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Abstract

It has long been realized that the web could benefit from having its content
understandable and available in a machine processable form. The Semantic
Web aims to achieve this via annotations that use terms defined in ontologies
to give well defined meaning to Web accessible information and services.
OWL, the ontology language recommended by the W3C for this purpose,
was heavily influenced by Description Logic research. In this chapter we
review briefly some early efforts that combine Description Logics and the
Web, including predecessors of OWL such as OIL and DAML+OIL. We
then go on to describe OWL in some detail, including the various influences
on its design, its relationship with RDFS, its syntax and semantics, and a
range of tools and applications.1

14.1 Background and history

The World Wide Web, while wildly successful in growth, may be viewed as
being limited by its reliance on languages such as HTML that are focused
on presentation (i.e., text formatting) rather than content. Languages such
as XML do add some support for capturing the meaning of Web content
(instead of simply how to render it in a browser), but more is needed in
order to support intelligent applications that can better exploit the ever
increasing range of information and services accessible via the Web. Such
applications are urgently needed in order to avoid overwhelming users with

1 This chapter provides an update to the chapter in previous printings of this book entitled “Dig-
ital Libraries and Web-Based Information Systems” by Ian Horrocks, Deborah L. McGuinness
and Christopher A. Welty. The previous chapter was written prior to the completion of OWL,
and focused on earlier description logic based ontology languages for the Semantic Web. Some
of the material in the current chapter has previously appeared in other forms in conference and
journal publications, in particular in [Horrocks et al., 2003].
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the sheer volume of information becoming available.
The Semantic Web has been envisaged as an evolution of the existing Web

from a linked document repository into an application platform where “infor-
mation is given well-defined meaning, better enabling computers and people
to work in cooperation” [Berners-Lee et al., 2001]. This is to be achieved by
augmenting the existing layout information with semantic annotations that
add descriptive terms to Web content, with the meaning of such terms being
defined in ontologies.

In order for the meaning of semantic annotations to be accessible to appli-
cations (as well as humans), the ontology language being used should have a
precisely defined semantics and should be amenable to automated process-
ing. Description Logics appear to be ideally suited to this role: they have
a formal logic-based semantics, and are often equipped with decision pro-
cedures that have been designed with the objective of being implemented
in automated reasoning systems. This view of the potential place of De-
scription Logics in the Semantic Web led to the development of a number of
languages that brought Description Logic concepts to the Semantic Web, cul-
minating in the development of the Web Ontology Language OWL. OWL is
the World Wide Web Consortium (W3C) recommended ontology language
for the Semantic Web, and exploits many of the strengths of Description
Logics, including well defined semantics and practical reasoning techniques.

In this chapter we first review briefly the history of Description Logic
efforts related to the Semantic Web, in particular OIL and DAML+OIL.
We then go on to describe OWL in some detail, and to show how it brings
Description Logic concepts fully into the Semantic Web.

14.1.1 Early Uses of Description Logics in the Semantic Web

Before the development of Description Logic-related languages designed for
the Semantic Web, there were several systems that used Description Logics
in the context of the web. We will describe some salient features of two
systems, Untangle and FindUR, that illustrate early Description Logic
usage on the web.

The relationship between hypertext and semantic networks has long been
realized, but one of the earliest Description Logic systems to realize this re-
lationship was the Untangle system [Welty and Jenkins, 2000], a Descrip-
tion Logic system for representing bibliographic (card-catalog) information.
The Untangle project began as a bit of exploratory research in using De-
scription Logics for digital libraries [Welty, 1994], but out of sheer temporal
coincidence with the rise of the web, a web interface was added and the first



OWL: a Description Logic Based Ontology Language for the Semantic Web 3

web-based Description Logic system was born.
The original Untangle web interface was developed in 1994 [Welty,

1996a], and combined Lisp-Classic and the CommonLisp Hypermedia
Server (CL-HTTP) [Mallery, 1994] to implement a hypertext view of the
ABox and TBox semantic networks, and used nested bullet lists to view the
concept taxonomy, with in-page cross references for concepts having mul-
tiple parents. The interface was interesting in some respects as a tool to
visualize Description Logic and semantic network information, though this
aspect was never fully developed.

As the World Wide Web (WWW) became the primary means of dissem-
ination of computer science research, the goals of the Untangle project
shifted in 1995 to cataloging and classifying pages on the web [Welty, 1996b],
which was viewed as a massive and unstructured digital library [Welty, 1998].

Another early project using Description Logics for the web was the
FindUR system at AT&T [McGuinness, 1998; McGuinness et al., 1997].
The basic notion of FindUR was query expansion,2 that is, taking syn-
onyms or hyponyms (more specific terms) and including them in the input
terms, thereby expanding the query.

The FindUR system represented a simple background knowledge base
containing mostly thesaurus information built in a Description Logic (Clas-

sic) using the most basic notions of Wordnet (synsets and hyper/hyponyms)
[Miller, 1995]. Concepts corresponding to sets of synonyms (synsets) were
arranged in a taxonomy. These synsets also contained an informal list of
related terms. Site specific search engines (built on Verity—a commercial
search engine) were hooked up to the knowledge base. Any search term
would first be checked in the knowledge base, and if it was contained in any
synset, a new query would be constructed consisting of the disjunction of all
the synonymous terms, as well as all the more specific terms (hyponyms).

The background knowledge was represented in Classic, but the Descrip-
tion Logic was not itself part of the on-line system. Instead, the information
used by the search engine was statically generated on a regular basis and
used to populate the search engine. The true power of using a Descrip-
tion Logic as the substrate for the knowledge base was realized mainly in
the maintenance task. The Description Logic allowed the maintainer of the
knowledge base to maintain some amount of consistency, such as discovering
cycles in the taxonomy and disjoint synsets. These simple constraints proved

2 Work on a subsequent Description Logic based approach to query expansion addressed some
formal issues in evaluating the soundness and completeness of alternative approaches [Rousset,
1999]. Other work on Description Logic (or Description Logic inspired) approaches to retrieval
also exists, e.g., [Meghini et al., 1997; Calvanese et al., 1999b].
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effective tools for maintaining the knowledge since the knowledge itself was
very simple.

Additional use of the Description Logic approach in FindUR was realised
in applications that exposed more structured searches, exploiting subclass
hierarchies and property relationships, such as the medical applications of
FindUR in the P-CHIP Primary Care Search Application [McGuinness,
1999]. This type of structured search, exploiting background ontologies and
relationships between terms, can also be seen in later work, e.g., in the SHOE
project [Heflin et al., 2003].

14.2 Steps Towards Integration with the Semantic Web: OIL
and DAML+OIL

The first major effort to build a language that combined Description Logics
and the Semantic Web was OIL (the Ontology Inference Layer) [Horrocks
et al., 2000a], a part of the On-To-Knowledge research project funded by
the European Union. The OIL language was explicitly designed as “a web-
based representation and inference language for ontologies [combining] the
widely used modeling primitives from frame-based languages with the formal
semantics and reasoning services provided by description logics” (http://
www.ontoknowledge.org/oil/oilhome.shtml).

