
Ontologies and the Semantic Web

Ian Horrocks
Oxford University Computing Laboratory

Oxford, UK
Ian.Horrocks@comlab.ox.ac.uk

ABSTRACT
The goal of semantic web research is to allow the vast range
of web-accessible information and services to be more effec-
tively exploited by both humans and automated tools. To
facilitate this process, RDF and OWL have been developed
as standard formats for the sharing and integration of data
and knowledge—the latter in the form of rich conceptual
schemas called ontologies. These languages, and the tools
developed to support them, have rapidly become de facto
standards for ontology development and deployment; they
are increasingly used, not only in research labs, but in large
scale IT projects. Although many research and development
challenges still remain, these “semantic web technologies”
are already starting to exert a major influence on the devel-
opment of information technology.

1. INTRODUCTION
While phenomenally successful in terms of size and num-

ber of users, today’s World Wide Web is fundamentally a
relatively simple artefact. Web content consists mainly of
distributed hypertext and hypermedia, and is accessed via
a combination of keyword based search and link navigation.
This simplicity has been one of the great strengths of the
web, and has been an important factor in its popularity and
growth: naive users are able to use it, and can even create
their own content.

The explosion in both the range and quantity of web con-
tent has, however, highlighted some serious shortcomings in
the hypertext paradigm. In the first place, the required con-
tent becomes increasingly difficult to locate using search and
browse. For example, finding information about people with
very common names (or with famous namesakes) can be a
frustrating experience. Answering more complex queries—
along with more general information retrieval, integration,
sharing and processing—can be difficult or even impossible.
For example, retrieving a list of all the heads of state of EU
countries seems to be beyond the capabilities of any web
query engine, in spite of the fact that the relevant infor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

mation is readily available on the web. This kind of task
typically requires the integration of information from multi-
ple sources: a list of EU member states can, for example, be
found at europa.eu, while rulers.org lists heads of state
by country.

Specific integration problems can often be solved by using
some kind of software “glue” to combine information and
services from multiple sources. For example, in a so-called
mashup, location information from one source might be com-
bined with map information from another source in order
to show the location of and provide directions to points of
interest such as hotels and restaurants. Another approach,
increasingly seen in so-called Web 2.0 applications, is to har-
ness the power of user communities in order to share and an-
notate information. Examples include image and video shar-
ing sites such as flickr1 and YouTube,2 and auction sites such
as eBay.3 In these applications, annotations usually take the
form simple tags, such as “beach”, “birthday”, “family” and
“friends”. The meaning of tags is, however, typically not well
defined, and may be impenetrable even to human users: typ-
ical examples (from flickr) include “sasquatchmusicfestival”,
“celebritylookalikes”, and “twab08”.

While these approaches are very useful, they do not solve
the general problem of how to locate and integrate infor-
mation on demand and without human intervention. This is
the aim of the semantic web [3], the ultimate goal being to
“allow data to be shared effectively by wider communities,
and to be processed automatically by tools as well as man-
ually”.4 The classic example of a semantic web application
is an automated travel agent that, given various constraints
and preferences, would offer the user suitable travel or va-
cation suggestions. A key feature of such a “software agent”
is that it would not simply exploit a predetermined set of
information sources, but would search the web for relevant
information in much the same way that a human user might
do when planning a vacation.

A major difficulty in realising this goal is that most web
content is primarily intended for presentation to and con-
sumption by human users: HTML markup is mainly con-
cerned with layout, size, colour and other presentational is-
sues. Moreover, web pages increasingly use images, often in-
cluding active links, to present information, and even when
content is annotated, the annotations typically take the form

1http://www.flickr.com/
2http://youtube.com/
3http://www.ebay.com/
4http://www.w3.org/2001/sw/SW-FAQ#swactivity

(W3C Semantic Web Frequently Asked Questions).

of natural language strings and tags. Human users are (usu-
ally) able to interpret the significance of such features, and
thus understand the information being presented, but this
may not be so easy for a software agent. A key idea be-
hind the semantic web is to address this problem by giving
machine accessible semantics to annotations. This is to be
achieved by using ontologies—rich conceptual schemas—to
give formally defined meanings to the terms used in anno-
tations, transforming them into semantic annotations.

This vision of a semantic web is clearly extremely am-
bitious, and its full realisation would require the solution
of many very hard and long-standing research problems
in areas such as knowledge representation and reasoning,
databases, computational linguistics, computer vision and
agent systems. One such problem is the tradeoff between
conflicting requirements for expressive power in the language
used for semantic annotations and scalability of the systems
used to process them [7]; another is that integrating different
ontologies may prove to be at least as hard as integrating
the resources that they describe [18]. New problems include
the need to create suitable annotations and ontologies, and
the variable quality of web information sources.

Notwithstanding the above mentioned problems, consid-
erable progress has been made in the development of the
infrastructure needed to support the semantic web. In par-
ticular, there has been impressive progress in the develop-
ment of languages and tools for content annotation and for
the design and deployment of ontologies. In the following
sections I will describe some of this work in a little more
detail. I hope to show that, even if a full realisation of the
semantic web is still some way off, these “semantic web tech-
nologies” have already been successfully deployed in a range
of applications, and are starting to exert a major influence
on the development of information technology.

2. SEMANTIC ANNOTATION
The difficulty in sharing and processing web content, or

resources, derives at least in part from the fact that many
web resources are unstructured, and consist of text, images,
video etc. For example, we might find a web page including
the following piece of unstructured text:

Harry Potter has a pet called Hedwig.

