
SPARQL Query Answering over OWL Ontologies

Ilianna Kollia, Birte Glimm, and Ian Horrocks

Oxford University Computing Laboratory, UK

Abstract. The SPARQL query language is currently being extended by W3C
with so-called entailment regimes, which define how queries are evaluated un-
der more expressive semantics than SPARQL’s standard simple entailment. We
describe a sound and complete algorithm for the OWL Direct Semantics entail-
ment regime. The queries of the regime are very expressive since variables can
occur within complex class expressions and can also bind to class or property
names. We propose several novel optimizations such as strategies for determining
a good query execution order, query rewriting techniques, and show how special-
ized OWL reasoning tasks and the class and property hierarchy can be used to
reduce the query execution time. We provide a prototypical implementation and
evaluate the efficiency of the proposed optimizations. For standard conjunctive
queries our system performs comparably to already deployed systems. For com-
plex queries an improvement of up to three orders of magnitude can be observed.

1 Introduction

Query answering is important in the context of the Semantic Web, since it provides a
mechanism via which users and applications can interact with ontologies and data. Sev-
eral query languages have been designed for this purpose, including RDQL, SeRQL
and, most recently, SPARQL. In this paper, we consider the SPARQL [10] query lan-
guage, which was standardized in 2008 by the World Wide Web Consortium (W3C)
and which is now supported by most RDF triple stores. The query evaluation mecha-
nism defined in the SPARQL Query specification [10] is based on subgraph matching.
This form of query evaluation is also called simple entailment since it can equally be
defined in terms of the simple entailment relation between RDF graphs. In order to use
more elaborate entailment relations, such as those induced by RDF Schema (RDFS)
or OWL semantics [4], SPARQL 1.1 includes several entailment regimes, including
RDFS and OWL. Query answering under such entailment regimes is more complex as
it may involve retrieving answers that only follow implicitly from the queried graph.
While several methods and implementations for SPARQL under RDFS semantics are
available, methods that use OWL semantics have not yet been well-studied.

For some of the less expressive OWL 2 profiles, an implementation of the entail-
ment regime can make use of materialization techniques (e.g., for the OWL RL pro-
file) or of query rewriting techniques (e.g., for the OWL QL profile). These techniques
are, however, not applicable in general, and may not deal directly with all kinds of
SPARQL queries. In this paper, we present a sound and complete algorithm for answer-
ing SPARQL queries under the OWL 2 Direct Semantics entailment regime (from now

on, SPARQL-OWL), describe a prototypical implementation based on the HermiT rea-
soner, and use this implementation to investigate a range of optimization techniques that
improve query answering performance for different kinds of SPARQL-OWL queries.

The range of queries that can be formulated in SPARQL-OWL goes significantly
beyond standard conjunctive queries, which are already supported by several OWL rea-
soning systems. In SPARQL-OWL, for example, variables can occur within complex
class expressions and can also bind to class or property names. Amongst the query lan-
guages already supported by OWL reasoners, the closest in spirit to SPARQL-OWL is
SPARQL-DL, which is implemented in the Pellet OWL reasoner [11]. SPARQL-DL is
a subset of SPARQL-OWL that is designed such that queries can be mapped to standard
reasoning tasks. In our algorithm, we extend the techniques used for conjunctive query
answering to deal with arbitrary SPARQL-OWL queries and propose a range of novel
optimizations in particular for SPARQL-OWL queries that go beyond SPARQL-DL.

We have implemented the optimized algorithm in a prototypical system, which is
the first to fully support SPARQL-OWL, and we have performed a preliminary evalua-
tion in order to investigate the feasibility of our algorithm and the effectiveness of the
proposed optimizations. This evaluation suggests that, in the case of standard conjunc-
tive queries, our system performs comparably to existing ones. It also shows that a naive
implementation of our algorithm behaves badly for some non-standard queries, but that
the proposed optimizations can dramatically improve performance, in some cases by as
much as three orders of magnitude.

2 Preliminaries

We first give a brief introduction to OWL and RDF, followed by the definition of
SPARQL’s syntax and semantics and the SPARQL-OWL entailment regime. We gener-
ally abbreviate International Resource Identifiers (IRIs) using the prefixes rdf, rdfs, and
owl to refer to the RDF, RDFS, and OWL namespaces, respectively. The empty prefix
is used for an imaginary example namespace.

2.1 Web Ontology Language OWL

For OWL, we use the functional-style syntax (FSS), which directly reflects the OWL
objects that are used to define the OWL 2 Direct Semantics. In the following subsection,
we clarify how the OWL structural objects can be mapped into RDF triples. We present
only several examples of typical OWL axioms; for a full definition of OWL 2, please
refer to the OWL 2 Structural Specification and Direct Semantics [8,7].

