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Abstract. This paper motivates, documents and evaluates the process
and results of converting the Norwegian Petroleum Directorate’s Fact-
Pages, a well-known and diverse set of tabular data, but with little and
incomplete schema information, stepwise into other representations where
in each step more semantics is added to the dataset. The different repre-
sentations we consider are a regular relational database, a linked open
data dataset, and an ontology. For each conversion step we explain and
discuss necessary design choices which are due to the specific shape of the
dataset, but also those due to the characteristics and idiosyncrasies of the
representation formats. We additionally evaluate the output, performance
and cost of querying the different formats using questions provided by
users of the FactPages.

1 Introduction

The Norwegian Petroleum Directorate (NPD) is a governmental specialist direc-
torate and administrative body which reports to the Ministry of Petroleum and
Energy. NPD’s main objective is to “contribute to creating the greatest possible
values for society from the oil and gas activities by means of prudent resource
management based on safety, emergency preparedness and safeguarding of the
external environment” [17]. This objective is met, they state, by performing four
functions, of which we highlight one: “The NPD has a national responsibility
for data from the Norwegian continental shelf. The NPD’s data, overview and
analyses constitute a crucial factual basis on which the activities are founded”
[17]. One of the datasets that the NPD manages is the NPD FactPages [5], or
FactPages for short. The FactPages contain data about petroleum activities
on the Norwegian continental shelf (NCS), e.g., about companies that own or
operate petroleum fields, results of tests taken during drilling, geographical data
for physical installations and the areas of fields and seismic surveys, transfers of
shares of fields between companies, and production results measured in volumes
of petroleum. Some of this data dates back as far as the start of oil production
on the NCS, in the early 1970s. The data in the FactPages is collected from
companies that operate on the NCS; the NPD is entitled to all information the
companies have regarding their activity in Norway, and may formulate detailed



routines for reporting this information. This information forms the basis for the
authorities’ planning of future activity and their judgement of existing activity.
Additionally, an important purpose of the FactPages is to secure efficient sharing
of information between the companies, and to provide sufficient information to
the public. Hence, the FactPages act as a national reference data library for
information regarding the NCS, both for historical data and for data about current
activities such as ongoing seismic surveys and active exploration wells. Needless
to say, the FactPages are an important and heavily used dataset documenting
what is by far most important industry in Norway.

The FactPages are made available as a web application serving a set of
HTML pages in a “factsheet format”, meaning in this case that data elements
are structured into predefined categories and subcategories, and data for each
individual data element is displayed as a list of simple tables according to its
category. Most of the background data for these reports is also available for
download in bulk as tabular data in CSV, Excel and XML format. The FactPages
are updated daily and their content can be freely used as long as the source is
properly referenced [17].

We argue that the NPD does not fully achieve its main objective with its
management of the FactPages. There is a lot of unrealised potential in the way
the FactPages are published, with a resulting loss of value to the operating
companies on the NCS, the general public and thus also to the authorities and
the NPD themselves. Our biggest concerns are that, firstly, the FactPages data is
available only in the presentational form that is currently implemented by the
publication system, i.e., data cannot be categorised or joined in arbitrary ways by
the user; this means that a lot of information from the FactPages is practically
unavailable since collecting, joining and aggregating the necessary data would
require considerable manual effort. Secondly, the current representation of the
FactPages makes it impossible to properly integrate it with other datasets or
vocabularies, such as relevant industry standards, and to make simple references
to individual data items. This is a problematic situation for a reference data
library.

This paper presents a case study of using semantic technologies to address
the above-mentioned problems—specifically, of converting the FactPages into a
semantically enriched RDF dataset, and supporting SPARQL query answering
via an RDF triple store with different levels of OWL reasoning enabled. The
transformation process can be split into three stages:

1. Convert and represent all bulk tabular data as a regular relational database.
The biggest effort in this step has been to create a relational schema for the
database. This step gives us the possibility to answer queries over the dataset
using a standard relational database system, and provides a baseline for a
comparison of different levels of semantic querying.