As it stands, it would be difficult for a software agent, such
as a search engine, to recognise the fact that this resource
describes a wizard and an owl. We might try to alleviate the
problem by adding annotation tags such as 〈Wizard〉 and
〈SnowyOwl〉. Taken in isolation, however, such annotations
are of only limited value. In the first place the problem of
understanding the terms used in the text has simply been
transformed into the problem of understanding the terms
used in the tags. A query for information about raptors, for
example, may not retrieve this text, even though owls are
raptors. Moreover, the relationship between Harry Potter
and Hedwig has not been captured in these annotations, so
a query for wizards having pet owls might not retrieve Harry
Potter. In the web setting we might also want to integrate
information from multiple sources; for example, instead of
coining our own term for SnowyOwl, we might want to point
to the relevant term in some resource providing definitive
information about owls.

The Resource Description Framework (RDF) is a language
that has been developed in order to provide a flexible mecha-

Figure 1: An example of an RDF graph

nism for describing web resources and relationships between
them [14]. A key feature of RDF is the use of International-
ized Resource Identifiers (IRIs)—a generalisation of Uniform
Resource Locators (URLs)—to refer to resources. This facil-
itates information integration by allowing RDF to directly
reference non-local resources. IRIs are typically long strings
such http://hogwarts.net/HarryPotter, although various
abbreviation mechanisms are available; I will, however, usu-
ally omit the prefix and just write HarryPotter.

RDF is a very simple language: its underlying data struc-
ture is a labelled directed graph, and its only syntactic con-
struct is the triple. As its name suggests, a triple consists of
three components, referred to as the subject, predicate and
object. A triple represents a single edge (labelled with the
predicate) connecting two nodes (labelled with the subject
and object); it describes a binary relationship between the
subject and object via the predicate. For example, we might
describe the relationship between Harry and Hedwig using
the triple:

HarryPotter hasPet Hedwig .

where HarryPotter is the subject, hasPet is the predicate
and Hedwig is the object. The subject of a triple can be
either an IRI or a blank node (an unlabelled node), while
the object can be an IRI, a blank node or a literal value such
as a string or integer. For example, we could use the triple:

HarryPotter hasEmail

“harry.potter@hogwarts.net” .

to capture information about Harry’s email address. The
predicate of a triple is always an IRI, and an IRI that is
used in the predicate position of a triple is called a prop-
erty. An IRI is treated as a name that identifies a particular
resource. Blank nodes also denote resources, but the exact
resource being identified is not specified—they behave like
existentially quantified variables in First Order Logic.

A set of triples is called an RDF graph. The above triples
correspond to the RDF graph shown in Figure 1. In order to
facilitate the sharing and exchanging of graphs on the web,
an XML serialisation has also been defined. In RDF/XML
the above triples could be written as

<rdf:Description rdf:about="#HarryPotter">

<hasPet rdf:resource="#Hedwig"/>

<hasEmail>harry.potter@hogwarts.net

</hasEmail>

</rdf:Description>

where #HarryPotter and #Hedwig are fragment identifiers.
The capabilities of RDF have been extended by giving

additional meaning to certain resources. One of the most
important of these is rdf:type,5 a special property that cap-

5Where rdf: is an abbreviation (known as a names-

tures the class-instance relationship. For example, we could
use the triple:

HarryPotter rdf:type Wizard .

to represent the fact that Harry is an instance of Wizard.

As described so far, RDF would provide a flexible mecha-
nism for adding structured annotations, but would do little
to address the problem of understanding the meaning, or se-
mantics, of the terms used in annotations. One possible solu-
tion to this problem would be to fix a set of terms to be used
in annotations and to agree on their meaning. This can work
well in constrained settings such as annotating documents:
the Dublin Core Metadata Initiative6 defines just such a set
of terms, including, for example, the properties dc:title,
dc:creator, dc:subject and dc:publisher. This approach
is, however, quite limited with respect to flexibility and ex-
tensibility: only a fixed number of terms are defined, and
extending this set typically requires a lengthy process in or-
der to agree on which terms to introduce and their intended
semantics. It may also be impractical to impose a single set
of terms on all information providers.

An alternative approach is to agree on a language which
can be used to define the meaning of new terms, e.g., by
combining and/or restricting existing ones. Such a language
should preferably be relatively simple and precisely specified
so as to be amenable to processing by software tools. This
approach provides greatly increased flexibility, as new terms
can be introduced whenever needed, and it is this approach
that is taken in the semantic web, where ontologies are used
to provide extensible vocabularies of terms, each with a well
defined meaning. A suitable ontology might, for example,
introduce the term SnowyOwl, and include the information
that SnowyOwls are kinds of Owl, and that Owls are kinds
of Raptor. Moreover, if this information were represented in
a way that is accessible to our query engine, then it would
be able to recognise that Hedwig should be included in the
answer to a query for raptors.

Ontology, in its original philosophical sense, is a funda-
mental branch of metaphysics focusing on the study of exis-
tence; its objective is to determine what entities and types
of entities actually exist, and thus to study the structure of
the world. The study of ontology can be traced back to the
work of Plato and Aristotle, and includes the development of
hierarchical categorisations of different kinds of entity and
the features that distinguish them: the well known “tree
of Porphyry”, for example, identifies animals and plants as
sub-categories of living things distinguished by animals be-
ing sensitive, and plants being insensitive (see Figure 2).

In contrast, in computer science an ontology is an en-
gineering artefact, usually a model of (some aspect of) the
world; it introduces vocabulary describing various aspects of
the domain being modelled, and provides an explicit specifi-
cation of the intended meaning of the vocabulary. However,
this specification often includes classification based informa-
tion not unlike that in Porphyry’s tree. For example, Wizard
may be described as a sub-category of Human, with distin-
guishing features including the ability to perform magic.

pace prefix) for the string “http://www.w3.org/1999/02/
22-rdf-syntax-ns#”; i.e., the fully expanded form of rdf:
type is http://www.w3.org/1999/02/22-rdf-syntax-ns#
Type.

