
A Software Framework For Matchmaking Based on
Semantic Web Technology

Lei Li
Department of Computer Science

University of Manchester
Manchester, United Kingdom

lil@cs.man.ac.uk

Ian Horrocks
Department of Computer Science

University of Manchester
Manchester, United Kingdom

horrocks@cs.man.ac.uk

ABSTRACT
An important objective of the Semantic Web is to make Electronic
Commerce interactions more flexible and automated. To achieve
this, standardization of ontologies, message content and message
protocols will be necessary.

In this paper we investigate how Semantic and Web Services
technologies can be used to support service advertisement and dis-
covery in e-commerce. In particular, we describe the design and
implementation of a service matchmaking prototype which uses a
DAML-S based ontology and a Description Logic reasoner to com-
pare ontology based service descriptions. We also present the re-
sults of initial experiments testing the performance of this prototype
implementation in a realistic agent based e-commerce scenario.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services; I.2.4
[Knowledge Representation Formalisms and Methods]: Rep-
resentation languages; D.2.8 [Software Engineering]: Metrics—
performance measures.

General Terms
Languages, Standardization, Performance, Experimentation

Keywords
Semantic Web, Web Services, Ontologies

1. INTRODUCTION
The Semantic Web requires that data be not only machine read-

able (just like the Web nowadays does), it also wants the data to be
machine understandable. To quote Tim Berners-Lee, the director
of the World Wide Web consortium (W3C), and prime architect of
the Semantic Web:

The semantic web goal is to be a unifying system
which will (like the web for human communication)
be as un-restraining as possible so that the complexity
of reality can be described [3].

.
With a Semantic Web, it will be easy to realise a whole range of

tools and applications that are difficult to handle in the framework
of the current web. Examples include knowledge-repositories,
search agents, information parsers, etc. Moreover, the developers

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.xxx.

of end user applications will not need to worry about how to inter-
pret the information found on the Web, as ontologies will be used
to provide vocabulary with explicitly defined and machine under-
standable meaning [14]. One important Semantic Web application
area is e-commerce. In particular, a great deal of attention has been
focused on semantic web services, the aim of which is to describe
and implement web services so as to make them more accessible
to automated agents. Here, ontologies can be used to describe ser-
vices so that agents (both human and automated) can advertise and
discover services according to a semantic specification of function-
ality (as well as other parameters such as cost, security etc.).

As a first step in realising the Semantic Web, new standards for
defining and using ontologies are already being developed. RDF,
which is being developed by the W3C RDF Core working group, is
a web markup language that provides basic ontological primitives
[4]; DAML+OIL is an ontology language that extends RDF with
a much richer set of primitives (e.g., boolean operators and cardi-
nality constraints), and which is now the basis for the W3C Web
Ontology Language working group’s development of the OWL on-
tology language standard [7, 6].

Moreover, if applications are to exchange semantic information,
they will need to use common ontologies. One such ontology (writ-
ten in DAML+OIL), which has been designed for the purpose of
describing web services, is the DAML-S ontology [1]. In this pa-
per, we present a case study of an e-commerce application in which
the DAML-S service ontology is used to provide the vocabulary for
service descriptions. These descriptions are used in a matchmaking
prototype, i.e., a repository where agents can advertise and search
for services that match some semantic description. We used JADE
[13] as the agent platform for our prototype and we used the Racer
DL reasoner in order to compute semantic matches between service
advertisements and service requests. We illustrate some difficulties
both in the application of the DAML-S ontology and in the use of
the DL reasoner, and show how these were overcome in the proto-
type implementation. Finally, we carry out a performance analysis
using the prototype in order to discover if the approach is likely to
be feasible in large scale web applications.

2. BACKGROUND
In this section we will give an overview of Semantic Web lan-

guages and technologies that are relevant to the prototype imple-
mentation.

2.1 Ontology Languages
As we have already mentioned, ontologies play a key role in

the Semantic Web by providing vocabularies that can be used by
applications in order to understand shared information.



DAML+OIL is an ontology language that has been designed
specifically to be used in the Semantic Web. DAML+OIL is the
result of merging two ontologies languages: OIL and DAML. OIL
integrates the features from Frame-based systems and Description
logics (DLs), and has an RDF based syntax; DAML is more tightly
integrated with RDF, enriching it with a larger set of ontological
primitives [9].

Because DAML+OIL is based on a Description Logic, we can
use a DL reasoner to compare (semantically) descriptions written
in DAML+OIL. We believe that this provides a powerful frame-
work for defining and comparing e-commerce service descriptions.
In Section 3 we will discuss in more detail DLs in general and
DAML+OIL in particular.

2.2 Service Description Languages
In this section, we will discuss an important part of the match-

making prototype — choosing the appropriate service ontology,
and we will illustrate why it is reasonable to consider DAML-S
in this context.

2.2.1 WSDL
WSDL (Web Services Description Language) is an XML format

for describing network services in abstract terms derived from the
concrete data formats and protocols used for implementation [25].

As communication protocols and message formats are standard-
ized in the web community, it becomes increasingly possible and
important to be able to describe the communications in some struc-
tured way. WSDL addresses this need by defining an XML gram-
mar for describing network services as collections of communi-
cation endpoints capable of exchanging messages. WSDL ser-
vice definitions provide documentation for distributed systems and
serve as a recipe for automating the details involved in application
communications.