Description Logics provide the semantics for OIL, so much so that the
semantics of OIL is specified via a mapping to the Description Logic SHIQ
[Fensel et al., 2001; Horrocks et al., 1999].OIL has a syntax based on the
Resource Description Framework (RDF), as well as an XML syntax, that
provided the connection to the Semantic Web of the time.3 OIL allows the
grouping of Description Logic constructs in a way similar to frame systems,
providing a more intuitive feel to the language as opposed to the logically
inspired syntax usually used for Description Logics. These three influences—
Description Logics, frames, and the Semantic Web—are present not only in
OIL, but also in all of its successors.4

14.2.1 SHIQ and SHOIN

In this section we will briefly introduce the syntax and semantics of the
Description Logics on which OIL, DAML+OIL and OWL are based, i.e.,

3 At the time that OIL was developed, RDF—the base language of the Semantic Web—was
without a fully specified semantic foundation.

4 The correspondence between Description Logics and frame systems is also discussed in Sec-
tion ??.
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Construct Name Syntax Semantics
atomic concept A AI ⊆ I

atomic role R RI ⊆ I × I

transitive role R ∈ RC RI D (RI)C

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI S
negation ¬C I \ CI

exists restriction ∃R.C {x | ∃y.〈x〉y ∈ RI and y ∈ CI}
value restriction ∀R.C {x | ∀y.〈x〉y ∈ RI implies y ∈ CI}
role hierarchy R v S RI ⊆ SI H
nominal {o} {oI} O
inverse role R− {〈x〉y | 〈y〉x ∈ RI} I
number
restrictions

>n P

6n P

{x | ]{y.〈x〉y ∈ P I} > n}
{x | ]{y.〈x〉y ∈ P I} 6 n} N

qualifying number
restrictions

>n P.C

6n P.C

{x | ]{y.〈x〉y ∈ P I and y ∈ CI} > n}
{x | ]{y.〈x〉y ∈ P I and y ∈ CI} 6 n} Q

Fig. 14.1. Syntax and semantics of the S family of Description Logics

SHIQ and SHOIN . These logics are based on an extension of the well
known DL ALC [Schmidt-Schauß and Smolka, 1991] to include transitively
closed primitive roles [Sattler, 1996]; this logic has been called S due to its
relationship with the propositional (multi) modal logic S4m [Schild, 1991].5

This logic is then extended to include features such as role inclusion ax-
ioms (H), nominals (O), inverse roles (I) and (possibly qualified) number
restrictions (Q if qualified, N otherwise).

The syntax and semantics of these features is summarised in Figure 14.1,
where A is a concept name, C and D are concepts, R and S are roles, RC is
the set of transitive roles, o is an individual name, P is a simple role (i.e., one
that is not transitive and has no transitive sub-role), and n is a non-negative
integer. Further details can be found in Chapter ??, and in [Horrocks et al.,
1999] and [Horrocks and Sattler, 2005].

These logics can also be extended with a simple form of concrete do-
mains known as datatypes; this is denoted by appending (D) to the name
of the logic, e.g., SHOIN (D). Concrete domains are discussed in detail in
Chapter ??, and the datatype variant is described in [Horrocks and Sattler,
2001].

5 This logic has previously been called ALCRC , but this becomes too cumbersome when adding
letters to represent additional features.
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14.2.2 OIL

The OIL language is designed to combine frame-like modeling primitives
with the increased (in some respects) expressive power, formal rigor and
automated reasoning services of an expressive Description Logic [Fensel et
al., 2000]. OIL also comes “web enabled” by having both XML and RDFS

based serializations (as well as a formally specified “human readable” form,
which we will use here). In frame languages, classes (concepts) are described
by frames, whose main components are a list of superclasses and a list of
slot-filler pairs. A slot corresponds to a role in a Description Logic, and a
slot-filler pair corresponds to either a value restriction (a concept of the form
∀R.C) or an existential quantification (a concept of the form ∃R.C)—one
of the criticisms leveled at frame languages is that they are often unclear as
to exactly which of these is intended by a slot-filler pair.

OIL extends this basic frame syntax so that it can capture the full power
of an expressive Description Logic.

In order to allow users to choose the expressive power appropriate to their
application, and to allow for future extensions, a layered family of OIL

languages was described. The base layer, called “Core OIL” [Bechhofer et
al., 2000], is a cut-down version of the language that closely corresponds
with RDFS (i.e., it includes only class and slot inclusion axioms, and slot
range and domain constraints). The standard language is called “Standard
OIL”, and when extended with ABox axioms (i.e., the ability to assert that
individuals and tuples are, respectively, instances of classes and slots), it
is called “Instance OIL”. Finally, “Heavy OIL” was the name given to a
further layer that was to include still unspecified language extensions.

Figure 14.2 illustrates an OIL ontology (using the human readable serial-
ization) corresponding to an example terminology from Chapter ??. A full
specification of OIL, including DTDs for the XML and RDFS serializations,
can be found in [Horrocks et al., 2000a].

Standard OIL can be seen as a syntactic variant of the Description Logic
SHIQ [Horrocks et al., 1999] extended with simple concrete datatypes
[Baader and Hanschke, 1991; Horrocks and Sattler, 2001], otherwise known
as SHIQ(D). Rather than providing the usual model-theoretic semantics,
OIL defines a translation that maps an OIL ontology into an equivalent
SHIQ(D) terminology. From this mapping, OIL derives both a clear se-
mantics and a means to exploit the reasoning services of Description Logic
systems such as Fact [Horrocks, 1998b], Racer [Haarslev and Möller, 2001]
and Pellet [Pellet, 2003] that implement (most of) SHIQ(D).
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name “Family”
documentation “Example ontology describing family relationships”
definitions
slot-def hasChild
inverse isChildOf

class-def defined Woman
subclass-of Person Female

class-def defined Man
subclass-of Person not Woman

class-def defined Mother
subclass-of Woman
slot-constraint hasChild
has-value Person

class-def defined Father
subclass-of Man
slot-constraint hasChild
has-value Person

class-def defined Parent
subclass-of or Father Mother

class-def defined Grandmother
subclass-of Mother
slot-constraint hasChild
has-value Parent

class-def defined MotherWithManyChildren
subclass-of Mother
slot-constraint hasChild
min-cardinality 3

class-def defined MotherWithoutDaughter
subclass-of Mother
slot-constraint hasChild
value-type not Woman

Fig. 14.2. OIL “family” ontology.

14.2.3 The DAML project and DAML+OIL

At about the same time as OIL was being developed, the DARPA Agent
Markup Language (DAML) program was started in the United States.
DAML was initiated in order to provide the foundation for the next gener-
ation of the web which, it was anticipated, would increasingly utilize agents
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and programs rather than relying so heavily on human interpretation of web
information [Hendler and McGuinness, 2000].

One of the early widely-distributed contributions of the DAML pro-
gram was DAML-ONT—a proposal for an ontology language for the web
[Hendler and McGuinness, 2000; McGuinness et al., 2002]. This language
began with the requirement to build on the best practice in web languages
of the time, and in particular to extend W3C’s Resource Description Frame-
work, with the aim of adding expressive power suited to agent and service
interoperation.

It became obvious that the goals of DAML-ONT and OIL were so similar
that these objectives could best be served by combining the two efforts. The
resulting language, DAML+OIL, has a formal (model-theoretic) semantics
that provides machine and human understandability [van Harmelen et al.,
2001], an axiomatization [Fikes and McGuinness, 2001], and a reconciliation
of the language constructors from the two precursor languages.