SubClassOf(:DogOwner ObjectSomeValuesFrom(:owns :Dog))) (1)
SubClassOf(:CatOwner ObjectSomeValuesFrom(:owns :Cat))) (2)

ObjectPropertyDomain(:owns :Person) (3)
ClassAssertion(ObjectUnionOf(:DogOwner :CatOwner) :mary) (4)

ObjectPropertyAssertion(:owns :mary _:somePet) (5)

Axioms (1) and (2) make use of existential quantification and state that every instance
of the class :DogOwner (:CatOwner) is related to some instance of :Dog (:Cat) via
the property :owns. Axiom (3) defines the domain of the property :owns as the class
:Person, i.e., every individual that is related to some other individual with the :owns
property belongs to the class :Person. Axiom (4) states that :mary belongs to the union
of the classes :DogOwner and :CatOwner. Finally, Axiom (5) states that :mary owns
some pet. The blank node _:somePet is called an anonymous individual in OWL and
has an existential semantics. An OWL ontology contains a set of logical axioms, as the
ones shown above, plus further non-logical statements, e.g., for the ontology header,
type declarations (e.g., declaring :owns as an object property), or import directives. We
focus on the logical axioms, which determine the logical consequences of the ontology.

More formally, the interpretation of axioms in an OWL ontology O is given by
means of two-sorted interpretations over the object domain and the data domain, where
the latter contains concrete values such as integers, strings, and so on. An interpretation
maps classes to subsets of the object domain, object properties to pairs of elements from
the object domain, data properties to pairs of elements where the first element is from
the object domain and the second one is from the data domain, individuals to elements
in the object domain, datatypes to subsets of the data domain, and literals (data values)
to elements in the data domain. For an interpretation to be a model of an ontology,
several conditions have to be satisfied [7]. For example, if O contains Axiom (4), then
the interpretation of :mary must belong to the union of the interpretation of :DogOwner
and :CatOwner. If an axiom ax is satisfied in every model of O, then we say that O
entails ax, written O |= ax. For example, if O contains Axioms (1) to (5), then we have
that O entails ClassAssertion(:Person :mary), i.e., we can infer that Mary is a person.
This is because no matter whether :mary belongs to :DogOwner or :CatOwner, she will
have an :owns-successor (due to Axiom (1) or Axiom (2)), which then implies that she
belongs to the class :Person due to Axiom (3). In the same way, we say that an ontology
O1 entails another ontology O2, written O1 |= O2, if every model of O1 is also a model
of O2. The vocabulary Voc(O) of O is the set of all IRIs and literals that occur in O.

Note that the above axioms cannot be satisfied in a unique canonical model that
could be used to answer queries since in one model we would have that :mary is a
cat owner, whereas in another model, we would have that she is a dog owner. Thus, we
cannot apply techniques such as forward chaining to materialize all consequences of the
ontology. To satisfy the existential quantifiers (e.g, ObjectSomeValuesFrom), an OWL
reasoner has to introduce new individuals, and in OWL it cannot be guaranteed that the
models of an ontology are finite. OWL reasoners build, therefore, finite abstractions of
models, which can be expanded into models.

2.2 Mapping to RDF Graphs

Since SPARQL is an RDF query language based on triples, we briefly show how the
OWL objects introduced above can be mapped to RDF triples. The reverse direction,
which maps triples to OWL objects is equally defined, but makes a well-formedness
restriction, i.e., only certain RDF graphs can be mapped into OWL structural objects.
We call such graphs OWL 2 DL graphs. For further details, we refer interested readers

Table 1. The RDF representation of Axioms (1), (3), and (4)

:DogOwner rdfs:subClassOf _:x . :owns rdfs:domain :Person . (3’)
_:x rdf:type owl:restriction . :mary rdf:type [.
_:x owl:onProperty :owns . owl:unionOf
_:x owl:someValuesFrom :Dog . (1’) (:DogOwner :CatOwner)] (4’)

to the W3C specification that defines the mapping between OWL structural objects and
RDF graphs [9].

Table 1 gives an RDF representation of Axioms (1), (3), and (4) in Turtle syntax [1].
OWL axioms that only use RDF Schema expressivity, e.g., domain and range restric-
tions, usually result in a straightforward translation. For example, Axiom (3) is mapped
to the single triple (3’). Complex class expressions such as the super class in Axiom (1)
usually require auxiliary blank nodes, e.g., we introduce the auxiliary blank node _:x
for the superclass expression that is then used as the subject of subsequent triples. In
the translation of Axiom (4), we further used Turtle’s blank node constructor [] and ()
as a shortcut for lists in RDF.

Note that it is now no longer obvious whether :owns is a data or an object property.
This is why an RDF graph that represents an OWL DL ontology has to contain type
declarations, i.e., although we did not show the type declarations in our example, we
would expect to have a triple such as :owns a owl:ObjectProperty, which corresponds
to the non-logical axiom Declaration(ObjectProperty(:owns)) in FSS.

2.3 Syntax and Semantics of SPARQL Queries

We do not recall the complete surface syntax of SPARQL here but simply introduce
the underlying algebraic operations using our notation. A detailed introduction to the
relationship of SPARQL queries and their algebra is given in [5].

SPARQL supports a variety of filter expressions, or just filters, built from RDF
terms, variables, and a number of built-in functions and operators; see [10] for details.

Definition 1. We write I for the set of all IRIs, L for the set of all literals, and B for
the set of all blank nodes. The set T of RDF terms is I ∪ L ∪ B. Let V be a countably
infinite set of variables disjoint from T. A triple pattern is member of the set (T ∪ V) ×
(I ∪ V) × (T ∪ V), and a basic graph pattern (BGP) is a set of triple patterns. More
complex graph patterns are inductively defined to be of the form BGP, Join(GP1,GP2),
Union(GP1,GP2), LeftJoin(GP1,GP2, F), and Filter(F,GP), where BGP is a BGP, F
is a filter, and GP(i) are graph patterns that share no blank nodes.1 The sets of variables
and blank nodes in a graph pattern GP are denoted by V(GP) and B(GP), respectively.