However, WSDL does not support semantic description of ser-
vices. For example, it does not support the definition of logical
constraints between its input and output parameters although it has
the concept of input and output types as defined by XSD.

2.2.2 UDDI
Another emerging XML based standard for web service descrip-

tion is UDDI (Universal Description, Discovery and Integration)
[23]. It enables a business to (i) describe its business and its ser-
vices, (ii) discover other businesses that offer desired services, and
(iii) integrate with these other businesses by providing a registry of
businesses and web services.

UDDI describes businesses by their physical attributes such as
name, address and the services that they provide. In addition,
UDDI descriptions are augmented by a set of attributes, called
tModels, which describe additional features such as the classifi-
cation of services within taxonomies such as NAICS (North Amer-
ican Industry Classification System).

However, because UDDI does not represent service capabilities,
the tModels they use only provide a tagging mechanism, and the
search performed is only done by string matching on some fields
they have defined. Thus, it is of no use for locating services on the
basis of a semantic specification of their functionality.

2.2.3 DAML-S
DAML-S supplies Web service providers with a core set of

markup language constructs for describing the properties and
capabilities of their Web services in unambiguous, computer-
interpretable form. DAML-S markup of Web services is intended to
facilitate the automation of Web service tasks including automated

Web service discovery, execution, interoperation, composition and
execution monitoring [1].

In DAML-S, service descriptions are structured into three essen-
tial types of knowledge: a ServiceProfile, a ServiceModel (which
describes the ServiceProfile), and a ServiceGrounding. In a match-
making process, the ServiceProfile is typically required, since it
provides the information needed for an agent to discover a service
that meets its requirements.

In [18], Paolucci et al have described some experiments designed
to prove that DAML-S and its Service Profile can take up the chal-
lenge of representing the functionalities of web services.

2.3 Matchmaking Systems
In this section, we will briefly examine other approaches to the

matchmaking problem.

2.3.1 InfoSleuth
InfoSleuth [16, 15], an agent-based information discovery and

retrieval system, adopts “broker agents” to perform the syntactic
and semantic matchmaking.

The broker agent matches agents that require services with other
agents with agents that can provide those services. By maintain-
ing a repository containing up-to-date information about the oper-
ational agents and their services, the broker enables the querying
agent locate all available agents that provide appropriate services.

Syntactic brokering is the process of matching requests to agents
on the basis of the syntax of the incoming messages which wrap the
requests; semantic brokering is the process of matching requests
to agents on the basis of the requested agent capabilities or ser-
vices, with the agent capabilities and services being described in a
common shared ontology of attributes and constraints. This single
domain-specific ontology is a shared vocabulary that all agents can
use to specify advertisements and requests to the broker.

In InfoSleuth, the service capability information is written in
LDL++ [26], a logical deduction language. Agents use a set of
LDL++ deductive rules to support inferences about whether an ex-
pression of requirements matches a set of advertised capabilities. In
contrast, we prefer to adopt a more standardized service description
language in our work.

2.3.2 RETSINA/LARK
Sycara et al have developed a multiagent infrastructure named

RETSINA (Reusable Task Structure-based Intelligent Network
Agents) [21, 20, 19]. Mediation in this system also relies on service
matchmaking, although their specification of capability and service
descriptions is different from ours.

They distinguished three general agent categories in Cyberspace:
service provider, service requester, and middle agent. To describe
these agents’ capabilities in the matchmaking process, they have
defined and implemented an ACDL (Agent Capability Description
Language), called Larks (Language for Advertisement and Request
for Knowledge Sharing). Larks offers the option to use application
domain knowledge in any advertisement or request by using a local
ontology, written in a specific concept language ITL, to describing
the meaning in a Larks specification.

As with InfoSleuth, our methodology differs from this system
in the aspects of service description language, agent platform and
matching engine. Moreover, in our approach we want to be sure
that the service description language also lends itself to the nego-
tiation process,1 i.e., the same service description language should

1After finding suitable services, a consuming agent may enter into a
negotiation with the providing agent regarding the terms of service
provision (cost, delivery etc.) [2].



be applicable to the negotiation stage.

3. DL AND DAML+OIL
The use of Description Logics and DAML+OIL are central to

our approach. Some details of the two formalisms will therefore be
helpful in understanding the remainder of the paper.

3.1 Description Logic
Descriptions Logics are a well-known family of knowledge rep-

resentation formalisms. They are based on the notion of concepts
(unary predicates, classes) and roles (binary relations), and are
mainly characterized by constructors that allow complex concepts
and roles to be built from atomic ones [11]. A DL reasoner can
check whether two concepts subsume each other [8]. In the fol-
lowing sections, we will use DL notations to express our design.
Hence it will be useful to give an overview of DL languages and
notations.

A detailed discussion of DLs is, however, beyond the scope of
this paper, and the interested reader is referred to [5] for further
details.