2. Transform and export the relational data into RDF format. In this step
considerable work has been put into cleaning the data and representing the
dataset as is appropriate for semantic web data. After this step we are able to
serve the dataset through a SPARQL endpoint and publish it according Linked



Open Data (LOD) principles [2, 9], with query answers being computed by
an RDF triple store.

3. Build a suitable OWL ontology. An initial ontology was produced using the
same data used to create the relational schema in the first step combined
with the RDF transformation in step two; this was then manually extended
by adding axioms that capture information that is not available to the
automatic translation. After this step we have a dataset that can be more
easily integrated with other existing datasets and vocabularies, and we can
use a reasoning enabled triple store to enrich query answers with implicit
information.

We tested query answering at each stage using a set of questions provided by
regular users of the FactPages. In each case we consider the ease with which the
questions can be formulated as queries, the performance of the query answering
system and the quality of the resulting answers.

Although our exposition is driven by the NPD use case, our results and the
lessons learnt are of a general character, and are likely to be applicable to many
other similar cases.

2 Background and Motivation

The FactPages are made available as a web application powered by Microsoft’s
SQL Server Reporting Services. The web pages are browsed by selecting one out
of 11 main categories.3 These offer a hierarchical menu of different views,4 each
of which may contain sub categories for investigating a particular feature of the
chosen main category, e.g., a sub category under Wellbore is Core Photos, which
contains photographs of core samples taken during drilling of the wellbore. Upon
reaching a leaf node in this menu, a list of members which fit the selection appears,
and selecting a member displays information about it in the most prominent part
of the application. This information is called a report. See Fig. 1 for a screenshot
of the FactPages application.

What we are missing in the FactPages application is the ability to pose arbi-
trary queries to the dataset, allowing users to combine and aggregate information
differently than what is made available by the application; the description given
above explains the only way to access data with the web application. For example,
it is practically impossible to find the wellbores for which there are core samples
from a specific lithostratigraphic unit,5 a question which is relevant for geologists

3 The categories are Wellbore, Licence, BAA (Business Arrangement Area), Field,
Discovery, Company, Seismic [Surveys], Facility, TUF (Transportation and Utilisation
Facility), Pipeline, and Stratigraphy.

4 Possible values are Page view, Statistics, Table view, Attributes, and Geography. Table
view contains the data which is available for download in tabular format. Attributes
gives a description and an SQL datatype for some of the columns found in the tabular
formats.

5 Roughly speaking, a geological strata or layer.



A screenshot of the FactPages showing information about the wellbore 1/9-A-1 H with
core samples (the core samples fall outside the page on the screenshot). The
information is reached by selecting Wellbore, Page view, Development, With.., Cores,
and 1/9-A-1 H. On the top of the page one can see the main entry points of the
FactPages, the panes labelled with Wellbore on the left to Stratigraphy on the right. In
the left margin the subcategories are listed. The next list shows the members in the
selection. The largest part of the window contains the report for the selected instance.

Fig. 1. A screenshot of the NPD FactPages.

who want to explore a particular area on the NCS. Another disadvantage of the
application is its poor use of URIs and links. Individual data items do not have
a URI, and although reports do have a URI, these are tightly coupled to the
implementing system and it is explicitly stated that they may change without
notice.6 So, e.g., to identify a core sample a user would need to invent an identifier
local to the report where information about it is found, making sharing of this
data with others more difficult and error-prone. Moreover, there are few links
between reports: in cases where a report mentions an asset for which there exists
a report, a direct link to this report is not always provided.