We exclude a number of SPARQL features from our discussion. First, we disregard
any of the new SPARQL 1.1 query constructs since their syntax and semantics are still
under discussion in the SPARQL working group. Second, we do not consider output for-
mats (e.g., SELECT or CONSTRUCT) and solution modifiers (e.g., LIMIT or OFFSET)

1 As in [10], disallowing GP1 and GP2 to share blank nodes is important to avoid unintended
co-references.

which are not affected by entailment regimes. Third, we exclude SPARQL datasets that
allow SPARQL endpoints to cluster data into several named graphs and a default graph.
Consequently, we omit dataset clauses and assume that queries are evaluated over the
default graph, called the active graph for the query.

Evaluating a SPARQL graph pattern results in a sequence of solutions that lists
possible bindings of query variables to RDF terms in the active graph.

Definition 2. A solution mapping is a partial function µ : V→ T from variables to RDF
terms. For a solution mapping µ – and more generally for any (partial) function – the
set of elements on which µ is defined is the domain dom(µ) of µ, and the set ran(µ) B
{µ(x) | x ∈ dom(µ)} is the range of µ. For a BGP BGP, we use µ(BGP) to denote
the pattern obtained by applying µ to all elements of BGP in dom(µ). Two solution
mappings µ1 and µ2 are compatible if µ1(x) = µ2(x) for all x ∈ dom(µ1) ∩ dom(µ2). If
this is the case, a solution mapping µ1 ∪ µ2 is defined by setting (µ1 ∪ µ2)(x) = µ1(x) if
x ∈ dom(µ1), and (µ1 ∪ µ2)(x) = µ2(x) otherwise.

This convention is extended in the obvious way to all functions that are defined on
variables or terms.

Since SPARQL allows for repetitive solution mappings and since the order of so-
lution mappings is only relevant for later processing steps, we use solution multisets.
A multiset over an underlying set S = {s1, . . . , sn} is a set of pairs (si,mi) with mi a
positive natural number, called the multiplicity of si.

We first define the evaluation of BGPs under SPARQL’s standard semantics, which
is also referred to as simple entailment or subgraph matching. We still need to consider,
however, the effect of blank nodes in a BGP. Intuitively, these act like variables that are
projected out of a query result, and thus they may lead to duplicate solution mappings.
This is accounted for using RDF instance mappings as follows:

Definition 3. An RDF instance mapping is a partial function σ : B → T from blank
nodes to RDF terms. The solution multiset for a basic graph pattern BGP over the
active graph G is the following multiset of solution mappings:

{(µ, n) | dom(µ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings with
dom(σi) = B(BGP), for all 1 ≤ i ≤ n, and µ(σi(BGP)) is a subgraph of G}.

The algebraic operators that are required for evaluating non-basic graph patterns cor-
respond to operations on multisets of solution mappings, which are the same for all
entailment regimes. Thus, we refer interested readers to the SPARQL Query specifica-
tion [10] or the work about entailment regimes in general [2].

2.4 SPARQL-OWL

The SPARQL-OWL entailment regime2 specifies how the OWL Direct Semantics en-
tailment relation can be used to evaluate BGPs of SPARQL queries. The regime as-
sumes that the queried RDF graph G as well as the BGP are first mapped to OWL 2

2 http://www.w3.org/TR/2010/WD-sparql11-entailment-20101014/

http://www.w3.org/TR/2010/WD-sparql11-entailment-20101014/

structural objects, which are extended to allow for variables. Graphs or BGPs that can-
not be mapped since they are not well-formed, are rejected with an error. We use OG to
denote the result of mapping an OWL 2 DL graph G into an OWL ontology.

An axiom template is an OWL axiom, which can have variables in place of class,
object property, data property, or individual names or literals. In order to map a BGP
into a set of axiom templates, the entailment regime specification extends the mapping
between RDF triples and structural OWL objects. Type declarations from OG are used
to disambiguate types in BGP, but the regime further requires type declarations for
variables. This allows for a unique mapping from a BPG into axiom templates. For ex-
ample, without variable typing, the BGP :mary ?pred ?obj could be mapped into a data
or an object property assertion. By adding the triple ?pred a owl:ObjectProperty, we
can uniquely map the BGP to an object property assertion. Given an OWL 2 DL graph
G, we call BGP well-formed w.r.t. G if it can uniquely be mapped into axiom templates
taking also the type declarations from OG into account. We denote the resulting set of
axiom templates with OG

BGP.
SPARQL’s standard BGP evaluation trivially guarantees finite answers since it is

based on subgraph matching. Since the entailment regimes use an entailment relation in
the definition of BGP evaluation, infinite solution mappings that only vary in their use
of different blank node labels have to be avoided. Thus, entailment regimes make use of
Skolemization, which treats the blank nodes in the queried graph basically as constants,
but ones that do not have any particular fixed name. Since Skolem constants should not
occur in query results, Skolemization is only used to restrict the solution mappings.