3.1.1 Description logics syntax
Elementary descriptions are atomic concepts and atomic roles.

Complex descriptions can be built from them inductively with con-
cept constructors. In the following, we will use abstract notation.
We use the letters A and B for atomic concepts, the letter R for
atomic roles, and the letters C and D for concept descriptions. De-
scription languages are distinguished by the constructors they pro-
vide, the language AL is a minimal language that is of practical
interest. Concept descriptions in AL are formed according to the
following syntax rule [5]:

C, D → A | (atomic concept)

> | (universal concept)

⊥| (bottom concept)

¬A | (atomic negation)

C u D | (intersection)

∀R.C | (value restriction)

∃R.> (limited existential quantification)

To give examples of what can be expressed in AL, we sup-
pose that Person and Female are atomic concepts. Then
Person u Female and Person u ¬Female are AL-concepts
describing, intuitively, those persons that are female, and those that
are not female. If, in addition, we suppose that hasChild is an
atomic role, we can form the concepts Person u ∃hasChild.>
and Person u ∀hasChild.Female, denoting those persons that
have a child, and those persons all of whose children are female.
Using the bottom concept (⊥), we can also describe those persons
without a child by the concept Person u ∀hasChild. ⊥ [5].

This basic AL-language does not fulfil the requirements of our
investigation as we need to be able to reason with DAML+OIL
descriptions, which include, e.g., cardinality restrictions on roles,
and datatypes (integers, strings, etc.). We therefore use the DL
SHIQ(D), whose expressive power is (almost) equivalent to that
of DAML+OIL [12, 10, 7]. This language consists of the basic AL-
language plus the negation of arbitrary concepts, (qualified) cardi-
nality restrictions, role hierarchies, inverse roles, transitive roles
and datatypes (a restricted form of DL concrete domains). A de-
tailed discussion of these and other DL constructors can be found
in [5].

The increased expressive power of the language is manifested in
a range of additional constructors, including:

∃R.C (full existential quantification)

¬C (negation of arbitrary concepts)

≤ n R (atmost cardinality restriction)

≥ n R (atleast cardinality restriction)

= n R (exactly cardinality restriction)

≤ n R.C (qualified atmost cardinality restriction)

≥ n R.C (qualified atleast cardinality restriction)

= n R.C (qualified exactly cardinality restriction)

≤n R (concrete domain max restriction)

≥n R (concrete domain min restriction)

=n R (concrete domain exactly restriction)

As examples of what can be expressed with these new con-
structors, if Woman ≡ Person u Female, then Woman u
∃hasChild.Person intuitively denotes “mothers”; ¬Woman de-
notes individuals that are not women; Mother u ≥ 3 hasChild

denotes a mother with more than three children; Mother u
= 3 hasChild.female denotes a mother with exactly three daugh-
ters; Personu≥18 hasAge denotes “adults”, i.e., a person whose
age is greater than 18.

3.1.2 DL Semantics
In order to define a formal semantics of DLs, we consider in-

terpretations I that consist of a non-empty set ∆I (the domain of
the interpretation) and an interpretation function, which assigns to
every atomic concept A a set AI ⊆ ∆I and to every atomic role R
a binary relation RI ⊆ ∆I × ∆I . The interpretation of complex
concepts are built up from the interpretation of primitive concepts,
e.g., (CuD)I = CI∩DI and (∃R.>)I = {a ∈ ∆I | ∃b.(a, b) ∈
RI}.

We say that two concepts C, D are equivalent, and write
C ≡ D, iff CI = DI for all interpretations I. For in-
stance, going back to the semantics of concepts, one can eas-
ily verify that ∀hasChild.Female u ∀hasChild.Student and
∀hasChild.(Female u Student) are equivalent. A complete in-
terpretation function for concept description can be found in [5].

3.1.3 Terminologies
In DLs, a knowledge base (equivalent to an ontology) consists

of a set of terminological axioms that assert how concepts or roles
are related to each other. In the most general case, terminological
axioms have the form:

C v D (R v S) or C ≡ D (R ≡ S)

where C, D are concepts (and R, S are roles). The first kind
of axiom is called an inclusion, while the second one is called an
equivalence.

An equivalence whose left-hand side is an atomic concept is
sometimes called a definition, and can be thought of as introduc-
ing symbolic names for complex descriptions [5].2

3.2 DAML+OIL
DAML+OIL is a DL based Web ontology language. As with

any other DL, DAML+OIL describes the structure of a domain in
terms of classes (concepts in DL) and properties (roles in DL).

2This does not really hold up in the general case where the knowl-
edge base can contain arbitrary axioms [5].



DAML+OIL is in fact based on the SHIQ(D) DL, and pro-
vides an almost equivalent set of class constructors and class
and property axioms (DAML+OIL extends SHIQ(D) with the
oneOf constructor for defining classes extensionally). Like
SHIQ(D), DAML+OIL also supports the use of datatypes and
data values in class description, with DAML+OIL relying on XML
Schema datatypes for this purpose. For a complete description of
DAML+OIL, the interested reader is referred to [24].

4. THE DAML-S SERVICE ONTOLOGY
We have chosen to use the DAML-S web service ontology as the

basis to represent e-commerce constructs like advertisements and
service queries.

DAML-S [1] is a DAML+OIL service description ontology.
Through the tight connection with DAML+OIL, DAML-S supports
our need for the semantic representation of services. DAML+OIL
allows for subsumption reasoning on concept taxonomies, it al-
lows for the definition of relations between concepts and it makes
it possible to apply property restrictions on the parameters of ser-
vice concepts. This means that we can use DAML-S to define the
entities in e-commerce life-cycles, such as advertisements and re-
quests, and implement the matchmaking functionalities by using
a DL reasoner to compute the subsumption relationships of those
concepts.