The main motivation for semantically enriching the FactPages according to
the three-step plan is the added value it gives the dataset in terms of availability
and usability, but also a general increase in data quality. The advantages of
publishing data according to linked open data and semantic web principles is
assumed to be known to the reader, so we only briefly present the most important
and relevant ideas:

Global identifiers URIs provide a schema for assigning identifiers which are
likely to be globally unique. This is crucial for data integration. Publishing

6 See http://factpages.npd.no/factpages/Parameters.aspx. The URI for the page
shown in Fig. 1 is http://factpages.npd.no/FactPages/Default.aspx?nav1=

wellbore&nav2=PageView|Development|All&nav3=1006.

http://factpages.npd.no/factpages/Parameters.aspx
http://factpages.npd.no/FactPages/Default.aspx?nav1=wellbore&nav2=PageView|Development|All&nav3=1006
http://factpages.npd.no/FactPages/Default.aspx?nav1=wellbore&nav2=PageView|Development|All&nav3=1006


according to LOD principles combines the identifier of a data item with the
address to use to retrieve information about the item.

Generic data model RDF [10] provides a simple, uniform and universal data
model, simplifying data exchange and consumption. RDF’s triple structure,
and predicate especially, make the data “schemaless”, and to some extent self
describing—particularly when the vocabulary used in the dataset is further
described in an ontology. Again, this simplifies data exchange and integration,
but also querying, since the dataset is independent of a particular schema
or database system. Adding new data and extending the dataset with new
vocabularies is easy due to the simple and self describing nature of RDF.

Query interface The SPARQL standards [6] define both a powerful query lan-
guage for RDF data, and how to provide services which expose such data to
the Internet through SPARQL endpoints using existing infrastructure. This
makes it possible to safely allow arbitrary queries over the dataset.

Semantics OWL [12] provides a language for formally describing the semantics
of the vocabulary used in the dataset, unlike a database schema which is
geared towards describing how data is stored. An ontology can be used to
introduce and explicate the semantics of domain-centric vocabulary, making
the data more accessible to a wider range of end-users, and also acting as
machine readable documentation for the dataset. An ontology additionally
provides a sophisticated means for integrating datasets, and the semantics of
the ontology can be used by a reasoner to infer new facts from the dataset,
and to explain logical consequences and query answers.

There are several reasons for converting the tabular data from the FactPages
via a relational database rather than directly into semantic web data. Firstly,
W3C recommendations provide standardised specifications for converting from
relational databases to semantic web data [4, 1], and the tools available for
performing such a conversion are greater in number, and in many cases more
mature and more actively maintained and developed (see, e.g., [15, 16]) than
their spreadsheet conversion counterparts (such as, e.g., [11, 7]). Secondly, having
the dataset represented as a relational database allows us to compare how well
suited SQL and SPARQL are for expressing the questions posed by our users
and the performance of relational and RDF stores in answering the resulting
queries. Thirdly, converting from a relational database also makes our comparison
more relevant to those (many) cases where data is kept in such a system; in
fact there are good reasons to believe that the master data for the FactPages is
kept in a relational database. Finally, a relational database is a very useful tool
for handling and investigating tabular data, and this has been very convenient
when implementing the conversion procedure. Moreover, as we shall see, the
apparatus for importing the tabular files into a relational database is similar to
the process that we use to design an appropriate semantic web representation of
the relational database. Thus the overhead of having an extra conversion step
does not exceed the added value of having a relational database available.

We are also interested in investigating the effect that ontologies have in enrich-
ing the dataset, and on query performance. Therefore, we have built a suitable



OWL 2 ontology, mainly derived from the relational to RDF transformation, but
also enhanced with hand-crafted axioms capturing, e.g., class hierarchies. We
then evaluated our standard SPARQL queries over the ontology-extended dataset
using triple stores that support reasoning with RDFS [8] and with the OWL 2
profiles OWL 2 QL, OWL 2 EL and OWL 2 RL [13]. The goal is to determine
if the added semantics adds anything to our query answer, and if so at what
computational cost.

Finally, it is worth mentioning that publishing the data in this way not
only makes it easier to use, and hence more valuable, but it can also contribute
to improving the quality of the original data: converting the dataset into a
semantic web framework can reveal potential errors and suggest good information
representation principles, and increased use of the dataset may help to identify
any additional errors.

