
FaCT++ Description Logic Reasoner:
System Description

Dmitry Tsarkov and Ian Horrocks

School of Computer Science
The University of Manchester

Manchester, UK
{tsarkov|horrocks}@cs.man.ac.uk

Abstract. This is a system description of the Description Logic reasoner
FaCT++. The reasoner implements a tableaux decision procedure for the well
known SHOIQ description logic, with additional support for datatypes, includ-
ing strings and integers. The system employs a wide range of performance en-
hancing optimisations, including both standard techniques (such as absorption
and model merging) and newly developed ones (such as ordering heuristics and
taxonomic classification). FaCT++ can, via the standard DIG interface, be used
to provide reasoning services for ontology engineering tools supporting the OWL
DL ontology language.

1 Introduction
Description Logics (DLs) are a family of logic based knowledge representation for-
malisms [1]. Although they have a range of applications, they are perhaps best known as
the basis for widely used ontology languages such as OIL, DAML+OIL and OWL [5].

A key motivation for basing ontology languages on DLs is that DL systems can
then be used to provide computational services for ontology tools and applications [8,
9]. The increasing use of ontologies, along with increases in their size and complexity,
brings with it a need for efficient DL reasoners. Given the high worst case complexity
of the satisfiability/subsumption problem for the DLs in question (at least ExpTime-
complete), optimisations that exploit the structure of typical ontologies are crucial to
the viability of such reasoners.

FaCT++ is a new DL reasoner designed as a platform for experimenting with new
tableaux algorithms and optimisation techniques.1 It incorporates most of the standard
optimisation techniques, including those introduced in the FaCT system [3], but also
employs many novel ones. This includes a new “ToDo list” architecture that is better
suited to more complex tableaux algorithms (such as those used to reason with OWL
ontologies), and allows for a wider range of heuristic optimisations.

2 Tableaux Reasoning and Architecture
DL systems take as input a knowledge base (equivalently an ontology) consisting of a
set of axioms describing constraints on the conceptual schema (often called the Tbox)
and a set of axioms describing some particular situation (often called the Abox). They

1 FaCT++ is avaliable at http://owl.man.ac.uk/factplusplus.



are then able to answer both “intensional” queries (e.g., regarding concept satisfiability
and subsumption) and “extensional” queries (e.g., retrieving the instances of a given
concept) w.r.t. the input knowledge base (KB). For the expressive DLs implemented in
modern systems, these reasoning tasks can all be reduced to checking KB satisfiability.

Most modern DL systems are based on tableaux decision procedures, as first intro-
duced by Schmidt-Schauß and Smolka [10], and subsequently extended to deal with
ever more expressive logics [1]. Many systems now implement the SHIQ or SHOIQ
DLs, tableaux algorithms for which were presented in [7, 6]; these logics are very ex-
pressive, and correspond closely to the OWL ontology language. In spite of the high
worst case complexity of the KB satisfiability problem for these logics (ExpTime-
complete and NExpTime-complete respectively ), highly optimised implementations
have been shown to work well in many realistic (ontology) applications [3].

When reasoning with a KB, FaCT++ proceeds as follows. A first preprocessing
stage is applied to the KB when it is loaded into reasoner; it is normalised and trans-
formed into an internal representation. During this process several optimisations (that
can be viewed as a syntactic re-writings) are applied.

The reasoner then performs classification, i.e., computes and caches the subsump-
tion partial ordering (taxonomy) of named concepts. Several optimisations are applied
here, mainly involving choosing the order in which concepts are processed so as to
reduce the number of subsumption tests performed.

The classifier uses a KB satisfiability checker in order to decide subsumption prob-
lems for given pairs of concepts. This is the core component of the system, and the most
highly optimised one.

3 FaCT++ Optimisations
3.1 Preprocessing Optimisations
Lexical normalisation and simplification is a standard rewriting optimisation primarily
designed to promote early clash (inconsistency) detection, although it can also simplify
concepts and even detect relatively trivial inconsistencies [4]. The basic idea is that all
concepts are transformed into a simplified normal form (SNF), where the only operators
allowed in SNF are negation (¬), conjunction (u), universal restriction (∀) and (quali-
fied) at-most restriction (≤). In FaCT++, the translation into SNF is performed on the
fly, during the parsing process. At the same time, some simplifications are applied to
concept expressions, including constant elimination (e.g., C u ⊥ → ⊥), expression
elimination (e.g., ¬¬C → C), and subsumer elimination (e.g., C u D → C for D a
known subsumer of C).