DAML-S aims at facilitating discovery, execution, interopera-
tion, composition and execution monitoring of web services. It
defines the notions of a Service Profile (what the service does), a
Service Model (how the service works) and a Service Grounding
(how to use the service).

A service profile describes who provides the service, the ex-
pected quality of the service and the transformation produced by
the service in terms of what it expects in order to run correctly and
what results it produces. Specifically, it specifies the preconditions
that have to be satisfied to use the service effectively; the inputs
that the service expects; the expected effects that result from the
execution of the service and the outputs returned [1]. Since the be-
havioural aspects of a service profile are outside the scope of this
work, we will only interest ourselves in the fact that a service can
be represented by inputs and outputs properties (which represent
the functional attributes of a service).

Through our investigation, we have concluded that the ability
of DAML-S to describe the semantics of web services meets the
requirements of our matchmaking framework:

• Restrictions and constraints on service descriptions could be
expressed;

• It provides the shared semantics needed to achieve interoper-
ability;

• Descriptions are amenable to automated reasoning;

• It provides appropriate support for datatypes;

• Flexibility is provided by support for loosely structured de-
scriptions (semi-structured data).

5. SERVICE DESCRIPTION
In this section, we explain how we use DAML+OIL and the

DAML-S ontology to capture the various descriptions that are used
in the e-commerce life-cycle.

5.1 A Sample Ontology
Service description ontologies will have an important role to play

in our work, so we have designed a domain-specific sample ontol-
ogy about the sales of computers in order to achieve agreement at
the semantic level between various parties. In our prototype, we
used the OilEd [17] ontology editor to build DAML+OIL ontolo-
gies. For the purpose of clarity and compactness, however, in this
paper we will use the DL notions in place of the DAML+OIL syn-
tax.

In our ontology, we use the DAML-S ServiceProfile class
as a common superclass for concept Advertisement, Query,
Template and Proposal, so they can be expressed as:

ServiceProfile v >

Advertisement v ServiceProfile

Query v ServiceProfile

Template v ServiceProfile

Proposal v ServiceProfile

We also defined two kinds of services in this ontology: Sales
and Delivery. Sales describes the sale of an item of EEquip-
ment through constraints on the object properties and datatype
properties such as the unit price. Delivery describes the struc-
ture of delivery information by specifying, e.g., that there must be
exactly one DeliveryLocation and exactly one Delivery-
Date.

In accordance with the DAML-S 0.6 specification, in Sales,
we also include the providing and requesting Actors as the values
of providedBy and requestedBy properties. By doing so, we
allow the advertiser and the requester to specify who they are and
restrict who they would like to do business with.

Sales v (= 1 providedBy.Actor) u

(= 1 requestedBy.Actor) u

(= 1 item.EEquipment) u

(= 1 hasQuantity.positiveInteger) u

(= 1 hasUnitPrice.nonNegInteger) u

(= 1 canDeliver.Delivery)

Delivery v (= 1 location.DeliveryLocation) u

(= 1 date.DeliveryDate)

Actor v (= 1 hasName.ActorName) u

(= 1 hasCreditLevel.Integer)

To express the concept computer we used in this example, a class
PC is defined as a subclass of EEquipment, and must have several
properties, like hasProcessor and memorySize.

PC v EEquipment u

(= 1 hasProcessor.Processor) u

(= 1 memorySize.positiveInteger)

Processor ≡ PentiumIII t Pentium4 t Athlon

As noted in section 4, the service is represented by input and
output properties of the profile. The input property specifies the
information that the service requires to proceed with the computa-
tion.

For example, our pc-selling service could require information
like unit price and quantity as the inputs to sell. The outputs specify



what is the result of the operation of the service. In the pc-selling
case the output could be a item description that acknowledges the
sale.

In our work, we divide these restriction properties into inputs
and outputs according to the context in which they are used3. In
particular, inputs are used by buyers and sellers to describe business
constraints (e.g., unit quantity, unit price and delivery information),
while outputs are used to describe the product itself.

inputs v parameter

outputs v parameter

hasQuantity v inputs

hasUnitPrice v inputs

canDeliver v inputs

item v outputs

These simple constructs allowed us to express the concepts we
needed in this context, but arbitrarily complex DAML+OIL con-
structs can be used if required. The next several sections will show
the examples we used in our matchmaking process.

5.2 Advertisement
Here we show an example of an advertisement. Suppose that we

want to specify the concept of an advertisement by which the Actor
would like to sell some PCs. In particular, there are some restric-
tions on the Sales and the Delivery such as the following:

• items are provided by an Actor with name ”Georgia”;

• items are PCs and the memory size is at least 128 Mb;

• the quantity of PCs being bought will be less than 200;

• the unit price is more than 700;

• the seller must have a creditLevel greater than 5;

• goods must be delivered before the 15/09/2002;

• goods must be delivered in Bristol.

In DL notation, this advertisement can be written as:

Advert1 ≡ ServiceProfile u

(Sales u

∀providedBy.(Actor u ∀hasName.Georgia) u

∀requestedBy.(Actor u ≥5 hasCreditLevel) u

∀item.(PC u ≥128 memorySize) u

≥700 hasUnitPrice u

≤200 hasQuantity u

∀delivery.(Delivery u

≤20020915 date u ∀location.Bristol))

Note that, in DAML+OIL, the way to express a concept like “has
unit price more than 700” is to define a new datatype “more700”
and describe it like “ ∀ hasUnitPrice.more700”. However, for
the purpose of achieving concept reasoning with datatypes using
the Racer reasoner, we have used Racer syntax to express this kind
of concept, e.g., “(≥700 hasUnitPrice)”.