3 Methodology

In this section we explain our procedure for transforming the FactPages CSV

files into semantic web data: first, loading the files into a relational database,
then exporting the contents of the database to RDF and loading the RDF into a
triple store, and finally, building an ontology from the available schema data. An
overview of the process is found in Fig. 2.
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Fig. 2. Schematic overview of the conversion process.



3.1 Step 1: Loading CSV files into a relational database

In order to load the CSV files into a relational database, we need to build a
database schema. A database schema usually specifies the database’s tables,
columns, column datatypes, primary and foreign keys, and indexes. As table
names and column names we use the CSV filename and the column names that
are given in the first line of the CSV files. The Attribute view under each main
category in the FactPages application lists many of columns used in the CSV

files, giving each a label, description and SQL datatype. However, not all columns
occurring in the CSV files are found under Attributes, and Attributes contains
many columns which are not used in the CSV files. In cases where an SQL

datatype is missing for a column, we determine the datatype by examining the
data. Primary and foreign keys are identified by investigating temporary versions
of the database created without keys. Usually the column names and column
descriptions, when available, provide hints as to how to build proper keys. For
the FactPages data, column names containing idNPD are strongly indicative of a
key. For tables where no key exists, we add a numeric auto increment column and
set this as the primary key. For each column, we also record whether or not null
values occur, which is again determined by a simple inspection of the data. The
specification for how to build the database schema is kept in what we call the
“CSV schema”. This is a collection of CSV files which is used in all of the three
conversion steps to determine how to produce the outcome of the conversion.
For the first step, these files are used to record column datatypes and comments,
primary and foreign keys, and whether columns may contain NULL values or not.

The relational database we are using is a MySQL database.7 Prior to loading
the FactPages CSV files into the database, they need to be cleaned. During cleaning
all files are converted to UTF-8 character set, problematic linebreaks are removed,
and date and time values are converted into the correct format for MySQL. Values
which we believe are meant to be null values, e.g, NA, not available, n/a, N/A, ""
and "NULL", are all set to the database null value NULL, and values which we guess
indicate an unknown value, e.g., ?, "?" and Not known, are changed to the string
value UNKNOWN. Null valued date columns are set to the maximum value 9999-12-31.
We also correct minor variations in spelling when a column name is used in
multiple CSV files, e.g., setting wlbnpdid wellbore and wlbnpdidwellbore to the
more commonly used pattern wlbNpdidWellbore. The dataset contains extensive
geographical data, described using the well-known text (WKT) markup language;8

this needs to be taken special care of—using the MySQL function GeomFromText—
in order to be correctly imported into the database. The database is created
and the CSV files loaded into the database with a single SQL script; an excerpt
which creates and adds foreign keys for the table licence petreg licence oper

and loads the CSV file licence petreg licence oper.csv into this table is found
in Fig. 3.

It is worth noting that we have created the database with the aim of having a
faithful representation of the original FactPages CSV files and to have a practical

7 http://www.mysql.com/, version 5.1.35
8 http://en.wikipedia.org/wiki/Well-known_text

http://www.mysql.com/
http://en.wikipedia.org/wiki/Well-known_text


CREATE TABLE licence_petreg_licence_oper (
ptlName VARCHAR(40) NOT NULL COMMENT "Tillatelse",
cmpLongName VARCHAR(200) NOT NULL COMMENT "Company name",
prlNpdidLicence INTEGER NOT NULL COMMENT "NPDID production licence",
cmpNpdidCompany INTEGER NOT NULL COMMENT "NPDID company",
ptlOperDateUpdated DATE COMMENT "Dato oppdatert",
dateSyncNPD DATE NOT NULL,
PRIMARY KEY (prlNpdidLicence)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

LOAD DATA LOCAL INFILE "csv/data/licence_petreg_licence_oper.csv"
INTO TABLE licence_petreg_licence_oper
-- [...]