Absorption is a widely used rewriting optimisation that tries to eliminate General
Concept Inclusion axioms (GCIs, axioms in the form C v D, where both C and D
are complex concept expressions), as GCIs left in the Tbox invariably lead to a signif-
icant decrease in the performance of tableaux based satisfiability/subsumption testing
procedures [3]. In FaCT++, GCIs are eliminated by absorbing them into either concept
definition axioms (concept absorption) or role domain axioms (role absorption). Role
absorption is particularly beneficial from the point of view of the CD-classification
optimisation (see Section 3.3), as it eliminates GCIs without reducing the number of
concepts to which CD-classification can be applied.



Told Cycle Elimination is a technique that we assume is used in most modern
reasoners, although we know of no reference to it in the literature. Definitional cy-
cles in the Tbox can lead to several problems, and in particular cause problems for
algorithms that exploit the told subsumer hierarchy (see Section 3.3). These cycles
are, however, often quite easy to eliminate. Assume, for example, that A1 . . . An are
named concepts, C1 . . . Cn are arbitrary concept expressions, and ./ is either v or
≡. The axioms A1 ./ A2 u C2, A2 ./ A3 u C3, . . . , An ./ A1 u C1 include a
definitional cycle, because the r.h.s. of the first axiom (indirectly) refers to the name
on its l.h.s. The cycle can, however, be eliminated by transforming the axioms into
A2 ≡ A1, . . . , An ≡ A1, A1 v C1 u C2 . . . u Cn.

Synonym Replacement is used to extend simplification possibilities and improve
early clash detection. If the only axiom with C on the left hand side is C ≡ D, then
C is called a synonym of D. For a set of concept names, all of which are synonymous,
FaCT++ uses a single “canonical” name in all concept expressions in the KB.

FaCT++ first translates all input concepts into SNF, with subsequent transforma-
tions being designed to preserve this form. After simplification and absorption, FaCT++
repeatedly performs cycle and synonym elimination steps until there are no further
changes to the KB.

3.2 Satisfiability Checking Optimisations
The FaCT++ system was designed with the intention of implementing DLs that include
inverse roles, and of investigating new optimisation techniques, including new ordering
heuristics. In order to deal more easily with inverse roles, and to allow for more flexible
ordering of the tableaux expansion, FaCT++ uses a ToDo list, instead of the usual top-
down approach, to control the application of the expansion rules [13]. The basic idea
behind this approach is that rules may become applicable whenever a concept is added
to a node label. When this happens, the relevant node/concept pair is added to the ToDo
list. The ToDo list sorts entries according to some order, and gives access to the “first”
element in the list. The tableaux algorithm repeatedly removes and processes list entries
until either a clash occurs or the list become empty.

Dependency-directed backtracking (Backjumping) is a crucial and widely used op-
timisation. Each concept in a completion tree label is labelled with a dependency set
containing information about the branching decisions on which it depends. In case of
a clash, the system backtracks to the most recent branching point where an alternative
choice might eliminate the cause of the clash.

Boolean constant propagation (BCP) is another widely used optimisation. As well
as the standard tableau expansion rules, additional inference rules can be applied to the
formulae occurring in a node label, usually with the objective of simplifying them and
reducing the number of nondeterministic rule applications. BCP is probably the most
commonly used simplification, the basic idea being to apply the inference rule

¬C1, . . . ,¬Cn, C1 t . . . t Cn t C

C

to concepts in a node labels.
Semantic Branching is another rewriting optimisation, the idea being to rewrite dis-

junctions of the form C tD as C t (¬C uD). If choosing C leads to clash, then the



¬C in the second disjunct (along with BCP) ensures that C will not be added to the
node label again by some other nondeterministic expansion.

Ordering Heuristics can be very effective, and have been extensively investigated in
FaCT++ [13]. Changing the order in which nondeterministic expansions are explored
can result in huge (up to several orders of magnitude) differences in reasoning perfor-
mance. Heuristics can be used to choose a “good” order in which to try the different
possible expansions. In practise, this usually means using heuristics to select the way
in which expansion rules are applied to the disjunctive concepts in a node label, with
a heuristic function being used to compute the relative “goodness” of each candidate
expansion.

Heuristics may select an expansion-ordering based on, e.g., (ascending or descend-
ing order of) concept size, maximum quantifier depth, or frequency of usage. In order
to reduce the cost of computing the heuristic function, FaCT++ computes and caches
relevant values for each concept as the KB is loaded. As no one heuristic performs well
in all cases, FaCT++ also selects the heuristics to be used based on an analysis of the
structure of the input KB.

