenti-
cated, it produces an attack which can be rewritten as:

α.3 . MalloryAlice → Bob : {Nm,Alice}PK (Bob)

α.1 . MalloryAlice → Sam : Bob
α.2 . Sam → MalloryAlice : {PKb,Bob}SKS(Sam)

α.4 . Bob → Sam : Alice
α.5 . Sam → Bob : {PKa,Alice}SKS(Sam)

α.6 . Bob → MalloryAlice : {Nm,Nb}PK (Alice)

β.3 . MalloryNb → Alice : {Nm,Nb}PK (Alice)

β.4 . Alice → MallorySam : Nb
α.7 . MalloryAlice → Bob : {Nb}PK (Bob)

In run α, Mallory imitates initiator Alice in a run of the protocol with Bob.
(Messages α.1 and α.2 serve only to get the server into the right state to
accept a message 4; there is no reason why they have to be out of order as
above.) When Bob sends a nonce challenge in message α.6 , Mallory sends
the message to Alice as a message 3, which Alice interprets as coming from
an agent Nb; Alice therefore requests Nb’s key in message β.4 , but this allows
Mallory to learn the value of Nb and so answer Bob’s nonce challenge.

This attack was described by Meadows in [Mea96].

Answer to Exercise 5 The input script should look something like:

-- A protocol to illustrate the use of algebra.

#Free variables
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a,b : Agent

kab : SessionKey

PK : Agent -> PublicKey

SK : Agent -> SecretKey

InverseKeys = (PK, SK)

#Processes

INITIATOR(a,kab) knows PK, SK(a)

RESPONDER(b) knows PK, SK(b)

#Protocol description

0. -> a : b

[a != b]

1. a -> b : {{a, kab}{PK(b)}}{SK(a)}

[a != b]

2. b -> a : {{b, kab}{PK(a)}}{SK(b)}

#Specification

Secret(b, kab, [a])

#Actual variables

A, B, M : Agent

K1, K2 : SessionKey

#Functions

symbolic PK, SK

#System

INITIATOR(A, K1)

RESPONDER(B)

#Intruder Information

Intruder = M

IntruderKnowledge = {A, B, M, PK, K2, SK(M)}

#Equivalences

-- This is the interesting bit. The following specifies that the

-- encryption is commutative

forall k1, k2, m . {{m}{k1}}{k2} = {{m}{k2}}{k1}
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The following attack can be discovered:

0 . → A : M
1 . A → M : {{A,K1}SK (A)}PK (M )

1 . IA → B : {{A,K1}PK (B)}SK (A)

B believes K1 is a secret shared with A
The intruder knows K1

The first message 1 is somewhat surprising, as it doesn’t seem to match the
protocol description. However, it is equivalent, under the algebraic equiva-
lence, to

1 . A → M : {{A,K1}PK (M )}SK (A))

which does match the protocol description. From the message in its first form,
the intruder is able to derive {A,K1}SK (A), and hence {{A,K1}SK (A)}PK (B),
which is equivalent to the fakes message 1 in the attack.

Answer to Exercise 6 Taking the input script from Exercise 3, removing
the server, and adding the given deduction will allow the following attack to
be found:

2 . ISam → Bob : Alice
Bob believes Kb is a secret shared with Sam, Alice
3 . Bob → ISam : Alice, {Kb}PKs

The intruder knows Kb

From {Kb}PKs and {Km}PKs , the intruder is able to deduce Km⊕Kb (using
the given deduction, or—in a system with a server—using the server as an
oracle), and hence Kb.

Encoding oracle properties of an honest agent in this way can sometimes
allow that agent to be left out of the system checked, but still allow attacks
to be found, often searching a smaller state space.

Answer to Exercise 7 The script should be similar to the following.