ALTER TABLE licence_petreg_licence_oper ADD FOREIGN KEY (prlNpdidLicence)
REFERENCES licence(prlNpdidLicence);

ALTER TABLE licence_petreg_licence_oper ADD FOREIGN KEY (cmpNpdidCompany)
REFERENCES company(cmpNpdidCompany);

Fig. 3. Creating and loading table licence petreg licence oper.

and efficient tool for working with them, not to create a perfectly modelled
database. The resulting database is highly denormalised and contains many
duplicate values; we assume that the CSV files are constructed in this way
on purpose so as to carry more useful information for the (human) user. For
example, tables which are related to the company table, i.e., that include the
column cmpNpdidCompany (NPD’s key for companies), usually also contain the
name of the company and possibly additional duplicate data from the company
table. Poor database modelling/design is also evident in the fact that one-to-one
relationships are sometimes unnecessarily represented by a separate table. The
translation can also result in missing foreign keys, for example in the case of the
wellbore exploration all table. This table contains a column fclNpdidFacility

which refers to the facility that drilled the wellbore; facilities are, however,
distributed across two facility tables (facility fixed and facility moveable), so
we cannot express this relationship using a foreign key. One way to solve this
would be to create a table or view which collects all facilities, but, as mentioned,
we have decided to postpone such corrections till the next step in the process.

3.2 Step 2: Dumping the relational database to RDF

To dump the contents of the relational database to RDF, we use D2RQ.9 D2RQ

makes it easy to expose relational databases as virtual RDF graphs by using
a map which specifies a translation between terms in the database, and RDF

vocabularies and OWL ontologies. This map determines how SPARQL queries
over the virtual graph are rewritten to SQL queries over the relational database.
Given a database as input, D2RQ can automatically generate such a map, and
it is also equipped with a server which sets up a SPARQL endpoint and a LOD

frontend serving the virtual graph. The virtual graph can also be dumped to a
file. The generated map that D2RQ produces roughly maps each table to a class,
with each row being made an instance of the class and given a URI pattern which
is a concatenation of the values that constitute the primary key. Each column is

9 http://d2rq.org, version 0.8.1

http://d2rq.org


mapped to a property—an object property if the column is a foreign key, and
otherwise a datatype property. For the all the common SQL datatypes, datatype
properties are given an XSD datatype according to their SQL datatype. Less
standard datatypes, like those holding geographical data, are ignored by D2RQ

with a warning to the user. Classes are identified by a URI with the table name
as localname and columns with the tablename and column name as localname.

As expected, this makes a very crude RDF representation: the identifiers of
classes and properties are too tightly related to the database terms, and the URIs
of individuals are not as informative as they could be. Additionally, partly due
to an imprecise and poorly modelled database schema, there are effectively too
many datatype properties which should be object properties, the resulting XSD

datatypes are not always correct, and many values do not convey the intended
meaning in the best manner. Examples of the latter are properties which clearly
have a Boolean value domain, but where the values are variations of “yes” and
“no” in different languages and with different capitalisation, or the values are,
e.g., ACTIVE/INACTIVE, or one specific value and NULL. To fix these shortcomings
we extend the CSV schema mentioned in the previous section and use this to
generate a D2RQ map. We also map tables to classes and columns to properties,
but in the CSV schema we specify the resulting URIs of the classes and properties,
and allow extra classes and properties to be created by the map, as there are some
cases where we want to build more than one class from a single table. We also
specify whether tables or columns should be mapped at all. In this way we can
remove duplicate data from database in the RDF output, creating a normalised
dump. For each class we specify informative URI patterns which often are built
by extending existing URI patterns, e.g., three URIs for a wellbore, a wellbore
core and a wellbore core photo are respectively,

http://sws.ifi.uio.no/data/npd-v2/wellbore/5
http://sws.ifi.uio.no/data/npd-v2/wellbore/5/core/6
http://sws.ifi.uio.no/data/npd-v2/wellbore/5/core/6/photo/7607/2714-2718m