3.3 Classification Optimisations

As mentioned above, the focus here is on reducing the number of subsumption tests per-
formed during classification. In FaCT++, this is achieved by both reducing the number
of comparisons and by substituting cheaper (but incomplete) comparisons.

Definitional Ordering is a well known technique that uses the syntactic structure of
Tbox axioms to optimise the order in which the taxonomy is computed. E.g., given an
axiom C v D, with C a concept name, FaCT++ will delay adding C to the taxonomy
until all of the concepts occurring in D have been classified. In some cases this tech-
nique allows the taxonomy to be computed “top down”, thereby avoiding the need to
check for subsumees of newly added concepts.

Similarly, the structure of Tbox axioms can be used to avoid (potentially) expensive
subsumption tests by computing a set of (trivially obvious) told subsumers and told
disjoints of a concept C. E.g., if the Tbox contains an axiom C v D1 u D2, then
FaCT++ treats both D1 and D2, as well as all their told subsumers, as told subsumers
of C, and if the Tbox contains an axiom C v ¬D u . . ., then D is treated as a told
disjoint of C. The classification algorithm can then exploit obvious (non-) subsumptions
between concepts an their told subsumers (disjoints).

Model Merging is a widely used technique that exploits cached partial models in
order to perform a relatively cheap but incomplete non-subsumption test. If the cached
models for D and ¬C can be merged to give a model of Du¬C, then the subsumption
C v D clearly does not hold.

Completely Defined Concepts is a novel technique used in FaCT++ to deal more
effectively with wide (and shallow) taxonomies [12]. In this case, some concepts in
the taxonomy may have very many direct subsumees, rendering classification ordering
optimisations ineffective. It is often possible, however, to identify a significant subset
of concepts whose subsumption relationships are completely defined by told subsump-
tions. FaCT++ computes a taxonomy for these concepts without performing any sub-
sumption tests.



Clustering is another technique that addresses the same problem [2]. The idea here
is to introduce new “virtual concepts” into the taxonomy in order to produce a deeper
and more uniform structure. These concepts are asserted to be equivalent to the union
of a number of sibling concepts and are inserted in the taxonomy in between these
concepts and their common parent.

4 Discussion and Future Directions
We have presented FaCT++, a reasoner for SHOIQ (and so OWL DL) which uses a
new ToDo list architecture and incorporates a wide range of optimisations, including
several novel ones.

Future directions for FaCT++ include both algorithmic and technological improve-
ments. The next version of FaCT++ will support the more expressive SROIQ DL
needed by the OWL 1.1 ontology language (see http://owl-workshop.man.
ac.uk/OWL1 1.html). Some new optimisations, including optimised reasoning
with nominals [11] and more elaborate heuristics are also planned. Regarding tech-
nological improvements, we plan to add direct support for OWL’s XML syntax, and to
parallelise the reasoning process.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. CUP, 2003.

2. V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases: A
practical case study. In Proc. of IJCAI 2001, pages 161–168, 2001.

3. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of KR’98,
pages 636–647, 1998.

4. I. Horrocks. Implementation and optimisation techniques. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors, The Description Logic Hand-
book: Theory, Implementation, and Applications, pages 306–346. CUP, 2003.

5. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
The making of a web ontology language. J. of Web Semantics, 1(1):7–26, 2003.

6. I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proc. of IJ-
CAI 2005, 2005.

7. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics.
In Proc. of LPAR’99, number 1705 in LNAI, pages 161–180, 1999.

8. H. Knublauch, R. Fergerson, N. Noy, and M. Musen. The protégé OWL plugin: An open
development environment for semantic web applications. In Proc. of ISWC 2004, number
3298 in LNCS, pages 229–243, 2004.

9. A. Rector. Medical informatics. In F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. F. Patel-Schneider, editors, The Description Logic Handbook: Theory, Implementation,
and Applications, pages 415–435. CUP, 2003.

10. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48(1):1–26, 1991.

11. E. Sirin, B. C. Grau, and B. Parsia. From wine to water: Optimizing description logic rea-
soning for nominals. In Proc. of KR 2006, 2006. To Appear.

12. D. Tsarkov and I. Horrocks. Optimised classification for taxonomic knowledge bases. In
Proc. of the 2005 Description Logic Workshop (DL 2005), 2005.

13. D. Tsarkov and I. Horrocks. Ordering heuristics for description logic reasoning. In Proc. of
IJCAI 2005, 2005.