6http://dublincore.org/schemas/

material immaterial

Body

Substance

Beast

Plant

Mineral

Human

Animal

Living

Spirit

Socrates Plato AristotleIndividuals:

Differentiae:

Subordinate genera:

animate

sensitive

rational

inanimate

insensitive

irrational

Differentiae:

Differentiae:

Differentiae:

Subordinate genera:

Proximate genera:

Species:

etc.

Supreme genus:

Figure 2: Tree of Porphyry.

The RDF Vocabulary Description Language (RDF
Schema) extends RDF to include the basic features needed
to define ontologies. This is achieved by giving additional
meaning to more “special” resources, including rdfs:Class,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and
rdfs:range.7 The rdfs:Class resource is the class of all
RDF classes: a resource such as Wizard that is the object
of an rdf:type triple is itself an instance of the rdfs:Class

resource. The rdfs:subClassOf and rdfs:subPropertyOf

properties can be used to describe a hierarchy of classes and
properties respectively. For example, the triples:

SnowyOwl rdfs:subClassOf Owl .
Owl rdfs:subClassOf Raptor .

could be used to represent the fact that a SnowyOwl is a kind
of OWL and that an Owl is a kind of Raptor. Similarly, the
triple:

hasBrother rdfs:subPropertyOf hasSibling .

could be used to represent the fact that if x has a brother
y, then x also has a sibling y. Additionally, the domain and
range of a property can be specified using rdfs:domain and
rdfs:range. For example, the triples:

hasPet rdfs:domain Human .
hasPet rdfs:range Animal .

could be used to represent the fact that only Humans can
have pets and that all pets are Animals.

3. THE WEB ONTOLOGY LANGUAGE
OWL

Although already recognisable as an ontology language,
the capabilities of RDF are rather limited: they do not,
for example, include the ability to describe cardinality con-
straints (such as Hogwarts Students having at most one
pet), a feature found in most conceptual modelling lan-
guages, or to describe even a simple conjunction of classes

7Where rdfs: is an abbreviation for the string “http://
www.w3.org/2000/01/rdf-schema#”.

(such as Student and Wizard). The need for a more ex-
pressive ontology language was widely recognised within the
nascent semantic web research community, and resulted in
several proposals for “web ontology languages”, including
SHOE, OIL and DAML+OIL.

The architecture of the web depends on agreed standards
and, recognising that an ontology language standard would
be a prerequisite for the development of the semantic web,
the World Wide Web Consortium (W3C) set up a standard-
isation working group to develop a standard for a web ontol-
ogy language. The result of this activity was the OWL on-
tology language standard.8 OWL exploited the earlier work
on OIL and DAML+OIL, and also tightened the integration
of these languages with RDF.

The integration of OWL with RDF includes the provision
of an RDF based syntax. This has the advantage of making
OWL ontologies directly accessible to web based applica-
tions, but the syntax is rather verbose and not easy to read.
For example, the description of the above mentioned class
of Student Wizards would be written in RDF/XML as:

<owl:Class>

<owl:intersectionOf

rdf:parseType="Collection">

<owl:Class rdf:about="#Student"/>

<owl:Class rdf:about="#Wizard"/>

</owl:intersectionOf>

</owl:Class>

In the remainder of this article I will instead use an infor-
mal “human readable” syntax based on the one used in the
Protégé 4 ontology development tool.9 In this syntax, the
above description is written as:

Student and Wizard

A key feature of OWL is its basis in Description Log-
ics (DLs), a family of logic-based knowledge representation
formalisms that are descendants of Semantic Networks and
KL-ONE, but that have a formal semantics based on first-
order logic [1]. These formalisms all adopt an object-oriented
model, similar to the one used by Plato and Aristotle, in
which the domain is described in terms of individuals, con-
cepts (called classes in RDF), and roles (called properties in
RDF). Individuals, e.g., “Hedwig”, are the basic elements of
the domain; concepts, e.g., “Owl”, describe sets of individu-
als having similar characteristics; and roles, e.g., “hasPet”,
describe relationships between pairs of individuals, such as
“HarryPotter hasPet Hedwig”. In order to avoid confusion
I will keep to the already introduced RDF terminology and
from now on refer to these basic language components as
individuals, classes and properties.

As well as atomic class names such as Wizard and Owl,
DLs also allow for class descriptions to be composed from
atomic classes and properties. A given DL is characterised
by the set of constructors provided for building class de-
scriptions. OWL is based on a very expressive DL called
SHOIN (D)—a sort of acronym derived from the vari-
ous features of the language [11]. The class constructors
available in OWL include the Booleans and, or and not,
which in OWL are called intersectionOf, unionOf and com-
plementOf, as well as restricted forms of existential (∃)

8http://www.w3.org/2004/OWL/
9http://protege.stanford.edu/

and universal (∀) quantification, which in OWL are called,
respectively, someValuesFrom and allValuesFrom restric-
tions. OWL also allows for properties to be declared to
be transitive—if hasAncestor is a transitive property, then
Enoch hasAncestor Cain and Cain hasAncestor Eve implies
that Enoch hasAncestor Eve. The S in SHOIN (D) stands
for this basic set of features.