-- Needham Schroeder Shared Key Protocol, with key compromise

#Free variables

A, B : Agent

S : Server

na, nb : Nonce

SKey : Agent -> ServerKey
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kab : SessionKey

InverseKeys = (SKey,SKey), (kab,kab)

#Processes

INITIATOR(A,S,na) knows SKey(A)

RESPONDER(B,nb) knows SKey(B)

SERVER(S,kab) knows SKey

#Protocol description

0. -> A : B

[A != B]

1. A -> S : A, B, na

2. S -> A : {na, B, kab}{SKey(A)}

3. S -> B : {kab,A}{SKey(B)}

[A != B]

4. B -> A : {nb}{kab}

5. A -> B : {nb,nb}{kab}

#Specification

Agreement(B, A, [])

Agreement(A, B, [])

Secret(A, kab, [B])

Secret(B, kab, [A])

#Actual variables

Alice, Bob, Ivor : Agent

Stan : Server

Na, Nb, Ni : Nonce

Kab : SessionKey

InverseKeys = (Kab,Kab)

#Inline functions

symbolic SKey

#System

INITIATOR(Alice, Stan, Na)

RESPONDER(Bob, Nb)

SERVER(Stan,Kab)

#Intruder Information

Intruder = Ivor

IntruderKnowledge = {Alice, Bob, Ivor, Stan, Ni, SKey(Ivor)}

Crackable = SessionKey
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Checking the resulting secrecy specification reveals the following attack:

1 . IAlice → Stan : Alice,Bob,Ni
2 . Stan → IAlice : {Ni ,Bob,Kab}SKey(Alice)

3 . Stan → IBob : {Kab,Alice}SKey(Bob)

Stan withdraws from this run as SERVER
Kab has been compromised
3 . IStan → Bob : {Kab,Alice}SKey(Bob)

4 . Bob → IAlice : {Nb}Kab

5 . IAlice → Bob : {Nb,Nb}Kab

The intruder knows Kab

Answer to Exercise 8 The script should look something like the follow-
ing:

-- Wide Mouthed Frog Protocol, with key compromise

#Free variables

A, B : Agent

S : Server

kab : SessionKey

ts, ts’ : TimeStamp

SKey : Agent -> ServerKey

InverseKeys = (SKey,SKey),(kab,kab)

#Processes

INITIATOR(A,S,kab) knows SKey(A)

RESPONDER(B) knows SKey(B)

SERVER(S) knows SKey

#Protocol description

0. -> A : B

1. A -> S : {B, ts, kab}{SKey(A)}

[(ts==now or ts+1==now) and A != B]

2. S -> B : {A, ts’, kab}{SKey(B)}

[(ts’==now or ts’+1==now) and A != B]

#Specification

TimedAgreement(A,B,2,[kab])

Secret(A,kab,[B])

Secret(B,kab,[A])

#Actual variables
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Alice, Bob, Mallory : Agent

Sam : Server

Kab : SessionKey

TimeStamp = 0 .. 3

MaxRunTime = 0

InverseKeys = (Kab,Kab)

#Functions

symbolic SKey

#System

INITIATOR(Alice, Sam, Kab)

RESPONDER(Bob)

SERVER(Sam) ; SERVER(Sam) ; SERVER(Sam)

WithdrawOption = True

#Intruder Information

Intruder = Mallory

IntruderKnowledge = {Alice, Bob, Mallory, Sam, SKey(Mallory)}

Crackable = SessionKey (3)

This produces the following attack on secrecy:

0 . → Alice : Bob
1 . Alice → ISam : {Bob, 0 ,Kab}SKey(Alice)

Time passes
1 . IAlice → Sam : {Bob, 0 ,Kab}SKey(Alice)

2 . Sam → IBob : {Alice, 1 ,Kab}SKey(Bob)

Time passes
1 . IBob → Sam : {Alice, 1 ,Kab}SKey(Bob)

2 . Sam → IAlice : {Bob, 2 ,Kab}SKey(Alice)

Time passes
Kab has been compromised
1 . IAlice → Sam : {Bob, 2 ,Kab}SKey(Alice)

2 . Sam → IBob : {Alice, 3 ,Kab}SKey(Bob)

2 . ISam → Bob : {Alice, 3 ,Kab}SKey(Bob)

The intruder knows Kab

The intruder plays ping pong with Sam, keeping the key delivery messages
current, until he is able to crack the key.