which indicate that the second URI is a core sample from the wellbore identi-
fied by the first URI, and that the core photograph is of the given core sam-
ple. For the first parts of the URI pattern we generally use one of the main
categories found in the FactPages application.10 This provides a partial solu-
tion to the problem of interlinking resources even when there is no foreign
key—in these cases a URI can usually be built from values in the database.
For the example we gave in the previous section, we simply let fixed facili-
ties and moveable facilities share the same URI pattern and export the val-
ues from the column wellbore exploration all.fclNpdidFacility as the URIs
.../facility/[fclNpdidFacility]. Dates of value 9999-12-31 are not included
in the dump as they represent NULL values in the database, however, they are
still useful since the columns they appear in are used in for many URL patterns,
which do not accept NULL values. To represent the geographical information in
the dataset we make use of the GeoSPARQL vocabulary,11 which is designed for

10 See footnote 3 on page 3.
11 http://schemas.opengis.net/geosparql/

http://schemas.opengis.net/geosparql/


map:licence_petreg_licence_oper
d2rq:dataStorage map:Adatabase; a d2rq:ClassMap; d2rq:class ptl:ProductionLicence;
d2rq:classDefinitionLabel "Production Licence: Petroleum register, Operators";
d2rq:uriPattern "/URIPATTERN62//petreg/licence/@@licence_petreg_licence_oper.prlNpdidLicence@@".

map:licence_petreg_licence_oper__cmpNpdidCompany__ref
a d2rq:PropertyBridge; d2rq:belongsToClassMap map:licence_petreg_licence_oper;
d2rq:join "licence_petreg_licence_oper.cmpNpdidCompany => company.cmpNpdidCompany";
d2rq:property ptl:licenceOperatorCompany; d2rq:refersToClassMap map:company .

map:licence_petreg_licence_oper__ptlOperDateUpdated
a d2rq:PropertyBridge; d2rq:belongsToClassMap map:licence_petreg_licence_oper;
d2rq:column "licence_petreg_licence_oper.ptlOperDateUpdated";
d2rq:condition "licence_petreg_licence_oper.ptlOperDateUpdated <> ’9999-12-31’";
d2rq:property ptl:dateUpdated; d2rq:datatype xsd:date;

Fig. 4. D2RQ map of parts of table licence petreg licence oper.

this purpose [14]. For other changes to exported values we use D2RQ’s translation
table feature. It allows us to specify a series of one-to-one mappings between
database values and RDF values, where the RDF values may be any legal RDF

resource. We use translation tables to convert all the different Boolean values to
the values xsd:true and xsd:false, to translate country names and codes into the
correct resource representative in DBPedia, and to make minor adjustments to
some oddly shaped values.12 We also translate values from columns like fclKind

(Facility kind/type) into nicely formatted URLs which are added as types to
the relevant row individuals.13 These specific translation tables are created by
querying the database when the map is generated, a task which is easy to set up
with a database at hand. Fig. 4 contains a snippet from the generated D2RQ map
showing a mapping of parts of the database table licence petreg licence oper,
whose definition is found in Fig. 3. It illustrates a table which contains one-to-
one relationships between a production licence and the operator of the licence.
Instead of mapping this table to a separate class, we map the table to an existing
class, ptl:ProductionLicence, and simply add a property from the licence to
the operating company. The results from dumping to RDF using this map are
exemplified in Fig. 5. After dumping the database to RDF we post process the
RDF file, making changes which we are not able to represent in the D2RQ map,
or at least not easily. The most important change we do is to remove a token
from all URIs generated after our identifier schema. These tokens are added by
us to all such URIs to ensure that all patterns are distinct, this can be seen in
Fig. 4 as d2rq:uriPattern "/URIPATTERN62//.... This is a simple workaround for
a bug in D2RQ which causes problems for its query rewriter if a URI pattern is a
sub pattern of other URI patterns. As already shown, we make heavy use of URIs
which are of this form. In the database there is one case of a column containing
more than one value, hence breaking first normal form. In the post process, we
split this in to multiple atomic values. To our knowledge, there is no built in

12 E.g., the unit of measure values [m ] and [ft ] are translated to the
xsd:string-s m and ft.

13 E.g., the strings MULTI WELL TEMPLATE and CONCRETE STRUCTURE are translated
to the resources npdv:MultiWellTemplateFacility and npdv:ConcreteStructure-
Facility.