DAML+OIL is similar to OIL in many respects, but is more tightly in-
tegrated with RDFS, which provides the only specification of the language
and its only serialization. While the dependence on RDFS has some ad-
vantages in terms of the re-use of existing RDFS infrastructure and the
portability of DAML+OIL ontologies, using RDFS to completely define
the syntax of DAML+OIL is quite difficult as, unlike XML, RDFS is not
designed for the precise specification of syntactic structure. For example,
there is no way in RDFS to state that a restriction (slot constraint) should
consist of exactly one property (slot) and one class, and as a result the fol-
lowing axiom is perfectly legal in DAML+OIL, in spite of the fact that the
restriction specifies two properties and two classes:

<daml:Class rdf:ID="Person">
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#hasFather"/>
<daml:onProperty rdf:resource="#hasMother"/>
<daml:toClass rdf:resource="#Man"/>
<daml:toClass rdf:resource="#Woman"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

The solution to this problem adopted by DAML+OIL is to define the
semantics of the language in such a way that it gives a meaning to any (parts
of) ontologies that conform to the RDFS specification, including “strange”
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constructs such as the one shown above. This is made easier by the fact that,
unlike OIL, the semantics of DAML+OIL is directly defined, although a
translation into a suitable DL would also have been possible: the above
DAML+OIL axiom is, for example, equivalent to the following DL axioms:

Person v ∃hasFather.Man
Person v ∃hasFather.Woman
Person v ∃hasMother.Man
Person v ∃hasMother.Woman

∃hasFather.Man ≡ ∃hasFather.Woman
∃hasFather.Woman ≡ ∃hasMother.Man
∃hasMother.Man ≡ ∃hasMother.Woman

This may seem strange, but has the advantage of giving a consistent and
unambiguous semantics to DAML+OIL restrictions consisting of multiple
properties and/or classes. The DAML+OIL specification strongly recom-
mends, however, that the use of such restrictions (and other “strange” con-
structs) be avoided.

Another effect of DAML+OIL’s tight integration with RDFS is that
the frame structure of OIL’s syntax is much less evident: a DAML+OIL

ontology is more Description-Logic-like in that it consists largely of a rel-
atively unstructured collection of subsumption and equality axioms. This
can make it more difficult to use DAML+OIL with frame-based tools such
as Protégé [Grosso et al., 1999] or OilEd [Bechhofer et al., 2001b], be-
cause the axioms may be susceptible to many different frame-like groupings
[Bechhofer et al., 2001a].

From the point of view of language constructs, the differences between
OIL and DAML+OIL are relatively trivial. Although there is some dif-
ference in “keyword” vocabulary, there is usually a one-to-one mapping of
constructors, and in the cases where the constructors are not completely
equivalent, simple translations are possible.

The initial release of DAML+OIL did not include any specification of
datatypes. The language was, however, subsequently extended with arbi-
trary datatypes from the XML Schema type system, which can be used in
restrictions (slot constraints) and range constraints. As in SHOQ(D) [Hor-
rocks and Sattler, 2001], a clean separation is maintained between instances
of “object” classes (defined using the ontology language) and instances of
datatypes (defined using the XML Schema type system). In particular, it is
assumed that the domain of interpretation of object classes is disjoint from
the domain of interpretation of datatypes, so that an instance of an object
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class (e.g., the individual Italy) can never have the same interpretation as a
value of a datatype (e.g., the integer 5), and that the set of object properties
(which relate individuals to individuals) is disjoint from the set of datatype
properties (which relate individuals to datatype values).

14.3 Full Integration into the Semantic Web: OWL

With its tighter integration with RDF and RDFS, DAML+OIL was the
first Description Logic-inspired language to be completely integrated into the
fabric of the Semantic Web (as it was then defined). There was, however,
no formal semantic integration of DAML+OIL with RDF and RDFS,
as RDF and RDFS did not have a formal semantics at the time when
DAML+OIL was being developed. DAML+OIL also lacked any formal
status, having been the product of a group of researchers operating under
the auspices of the so-called “Joint EU/US ad hoc Agent Markup Language
Committee”. This group published DAML+OIL as a W3C Note on De-
cember 18, 2001 (see http://www.w3.org/Submission/2001/12/).

To fix these problems, the W3C chartered two working groups in 2001.
The RDF Core Working Group was to be responsible for updating the RDF

recommendation and providing a formal semantics for RDF and thus for the
Semantic Web. The Web Ontology Working Group was to be responsible for
designing an ontology language for the web, compatible with the new version
of RDF. The Web Ontology Working Group developed the Web Ontology
Language OWL [Bechhofer et al., 2004], which became a W3C recommenda-
tion on 10 February 2004 (see http://www.w3.org/2004/OWL/). In parallel,
the RDF Core Working Group developed a formal semantics for RDF and
RDFS [Hayes, 2004].

The OWL recommendation defines a family of three languages in order
to address concerns ranging from level of expressiveness to degree of com-
patibility with RDF. Two of these so-called “species” of OWL, OWL Full
and OWL DL, provide the same set of Description Logic constructors, but
differ in the way the constructors can be used: in OWL Full they can be
used in arbitrary RDF graphs, whereas in OWL DL their use is restricted
so that OWL DL ontologies correspond directly to Description Logic knowl-
edge bases. The third species of OWL, OWL Lite, is very similar to OWL
DL, but provides a reduced set of constructors.
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14.3.1 Influences on the Design of OWL

The design of OWL was subject to a variety of influences. These in-
cluded influences from established formalisms and knowledge representation
paradigms, influences from existing ontology languages, and influences from
existing Semantic Web languages.

Some of the most important influences on the design of OWL came,
via its predecessor DAML+OIL, from Description Logics, from the frames
paradigm, and from RDF. In particular, the formal specification of the lan-
guage was influenced by Description Logics, the surface structure of the
language (as seen in the abstract syntax) was influenced by the frames
paradigm, and the RDF/XML exchange syntax was influenced by a re-
quirement for upwards compatibility with RDF.

Description Logics, and insights from Description Logic research, had a
strong influence on the design of OWL, particularly on the formalisation of
the semantics, the choice of language constructors, and the integration of
datatypes and data values (see, e.g., Chapters ??–??). In fact OWL DL and
OWL Lite (two of the three species of OWL) can be viewed as expressive
Description Logics, with an ontology being equivalent to a Description Logic
knowledge base. More precisely, OWL DL and OWL Lite are equivalent to
SHOIN (D) and SHIF(D) respectively (see Sections 14.3.3 and 14.3.5 for
more details).

This design was motivated by practical considerations. The designers of
OWL wanted to have some idea as to how difficult it would be for tools
and applications to support the language. It was therefore important to
understand its formal properties, e.g., with respect to the decidability and
complexity of key inference problems. These properties followed directly
from the correspondences with Description Logics (see Chapter ??). These
correspondences would allow tools and applications to exploit known rea-
soning algorithms and even (highly optimised) implementations (see, e.g.,
Chapters ??–??).

In the Semantic Web context, where users with a wide range of expertise
might be expected to create or modify ontologies, readability and general
ease of use are important considerations for an ontology language. In the
design of OIL [Fensel et al., 2001], these requirements were addressed by
providing a surface syntax based on the frames paradigm. Frames group
together information about each class, making ontologies easier to read and
understand, particularly for users not familiar with (Description) Logics.
The frames paradigm has been used in a number of well known knowledge
representation and ontology environment systems including the Protégé
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ontology design tool [Grosso et al., 1999], the Ontolingua ontology environ-
ment tool [Farquhar et al., 1996], the OKBC knowledge model [Chaudhri
et al., 1998], and the Chimaera Ontology Evolution Environment [McGuin-
ness et al., 2000]. The design of OIL was influenced by XOL [Karp et al.,
1999]—a proposal for an XML syntax for OKBC Lite (a cut down version
of the OKBC knowledge model).