Definition 4. Let the prefix skol refer to a namespace IRI that does not occur as the
prefix of any IRI in the active graph or query. The Skolemization sk(_:b) of a blank node
:b is defined as sk(:b) B skol:b. With sk(OG) we denote the result of replacing each
blank node b in OG with sk(b). Let G be an OWL 2 DL graph, BGP a BGP that is well-
formed w.r.t. G, and Voc(OWL) the OWL vocabulary. The answer domain w.r.t. G under
OWL Direct Semantics entailment, written ADDS(G), is the set Voc(OG) ∪ Voc(OWL).
The evaluation of OG

BGP over OG under OWL 2 Direct Semantics entailment is defined
as the solution multiset
{(µ, n) | dom(µ) = V(BGP), and n is the maximal number such that

σ1, . . . , σn are distinct RDF instance mappings such that, for each 1 ≤ i ≤ n,
i) OG ∪ µ(σi(OG

BGP)) is an OWL 2 DL ontology,
ii) sk(OG) |= sk(µ(σi(OG

BGP))) and
iii) (ran(µ) ∪ ran(σi)) ⊆ ADDS(G)}.

Note that we only use Voc(OWL) for OWL’s special class and property names such as
owl:Thing or owl:TopObjectProperty.

3 SPARQL-OWL Query Answering

The SPARQL-OWL regime specifies what the answers are, but not how they can ac-
tually be computed. In this section, we describe an algorithm for SPARQL-OWL that
internally uses any OWL 2 DL reasoner for checking entailment. We further describe
optimizations that can be used to improve the performance of the algorithm by reducing

the number of entailment checks and method calls to the reasoner. We assume that all
axiom templates that are evaluated by our algorithm can be instantiated into logical ax-
ioms since non-logical axioms (e.g., type declarations) do not affect the consequences
of an ontology. Since class variables can only be instantiated with class names, object
property variables with object properties, etc., we first define which solution mappings
are relevant for our algorithm.

Definition 5. Let G be an OWL 2 DL graph and BGP a BGP that is well-formed w.r.t.
G. By a slight abuse of notation, we write OG

BGP = {axt1, . . . , axtn} for axt1, . . . , axtn
the logical axiom templates in OG

BGP. For µ a solution mapping and σ an RDF instance
mapping, we call (µ, σ) compatible with OG

BGP and OG if µ(σ(OG
BGP)) is such that (a)

OG∪µ(σ(OG
BGP)) is an OWL 2 DL ontology and (b) µ(σ(OG

BGP)) is ground and does not
contain fresh entities w.r.t. sk(OG).

Condition (a) ensures that condition (i) of the entailment regime is satisfied, which guar-
antees that the OWL 2 DL constraints are not violated, e.g., only simple object proper-
ties can be used in cardinality constraints. Condition (b) makes sure that the variables
are only instantiated with the corresponding types since otherwise we would introduce
a fresh entity w.r.t. sk(OG) (e.g., by using an individual name as a class) or even violate
the OWL 2 DL constraints. Furthermore, the condition ensures that µ(σ(OG

BGP)) con-
tains no blank nodes (it is ground) and is Skolemized since all entities in the range of µ
and σ are from sk(OG). Thus, condition (iii) of entailment regimes holds.

Given an OWL 2 DL graph G and a well-formed BGP BGP for G, a straightforward
algorithm to realize the entailment regime now maps G into OG, BGP into OG

BGP, and
then simply tests, for each compatible pair (µ, σ), whether sk(OG) |= µ(σ(OG

BGP)). The
notion of compatible solutions already reduces the number of possible solutions that
have to be tested, but in the worst case, the number of distinct compatible pairs (µ, σ)
is exponential in the number of variables in the query, i.e., if m is the number of terms
in OG and n is the number of variables in OG

BGP, we test O(mn) solutions. Such an
algorithm is sound and complete if the reasoner used to decide entailment is sound and
complete since we check all mappings for variables and blank nodes that can constitute
actual solution and instance mappings.

3.1 General Query Evaluation Algorithm

Optimizations cannot easily be integrated in the above sketched algorithm since it uses
the reasoner to check for the entailment of the instantiated ontology as a whole and,
hence, does not take advantage of relations that may exist between axiom templates.
For a more optimized BGP evaluation, we evaluate the BGP axiom template by axiom
template. Initially, our solution set contains only the identity mapping, which does not
map any variable or blank node to a value. We then pick our first axiom template, extend
the identity mapping to cover the variables of the chosen axiom template and use the
reasoner to check which of the mappings instantiate the axiom template into an entailed
axiom. We then pick the next axiom template and again extend the mappings from the
previous round to cover all variables and check which of those mappings lead to an
entailed axiom. Thus, axiom templates which are very selective and are only satisfied

by very few solutions reduce the number of intermediate solutions. Choosing a good
execution order, therefore, can significantly affect the performance.

As an example, consider the BGP { ?x rdf:type :A . ?x :op ?y . } with :op an object
property and :A a class. The query belongs to the class of conjunctive queries, i.e.,
we only query for class and property instances. We assume that the queried ontology
contains 100 individuals, only 1 of which belongs to the class :A. This :A instance
has 1 :op-successor, while we have overall 200 pairs of individuals related with the
property :op. If we first evaluate ?x rdf:type :A (i.e., ClassAssertion(:A ?x)), we test
100 mappings (since x is an individual variable), of which only 1 mapping satisfies the
axiom template. We then evaluate ?x :op ?y (i.e., ObjectPropertyAssertion(:op ?x ?y))
by extending the mapping with all 100 possible mappings for y. Again only 1 mapping
yields a solution. For the reverse axiom template order, the first axiom template requires
the test of 100 ∗ 100 mappings. Out of those, 200 remain to be checked for the second
axiom template and we perform 10, 200 tests instead of just 200.