In OWL, someValuesFrom restrictions are used to de-
scribe classes whose instances are related, via a given prop-
erty, to instances of some other class. For example,

Wizard and hasPet some Owl

describes those Wizards having pet Owls. Note that such a
description is itself a class, the instances of which are just
those individuals that satisfy the description; in this case,
those individuals that are instances of Wizard and that are
related via the hasPet property to an individual that is an
instance of Owl. If an individual is asserted to be a mem-
ber of this class, then we know that they must have a pet
Owl, although we may not be able to identify the Owl in
question, i.e., someValuesFrom restrictions specify the exis-
tence of a relationship. In contrast, allValuesFrom restric-
tions constrain the possible objects of a given property and
are typically used as a kind of localised range restriction.
For example, we might want to state that Hogwarts stu-
dents can have only Owls, Cats or Toads as pets without
placing a global range restriction on the hasPet property
(because other kinds of pet may be possible in general). We
can do this in OWL as follows:

Class: HogwartsStudent

SubClassOf: hasPet only (Owl or Cat or Toad)

In addition to the above mentioned features, OWL also
allows for property hierarchies (the H in SHOIN (D)), ex-
tensionally defined classes using the oneOf constructor (O),
inverse properties using the inverseOf property construc-
tor (I), cardinality restrictions using the minCardinality,
maxCardinality and cardinality constructors (N), and the
use of XML Schema datatypes and values (D).10 For ex-
ample, we could additionally state that the instances of
HogwartsHouse are exactly Gryffindor, Slytherin, Raven-
claw and Hufflepuff, that Hogwarts students have an email
address (which is a string) and at most one pet, that isPetOf
is the inverse of hasPet and that a Phoenix can only be the
pet of a Wizard:

Class: HogwartsHouse

EquivalentTo: { Gryffindor, Slytherin,

Ravenclaw, Hufflepuff }

Class: HogwartsStudent

SubClassOf: hasEmail some string

SubClassOf: hasPet max 1

ObjectProperty: hasPet

Inverses: isPetOf

Class: Phoenix

SubClassOf: isPetOf only Wizard

An OWL ontology consists of a set of axioms. As in RDF,
subClassOf and subPropertyOf axioms can be used to define
a hierarchy of classes and properties. In OWL, an equiva-
lentClass axiom can also be used as an abbreviation for a
symmetrical pair of subClassOf axioms. An equivalentClass

10http://www.w3.org/TR/xmlschema-2/

axiom can be thought of as an “if and only if” condition:
given the axiom C equivalentClass D, then an individual is
an instance of C if and only if it is an instance of D. Com-
bining subClassOf and equivalentClass axioms with class de-
scriptions allows for easy extension of the vocabulary by in-
troducing new names as abbreviations for descriptions. For
example, the following axiom

Class: HogwartsStudent

EquivalentTo: Student and attendsSchool

value Hogwarts

introduces the class name HogwartsStudent, and asserts
that its instances are just those Students that attend Hog-
warts. Axioms can also be used to state that a set of classes
is disjoint, and to describe additional characteristics of prop-
erties: as well as being Transitive, a property can be Sym-
metric, Functional or InverseFunctional. For example, the
axioms:

DisjointClasses: Owl Cat Toad

Property: isPetOf

Characteristics: Functional

state that Owl, Cat and Toad are disjoint (i.e., that they
have no instances in common), and that isPetOf is Func-
tional (i.e., pets can have at most one owner).

The above mentioned axioms describe constraints on the
structure of the domain, and play a similar role to the con-
ceptual schema in a database setting; in DLs such a set
of axioms is called a TBox (Terminology Box). OWL also
allows for axioms asserting facts about some concrete situa-
tion, similar to data in a database setting; in DLs such a set
of axioms is called an ABox (Assertion Box). These might,
for example, include the facts:

Individual: HarryPotter

Types: HogwartsStudent

Individual: Fawkes

Types: Phoenix

Facts: isPetOf Dumbledore

Basic facts (i.e., those using only atomic classes) correspond
directly to RDF triples—the above facts, for example, cor-
respond to the following triples:

HarryPotter rdf:type, HogwartsStudent .
Fawkes rdf:type Phoenix .
Fawkes isPetOf Dumbledore .

The term ontology is often used to refer just to a conceptual
schema or TBox, but in OWL an ontology can consist of
a mixture of both TBox and ABox axioms; in DLs, this
combination is known as a Knowledge Base.

Description Logics are fully fledged logics and so have a
formal semantics. DLs can, in fact, be seen as decidable
subsets of first-order logic, with individuals being equiva-
lent to constants, concepts to unary predicates and roles to
binary predicates. As well as giving a precise and unambigu-
ous meaning to descriptions of the domain, this also allows
for the development of reasoning algorithms that can pro-
vide correct answers to arbitrarily complex queries about
the domain. An important aspect of DL research has been
the design of such algorithms, and their implementation in
(highly optimised) reasoning systems that can be used by
applications to help them “understand” the knowledge cap-
tured in a DL based ontology.

4. ONTOLOGY REASONING
Although there are clear analogies between databases and

OWL ontologies, there are also important differences. Un-
like databases, OWL has a so-called open world semantics in
which missing information is treated as unknown rather than
false, and OWL axioms behave like inference rules rather
than database constraints. In the above axioms, for exam-
ple, Fawkes is said to be a Phoenix and to be the pet of
Dumbledore, and it is also stated that only a Wizard can
have a pet Phoenix. In OWL, this leads to the implication
that Dumbledore is a Wizard—if we were to query the on-
tology for instances of Wizard, then Dumbledore would be
part of the answer. In a database setting the schema could
include a similar statement about the Phoenix class, but
in this case it would be interpreted as a constraint on the
data: adding the fact that Fawkes isPetOf Dumbledore with-
out Dumbledore being already known to be a Wizard would
lead to an invalid database state, and such an update would
therefore be rejected by a database management system as
a constraint violation.