In frame based languages, each class is described by a frame. The frame
includes the name of the class, identifies the more general class (or classes)
that it specialises, and lists a set of “slots”. A slot may consist of a property-
value pair, or a constraint on the values that can act as slot “fillers” (in this
context, value means either an individual or a data value). This structure was
used in the OIL language, with some enrichment of the syntax for specifying
classes and slot constraints so as to enable the full power of a Description
Logic style language to be captured. In addition, property frames were used
to describe properties, e.g., specifying more general properties, range and
domain constraints, transitivity and inverse property relationships.

A class frame is semantically equivalent to a Description Logic axiom as-
serting that the class being described by the frame is a subclass of each of
the classes that it specialises and of each of the property restrictions corre-
sponding to the slots. As well as a richer slot syntax, OIL also offered the
possibility of asserting that the class being described by the frame was ex-
actly equivalent to the relevant intersection class, (i.e., that they were mutu-
ally subsuming). A property frame is equivalent to a set of axioms asserting
the relevant subproperty relationships, range and domain constraints etc.
OIL was designed so that OIL frames could easily be mapped to equivalent
axioms in the SHOQ(D) Description Logic [Decker et al., 2000].

The formal specification and semantics of OWL are given by an abstract
syntax [Patel-Schneider et al., 2004] that has been heavily influenced by
frames in general and by the design of OIL in particular. In the abstract
syntax, axioms are compound constructions that are very like an OIL-style
frame. For classes, they consist of the name of the class being described, a
modality of “partial” or “complete” (indicating that the axiom is asserting a
subclass or equivalence relationship respectively), and a sequence of property
restrictions and names of more general classes. Similarly, a property axiom
specifies the name of the property and its various features.

The frame style of the abstract syntax, which borrows heavily in spirit
from the human readable syntax for OIL, makes it much easier to read
(compared to the RDF/XML syntax), and also easier (for non-logicians)
to understand and to use. Moreover, abstract syntax axioms have a direct
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correspondence with Description Logic axioms, and they can also be mapped
to a set of RDF triples (as we will see in the following section).

The third major influence on the design of OWL was the requirement to
maintain the maximum upwards compatibility with existing web languages,
and in particular with RDF [Manola and Miller, 2004]. On the face of it
this requirement made good sense as RDF (and in particular RDF Schema)
already included several of the basic features of a class and property based
ontology language, e.g., it allows subclass and subproperty relationships to
be asserted. Moreover, the development of RDF preceded that of OWL,
and it seemed reasonable to try to appeal to any user community already
established by RDF.

It may seem easy to meet this requirement simply by giving OWL an
RDF-based syntax, but, in order to provide maximum upwards compati-
bility, it was also thought necessary to ensure that the semantics of OWL
ontologies was consistent with the semantics of RDF. This proved to be
difficult, however, given the greatly increased expressive power provided by
OWL. This will be discussed in more detail in Section 14.3.2.

14.3.2 Layering (on RDFS) and three “species” of OWL

On the face of it, maintaining maximum upwards compatibility with RDF

made good sense, but this requirement led to a number of problems in the
design of OWL.

In the first place, RDF/XML is extremely verbose. Compare, for example,
information about a class as it would be given in a Description Logic syntax

Student ≡ Person u> 1 enrolledIn

(a Student is a Person who is enrolledIn at least 1 thing), or the OWL
abstract syntax

Class(Student partial Person
restriction(enrolledIn minCardinality(1)))

with how it would most naturally be written using the OWL RDF/XML
syntax6

<owl:Class rdf:ID="Student">
<owl:intersectionOf rdf:parsetype="Collection">

6 Full details on the OWL RDF/XML syntax can be found in the OWL Reference docu-
ment [Bechhofer et al., 2004].
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<owl:Class rdfs:about="Person" />
<owl:Restriction>

<owl:onProperty rdf:resource="enrolledIn" />
<owl:minCardinality rdfs:datatype="&xsd;Integer">

1
</owl:minCardinality>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

This verbosity of OWL’s RDF/XML syntax may not, in itself, be a se-
rious problem given the capabilities and bandwidths of modern computers
and communication systems, and that this syntax is mainly intended for
exchanging data between OWL applications. The RDF/XML syntax does,
however, lead to some more serious problems. RDF is itself a graph based
formalism, with graphs expressed as set of subject-predicate-object triples,
where each triple represents a labelled edge (the predicate) connecting two
vertices (the subject and object). This means that many OWL constructs,
such as property restrictions, have to be encoded as several triples. There is
no requirement that these triples occur together, so parsing becomes difficult
as it may be necessary to scan the entire input in order to locate all of the
components of a given construction. Moreover, circular and other unusual
structures with ill defined meanings cannot be ruled out.

Even more problematical is the relationship between the semantics of an
OWL ontology and the semantics of the RDF triples used to encode it. This
was not as much of an issue when OIL and DAML+OIL were designed,
as at that time the meaning of RDF was not precisely specified. OIL in
particular did not bother to relate the RDF meaning of its RDF/XML
syntax to the OIL meaning of this syntax—the RDF/XML syntax for some
OIL constructs does more-or-less line up with the RDF meaning of these
constructs, but this is by no means the case for all such constructs.

DAML+OIL did a better job of abiding by the RDF meaning of its syn-
tax. The DAML+OIL model theory [van Harmelen et al., 2001] included a
semantic condition for triples that was close to the RDF meaning (as de-
fined at that time) for triples. Moreover, DAML+OIL used the built-in RDF

and RDFS vocabulary to a greater extent than did OIL, and used it in a
way generally compatible with the RDF or RDFS meaning. For example
DAML+OIL uses rdfs:subClassOf to relate classes to superclasses.

By the time OWL was being designed, RDF was being given a formal
meaning via the RDF model theory [Hayes, 2004]. It proved to be difficult
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to design an RDF syntax for OWL such that the Description Logic seman-
tics assigned by OWL to its various constructs was compatible with the
semantics of the RDF triples used to encode them. Moreover, there was an
incompatibility between the requirement to be fully backwards compatible
with OWL (i.e., to allow arbitrary RDF graphs to be interpreted as OWL
ontologies), and the requirement for OWL to be equivalent to an expressive
description logic. (See [Horrocks et al., 2003] for a detailed discussion of
these issues.)

These problems were eventually “resolved” by defining two “species” of
OWL: OWL Full and OWL DL. Only a subset of RDF graphs correspond
to OWL DL ontologies. In particular, the graph cannot include cyclical and
other problematical constructions (including “malformed” OWL syntax),
and the sets of class, property, and individual names must be disjoint. For
RDF graphs that satisfy these syntactic restrictions, a fairly standard De-
scription Logic style model theory is used to define the semantics of the
resulting OWL constructs. In contrast, OWL Full uses an RDF style model
theory to give a semantic account of the use of OWL constructors in arbi-
trary RDF graphs. (See Sections 14.3.4 and 14.3.5 for more details.)

As well as arguments about the importance of compatibility with RDF,
there were also tensions within the working group regarding the expressive
power that was appropriate for OWL, with some members arguing that
OWL DL was too complex to be understood by new users or implemented
by application developers. Weight was lent to these arguments by the fact
that, at the time, no tableaux decision procedure was known for SHOIN (D)
(the description logic language underlying OWL DL), and no implemented
system supported it. In response to these concerns, a third OWL species
was defined, namely OWL Lite.