The importance of the execution order is well known in relational databases and cost
based optimization techniques are used to find good execution orders. Ordering strate-
gies as implemented in databases or triple stores are, however, not directly applicable
in our setting. In the presence of expressive schema level axioms, we cannot rely on
counting the number of occurrences of triples. We also cannot, in general, precompute
all relevant inferences to base our statistics on materialized inferences. Furthermore,
we should not only aim at decreasing the number of intermediate results, but also take
into account the cost of checking or computing the solutions. This cost can be very
significant with OWL reasoning.

Instead of checking entailment, we can, for several axiom templates, directly re-
trieve the solutions from the reasoner. For example, to evaluate a query with BGP
{ ?x rdfs:subClassOf :C }, which asks for subclasses of the class :C, we can use
standard reasoner methods to retrieve the subclasses. Most methods of reasoners are
highly optimized, which can significantly reduce the number of tests that are performed.
Furthermore, if the class hierarchy is precomputed, the reasoner can find the answers
simply with a cache lookup. Thus, the actual execution cost might vary significantly.
Notably, we do not have a straight correlation between the number of results for an
axiom template and the actual cost of retrieving the solutions as is typically the case in
triple stores or databases. This requires cost models that take into account the cost of
the specific reasoning operations (depending on the state of the reasoner) as well as the
number of results.

As motivated above, we distinguish between simple and complex axiom templates,
where simple axiom templates are those that correspond to dedicated reasoning tasks.
Complex axiom templates are, in contrast, evaluated by iterating over the compatible
mappings and by checking entailment for each instantiated axiom template. Examples
complex axiom templates are:

SubClassOf(:C ObjectIntersectionOf(?z ObjectSomeValuesFrom(?x ?y)))
ClassAssertion(ObjectSomeValuesFrom(:op ?x) ?y)

Algorithm 1 shows how we evaluate a BGP. The algorithm takes as input an OWL 2
DL graph G and basic graph pattern BGP that is well-formed w.r.t. G. It returns a mul-
tiset of solution mappings that is the result of evaluating BGP over G under the OWL 2

Algorithm 1 Query Evaluation Procedure
Input: G: the active graph, which is an OWL 2 DL graph

BGP: an OWL 2 DL BGP
Output: a multiset of solutions for evaluating BGP over G under OWL 2 Direct Semantics
1: OG:=map(G)
2: OG

BGP:=map(BGP,OG)
3: Axt := rewrite(OG

BGP) {create a list Axt of simplified axiom templates from OG
BGP}

4: Axt1, . . . ,Axtm:=connectedComponents(Axt)
5: for j=1, . . . , m do
6: R j := {(µ0, σ0) | dom(µ0) = dom(σ0) = ∅}

7: axt1, . . . , axtn := reorder(Axtj)
8: for i = 1, . . . , n do
9: Rnew := ∅

10: for (µ, σ) ∈ R j do
11: if isSimple(axti) and ((V(axti) ∪ B(axti)) \ (dom(µ) ∪ dom(σ))) , ∅ then
12: Rnew := Rnew ∪ {(µ ∪ µ′, σ ∪ σ′) | (µ′, σ′) ∈ callReasoner(µ(σ(axti)))}
13: else
14: B := {(µ ∪ µ′, σ ∪ σ′) | dom(µ′) = V(µ(axti)), dom(σ′) = B(σ(axti)),

(µ ∪ µ′, σ ∪ σ′) is compatible with axti and sk(OG)}
15: B := prune(B, axti, OG)
16: while B , ∅ do
17: (µ′, σ′) := removeNext(B)
18: if OG |= µ′(σ′(axti)) then
19: Rnew := Rnew ∪ {(µ′, σ′)}
20: else
21: B := prune(B, axti, (µ′, σ′))
22: end if
23: end while
24: end if
25: end for
26: R j := Rnew

27: end for
28: end for
29: R := {(µ1 ∪ . . . ∪ µm, σ1 ∪ . . . ∪ σm) | (µ j, σ j) ∈ R j, 1 ≤ j ≤ m}
30: return {(µ,m) | m > 0 is the maximal number with {(µ, σ1), . . . , (µ, σm)} ⊆ R}

Direct Semantics. We first explain the general outline of the algorithm and leave the
details of the used submethods for the following section. First, G and BGP are mapped
to OG and OG

BGP, respectively (lines 1 and 2). The function rewrite (line 3) can be
assumed to do nothing. Next, the method connectedComponents (line 4) partitions
the axiom templates into sets of connected components, i.e., within a component the
templates share common variables, whereas between components there are no shared
variables. Unconnected components unnecessarily increase the amount of intermediate
results and, instead, we can simply combine the results for the components in the end
(line 29). For each component, we proceed as described below: we first determine an
order (method reorder in line 7). For a simple axiom template, which contains so far
unbound variables, we then call a specialized reasoner method to retrieve entailed re-

sults (callReasoner in line 12). Otherwise, we check which compatible solutions yield
an entailed axiom (lines 13 to 24). The method prune can again be assumed do nothing.