3Our matchmaking algorithm is based on this division.

In addition, intuitively, an advertisement should be an instance
instead of a concept, i.e., it looks more reasonable to express it as
Advert1 ∈ ServiceProfile u · · · . Because TBox reasoning is
much more effective then ABox reasoning, what we did is to ex-
press the instance advertisement as a special concept; in contexts
such as our e-commerce application, where individuals are not re-
lated to each other via properties, this does not lead to any loss of
inferential power. This issue is, however, beyond the scope of this
paper, and the interested reader is referred to [22].

5.3 Query
Similarly to the advertisement, we can define a query by which

the Actor would like to buy some PCs. E.g., restrictions to Sales
and Delivery could express the following:

• the provider is an Actor with creditLevel greater than 5;

• items are PCs and the Processor must be Pentium4;

• the unit price must be less than 700.

From the Description Logic point of view, the query and the ad-
vertisement are almost identical, both of them are subsumed by the
concept ServiceProfile.

Note that the query does not specify anything about the
delivery—the flexibility of DL based languages like DAML+OIL
allows us to do this while still being able to find relevant matches.

Query1 ≡ ServiceProfile u

(Sales u

∀providedBy.(Actor u ≥5 hasCreditLevel) u

∀item.(PC u ∀hasProcessor.Pentium4

≤700 hasUnitPrice))

5.4 Revised Design
As discussed in section 5.1, in accordance with DAML-S the

providing and requesting Actors have been included as the values
of providedBy and requestedBy properties in both the definition of
advertisements and queries. It looks reasonable and rational, but
there is a fatal problem lying in this design.

Consider the advertisement Advert1 in section 5.2, which has
the property providedBy.(Actoru∀hasName.Georgia). Con-
sider the request Query1 in section 5.3, and suppose that we per-
form a matchmaking operation between Advert1 and Query1
using a DL reasoner to (semantically) compare the DAML+OIL
descriptions. Due to the existence of providedBy.(Actor u
∀hasName.Georgia), there is no subsumption relationship be-
tween Query1 and Advert1: all we can do is prove that the two
descriptions are not incompatible (their intersection is not equiva-
lent to the bottom concept). This is always likely be the case as the
requester could not have the knowledge that the service he is look-
ing for will be provided by an Actor with the name “Georgia”.
This kind of match is quite weak, and does not allow for result se-
lection via a hierarchy of match types with varying specificity (this
will be discussed in detail in Section 6.2).

We believe that this design problem is inherent in the DAML-
S specification: there is too much information inside the service
profile, and this makes it difficult to use automated reasoning tech-
niques to compute semantic matches between service descriptions.

In order to fix this problem, we have modified the design of ad-
vertisements and queries. The new design treats advertisements
and queries as objects with various properties, one of which is the



profile. Information about who is providing and requesting ser-
vices is removed from the service profile and attached to adver-
tisements and queries via the providedBy and requestedBy prop-
erties (this could be thought as some extra information provided
by the advertiser/querier). The core ServiceProfile compo-
nent is attached to advertisements and queries via the profile
property, and includes constraints like item information, unit price,
unit quantity and delivery information. Later, in the matchmaking
phase, we will only use this ServiceProfile part of an adver-
tisement when computing semantic matches. Constraints such as
hasCreditLevel might also be used in realistic e-commerce appli-
cations such as eBay4 or Amazon,5 but we do not consider them in
our prototype.

In our modified design, we use the following notation to separate
the different components of an advertisement:

Advert1 = (providedBy (Actor u ∀hasName.Georgia),

requestedBy (Actoru ≥5 hasCreditLevel),

profile (ServiceProfile u

∀item.(PC u ≥128 memorySize) u

≤700 hasUnitPrice u

≤200 hasQuantity u

∀delivery.(Delivery u

≤20020915 date u ∀location.Bristol)))

and similarly we write queries as:

Query1 = (providedBy (Actoru ≥5 hasCreditLevel),

profile (ServiceProfile u

∀item.(PC u ∀hasProcessor.Pentium4) u

≤700 hasUnitPrice))

6. MATCHMAKING OPERATION

6.1 Matching Definition
Matchmaking is defined as a process that requires a repository

host to take a query or advertisement as input, and to return all ad-
vertisements6 which may potentially satisfy the requirements spec-
ified in the input query or advertisement. Formally, this can be
specified as:

Let α be the set of all advertisements in a given advertisement
repository. For a given query or advertisement, Q, the matchmak-
ing algorithm of the repository host returns the set of all advertise-
ments which are compatible, matches(Q):

matches(Q) = {A ∈ α|compatible(A, Q)}

Two descriptions are compatible if their intersection is satisfi-
able:

compatible(D1, D2) ⇔ ¬(D1 u D2 v ⊥)

4http://www.ebay.com/
5http://www.amazon.com/
6It is obvious that the host needs to return advertisements on receiv-
ing a query, but it is also reasonable for the host to return advertise-
ments on receiving an advertisement, e.g., an advertiser might want
to know the advertisements made by the others so that he can make
some modification to his business strategy.