Answer to Exercise 9 The original protocol can be modelled as follows:
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-- Encrypted Key Exchange

#Free variables

a, b : Agent

na, nb : Nonce

k : SessionKey

pk : PubKey

sk : SecKey

passwd : Agent x Agent -> Password

InverseKeys = (passwd, passwd), (pk, sk), (k,k)

#Processes

INITIATOR(a, pk, sk, na) knows passwd(a,b)

RESPONDER(b, nb, k) knows passwd(a,b)

#Protocol description

0. -> a : b

1. a -> b : a, {pk}{passwd(a,b)}

2. b -> a : { {k}{pk} }{passwd(a,b)}

3. a -> b : {na}{k}

4. b -> a : {na, nb}{k}

5. a -> b : {nb}{k}

#Specification

Secret(a, passwd(a,b), [b])

Secret(a, k, [b])

Agreement(b,a,[na])

#Actual variables

Alice, Bob, Mallory : Agent

Na1, Nb1, Nm : Nonce

K1, Km : SessionKey

PK1, PKm : PubKey

SK1, SKm : SecKey

InverseKeys = (PK1, SK1), (PKm, SKm), (K1, K1), (Km, Km)

#Functions

symbolic passwd

#System

INITIATOR(Alice, PK1, SK1, Na1)

RESPONDER(Bob, Nb1, K1)
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#Intruder Information

Intruder = Mallory

IntruderKnowledge = \

{Alice, Bob, Mallory, Nm, PKm, SKm, \

passwd(Mallory, Alice), passwd(Mallory, Bob), \

passwd(Alice, Mallory), passwd(Bob, Mallory)}

Guessable = Password

This produces no attacks.
If the protocol is adapted so that pk and sk are replaced by a single

symmetric key, then FDR discovers an attack where the intruder observes a
run between A and B up to message 4, guesses the value passwd(A,B), and
then verifies the guess using verifier Na. Exploring the debug tree, one can
find out that the intruder : decrypts the second message with passwd(A,B)
to obtain {K }PK ; decrypts the first message with passwd(A,B) to obtain
PK ; decrypts {K }PK with PK to obtain K (this step is not possible if PK
is an asymmetric key); decrypts the third message to obtain Na; and decrypts
the fourth message to obtain Na again; the fact that he obtains the same
value Na from both these decryptions verifies the guess. It is also possible
to verify the guess by decrypting the fourth and fifth messages to obtain Nb
in two different ways.

C The Casper syntax

In this section we present the formal syntax for Casper scripts. We use EBNF,
writing literals in teletype font within quotes; terms within curly brackets
may be repeated zero or more times; terms within square brackets are op-
tional; linebreaks are significant within Casper scripts, and are represented
by “ ”. Logical lines may be split across two or more lines by ending lines
with “\” or by indenting the following line. Lines beginning with “--” are
comments.

C.1 Basic definitions

identifier ::= letter {letter | digit}

atom ::= identifier | fn-app

fn-app ::= identifier ‘(’ identifier {‘,’ identifier} ‘)’
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msg ::= identifier |
identifier ‘(’ msg ‘)’ |
msg ‘,’ msg |
‘{’ msg ‘}{’ atom ‘}’ |
msg ‘(+)’ msg |
msg ‘%’ identifier |
identifier ‘%’ msg |
‘(’ msg ‘)’

type-name ::= identifier

process-name ::= identifier

The bit-wise exclusive-or operator (+) binds tighter than the % operator,
which binds tighter than the sequencing operator “,”.

There are two distinguised type names in Casper: TimeStamp and
HashFunction.

C.2 Syntax summary

script ::= free-vars-section
processes-section
prot-desc-section
spec-section
[equivalences-section]
act-var -section
[functions-section]
system-section
intruder -section
channels-section

C.3 Free variables section

free-vars-section ::= ‘#Free variables’
{var -dec | inv -keys-dec}

var -dec ::= identifier {‘,’ identifier} ‘:’ type-expr [subtype-expr ]

subtype-expr ::= ‘[’ identifier {‘,’ identifier} ‘]’

type-expr ::= type-name |
type-name {‘x’ type-name} ‘->’ type-name
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inv -keys-dec ::= ‘InverseKeys =’ inv -key-pair
{‘,’ inv -key-pair}

inv -key-pair ::= ‘(’ identifier ‘,’ identifier ‘)’

Each inv -key-pair should be either a pair of variable names, or a pair of
function names.