OWL Lite is a syntactic subset of OWL DL that prohibits and/or restricts
the use of certain constructors and axioms with the aim of making the
language easier to understand and/or implement. It has subsequently been
shown, however, that by combining other constructors and axioms, most of
the expressive power of OWL DL can be regained, and that OWL Lite is
expressively equivalent to SHIF(D) [Horrocks and Patel-Schneider, 2003].

Given that OWL Full does not correspond either syntactically or seman-
tically to a Description Logic, in the remainder of this chapter we will focus
our attention on OWL DL and OWL Lite.
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14.3.3 OWL DL abstract syntax and semantics

OWL DL has some differences from standard Description Logics. These
differences provide a bridge between the formal Description Logic world and
the Semantic Web world.

r OWL uses URI references as names, and constructs these URI references in the
same manner as that used by RDF. It is thus common in OWL to use qualified
names as shorthands for URI references, using, for example, the qualified name
owl:Thing for the URI reference http://www.w3.org/2002/07/owl#Thing.r OWL gathers information into ontologies, which are generally stored as Web
documents written in RDF/XML. Ontologies can import other ontologies, adding
the information from the imported ontology to the current ontology.r OWL allows RDF annotation properties to be used to attach information to
classes, properties, and ontologies, such as owl:DeprecatedClass. These annota-
tions are RDF triples, and are therefore required to carry a full semantic weight in
RDF. In OWL DL, however, such annotations carry a separate, limited meaning.r OWL uses the facilities of RDF datatypes and XML Schema datatypes to provide
datatypes and data values (a very restricted form of concrete domains ??).r OWL DL and OWL Lite have a frame-like abstract syntax, whereas RDF/XML
is the official exchange syntax for all three species of OWL.

As mentioned above, OWL DL is very closely related to SHOIN (D),
which extends SHOIQ [Horrocks and Sattler, 2005] with datatypes like
those in SHOQ(D) [Horrocks and Sattler, 2001], but allows only unqual-
ified number restrictions (see Chapter ??). OWL DL can form descrip-
tions of classes, datatypes, individuals and data values using the con-
structs shown in Figure 14.3. In this table the first column gives the OWL
abstract syntax for the construction, while the second column gives the
equivalent Description Logic syntax. The letters A, D, R, U , o and v

represent, respectively, names for classes (concepts), data ranges, object
properties (abstract roles), datatype properties (concrete roles), individu-
als (nominals) and data values; C, possibly subscripted, represents an ar-
bitrary class description. In OWL, data values are RDF literals (i.e., in-
stances of datatypes such as string or integer), and all other names are URI
references. As mentioned above, owl:Thing and owl:Nothing are short-
hand for the URI references http://www.w3.org/2002/07/owl#Thing and
http://www.w3.org/2002/07/owl#Nothing respectively.

The treatment of concrete values in OWL is somewhat different from
the usual treatment of concrete values in Description Logics [Baader
and Hanschke, 1991; Lutz, 2002], and is instead based on the more re-
stricted concrete datatypes introduced in [Horrocks and Sattler, 2001].
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Abstract Syntax DL Syntax
Descriptions (C)
A A

owl:Thing >
owl:Nothing ⊥
intersectionOf(C1 . . . Cn) C1 u . . . u Cn

unionOf(C1 . . . Cn) C1 t . . . t Cn

complementOf(C) ¬C

oneOf(o1 . . . on) {o1} t . . . t {on}
restriction(R someValuesFrom(C)) ∃R.C

restriction(R allValuesFrom(C)) ∀R.C

restriction(R hasValue(o)) R : o

restriction(R minCardinality(n)) >n R

restriction(R minCardinality(n)) 6n R

restriction(U someValuesFrom(D)) ∃U.D

restriction(U allValuesFrom(D)) ∀U.D

restriction(U hasValue(v)) U : v

restriction(U minCardinality(n)) >n U

restriction(U maxCardinality(n)) 6n U

Data Ranges (D)
D D

oneOf(v1 . . . vn) {v1} t . . . t {vn}
Object Properties (R)
R R

inv(R) R−

Datatype Properties (U)
U U

Individuals (o)
o o

Data Values (v)
v v

Fig. 14.3. OWL DL Descriptions, Data Ranges, Properties, Individuals, and Data
Values

OWL uses datatypes from XML Schema datatypes as its concrete types,
so xsd:integer is a concrete type in OWL, namely the type of integers.
OWL uses the RDF syntax for these concrete values, so "2"^^xsd:integer
is the way to write the integer 2. OWL also allows plain RDF lit-
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Abstract Syntax DL Syntax

Class(A partial C1 . . . Cn) A v C1 u . . . u Cn

Class(A complete C1 . . . Cn) A ≡ C1 u . . . u Cn

EnumeratedClass(A o1 . . . on) A ≡ {o1} t . . . t {on}
SubClassOf(C1 C2) C1 v C2

EquivalentClasses(C1 . . . Cn) C1 ≡ . . . ≡ Cn

DisjointClasses(C1 . . . Cn) Ci u Cj ⊆ ⊥, i 6D j

Datatype(D)

ObjectProperty(R super(R1)...super(Rn) R v Ri

domain(C1)...domain(Cm) > 1 R v Ci

range(C1)...range(C`) > v ∀R.Ci

[inverseOf(R0)] R ≡ R−
0

[Symmetric] R ≡ R−

[Functional] > v 6 1 R

[InverseFunctional] > v 6 1 R−

[Transitive]) Tr(R)
SubPropertyOf(R1 R2) R1 v R2

EquivalentProperties(R1 . . . Rn) R1 ≡ . . . ≡ Rn

DatatypeProperty(U super(U1)...super(Un) U v Ui

domain(C1)...domain(Cm) > 1 U v Ci

range(D1)...range(D`) > v ∀U.Di

[Functional]) > v 6 1 U

SubPropertyOf(U1 U2) U1 v U2

EquivalentProperties(U1 . . . Un) U1 ≡ . . . ≡ Un

AnnotationProperty(S)
OntologyProperty(S)

Individual(o type(C1)...type(Cn) o ∈ Ci

value(R1 o1)...value(Rn on) 〈o, oi〉 ∈ Ri

value(U1 v1)...value(Un vn)) 〈o, vi〉 ∈ Ui

SameIndividual(o1 . . . on) {o1} ≡ . . . ≡ {on}
DifferentIndividuals(o1 . . . on) {oi} v ¬{oj}, i 6D j

Fig. 14.4. OWL DL Axioms and Facts

erals, which are a combination of a string and an optional language
tag. These plain literals belong to the datatype rdfs:Literal. OWL also
allows sets of data values to be used in concept expressions, as in
oneOf("1"^^xsd:integer "2"^^xsd:integer "3"^^xsd:integer).

OWL uses these description-forming constructs in axioms that provide in-
formation about classes, properties, and individuals, as shown in Figure 14.4.
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Again, the frame-like abstract syntax is given in the first column, and the
standard Description Logic syntax is given in the second column. The nota-
tion is the same as in Figure 14.3.

Either partial or complete information can be stated about a class, as in

Class(ex:Country partial owl:Thing)
Class(ex:Person partial owl:Thing)
Class(ex:Student partial ex:Person)
Class(ex:Canadian complete ex:Person

hasValue(ex:nationality ex:Canada))

which makes ex:Country and ex:Person classes, ex:Student a sub-
class of ex:Person, and ex:Canadian precisely those people who have
ex:nationality ex:Canada.7

In OWL DL properties are divided into object properties, such as
ex:nationality, which relate individuals to other individuals, datatype
properties, such as ex:age, which relate individuals to data values, and
annotation properties, which can be used to add uninterpreted information
(such as versioning information) to individuals, classes, and properties. Con-
straints, such as domains and ranges, can be given for object properties and
datatype properties, but not for annotation properties.