In contrast to databases, OWL also makes no unique
name assumption (UNA). For example, given that isPetOf
is a Functional property, then additionally asserting that
Fawkes isPetOf AlbusDumbledore would lead to the implica-
tion that Dumbledore and AlbusDumbledore are two names
for the same individual. In a database setting this would
again be treated as a constraint violation. Note that in OWL
it is possible to assert (or infer) that two different names do
not refer to the same individual; if such an assertion were
made about Dumbledore and AlbusDumbledore, then as-
serting that Fawkes isPetOf AlbusDumbledore would make
the ontology inconsistent. Unlike database management sys-
tems, ontology tools typically don’t reject updates that re-
sult in the ontology becoming wholly or partly inconsistent,
they simply provide a suitable warning.

The treatment of schema and constraints in a database
setting means that they can be ignored at query time—in
a valid database instance all the schema constraints must
already be satisfied. This makes query answering very effi-
cient: in order to determine if Dumbledore is in the answer
to a query for Wizards, it is sufficient to check if this fact is
explicitly present in the database. In OWL, the schema plays
a much more important role, and is actively considered at
query time. This can be very powerful, and makes it possi-
ble to answer conceptual as well as extensional queries—for
example, we can ask not only if Dumbledore is a Wizard,
but if it is the case that anybody having a Phoenix for a pet
must be a Wizard. It does, however, make query answering
much more difficult (at least in the worst case): in order
to determine if Dumbledore is in the answer to a query for
Wizards, it is necessary to check if Dumbledore would be
an instance of Wizard in every possible state of the world
that is consistent with the axioms in the ontology. Query
answering in OWL is thus analogous to theorem proving,
and a query answer is often referred to as an entailment.
OWL is, therefore, most suited to applications where the
schema plays an important role, where it is not reasonable
to assume that complete information about the domain is
available, and where information has high value.

Ontologies may be very large and complex: the well known
SNOMED Clinical Terms ontology includes, for example,
more than 400,000 class names. Building and maintaining

such ontologies is very costly and time consuming, and pro-
viding tools and services to support this “ontology engineer-
ing” process is of crucial importance to both the cost and
the quality of the resulting ontology. Moreover, as we have
seen above, query answering in OWL is not simply a matter
of checking the data, but may require complex reasoning to
be performed. Ontology reasoning therefore plays a central
role in both the development of high quality ontologies, and
the deployment of ontologies in applications.

In spite of the complexity of reasoning with OWL on-
tologies, highly optimised DL reasoning systems such as
FaCT++,11 Racer,12 and Pellet13 have proved to be very
effective in practice—in fact the availability of such reason-
ing systems was one of the key motivations for basing OWL
on a DL. State of the art ontology development tools, such
as SWOOP,14 Protégé 4, and TopBraid Composer,15 use DL
reasoners to provide feedback to the user about the logical
implications of their design. This typically includes (at least)
warnings about inconsistencies and synonyms.

An inconsistent (sometimes called unsatisfiable) class is
one whose description is “over-constrained”, with the result
that it can never have any instances. This is typically an un-
intended feature of the design—why introduce a name for
a class that can never have any instances—and may be due
to subtle interactions between axioms. It is, therefore, very
useful to be able to detect such classes and bring them to the
attention of the ontology engineer. For example, during the
development of an OWL ontology at the NASA Jet Propul-
sion Laboratory, the class “OceanCrustLayer” was found to
be inconsistent. This was discovered (with the help of debug-
ging tools) to be the result of its being defined to be both a
region and a layer, one of which (layer) was a 2-dimensional
object and the other a 3-dimensional object. The inconsis-
tency thus highlighted a fundamental error in the design of
the ontology.

It is also possible that the descriptions in an ontology
mean that two classes necessarily have exactly the same set
of instances, i.e., that they are alternative names for the
same class. This may be desirable in some situations, e.g.,
to capture the fact that “Myocardial infarction” and “Heart
attack” mean the same thing. It could, however, also be
the inadvertent result of interactions between descriptions
or of basic errors on the part of the ontology designer; it is,
therefore, also useful to be able to alert users to the presence
of such synonyms.

In addition to checking for inconsistencies and synonyms,
ontology development tools usually check for implicit sub-
sumption relationships, and update the class hierarchy ac-
cordingly. This is also a very useful design aid: it allows
ontology developers to focus on class descriptions, leaving
the computation of the class hierarchy to the reasoner, and
it can also be used by developers to check if the hierarchy
induced by the class descriptions is consistent with their in-
tuition. This may not be the case when, for example, errors
in the ontology result in unexpected subsumption inferences,
or “under-constrained” class descriptions result in expected
inferences not being found. The latter case is extremely com-

11http://owl.man.ac.uk/factplusplus/
12http://www.racer-systems.com/
13http://pellet.owldl.com/
14http://code.google.com/p/swoop/
15http://www.topbraidcomposer.com/

mon, as it is easy to inadvertently omit axioms that express
“obvious” information. For example, an ontology engineer
may expect the class of patients who have a fracture of both
the tibia and the fibula to be a subClassOf “patient with
multiple fractures”; however, this may not be the case if the
ontology doesn’t include (explicitly or implicitly) the infor-
mation that the tibia and fibula are different bones. Failure
to find this subsumption relationship will alert the engineer
to the missing DisjointClasses axiom.

Reasoning is also important when ontologies are deployed
in applications—as we have already seen, it is needed in or-
der to answer standard data retrieval queries as well as to an-
swer conceptual queries about the structure of the domain.
For example, biologists use ontologies such as the Gene On-
tology (GO) and the Biological Pathways Exchange ontol-
ogy (BioPAX) to annotate (web-accessible) data from gene
sequencing experiments so as to be able to answer complex
queries such as “what DNA binding products interact with
insulin receptors”. Answering this query requires a reasoner
not only to identify individuals that are (perhaps only im-
plicitly) instances of DNA binding products and of insulin
receptors, but also to identify which pairs of individuals are
(perhaps only implicitly) related via the interactsWith prop-
erty.