For example, consider the following query:

Query2 = (providedBy (Actor u ∀hasName.Alan),

requestedBy (Actoru =5 hasCreditLevel),

profile (ServiceProfile u

∀item.(PC u =256 memorySize) u

=500 hasUnitPrice))

The intersection of this query with Advert1 in section 5.4 is
satisfiable. Formally:

Advert1 ∈ matches(Query2)

6.2 Matching Algorithm
To understand the matching algorithm we adopted in our pro-

totype, we first need to introduce the definition of the degree of
match. This notion is introduced because it is not particularly use-
ful merely to determine that an advertisement and query are not
semantically incompatible. Therefore, starting from the matching
degree definition described in [18], we extend the match level “in-
tersection satisfiable” to:

• Exact If advertisement A and request R are equivalent con-
cepts, we call the match Exact; formally, A ≡ R.

• PlugIn If request R is sub-concept of advertisement A, we
call the match PlugIn; formally, R ⊆ A.

• Subsume If request R is super-concept of advertisement A,
we call the match Subsume; formally, A ⊆ R.

• Intersection If the intersection of advertisement A and re-
quest R is satisfiable, we call the match Intersection; for-
mally, ¬(A u R v ⊥).

• Disjoint Otherwise, we call the match Disjoint; that is, A u
R v ⊥.

Degrees of the match are organized in a discrete scale. Exact
matches are clearly preferable; PlugIn matches are considered the
next best, since we might expect that advertisers also provide some
more specific (sub-class) services, e.g., an advertiser selling PCs
might be expected to sell some more specific kinds of PC; Sub-
sume matches are considered to be third best, since an advertiser
might also provide some more specific (super-class) services, e.g.,
an advertiser selling used PCs might also sell PCs in general;7 In-
tersection is considered to be fourth best—it only says that the ad-
vertisement is not incompatible with the request; and Disjoint is
the lowest level, since it shows that no item could satisfy both the
advertisement and the request: it is considered to be a failed match.

With these definitions of match degrees, we now introduce the
process of matching a request. The Racer system is used to com-
pute a ServiceProfile hierarchy for all advertised services. For an
incoming request, Racer is used to classify the request’s Service-
Profile R, i.e., to compute R’s subsumption relationships w.r.t. all
the advertisement ServiceProfiles. Advertisements with Service-
Profiles equivalent to R are considered to be Exact matches, those
with ServiceProfiles subsuming but not equal to R are considered
to be PlugIn matches, and those with ServiceProfiles subsumed by
but not equal to R are considered to be Subsume matches. Racer
is then used to classify ¬R. Advertisements with ServiceProfiles
7It could be argued that Subsume is preferable to PlugIn, but this
discussion is beyond the scope of our work and would not qualita-
tively affect the performance of the prototype.



subsuming but not equal to ¬R are considered to be Intersection
matches, while those subsumed by ¬R are considered to be Dis-
joint (failed) matches.

7. PROTOTYPE IMPLEMENTATION
In this section we describe the implementation of a multi-agent

system including matchmaking, advertising and querying agents.
The system emulates a simple but realistic e-commerce scenario.
Some issues, however, such as security (e.g., fraud), have not been
taken into account, as they were not considered relevant to our pur-
pose: the investigation of ontology based service description and a
DL based matchmaking service.

7.1 Abstract Roles
To test the usability of service descriptions and matchmaking in

the Semantic Web, we will introduce a scenario in which agents
play a variety of roles. They are:

• Host manages the repository of advertisements and queries,
and performs the matching function by communicating with
a DL reasoner.

• Advertiser publishes advertisements to the host, and mod-
ifies, withdraws and browses advertisements stored in the
repository.

• Seeker sends a query to the host, and gets the matched ad-
vertisements back.

All these three kinds of abstract roles might be played by the
same entity at different times or even at the same time, e.g., an
information broker is an Advertiser and a Seeker at the same time.
With this abstract definition, we can cover different types of match-
making systems by adding one or more roles to the concrete entity
in the real system.

7.2 Functionalities
The matchmaking service provides five kinds of functionalities:

advertising a service, querying a service, withdrawing the pub-
lished service, modifying the published service and browsing ad-
vertised services in the repository.

7.2.1 Advertising
The Advertiser publishes to the Host a service description of

what it is providing or seeking for. This description captures the
relevant features of the service, including the service profile com-
ponent which will be used in matchmaking.

7.2.2 Querying
The Seeker can submit a query to find relevant advertisements

among the currently available ones. By adding constraints over
aspects that the Seeker is interested in, the query can be used to
filter out irrelevant advertisements. There are two kinds of queries
that can be defined:

• Volatile Query: the seeker submits a query to the Host, the
matched advertisements are immediately returned, and then
this query is discarded by the Host.

• Persistent Query: the seeker can also submit a persistent
query to the Host. The persistent query is a query that will
remain valid for a length of time defined by the Seeker it-
self. The Host immediately returns matched advertisements
that are currently present in the repository. Within the valid-
ity period of the query, whenever a matching advertisement

is added to the repository (or an advertisement is modified
so that it becomes a match), the Host will notify the Seeker
with a new set of matched advertisements including those
that have been changed or have been added. The persistent
query is automatically removed when the validity period is
ended.