3.2 Optimized Query Evaluation

Axiom Template Reordering We now explain how we order the axiom templates in the
method reorder (line 7). Since complex axiom templates can only be evaluated with
costly entailment checks, our aim is to reduce the number of bindings before we check
the complex templates. Thus, we evaluate simple axiom templates first. The simple
axiom templates are ordered by their cost, which is computed as the weighted sum
of the estimated number of required consistency checks and the estimated result size.
These estimates are based on statistics provided by the reasoner and this is the only part
where our algorithm depends on the specific reasoner that is used. In case the reasoner
cannot give estimates, one can still work with statistics computed from explicitly stated
information and we do this for some simple templates, e.g., ObjectPropertyRange, for
which the reasoner does not provide result size estimations. Since the result sizes for
complex templates are difficult to estimate using either the reasoner or the explicitly
stated information in OG, we order complex templates based only on the number of
bindings that have to be tested, i.e., the number of consistency checks that are needed
to evaluate them. It is obvious that the reordering of axiom templates does not affect
soundness and completeness of Algorithm 1.

Axiom Template Rewriting Some costly to evaluate axiom templates can be rewritten
into axiom templates that can be evaluated more efficiently and yield an equivalent re-
sult. Such axiom templates are shown on the left-hand side of Table 2 and their equiva-
lent simplified form is shown on the right-hand side. To understand the intuition behind
such transformation, we consider a query with only the axiom template:

SubClassOf(?x ObjectIntersectionOf(ObjectSomeValuesFrom(:op ?y) :C))

This axiom template requires a quadratic number of consistency checks in the number
of classes in the ontology (since ?x and ?y are class variables). According to Table 2,
the rewriting yields:

SubClassOf(?x :C) and SubClassOf(?x ObjectSomeValuesFrom(:op ?y))

The first axiom template is now evaluated with a cheap cache lookup (assuming that the
class hierarchy has been precomputed). For the second one, we only have to check the
usually few resulting bindings for x combined with all other class names for y. For a
complex axiom template such as the one in the last row of Table 2, the rewritten axiom
template can be mapped to a specialized task of an OWL reasoner, which internally
uses the class hierarchy to compute the domains and ranges with significantly fewer
tests. We apply the rewriting from Table 2 in the method rewrite in line 3 of our algo-
rithm. Our evaluation in Section 4 shows a significant reduction in running time due to
this axiom template rewriting. Soundness and completeness is preserved since instan-
tiated rewritten templates are semantically equivalent to the corresponding instantiated
complex ones.

Table 2. Axiom templates and their equivalent simpler ones, where C(i) are class expressions
(possibly containing variables), a is an individual or variable, and r is an object property expres-
sion (possibly containing a variable)

ClassAssertion(ObjectIntersectionOf(:C1 . . . :Cn) :a) ≡ {ClassAssertion(:Ci :a) | 1 ≤ i ≤ n}
SubClassOf(:C ObjectIntersectionOf(:C1 . . . :Cn)) ≡ {SubClassOf(:C :Ci) | 1 ≤ i ≤ n}

SubClassOf(ObjectUnionOf(:C1 . . . :Cn) :C) ≡ {SubClassOf(:Ci :C) | 1 ≤ i ≤ n}
SubClassOf(ObjectSomeValuesFrom(:op owl:Thing :C) ≡ ObjectPropertyDomain(:op :C)

SubClassOf(owl:Thing ObjectAllValuesFrom(:op :C)) ≡ ObjectPropertyRange(:op :C)

Class-Property Hierarchy Exploitation The number of consistency checks needed to
evaluate a BGP can be further reduced by taking the class and property hierarchies into
account. Once the classes and properties are classified (this can ideally be done before a
system accepts queries), the hierarchies are stored in the reasoner’s internal structures.
We further use the hierarchies to prune the search space of solutions in the evaluation
of certain axiom templates. We illustrate the intuition with an example. Let us assume
that OG

BGP contains the axiom template:

SubClassOf(:Infection ObjectSomeValuesFrom(:hasCausalLinkTo ?x))

If :C is not a solution and SubClassOf(:B :C) holds, then :B is also not a solution.
Thus, when searching for solutions for x, the method removeNext (line 17) chooses the
next binding to test by traversing the class hierarchy topdown. When we find a non-
solution :C, the subtree rooted in :C of the class hierarchy can safely be pruned, which
we do in the method prune in line 21. Queries over ontologies with a large number of
classes and a deep class hierarchy can, therefore, gain the maximum advantage from
this optimization. We employ similar optimizations using the object and data property
hierarchies. It is obvious that we only prune mappings that cannot constitute actual
solution and instance mappings, hence, soundness and completeness of Algorithm 1 is
preserved.

Exploiting the Domain and Range Restrictions Domain and range restrictions in OG

can be exploited to further restrict the mappings for class variables. Let us assume that
OG contains Axiom (6) and OG

BGP contains Axiom Template (7).

ObjectPropertyRange(:takesCourse :Course) (6)
SubClassOf(:GraduateStudent ObjectSomeValuesFrom(:takesCourse ?x)) (7)

Only the class :Course and its subclasses can be solutions for x and we can immediately
prune other mappings in the method prune (line 15), which again preserves soundness
and completeness.