DatatypeProperty(ex:age domain(ex:Person)
range(xsd:integer))

ObjectProperty(ex:nationality domain(ex:Person)
range(ex:Country))

Object properties can also be specified to be transitive, symmetric, func-
tional, and inverse functional. In order to retain decidability, OWL DL
restricts how these specifications can be combined for a particular object
property: properties that are specified as being transitive, and their super-
properties and their inverses, cannot have their cardinality restricted, ei-
ther via the functional part of property axioms or in cardinality restrictions
(see [Horrocks et al., 1999]).

Annotation properties are a way of associating uninterpreted infor-
mation with classes, properties, and individuals. The syntax for an-
notations is not given in Figure 14.4 (as they do not contribute to
the corresponding Description Logic syntax), but some examples of

7 For a more extensive example of how to use OWL, see the OWL Guide [Smith et al., 2004].
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their use are given below. Many axioms (Class, EnumeratedClass,
Datatype, ObjectProperty, DatatypeProperty, AnnotationProperty,
OntologyProperty, and Individual axioms) can have an annotation that
provides uninterpreted information about that class, property, or individual.
To prevent annotations influencing the semantics of OWL DL, little can be
said about annotation properties: they cannot participate in restrictions,
nor can they be given domains, ranges, or any other aspect of other kinds of
properties. These limitations result in only trivial inferences being possible
in relation to annotation properties in OWL DL.

One use of annotation properties is to provide comment information for
classes and properties, as in

Class(ex:Country partial
annotation(rdfs:comment "Countries of the world")
owl:Thing)

This is, perhaps, the most useful purpose for annotations in OWL DL.
Information about individuals can also be provided in OWL, for either

named individuals or anonymous individuals, as in:

Individual(ex:Canada type(ex:Country))
Individual(ex:England type(ex:Country))
Individual(ex:Peter type(ex:Canadian)

value(ex:age "48"^^xsd:integer))
Individual(value(ex:nationality ex:England)

value(ex:age "44"^^xsd:integer))

In OWL, axioms and facts are grouped into ontologies, with the result that
an OWL DL ontology is equivalent to a Description Logic Knowledge Base,
i.e., a Tbox plus an Abox (see Section ??). This is not completely standard,
as ontologies are more typically thought of as describing only the structure
of a domain (in terms of classes and properties), and not as describing a
particular situation (in terms of instances of classes and properties); in this
more common usage, an ontology is therefore equivalent to a Description
Logic Tbox, and not to the combination of a Tbox and an Abox.

Ontologies can be given annotations, just like classes, properties, and indi-
viduals. Ontologies can also have ontology properties as annotations. Most
ontology properties act just like annotation properties (i.e., they provide
uniterpreted information), but one special property, owl:imports, can be
used to “import” other ontologies. Importing an ontology effectively treats
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the content of a web page as part of the current ontology, as in:

Ontology(Simple
Annotation(rdfs:comment "A simple ontology for nationality")
Annotation(owl:imports http://www.foo.ex/simpler.owl)
....

)

The meaning of the above imports statement is that the set of axioms in
the Simple ontology is taken to include the set of axioms in the simpler.owl
ontology.

14.3.4 Semantics for OWL DL

A formal semantics, very similar to the semantics provided for Description
Logics (see Section ??), is provided for this style of using OWL. Full details
on this model theory can be found in the OWL Semantics and Abstract
Syntax [Patel-Schneider et al., 2004].

Because OWL includes datatypes, the semantics for OWL is very similar
to that of Description Logics that also incorporate datatypes, in particular
SHOQ(D). However, the particular datatypes used in OWL are taken from
RDF and XML Schema Datatypes [Biron and Malhotra, 2001]. Data values
such as "44"^^xsd:integer thus mean what they would mean as XML
Schema data values.

The semantics for OWL DL does include some aspects that may be viewed
as unusual from a description logic perspective. Annotations are given a
simple separate meaning, not shown here, that can be used to associate in-
formation with classes, properties, and individuals in a manner compatible
with the RDF semantics. Ontologies also live within the semantics and can
be given annotation information. Finally, owl:imports is given a meaning
that involves finding the referenced ontology (if possible) and adding its
meaning to the meaning of the current ontology. In other respects, however,
the meaning of an OWL ontology should be exactly equivalent to the mean-
ing of the Description Logic knowledge base derived via the correspondences
given in Figures 14.3 and 14.4.

What makes OWL DL (and OWL Lite) a Semantic Web language, there-
fore, is not its semantics, which are quite standard for a Description Logic,
but instead the use of URI references for names, the use of XML Schema
datatypes for data values, and the ability to connect to documents in the
World Wide Web.
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14.3.5 OWL Lite and OWL Full

As we have seen, OWL DL is related to SHOIN (D), a very expressive
Description Logic. This Description Logic is somewhat difficult to present to
naive users, as it is possible to build complex boolean descriptions using, for
example, union and complement. SHOIN (D) is also difficult to reason with,
as key inference problems have NExpTime complexity, and the potential
for complex descriptions makes it somewhat difficult to build tools such as
editors.

For these reasons, a subset of OWL DL has been identified that should
be easier on all the above metrics; this subset is called OWL Lite. OWL
Lite prohibits unions and complements, restricts intersections to the implicit
intersections in the frame-like class axioms, limits all embedded descriptions
to class names, does not allow individuals to occur in descriptions or class
axioms, and limits cardinalities to 0 or 1.

These restrictions make OWL Lite expressively equivalent to SHIF(D).
As in SHIF(D), key inferences in OWL Lite can be computed in worst case
exponential time (ExpTime), and there are already several optimized reason-
ers for logics equivalent to OWL Lite (see Section 14.3.7). This improvement
in tractability comes with relatively little loss in expressive power—although
OWL Lite syntax is more restricted than that of OWL DL, it is still pos-
sible to express complex descriptions by introducing new class names, and
exploiting the duality between allValuesFrom and someValuesFrom restric-
tions [Horrocks and Patel-Schneider, 2003]. For example, the OWL Lite ax-
ioms

Class(C complete A B)
ObjectProperty(p)
Class(C complete restriction(p allValuesFrom(Nothing)))
Class(D complete restriction(p someValuesFrom(Thing)))

result in the class D being equivalent to the union of the negations of A and
B, i.e., D ≡ ¬A t ¬B. Using these techniques, all OWL DL descriptions can
be captured in OWL Lite except those containing either individual names
or cardinalities greater than 1.

OWL DL and OWL Lite are extensions of a restricted use of RDF and
RDFS, because, unlike RDF and RDFS, they do not allow classes to be
used as individuals, and the language constructors cannot be applied to the
language itself. For users who want these capabilities, a version of OWL that
is upward compatible with RDF and RDFS has been provided; this version
is called OWL Full. In OWL Full, all RDF and RDFS combinations are
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allowed. For example, in OWL Full, it is possible to impose a cardinality
constraint on rdfs:subClassOf, if so desired.