Finally, in order to maximise the benefit of reasoning ser-
vices, tools should be able to explain inferences: without this
facility, users may find it difficult to repair errors in the on-
tology and may even start to doubt the correctness of infer-
ences. Explanation typically involves computing a (hopefully
small) subset of the ontology that still entails the inference
in question, and if necessary presenting the user with a chain
of reasoning steps [12]. Figure 3, for example, shows an ex-
planation, produced by the Protégé 4 ontology development
tool, of the above mentioned inference with respect to the
inconsistency of OceanCrustLayer.

5. ONTOLOGY APPLICATIONS
The availability of tools and reasoning systems such as

those mentioned in Section 4 has contributed to the increas-
ingly widespread use of OWL, and it has become the de facto
standard for ontology development in fields as diverse as bi-
ology [19], medicine [8], geography [9], geology [23], agricul-
ture [20] and defence [15]. Applications of OWL are particu-
larly prevalent in the life sciences where it has been used by
the developers of several large biomedical ontologies, includ-
ing the SNOMED, GO and BioPAX ontologies mentioned
in Section 4, the Foundational Model of Anatomy (FMA)
and the National Cancer Institute thesaurus.

The ontologies used in such applications may have been
specifically developed for the purpose, or may have been de-
veloped without any particular application in mind. Many
ontologies are the result of collaborative efforts within a
given community aimed at facilitating (web-based) informa-
tion sharing and exchange. Some ontologies are even com-
mercially developed and subject to a licence fee.

Many OWL ontologies are now available on the web—
an OWL ontology is identified by a URI, and the ontology
should, in principle, be available at that location. There are
also several well known ontology libraries, and even ontol-
ogy search engines such as SWOOGLE,16 that can be used

16http://swoogle.umbc.edu/

Figure 3: An explanation from Protégé 4

to locate ontologies. In practice, however, applications are
invariably built around a predetermined ontology or set of
ontologies that are well understood and known to provide
suitable coverage of the relevant domains.

The importance of reasoning support in ontology applica-
tions was highlighted in a recent paper describing a project
in which the Medical Entities Dictionary (MED), a large on-
tology (100,210 classes and 261 properties) that is used at
the Columbia Presbyterian Medical Center, was converted
into OWL and checked using an OWL reasoner [13]. This
check revealed “systematic modelling errors”, and a signif-
icant number of missed subClassOf relationships which, if
not corrected, “could have cost the hospital many missing
results in various decision support and infection control sys-
tems that routinely use MED to screen patients”.

Similarly, an extended version of the SNOMED ontol-
ogy was checked using an OWL reasoner, and a number
of missing subClassOf relationships found. This ontology is
being used by the UK National Health Service (NHS) to pro-
vide “A single and comprehensive system of terms, centrally
maintained and updated for use in all NHS organisations and
in research”, and as a key component of their new £6.2 bil-
lion “Connecting for Health” IT programme. An important
feature of this system is that it can be extended to provide
more detailed coverage if needed by specialised applications.
For example, a specialist allergy clinic may need to distin-
guish allergies caused by different kinds of nut, and so may
add new terms to the ontology such as AlmondAllergy:

Class: AlmondAllergy

equivalentTo: Allergy and

causedBy some Almond

Using a reasoner to insert this new term into the ontology
will ensure that it is recognised as a subClassOf NutAllergy.
This is clearly of crucial importance in order to ensure that
patients with an AlmondAllergy are correctly identified in
the national records system as patients having a NutAllergy.

Ontologies are also widely used to facilitate the shar-
ing and integration of information. The Neurocommons
project,17 for example, aims to provide a platform for shar-
ing and integrating knowledge in the neuroscience domain.
A key component is an ontology of annotations that will

17http://sciencecommons.org/projects/data/

be used to integrate available knowledge on the web, in-
cluding major neuroscience databases. Similarly, the OBO
Foundry18 is a library of ontologies designed to facilitate in-
formation sharing and integration in the biomedical domain.

In information integration applications the ontology can
play several roles: it can provide a formally defined and ex-
tensible vocabulary for use in semantic annotations, it can
be used to describe the structure of existing sources and the
information that they store, and it can provide a detailed
model of the domain against which queries can be formu-
lated. Such queries can be answered by using semantic an-
notations and structural knowledge to retrieve and combine
information from multiple sources [22]. It should be noted
that the use of ontologies in information integration is far
from new, and has already been the subject of extensive
research within the database community [2].

It is easy to imagine that, with large ontologies, answering
conceptual and data retrieval queries may be a very complex
task. The use of DL reasoners allows OWL ontology appli-
cations to answer complex queries and to provide guaran-
tees about the correctness of the result. Reliability and cor-
rectness are clearly important features of any information
system; they are particularly important if ontology based
systems are to be used in safety-critical applications such as
medicine, where incorrect reasoning could adversely impact
patient care.

RDF and OWL have, however, also been used in a range
of applications where reasoning plays only a relatively mi-
nor role. Examples include the Friend of a Friend (FOAF)19

project, the Dublin Core Metadata Initiative, and the use of
RDF to carry annotations in Adobe’s Extensible Metadata
Platform (XMP).20 In these applications, RDF is typically
used to provide a flexible and extensible data structure for
annotations, with the added advantage that IRIs can be used
to directly refer to web resources.

In FOAF, for example, a simple RDF/OWL ontology
is used to provide a vocabulary of terms for describing
and linking people and their interests and activities; these
terms include the foaf:Person class and properties such as
foaf:name, foaf:homepage and foaf:knows. OWL is used
to declare that properties such as foaf:homepage are In-

18http://www.obofoundry.org/
19http://www.foaf-project.org/
20http://www.adobe.com/products/xmp/

verseFunctional, i.e., that they can be used as a key to
uniquely identify the subject of the property (often a per-
son). The semantics of the vocabulary is, however, mainly
captured informally in textual descriptions of each term, and
is procedurally interpreted by applications. This reduces the
need for reasoning systems, but limits the ability of appli-
cations to share and understand vocabulary extensions.