4 System Evaluation

Since entailment regimes only change the evaluation of basic graph patterns, standard
SPARQL algebra processors can be used that allow for custom BGP evaluation. Fur-
thermore, standard OWL reasoners can be used to perform the required reasoning tasks.

uses

Query
Parsing

Algebra Evaluation

SPARQL
query

BGP Execution

Algebra
Object

Query solution
sequence

BGP

determines

BGP
solution

sequence

OWL Reasoner

OWL Ontology

BGP parsing

BGP Rewriting

BGP Evaluation

BGP Reordering

Fig. 1. The main phases of query processing in our system

4.1 The System Architecture

Figure 1 depicts the main phases of query processing in our prototypical system. In our
setting, the queried graph is seen as an ontology that is loaded into an OWL reasoner.
Currently, we only load the default graph/ontology of the RDF dataset into a reasoner
and each query is evaluated using this reasoner. We plan, however, to extend the system
to named graphs, where the dataset clause of the query can be used to determine a rea-
soner which contains one of the named ontologies instead of the default one. Loading
the ontology and the initialization of the reasoner are performed before the system ac-
cepts queries. We use the ARQ library3 of the Jena Semantic Web Toolkit for parsing
the query and for the SPARQL algebra operations apart from our custom BGP evalu-
ation method. The BGP is parsed and mapped into axiom templates by our extension
of the OWL API [6], which uses the active ontology for type disambiguation. The re-
sulting axiom templates are then passed to a query optimizer, which applies the axiom
template rewriting and then searches for a good query execution plan based on statistics
provided by the reasoner. We use the HermiT reasoner4 for OWL reasoning, but only
the module that generates statistics and provides cost estimations is HermiT specific.

4.2 Experimental Results

We tested our system with the Lehigh University Benchmark (LUBM) [3] and a range
of custom queries that test complex axiom template evaluation over the more expressive
GALEN ontology. All experiments were performed on a Windows Vista machine with
a double core 2.2 GHz Intel x86 32 bit processor and Java 1.6 allowing 1GB of Java
heap space. We measure the time for one-off tasks such as classification separately
since such tasks are usually performed before the system accepts queries. Whether more
costly operations such as the realization of the ABox, which computes the types for all
individuals, are done in the beginning, depends on the setting and the reasoner. Since
realization is relatively quick in HermiT for LUBM (GALEN has no individuals), we
also performed this task upfront. The given results are averages from executing each
query three times. The ontologies and all code required to perform the experiments are
available online.5

3 http://jena.sourceforge.net/ARQ/
4 http://www.hermit-reasoner.com/
5 http://www.hermit-reasoner.com/2010/sparqlowl/sparqlowl.zip

http://jena.sourceforge.net/ARQ/
http://www.hermit-reasoner.com/
http://www.hermit-reasoner.com/2010/sparqlowl/sparqlowl.zip

Table 3. Query answering times in milliseconds for LUBM(1,0) and in seconds for the queries
of Table 4 with and without optimizations

LUMB(1, 0) GALEN queries from Table 4
Query Time Query Reordering Hierarchy Rewriting Time

Exploitation
1 20 1 2.1
2 46 1 x 0.1
3 19 2 780.6
4 19 2 x 4.4
5 32 3 >30 min
6 58 3 x 119.6
7 42 3 x 204.7
8 353 3 x x 4.9
9 4,475 4 x x >30 min

10 23 4 x x 361.9
11 19 4 x x >30 min
12 28 4 x x x 68.2
13 16 5 x >30 min
14 45 5 x >30 min

5 x x 5.6

We first evaluate the 14 conjunctive ABox queries provided in the LUBM. These
queries are simple ones and have variables only in place of individuals and literals. The
LUBM ontology contains 43 classes, 25 object properties, and 7 data properties. We
tested the queries on LUBM(1,0), which contains data for one university starting from
index 0, and which contains 16,283 individuals and 8,839 literals. The ontology took
3.8 s to load and 22.7 s for classification and realization. Table 3 shows the execution
time for each of the queries. The reordering optimization has the biggest impact on
queries 2, 7, 8, and 9. These queries require much more time or are not answered at all
within the time limit of 30 min without this optimization (758.9 s, 14.7 s, >30 min, >30
min, respectively).

Conjunctive queries are supported by a range of OWL reasoners. SPARQL-OWL
allows, however, the creation of very powerful queries, which are not currently sup-
ported by any other system. In the absence of suitable standard benchmarks, we cre-
ated a custom set of queries as shown in Table 4 (in FSS). Note that we omit variable
type declarations since the variable types are unambiguous in FSS. Since the complex
queries are mostly based on complex schema queries, we switched from the very simple
LUBM ontology to the GALEN ontology. GALEN consists of 2,748 classes, 413 object
properties, and no individuals or literals. The ontology took 1.6 s to load and 4.8 s to
classify the classes and properties. The execution time for these queries is shown on the
right-hand side of Table 3. For each query, we tested the execution once without opti-
mizations and once for each combination of applicable optimizations from Section 3.

As expected, an increase in the number of variables within an axiom template leads
to a significant increase in the query execution time because the number of mappings
that have to be checked grows exponentially in the number of variables. This can, in
particular, be observed from the difference in execution time between Query 1 and 2.