C.4 Processes section

processes-section ::= ‘#Processes’ {process-def }

process-def ::= process-name
‘(’ identifier {‘,’ identifier} ‘)’
[knows-statement ]
[generates-statement ]

knows-statement ::= ‘knows’ atom {‘,’ atom}

generates-statement ::= ‘generates’ identifier {‘,’ identifier}

The first parameter of each process should represent agent identities used in
the protocol description.

C.5 Protocol description section

prot-desc-section ::= ‘#Protocol description’
{prot-msg | env -msg-send | env -msg-rec}

prot-msg ::= [assignment-line ]
line-no ‘.’ identifier ‘->’ identifier ‘:’
msg
[test-line ]

assignment-line ::= ‘<’ assignment {‘;’ assignment} ‘>’

asssignment ::= identifier ‘:=’ fdr -expression

test-line ::= ‘[’ test ‘]’

test ::= fdr -expression

env -msg-rec ::= line-no ‘.’ ‘->’ identifier ‘:’ msg
[test-line ]

env -msg-send ::= [assignment-line ]
line-no ‘.’ identifier ‘->’ ‘:’ msg

line-no ::= (letter | digit) {letter | digit}
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The sender and receiver fields for each message (i.e. the fields preceding
and following the ‘->’) should both be declared as identities of agents in the
#Processes section.

The type fdr -expression represents all expressions accepted by FDR2; the
syntax is basically that of a simple functional language; see [For97] for details.

C.6 Specification section

spec-section ::= ‘#Specification’ {spec | temporal -spec}

spec ::= ‘Secret’
‘(’ identifier ‘,’ atom ‘,’ agents ‘)’ |

‘StrongSecret’
‘(’ identifier ‘,’ atom ‘,’ agents ‘)’ |

‘Agreement’ ‘(’ identifier ‘,’ identifier ‘,’
fields ‘)’ |

‘NonInjectiveAgreement’ ‘(’ identifier
‘,’ identifier ‘,’ fields ‘)’ |

‘WeakAgreement’
‘(’ identifier ‘,’ identifier ‘)’ |

‘Aliveness’
‘(’ identifier ‘,’ identifier ‘)’ |

‘TimedAgreement’
‘(’ identifier ‘,’ identifier ‘,’
time ‘,’ fields ‘)’ |

‘TimedNonInjectiveAgreement’
‘(’ identifier ‘,’ identifier ‘,’
time ‘,’ fields ‘)’ |

‘TimedWeakAgreement’ ‘(’ identifier ‘,’
identifier ‘,’ time ‘)’ |

‘TimedAliveness’
‘(’ identifier ‘,’ identifier ‘,’ time ‘)’

agents ::= ‘[’ identifier {‘,’ identifier} ‘]’

fields ::= ‘[’ [identifier {‘,’ identifier}] ‘]’

time ::= N

temporal -spec ::= ‘if’ temporal -formula ‘then’ temporal -formula

2In fact, Casper doesn’t parse such expressions itself, but simply copies them directly

into the output file, for FDR to subsequently parse.
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temporal -formula ::= temporal -formula ‘and’ temporal -formula
| temporal -formula ‘or’ temporal -formula
| ‘(’ temporal -formula ‘)’
| ‘previously’ temporal -formula
| temporal -event

temporal -event ::= identifier (‘sends’ | ‘receives’) ‘message’

line-no [(‘from’ | ‘to’) identifier ]

[‘containing’ substitution {‘,’ substitution}]

substitution ::= identifier | (identifier ‘for’ identifier)

C.7 Algebraic equivalences section

equivalences-section ::= ‘#Equivalences’ {equiv -dec}

equiv -dec ::= ‘forall’ quants ‘.’ msg ‘=’ msg

quants ::= quant {‘;’ quant}

quant ::= identifier {‘,’ identifier}
[‘:’ type-name]