6. FUTURE DIRECTIONS
As we have seen in Section 5, OWL is already being suc-

cessfully used in many applications. This success brings with
it, however, many challenges for the future development of
both the OWL language and OWL tool support. Central to
these is the familiar tension between requirements for ad-
vanced features, in particular increased expressive power,
and raw performance, in particular the ability to deal with
very large ontologies and data sets.

Researchers have addressed these problems by investigat-
ing more expressive DLs, developing new and more highly
optimised DL reasoning systems, and identifying smaller log-
ics that combine useful expressive power with lower worst
case complexity or other desirable computational properties.
Results from these research efforts are now being exploited
in order to refine and extend OWL, a new W3C Working
Group having been formed for this purpose.21 The result-
ing language is called OWL 2,22 and is based on a more
expressive DL called SROIQ [10]. OWL 2 extends OWL
with the ability to “qualify” cardinality restrictions, e.g., to
describe the hand as having four parts that are fingers and
one part that is a thumb; the ability to assert that properties
are reflexive, irreflexive, asymmetric and disjoint, e.g., to de-
scribe hasParent as an irreflexive property; and the ability
to compose properties into property chains, e.g., to capture
the fact that a disease affecting a part of an organ affects the
organ as a whole. OWL 2 also provides extended support for
datatypes and for annotations.

As well as increasing the expressive power of the complete
language, OWL 2 also defines several profiles: language frag-
ments that have desirable computational properties.23 These
include a profile based on DL Lite, a logic for which standard
reasoning problems can be reduced to SQL query answering;
a profile based on EL++, a logic for which standard reason-
ing problems can be performed in polynomial time; and a
profile based on DLP, a logic for which query answering can
be implemented using rule based techniques that have been
shown to scale well in practice.

In some cases, even the increased expressive power pro-
vided by OWL 2 may not meet application requirements.
One way to further increase the expressive power of the lan-
guage would be to extend it with Horn-like rules, i.e., im-
plications such as parent(x, y)∧ brother(y, z) ⇒ uncle(x, z),
which states that if y is a parent of x and z is a brother of
y (the antecedent), then z is an uncle of x (the consequent).
There have been several proposals along these lines, most
notably the Semantic Web Rules Language (SWRL).24 If
the semantics of such rules is restricted so that they only
apply to named individuals, then their addition does not
disturb the decidability of the underlying DL; this restricted

21http://www.w3.org/2007/OWL/
22It was initially called OWL 1.1.
23http://www.w3.org/TR/owl2-profiles/
24http://www.w3.org/Submission/SWRL/

form of rules is known as DL-safe rules [17]. Efforts are now
underway to produce a W3C language standard that will
“allow rules to be translated between rule languages and
thus transferred between rule systems”.25

As we saw in Section 4, reasoning enabled tools provide vi-
tal support for ontology engineering. Recent work has shown
how this support can be extended to modular design and
module extraction—important techniques for working with
large ontologies. When developing a large ontology, it is use-
ful if not essential to divide the ontology into modules in
order to make it easier to understand and to facilitate par-
allel work by a team of ontology engineers. Similarly, it may
be desirable to extract from a large ontology a module con-
taining all the information relevant to some subset of the
domain—the resulting small(er) ontology will be easier for
humans to understand and easier for applications to use.
New reasoning services can be used both to alert develop-
ers to unanticipated and/or undesirable interactions when
modules are integrated, and to identify a subset of the orig-
inal ontology that is indistinguishable from it when used to
reason about the relevant subset of the domain [4].

The availability of a standard query language (SQL)
has been an important factor in the success of relational
databases. It has long been recognised that the semantic
web, and semantic web knowledge representation languages
such as RDF and OWL, would also benefit from the avail-
ability of a standardised query language, and there have
been several proposals for such a language. As in the case of
RDF and OWL, a W3C standardisation working group was
set up, and has recently completed its work on the SPARQL
query language standard.26 Strictly speaking, this is only a
query language for RDF, but it is easy to see how it could be
extended for use with OWL ontologies, and this is already
happening in practice.

Major research efforts have also been directed towards
tackling some of the barriers to realising the semantic web
mentioned in Section 1, and considerable progress has been
made in areas such as ontology alignment (reconciling on-
tologies that describe overlapping domains) [18], ontology
extraction (extracting ontologies from, e.g., text) [16], and
the automated annotation of both text [6] and images [5]. A
particularly interesting development has been the growth of
Web 2.0 applications—this has shown how it might be pos-
sible for user communities to collaboratively annotate web
content, as well as to create simple forms of ontology via the
development of hierarchically organised sets of tags, often
called folksonomies [21]. Progress has also been made in de-
veloping the infrastructure needed to add structured annota-
tions to existing web resources. The recent RDFa proposal,
for example, provides a mechanism for embedding RDF in
existing XHTML documents.27

7. CONCLUSIONS
As we have seen, the goal of semantic web research is to

enable the vast range of web-accessible information and ser-
vices to be more effectively exploited, in particular by soft-
ware agents and applications. As a first step, languages such

25http://www.w3.org/2005/rules/
26http://www.w3.org/TR/rdf-sparql-query/
27http://www.w3.org/TR/rdfa-syntax/

as RDF and OWL have been developed; these languages al-
low for the description of web resources, and for the repre-
sentation of knowledge that will enable applications to use
resources more intelligently.