Table 4. Sample complex queries for the GALEN ontology

1 SubClassOf(:Infection ObjectSomeValuesFrom(:hasCausalLinkTo ?x))
2 SubClassOf(:Infection ObjectSomeValuesFrom(?y ?x))
3 SubClassOf(?x ObjectIntersectionOf(:Infection

ObjectSomeValuesFrom(:hasCausalAgent ?y)))
4 SubClassOf(:NAMEDLigament ObjectIntersectionOf(:NAMEDInternalBodyPart ?x)

SubClassOf(?x ObjectSomeValuesFrom(:hasShapeAnalagousTo
ObjectIntersectionOf(?y ObjectSomeValuesFrom(?z :linear))))

5 SubClassOf(?x :NonNormalCondition)
SubObjectPropertyOf(?z :ModifierAttribute)
SubClassOf(:Bacterium ObjectSomeValuesFrom(?z ?w))
SubObjectProperty(?y :StatusAttribute)
SubClassOf(?w :AbstractStatus)
SubClassOf(?x ObjectSomeValuesFrom(?y :Status))

From Queries 1, 2, and 3 it is evident that the use of the hierarchy exploitation opti-
mization leads to a decrease in execution time of up to two orders of magnitude and, in
combination with the query rewriting optimization, we can get an improvement of up
to three orders of magnitude as seen in Query 3. Query 4 can only be completed in the
given time limit if at least reordering and hierarchy exploitation is enabled. Rewriting
splits the first axiom template into the following two simple axiom templates, which are
evaluated much more efficiently:

SubClassOf(NAMEDLigament NAMEDInternalBodyPart)
SubClassOf(NAMEDLigament ?x)

After the rewriting, the reordering optimization has an even more pronounced effect
since both rewritten axiom templates can be evaluated with a simple cache lookup.
Without reordering, the complex axiom template could be executed before the simple
ones, which leads to the inability to answer the query within the time limit of 30 min.
Without a good ordering, Query 5 can also not be answered, but the additional use of
the class and property hierarchy further improves the execution time by three orders of
magnitude.

Although our optimizations can significantly improve the query execution time, the
required time can still be quite high. In practice, it is, therefore, advisable to add as many
restrictive axiom templates for query variables as possible. For example, the addition of
SubClassOf(?y Shape) to Query 4 reduces the runtime from 68.2 s to 1.6 s.

5 Discussion

We have presented a sound and complete query answering algorithm and novel opti-
mizations for SPARQL’s OWL Direct Semantics entailment regime. Our prototypical
query answering system combines existing tools such as ARQ, the OWL API, and the
HermiT OWL reasoner to implement an algorithm that evaluates basic graph patterns
under OWL’s Direct Semantics. Apart from the query reordering optimization—which

uses (reasoner dependent) statistics provided by HermiT—the system is independent of
the reasoner used, and could employ any reasoner that supports the OWL API.

We evaluated the algorithm and the proposed optimizations on the LUBM bench-
mark and on a custom benchmark that contains queries that make use of the very expres-
sive features of the entailment regime. We showed that the optimizations can improve
query execution time by up to three orders of magnitude.

Future work will include the creation of more accurate cost estimates for the cost-
based query reordering, the implementation of caching strategies that reduce the num-
ber of tests for different instantiations of a complex axiom template, and an extended
evaluation using a broader set of ontologies and queries. Finally, we plan to analyze
whether user specific profiles can be used to suggest additional restrictive axiom tem-
plates automatically to reduce the number of mappings that have to be checked.
Acknowledgements This work was supported by EPSRC in the project HermiT: Rea-
soning with Large Ontologies.

References

1. Beckett, D., Berners-Lee, T.: Turtle – Terse RDF Triple Language. W3C Team Submission
(14 January 2008), available at http://www.w3.org/TeamSubmission/turtle/

2. Glimm, B., Krötzsch, M.: SPARQL Beyond Subgraph Matching. In: Proceedings of the 9th
International Semantic Web Conference (ISWC 2010). LNCS, vol. 6496. Springer Verlag
(2010)

3. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. Web
Sem. 3(2-3), 158–182 (2005)

4. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web
Ontology Language: Primer. W3C Recommendation (27 October 2009), available at http:
//www.w3.org/TR/owl2-primer/

5. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

6. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL 2 ontolo-
gies. In: Patel-Schneider, P.F., Hoekstra, R. (eds.) Proc. OWLED 2009 Workshop on OWL:
Experiences and Directions. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)

7. Motik, B., Patel-Schneider, P.F., Cuenca Grau, B. (eds.): OWL 2 Web Ontology Language:
Direct Semantics. W3C Recommendation (27 October 2009), available at http://www.w3.
org/TR/owl2-direct-semantics/

8. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax. W3C Recommendation (27 October 2009),
available at http://www.w3.org/TR/owl2-syntax/

9. Patel-Schneider, P.F., Motik, B. (eds.): OWL 2 Web Ontology Language: Mapping to RDF
Graphs. W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/

owl2-mapping-to-rdf/
10. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-

mendation (15 January 2008), available at http://www.w3.org/TR/rdf-sparql-query/

11. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: Golbreich, C., Kalyan-
pur, A., Parsia, B. (eds.) Proc. OWLED 2007 Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 258. CEUR-WS.org (2007)

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/