7.2.3 Modifying/Withdrawing
An Advertiser can modify and withdraw the advertisements it

has published before. After the advertiser published his advertise-
ment to the Host, the Host notifies an ID indicating the advertise-
ment to the advertiser. Later on, this ID is used between the Host
and the advertiser to specify which advertisement is to be modified
or withdrawn. There is an obvious security issue involved, but we
simply assume that all the partners in this framework are trusted.

7.2.4 Browsing
The Host offers the functionality of browsing the currently avail-

able advertisements. It maintains an advertisement repository,
where published advertisements are stored. In finding out about
advertised services, browsing parties can make use of this informa-
tion to tune the advertisements that they will submit in turn, so as
to maximize the likelihood of matching.

7.3 Agents
We chose JADE as the agent platform, the goal of JADE being

to simplify the development of multi-agent systems while ensur-
ing standard compliance through a comprehensive set of system
services and agents in compliance with FIPA specifications. The
benefit of JADE is that we can concentrate on the agent functional-
ities and leave other things, like communication between agents, to
the platform.

Three kinds of agent have been implemented:

• HostAgent has responsibility to initialize the Racer server
using assigned ontologies and maintain the advertisement
repository. This is the core component of the system, and
its operation is described in more detail in section 7.4 below.

• AdvertiserAgent publishes advertisement to the HostAgent,
withdraws and modifies its own advertisement if needed. It
can also browse the advertisement repository in HostAgent.

• SeekerAgent has the choice of publishing a volatile or per-
sistent request to the HostAgent. It also has the browse func-
tionality.

7.4 Matchmaking
At the beginning of the matchmaking process, the HostAgent

initializes Racer with the service ontology described in Section 5,
which the Racer system will use to compute the subsumption rela-
tions between advertisements and requests throughout the whole
matchmaking process. When it receives an advertisement, the
HostAgent assigns it a unique ID and stores it in the repository.
It then sends the advertisement’s ServiceDescription to the Racer
system to be added to the subsumption hierarchy.

When it receives a request, the HostAgent uses the Racer system
to compute all the match degrees between the request and each ad-
vertisement in the repository, as described in Section 6.2. Matching
advertisements are returned to the seeker agent, along with their
IDs and match degrees (Exact, PlugIn, etc.). For efficiency rea-
sons, match results for a persistent request are maintained until the
request expires.

The HostAgent stores persistent requests along with an ID and
expiry duration. At the same time as classifying new (and updated)



advertisements, the HostAgent will check all persistent requests,
delete them if expired, and compute their match degree with re-
spect to the new (or updated) advertisement. If a match is found,
the information is added to the stored information from the initial
matchmaking, and the complete result for the persistent request is
returned to the seeker agent.

8. EVALUATION
In terms of functionality, the matchmaking stage has achieved

its purpose: it can respond to an input request with the results of
matched advertisements. However, in order to find a match for a
particular request, the Racer reasoner needs to check the satisfia-
bility of the request with each advertisement that has been previ-
ously published to the Matchmaking host, and given the high worst
case complexity of reasoning with DAML+OIL descriptions,8 the
question of scalability arises. We therefore used the prototype im-
plementation to carry out some simple experiments designed to test
the system’s performance in a realistic agent based e-commerce
scenario. The experiment used datasets of between 100 and 1,500
(artificially generated) advertisements, and recorded the time spent
for the DL reasoner to find matched advertisements in response to
a given request.

Our results showed that, regardless of the number of adver-
tisements, if the advertisements have already been classified (in
Racer’s TBox), then the reasoning time required to respond to a
matching request is always less than 20 milliseconds—so small that
accurate measurement was difficult. This would be fast enough for
the matchmaking system to handle a high frequency of matching
requests.

Figure 1: Racer classification times

In contrast, classifying the advertisements in the TBox is quite
time-consuming. From the comparison of the different sized
datasets shown in Figure 1, we can see that the average classifica-
tion time per advertisement (shown on the Y axis) increases rapidly
with the size of the dataset (shown on the X axis). The time rises

8Key inference problems for the logic implemented in the Racer
system have worst case ExpTime complexity in the size of the in-
put.

from 49.57ms per advertisement for dataset size 100, and increases
to 715.33ms per advertisement for dataset size 1,500.

Although this test illustrates that dataset size is an important is-
sue in applications that use a DL reasoner, it does not mean that
large datasets cannot be handled. For instance, in our prototype, we
could do the TBox classification off-line, i.e., for all the published
advertisements, we classify the TBox before the matchmaking pro-
cess starts, and use the classified TBox to reason about requests. As
to new incoming advertisements, we can simply insert them into the
classified TBox hierarchy, which is much easier than classifying the
entire TBox.9.

9. DISCUSSION
In this paper we have introduced service matchmaking in e-

commerce, assessed the requirements for a service description lan-
guage and ontology, and argued that DAML+OIL and DAML-S
fulfill these requirements. This argument is supported by our de-
sign and implementation of a prototype matchmaker which uses a
DL reasoner to match service advertisements and requests based on
the semantics of ontology based service descriptions. By represent-
ing the semantics of service descriptions, the matchmaker enables
the behaviour of an intelligent agent to approach more closely that
of a human user trying to locate suitable web services.

The design of the prototype matchmaker revealed a problem with
the use of DAML-S in matchmaking: DAML-S service profiles
contain too much information for effective matching. We solved
this problem by separating various components of the description;
in particular the description of the service being provided was sep-
arated from the descriptions of the providing and requesting “ac-
tors”.