Although a wide range of semantic web applications have
now appeared, fully realising the semantic web still seems
some way off, and would require the solution of many very
hard and long-standing research problems. Moreover, the
vast majority of the web has yet to be semantically anno-
tated, and there are still relatively few ontologies available
(and even fewer high quality ones).

Semantic web research has, however, already had a major
impact on the development and deployment of ontology lan-
guages and tools—now often called semantic web technolo-
gies. These technologies have rapidly become a de facto stan-
dard for ontology development, and are seeing increasing use
not only in research labs but in large scale IT projects, par-
ticularly those where the schema plays an important role,
where information has high value and where information
may be incomplete. This is reflected in extended support
for semantic web technologies, including commercial tools,
implementations and applications, from major players such
as HP, IBM, Oracle and Siemens.

The success of semantic web technologies, and their in-
creasing use in large scale applications, has brought with it
new challenges, both with respect to expressive power and
scalability. However, this success also means that major re-
search and development efforts in both academia and indus-
try are now focused on addressing these challenges, and it
seems certain that these efforts will have a major influence
on the future development of information technology.

8. ACKNOWLEDGEMENTS
Thanks to all my friends and collaborators in the semantic

web and description logic communities for inspiration, help,
and a lot of fun. Particular thanks to Uli Sattler and Franz
Baader from whom I borrowed the idea of using Harry Potter
in ontology examples.

9. REFERENCES
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,

and P. F. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2003.

[2] C. Batini, M. Lenzerini, and S. B. Navathe. A
comparative analysis of methodologies for database
schema integration. ACM Computing Surveys,
18(4):323–364, 1986.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, 284(5):34–43, 2001.

[4] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and
U. Sattler. Modular reuse of ontologies: Theory and
practice. J. of Artificial Intelligence Research,
31:273–318, 2008.

[5] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image
retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys, 40(2), 2008.

[6] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha,
A. Jhingran, T. Kanungo, S. Rajagopalan,
A. Tomkins, J. A. Tomlin, and J. Y. Zien. Semtag and
seeker: Bootstrapping the semantic web via automated
semantic annotation. In Proc. of the Twelfth

International World Wide Web Conference (WWW
2003), 2003.

[7] J. Doyle and R. S. Patil. Two theses of knowledge
representation: Language restrictions, taxonomic
classification, and the utility of representation
services. Artificial Intelligence, 48:261–297, 1991.

[8] C. Golbreich, S. Zhang, and O. Bodenreider. The
foundational model of anatomy in OWL: Experience
and perspectives. J. of Web Semantics, 4(3), 2006.

[9] J. Goodwin. Experiences of using OWL at the
ordnance survey. In Proc. of the First OWL
Experiences and Directions Workshop, volume 188 of
CEUR Workshop Proceedings. CEUR
(http://ceur-ws.org/), 2005.

[10] I. Horrocks, O. Kutz, and U. Sattler. The even more
irresistible SROIQ. In Proc. of the 10th Int. Conf. on
Principles of Knowledge Representation and
Reasoning (KR 2006), pages 57–67. AAAI Press, 2006.

[11] I. Horrocks and U. Sattler. A tableau decision
procedure for SHOIQ. J. of Automated Reasoning,
39(3):249–276, 2007.

[12] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler.
Debugging unsatisfiable classes in owl ontologies. J. of
Web Semantics, 3(4):243–366, 2005.

[13] A. Kershenbaum, A. Fokoue, C. Patel, C. Welty,
E. Schonberg, J. Cimino, L. Ma, K. Srinivas,
R. Schloss, and J. W. Murdock. A view of OWL from
the field: Use cases and experiences. In Proc. of the
Second OWL Experiences and Directions Workshop,
volume 216 of CEUR Workshop Proceedings. CEUR
(http://ceur-ws.org/), 2006.

[14] G. Klyne and J. J. Carroll. Resource description
framework (RDF): Concepts and abstract syntax.
W3C Recommendation, 10 February 2004. Available
at http://www.w3.org/TR/rdf-concepts/.

[15] L. Lacy, G. Aviles, K. Fraser, W. Gerber,
A. Mulvehill, and R. Gaskill. Experiences using OWL
in military applications. In Proc. of the First OWL
Experiences and Directions Workshop, volume 188 of
CEUR Workshop Proceedings. CEUR
(http://ceur-ws.org/), 2005.

[16] A. Maedche and S. Staab. Ontology learning for the
semantic web. IEEE Intelligent Systems, 16(2):72–79,
2001.

[17] B. Motik, U. Sattler, and R. Studer. Query answering
for OWL-DL with rules. J. of Web Semantics,
3(1):41–60, 2005.

[18] P. Shvaiko and J. Euzenat. A survey of schema-based
matching approaches. J. on Data Semantics,
IV:146–171, 2005.

[19] A. Sidhu, T. Dillon, E. Chang, and B. S. Sidhu.
Protein ontology development using OWL. In Proc. of
the First OWL Experiences and Directions Workshop,
volume 188 of CEUR Workshop Proceedings. CEUR
(http://ceur-ws.org/), 2005.

[20] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer,
and S. Katz. Reengineering thesauri for new
applications: The AGROVOC example. J. of Digital
Information, 4(4), 2004.

[21] P. Spyns, A. de Moor, J. Vandenbussche, and
R. Meersman. From folksologies to ontologies: How
the twain meet. In Proc. of OTM Conferences (1),

volume 4275 of Lecture Notes in Computer Science,
pages 738–755, 2006.

[22] R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby,
N. W. Paton, C. A. Goble, and A. Brass. Tambis:
Transparent access to multiple bioinformatics
information sources. Bioinformatics, 16(2):184–186,
2000.

[23] Semantic web for earth and environmental
terminology (SWEET). Jet Propulsion Laboratory,
California Institute of Technology, 2006.
http://sweet.jpl.nasa.gov/.