C.8 Actual variables section

act-var -section ::= ‘#Actual variables’ {act-dec}

act-dec ::= act-var -dec | timestamp-def |
maxruntime-def | act-inv -keys-dec

act-var -dec ::= identifier {‘,’ identifier} ‘:’
type-name [di -tag ] [subtype-expr ]

subtype-expr ::= ‘[’ identifier {‘,’ identifier} ‘]’

di -tag ::= ‘External’ |
‘InternalKnown’ |
‘InternalUnknown’

timestamp-def ::= ‘TimeStamp’ ‘=’ time ‘..’ time

maxruntime-def ::= ‘MaxRunTime’ ‘=’ time

act-inv -keys-dec ::= act-inv -key-pair {‘,’ act-inv -key-pair}

act-inv -key-pair ::= ‘(’ identifier ‘,’ identifier ‘)’



C.9 Functions section 77

C.9 Functions section

functions-section ::= ‘#Functions’ {functions-line}

functions-line ::= explicit-function-line | symbolic-line

explicit-function-line ::= fn-def -lhs ‘=’ identifier

fn-def -lhs ::= identifier ‘(’ fn-def -arg
{‘,’ fn-def -arg} ‘)’

fn-def -arg ::= identifier | ‘ ’

symbolic-line ::= ‘symbolic’ identifier
{‘,’ identifier}

C.10 System section

system-section ::= ‘#System’ {agent-dec} [withdraw -dec][generate-system]

agent-dec ::= instance-dec {‘;’ instance-dec}

instance-dec ::= process-name ‘(’ identifier
{‘,’ identifier} ‘)’

withdraw -dec ::= ‘WithdrawOption’ ‘=’ (‘True’ | ‘False’)

generate-system ::= ‘GenerateSystem = True’

| ‘GenerateSystemForRepeatSection=’

line-no ‘to’ line-no

C.11 Intruder section

intruder -section ::= ‘#Intruder Information’
‘Intruder’ ‘=’ identifier
‘IntruderKnowledge’ ‘=’

‘{’ atom {‘,’ atom} ‘}’
[internal -proc-dec]
[stale-knowledge-dec]
[crackable-dec]
[guessable-dec]
[‘UnboundParallel = True’]
{deduction}

deduction ::= ‘forall’ quants ‘.’
msg {‘,’ msg} ‘|-’ msg
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internal -proc-dec ::= ‘IntruderProcesses’ ‘=’
process-name {‘,’ process-name}

stale-knowledge-dec ::= ‘StaleKnowledge’ ‘=’
(‘True’ | ‘False’)

crackable-dec ::= ‘Crackable’ ‘=’ crackable-type
{‘,’ crackable-type}

crackable-type ::= type-name [‘(’ time ‘)’]

guessable-dec ::= ‘Guessable’ ‘=’ type-name
{‘,’ type-name}

C.12 Secure channels section

channels-section ::= ‘#Channels’
({old -channel -spec} | {channel -spec})

old -channel -spec ::= ‘authenticated’ |
‘secret’ |
‘direct’

channel -spec ::= msg-channel -spec | session-channel -spec

msg-channel -spec ::= line-no msg-channel -prop

msg-channel -prop ::= [‘C’] [‘NF’] [‘NRA’ | ‘NRA-’] [‘NR’ | ‘NR-’]

session-channel -spec ::= (‘Session’ | ‘Stream’)
[‘injective’ | ‘symmetric’]
line-no {‘,’ line-no}

C.13 Simplifying transformations script

simplifying-script ::= free-vars-section
processes-section
prot-desc-section
spec-section
simplifying-section

C.14 Simplifications section

simpl -section ::= ‘#Simplifications’ {simpl}
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simpl ::= ‘RemoveFields’ ‘[’ type-name {‘,’ type-name}
‘]’ |

‘RemoveHashedFields’ hash-type |
‘RemoveEncryption’ encrypt-type |
‘RemoveHash’ hash-type |
‘SwapPairs’

‘(’ type-name ‘,’ type-name ‘)’ |
‘Coalesce’

‘(’ type-name ‘,’ type-name ‘)’ |
‘RemovePlainAndEnc’

encrypt-type ::= ‘{’ type ‘}{’ type-name ‘}’

hash-type ::= identifier ‘(’ type ‘)’

type ::= type-name | encrypt-type |
hash-type | type ‘(+)’ type