OWL Full contains OWL DL, but goes well outside the standard De-
scription Logic framework. The penalty to be paid here is two-fold. First,
reasoning in OWL Full is undecidable. Showing the undecidability is trivial,
because restrictions required in order to maintain the decidability of OWL
DL do not apply to OWL Full [Horrocks et al., 1999], but also as a result of
the ability to apply OWL’s expressive power to RDF syntax, as exemplified
above [Motik, 2005]. Second, the abstract syntax for OWL DL is inadequate
for OWL Full (the abstract syntax would not, for example, allow for the
representation of cyclical RDF graphs or for graphs that contain only parts
of OWL DL syntactic constructs), and the official OWL exchange syntax,
RDF/XML, must be used.

OWL Full has been given a model-theoretic semantics that is a vocabulary
extension of the RDF model theory [Patel-Schneider et al., 2004; Hayes,
2004]. A correspondence between this semantics and the semantics of OWL
DL has also been established: it has been shown that the model theory for
OWL DL has very similar consequences to this RDF-style model theory
for those OWL ontologies that can be written in the OWL DL abstract
syntax [Patel-Schneider et al., 2004].

More formally, given two OWL DL ontologies O1 and O2, written in the
abstract syntax, if O1 entails O2 according to the OWL DL model theory
then the mapping of O1 into RDF triples will entail the mapping of O2 into
RDF triples according to the OWL Full model theory.

The converse, however, is not true. Although the correspondence is usually
exact, it has been shown that there are at least some pathological cases where
the correspondence breaks down. For example, in OWL Full owl:Thing
contains individuals corresponding to the RDFS and OWL vocabularies
(such as rdf:Property, rdfs:subClassOf, and owl:hasValue). (There are
no such individuals in the model theory for OWL DL.) Limiting the extent
of owl:Thing, for example as in

SubClassOf(owl:Thing oneOf(ex:foo))

forces equalities in this vocabulary, which have truely unusual effects in
the OWL Full model theory. For exmaple, because there would be only
on individual, and OWL syntax tokens are individuals in OWL Full, an
allValuesFrom restriction would imply a someValuesFrom restriction.

In order to avoid any possible confusion as to the meaning of OWL DL,
the OWL Full model theory has been given “non-normative” status (i.e., it
is only informative) for OWL ontologies that can be written in the abstract
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syntax—for such ontologies, the definitive semantics is given by the OWL
DL model theory.

14.3.6 OWL Datatypes

As well as dealing with “abstract” classes such as Person and Animal, many
practical applications need to represent and reason about datatypes and
values such as integers and strings. The integration of datatypes in the
OWL language is again heavily influenced by Description Logic research,
which has demonstrated that care is required in order to avoid complexity
blow-ups or even undecidability being caused by datatypes [Lutz, 2002]. In
the SHOQ(D) Description Logic it was shown that this could be achieved
by strictly separating the interpretation of datatypes and values from that
of classes and individuals: SHOQ(D) interpretations include an additional
interpretation domain for data values ID which is disjoint from the domain
of individuals I . Datatypes, such as integer, are interpreted as a subset
of ID, and values such as the integer “35” are interpreted as elements of
ID. The separation is further strengthened by dividing properties into two
disjoint sets of abstract and datatype properties. Abstract properties such as
brother are interpreted as binary relations on I (i.e., subsets of I × I),
while datatype properties such as age are interpreted as binary relations
between I and ID (i.e., subsets of I × ID).

This design has the advantage that reasoning with datatypes and val-
ues can be almost entirely separated from reasoning with classes and
individuals—a class based reasoner simply needs access to a datatype “or-
acle” that can answer simple questions with respect to datatypes and val-
ues (e.g., “is -5 a nonNegative Integer?”). Moreover, the language remains
decidable if datatype and value reasoning is decidable, i.e., if the oracle
can guarantee to answer all questions of the relevant kind for supported
datatypes. This can easily be achieved for a range of common datatypes
such as integers, decimals and strings [Lutz, 2002].

As well as these practical considerations, it can also be argued that the
separation of classes and datatypes makes sense from a philosophical stand-
point as datatypes are already structured by built in predicates such as
greater-than and less-than. From this point of view, it does not make sense
to use ontology axioms to add further structure to datatypes or to form
“hybrid” classes such as the class of red integers.
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14.3.7 Reasoners, tools and applications

As discussed in Section 14.3.1, an important motivation for the design of
OWL DL and OWL Lite was the ability for applications to exploit known
reasoning algorithms and existing (highly optimised) reasoner implemen-
tations. This meant that, even before the OWL specification was finalised,
prototype tools and applications could make use of Description Logic reason-
ing systems such as FaCT [Horrocks, 1998a], Pellet [Pellet, 2003] and Racer
[Haarslev and Möller, 2001]. The use of these systems was also facilitated by
the fact that they provide a standard application interface designed by the
Description Logic Implementation Group (DIG) [Bechhofer et al., 1999].

At the time when OWL achieved recommendation status (the final stage
in the W3C standardisation process), the above systems were only able to
support OWL Lite reasoning. This was because, at that time, no suitable
algorithm was known for SHOIN , and all of the implementations were
based on the SHIQ algorithms described in [Horrocks et al., 1999] and
[Horrocks et al., 2000b]. In order to process OWL DL ontologies, reasoning
systems typically applied some “work-around” with respect to nominals,
e.g., by treating them as primitive classes. This work-around is sound but
incomplete for subsumption. I.e., given ontologies O and O′, where O′ has
been derived from O by replacing each occurrence of a nominal o with a
primitive class Co, a class C is subsumed by a class D with respect to O if C

is subsumed by a D with respect to O′, but if C is not subsumed by a D with
respect to O′, then we cannot be sure that C is not subsumed by a D with
respect to O. Clearly, the work-around is unsound for satisfiability, i.e., there
may be concepts that are satisfiable with respect toO′, but unsatisfiable with
respect to O.

This situation was clearly very unsatisfactory given the motivation for
OWL’s Description Logic based design, and it was always anticipated that
existing tableaux decision procedures for SHIQ and SHOQ would soon be
extended to SHOIQ. Although this took a little longer than anticipated, a
tableaux decision procedure for SHOIQ was eventually developed [Horrocks
and Sattler, 2005], and both the Pellet system and the FaCT++ system
[Tsarkov and Horrocks, 2005] (the successor of the FaCT system) now use
this algorithm to fully support OWL DL. It is expected that other reasoners,
including Racer, will soon follow suit.

It is interesting to note that OWL is now supported by commercial De-
scription Logic systems. These include the Cerebra system from Cerebra Inc
(formerly Network Inference), and RacerPro, a commercial version of the
Racer system. There are also several OWL reasoners that are not based
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on tableaux decision procedures. These include KAON2, a system that uses
a reduction of SHIQ(D) to disjunctive datalog [Hustadt et al., 2004], and
Hoolet, a system that uses the Vampire First Order Theorem prover via a
translation of SHOIN (D) into FOL [Tsarkov et al., 2004].

The growing importance of ontologies, and the emergence of the OWL
standard, has also given impetus to the development of ontology engineering
tools, including tools for editing, validating, visualising, merging and debug-
ging OWL ontologies. Several Application Programming Interfaces (APIs)
for OWL are also available.

Of the available OWL Editing tools, probably the best known and most
widely used is Protégé [Gennari et al., 2003]. Protégé is a frame based
editor that supports OWL via an OWL Plugin. The Plugin uses a range of
techniques (some of which were first developed in the OilEd editor [Bech-
hofer et al., 2001b]) to extend the language that can be dealt with, e.g., by
explicitly specifying quantification with slots and allowing for multiple nec-
essary and sufficient conditions in class definitions. In addition to the frame
editor, there are additional Protégé plugins supporting, e.g., ontology vi-
sualisation, ontology documentation and “wizards” that can automate some
basic steps in the ontology development process. Protégé can connect to
any Description Logic reasoner with a DIG compliant interface, and uses
the reasoner to check class consistency, to compute the class hierarchy, and
to compute the most specific class(es) that each individual is an instance of.