Finally, the performance of the prototype implementation was
evaluated using a simple but realistic e-commerce scenario. This
revealed that, although initial classification of large numbers of ad-
vertisements could be quite time consuming, subsequent matching
of queries to advertisements could be performed very efficiently.
On the basis of these preliminary results, it seems possible that DL
reasoning technology could cope with large scale e-commerce ap-
plications; future work will include more extensive testing in order
to clarify if this is, in fact, the case.

10. ACKNOWLEDGMENTS
The author would like to thank members of the Intelligent Enter-

prise Technology Laboratory (IETL) at HP Labs, especially David
Trastour and Claudio Bartolini, for their kind help and support.

11. REFERENCES
[1] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L.

Martin, S. A. McIlraith, S. Narayanan, M. Paolucci,
T. Payne, K. Sycara, and H. Zeng. Daml-s: Semantic markup
for web services. In Proc. of the International Semantic Web
Workshop, 2001.

[2] C. Bartolini, C. Preist, and N. Jennings. A generic software
framework for automated negotiation. HP Labs Technical
Report HPL-2002-2, 2002.

[3] T. Berners-Lee. The semantic web as a language of logic,
1998.

[4] D. Brinkley and R. V. Guha. Resource description
framework (RDF) schema specification 1.0. W3C Candidate
Recommentation, Mar. 2000.

9Although removing advertisements from the TBox hierarchy
would be more difficult.



http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.
[5] E. by F. Baader, D. McGuinness, D. Nardi, and P. F.

Patel-Schneider. Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University
Press, 2002.

[6] M. Dean, D. Connolly, F. van Harmelen, J. Hendler,
I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. OWL web ontology language 1.0 reference, July
2002. http://www.w3.org/TR/owl-ref/.

[7] I. Horrocks. DAML+OIL: a reason-able web ontology
language. In Proc. of EDBT 2002, number 2287 in Lecture
Notes in Computer Science, pages 2–13. Springer, Mar.
2002.

[8] I. Horrocks and P. F. Patel-Schneider. Comparing
subsumption optimizations. In E. Franconi, G. De Giacomo,
R. M. MacGregor, W. Nutt, C. A. Welty, and F. Sebastiani,
editors, Collected Papers from the International Description
Logics Workshop (DL’98), pages 90–94. CEUR, May 1998.

[9] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen.
Reviewing the design of DAML+OIL: An ontology language
for the semantic web. In Proc. of the 18th Nat. Conf. on
Artificial Intelligence (AAAI 2002), 2002.

[10] I. Horrocks and U. Sattler. Ontology reasoning in the
SHOQ(D) description logic. In B. Nebel, editor, Proc. of
the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001), pages 199–204. Morgan Kaufmann, 2001.

[11] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for
expressive description logics. In H. Ganzinger,
D. McAllester, and A. Voronkov, editors, Proceedings of the
6th International Conference on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705 in Lecture
Notes in Artificial Intelligence, pages 161–180.
Springer-Verlag, 1999.

[12] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with
individuals for the description logic shiq. In D. MacAllester,
editor, Proc. of the 17th Int. Conf. on Automated Deduction
(CADE-17), number 1831 in Lecture Notes In Artificial
Intelligence, pages 482–496. Springer-Verlag, 2000.

[13] http://jade.cselt.it/.
[14] D. L. McGuinness. Ontological issues for

knowledge-enhanced search. In Proc. of FOIS, Frontiers in
Artificial Intelligence and Applications. IOS-press, 1998.

[15] M. Nodine, W. Bohrer, and A. Ngu. Semantic multibrokering
over dynamic heterogeneous data sources in infosleuth. In
Proc. of the International Conference on Data Engineering,
1999.

[16] M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor,
and A. Unruh. Active information gathering in infosleuth.
International Journal of Cooperative Information Systems,
9(1-2):3 –28, 2000.

[17] Oiled portal, http://oiled.man.ac.uk/.
[18] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara.

Semantic matching of web services capabilities. In Proc. of
the 1st International Semantic Web Conference (ISWC),
2002.

[19] http://www-2.cs.cmu.edu/ softagents/retsina.html.
[20] K. Sycara, J. Lu, M. Klusch, and S. Widoff. Dynamic service

matchmaking among agents in open information
environments. ACM SIGMOD Record (Special Issue on
Semantic Interoperability in Global Information Systems),
28(1):47–53, 1999.

[21] K. Sycara, J. Lu, M. Klusch, and S. Widoff. Matchmaking
among heterogeneous agents on the internet. In Proc. of the
AAAI Spring Symposium on Intelligent Agents in
Cyberspace, 1999.

[22] S. Tessaris. Questions and answers: reasoning and querying
in description logic. PhD thesis, University of Manchester,
2001.

[23] Universal description, discovery and integration (uddi),
http://www.uddi.org.

[24] F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks.
Reference description of the DAML+OIL (March 2001)
ontology markup langauge, Mar. 2001.
http://www.daml.org/2001/03/reference.html.

[25] Web services description language (wsdl) 1.1. w3c note 15
march 2001, http://www.w3.org/tr/wsdl/.

[26] C. Zaniolo. The logical data language (ldl): An integrated
approach to logic and databases. MCC Technical Report
STP-LD-328-91, 1991.