Several other OWL editing tools are also available. These include OilEd
[Bechhofer et al., 2001b] (from Manchester University), SWOOP [Kalyan-
pur et al., 2005a] (from the Pellet team) and Construct (from Cerebra). The
design of OilEd is based on that of Protégé, but it provides more complete
support for OWL DL. Like Protégé, OilEd can use any DIG compliant
reasoner to reason over the ontology. SWOOP is browser based, and is much
more tightly linked to OWL’s syntactic structure; it provides both abstract
syntax and RDF/XML syntax editing modes, and fully supports OWL DL.
SWOOP uses the Pellet system for reasoning support, and also has an inte-
grated debugger [Kalyanpur et al., 2005b]. Construct is a graphical tool that
uses a UML like notation; it uses the Cerebra reasoner to provide reasoning
support.

OWL editing tools are also expanding into the software engineering realm,
as tools such as Sandpiper Software’s Medius Visual Ontology Modeler sup-
ports ontology development using UML modelling tools with output in OWL
(see http://www.sandsoft.com/). This enables broader communities to
model, edit, and integrate with OWL ontologies.
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Although OWL was initially developed as an ontology language for the
Semantic Web, OWL has also been widely adopted as a de facto standard
for ontology based applications. These include “traditional” applications in
e-Science and Medicine, as well as applications in industry and government.
The advantages of using OWL in such applications include the relative sta-
bility and interoperability conferred by a W3C standard, and the availability
of an expanding range of reasoners and tools.

Examples of OWL ontology applications include:r Ontologies developed by members of the Open Biomedical Ontologies Consortium
(see http://obo.sourceforge.net/), which recommends OWL as the exchange
language for all Life Science ontologies. These include the widely used Gene On-
tology (GO) and Microarray Gene Expression Data (MGED) ontology.r The US National Cancer Institute (NCI) “thesaurus”, an ontology containing the
working vocabulary used in NCI data system (see http://ncicb.nci.nih.gov/

NCICB/core/EVS/).r United Nations Food and Agriculture Organization (FAO) is using OWL to de-
velop a range of ontologies covering areas such as agriculture and fisheries (see
http://www.fao.org/agris/aos/Applications/intro.htm).r The Semantic Web for Earth and Environmental Terminology (SWEET) on-
tologies developed at the US National Aeronautics and Space Administra-
tion (NASA) Jet Propulsion Laboratory (see http://sweet.jpl.nasa.gov/

ontology/). These include ontologies describing space, the biosphere and the sun.
SWEET is now being expanded by a number of earth and space science efforts,
and has been augmented in the GEON project (see http://www.geongrid.org/)
to cover the solid earth, and by the Virtual Solar Terrestrial Observatory Project
(see http://vsto.hao.ucar.edu/) to include much more information on the at-
mosphere.r An ontology used at General Motors in a project to help quality improvement
activities for assembly line processes in different production sites [Morgan et al.,
2005].

14.4 Summary

The Semantic Web is envisaged as an evolution of the existing Web where
terms defined in ontologies will be used to give well defined and machine-
processable meaning to Web accessible information and services. OWL, a
Description Logic based ontology language, has been designed for this pur-
pose.

Because of the ambitious design goals for OWL, because of the multi-
ple influences on OWL, and also because of the structural requirements
constraining OWL, the development of OWL has not been without prob-
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lems. Through hard work and compromise, these problems have largely been
overcome, resulting in a ontology language that is truly part of the Semantic
Web.

It was not possible to simultaneously satisfy all of the constraints on OWL,
so two styles of using OWL have been developed, each appropriate under
different circumstances.

One style of OWL usage is motivated by the need unambiguously represent
information in an expressive language, but one that can still be reasoned
with predictably. When this is a primary goal, OWL DL will be the target
language, and it has been used in a number of existing applications. When
using OWL DL, some compatibility with RDF is lost, mostly having to
do with using classes and properties as individuals. On the other hand,
users of OWL DL benefit from decidable inference, and the availability of
an increasingly wide range of tools and infrastructure, including efficient
reasoning systems and sophisticated ontology development environments.
OWL DL also has a frame-like alternative syntax that can be used to make
working with OWL easier.

Even though OWL DL is, essentially, a description logic, it also in-
cludes features that place it firmly in the Semantic Web. OWL DL uses the
datatyping mechanisms from RDF and many of the built-in XML Schema
datatypes. OWL DL uses RDF URI references as names, including the
names from RDF, RDFS, and XML Schema datatypes that are relevant.
Entailment in OWL DL is compatible with entailment in RDF and RDFS.

For users who still need unambiguous representation and predictable rea-
soning, but for whom simplicity is more important than expressive power,
the OWL Lite subset of OWL DL may be a good choice. This sublanguage
rules out some of the things that can be said in OWL DL, but still re-
tains considerable expressive power. Moreover, OWL Lite is supported by a
wider range of reasoning tools, and as key reasoning tasks are of lower worst
case complexity, these reasoners might be expected to be more efficient, in
general, than OWL DL reasoners.

The other style of OWL usage is one where compatibility with RDF is
the overarching concern. In this case, OWL Full would be an appropriate
choice. OWL Full extends RDF and RDFS to a full ontology language, with
a well-specified entailment relationship that extends entailment in RDF and
RDFS, while avoiding any paradoxes that might arise. However, entailment
in OWL Full is undecidable, which is a significant issue in most circum-
stances, and no effective tools for reasoning are available for OWL Full, nor
are they expected to appear. Also, the user-friendly alternative syntax is not
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adequate for OWL Full, so RDF/XML must be used.
In practice, relatively few OWL Full applications have emerged to date,

and where OWL Full ontologies are found, they often turn out to be outside
the OWL DL subset only as the result of minor syntactic errors. Fragments
of OWL are, however, sometimes used as ad hoc extensions to RDFS. A
common example is the use of OWL functional properties, and explicit equiv-
alences and (in)equalities, in what would otherwise be an RDFS ontology.

There remain, of course, significant issues that are deliberately not han-
dled by OWL, but which are definitely relevant to many Semantic Web use
cases:r OWL avoids anything related to nonmonotonicity (such as default reasoning and

localised closed world assumptions);r OWL’s limited expressiveness excludes operations such as property-chaining, or,
more generally, axioms with variables, such as rules (although there are already
proposals for extensions in this direction [Horrocks et al., 2005; Eiter et al., 2004;
Motik et al., 2004; Rosati, 2005], some of which are based on earlier work on
integrating Description Logics and logic programming rules as described in Chap-
ter ??);r like the Description Logics on which it is based, OWL does not support N-ary
relations (although Description Logics supporting N-ary relations are known [Cal-
vanese et al., 1999a]);r OWL does not allow for the use of data values as database style keys [Lutz
et al., 2004], or for functionality or path constraints [Calvanese et al., 1999a;
Khizder et al., 2001];r OWL’s import mechanism is limited, and does not support fine-grained operations
(such as the importation of parts of ontologies);r OWL integrates datatypes in a very clean way, but there is no notion of operations
on these datatypes (such integer arithmetic or string operations).

Extending the current Semantic Web with some or all of these features
will require not only a standardisation effort, but sets a significant research
challenge to the community.
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