<http://sws.ifi.uio.no/data/npd-v2/petreg/licence/21559426>
a ptl:ProductionLicence;
ptl:dateUpdated "2013-02-20"^^xsd:date;
ptl:licenceOperatorCompany <http://sws.ifi.uio.no/data/npd-v2/company/23173852> .

Fig. 5. RDF result of dumping a row from table licence petreg licence oper.

way of achieving this with D2RQ alone. Lastly, we change all UNKNOWN values into
blank nodes. This is possible to do in the D2RQ map, but would require that we
add a special case for all column maps where UNKNOWN occurs.

3.3 Step 3: Building an OWL ontology

The generated ontology should define the same vocabulary as indirectly generated
in the previous step, so every class and property mentioned by the map, which is in
the namespace of the dataset, is declared as an owl:Class or a property of the cor-
rect kind: owl:ObjectProperty, owl:DatatypeProperty or owl:AnnotationProperty.
We also record, using a separate set of annotation properties, the SQL table or
column that the resource was generated from, and add any name and comment
that is associated with the table or column in the database. We do this with
all axioms that can be directly traced back to the database so as to help with
debugging and further development of the ontology.

For each foreign key property, we add an existential restriction as a super
class of the class representative of the table to which the foreign key applies,
and we qualify the restriction with the class representative of the table that
the key references. For each column that is NOT NULL, we add an unqualified
existential restriction on the corresponding property as a super class of the class
representative of the table where the column is found. For each object property,
we set a domain and range for the property if the property is used with only one
class as, respectively, domain or range; we set the domain of datatype properties
in the same way, but we use the range value from the D2RQ map.

Fig. 6 illustrates the procedure with an excerpt of the result of generating an
OWL ontology from the table given in Fig. 3. We can see that the foreign key
licence petreg licence oper is translated into the qualified existential restriction
ptl:licenceOperatorCompany some npdv:Company. The other subclass axioms orig-
inate from a different SQL table, which is indicated by the fact that the class has
two instances of the annotation property sql:table. (Each subclass axiom is also
annotated, but this is not shown in the figure.) Indeed, as noted for the listing
in Fig. 4, the table licence petreg licence oper is mapped to a class for which
another table is mapped. In this other table the columns corresponding to the
properties ptl:dateLicenceValidFrom and ptl:dateLicenceValidTo are declared
as NOT NULL. Finally, the ptl:licenceOperatorCompany property’s column is only
used once, and as a foreign key, so it is safe to set its domain and range.

The generated ontology is later extended manually by adding axioms which
capture information that is not available to the automatic process. This amounts
largely to adding atomic general superclasses to the generated classes, e.g.,



Class: ptl:ProductionLicence
Annotations:

sql:table "licence_petreg_licence_oper",
sql:table "licence_petreg_licence",
sql:columns "ptlName,cmpLongName,[...] (table: licence_petreg_licence_oper)",
sql:columns "ptlName,ptlDateAwarded,[...] (table: licence_petreg_licence)"

SubClassOf:
ptl:dateLicenceValidFrom some rdfs:Literal,
ptl:dateLicenceValidTo some rdfs:Literal,
ptl:licenceOperatorCompany some npdv:Company

ObjectProperty: ptl:licenceOperatorCompany
Domain: ptl:ProductionLicence
Range: npdv:Company

DataProperty: ptl:dateUpdated
Annotations:

sql:datatype "DATE (column: ptlOperDateUpdated)",
sql:column "tuf_petreg_licence_oper.ptlOperDateUpdated"

Range: xsd:date

Fig. 6. An excerpt of the generated OWL ontology.

npdv:Facility is set as the superclass of the generated classes npdv:FixedFacility
and npdv:MoveableFacility, and introducing a set of mutually disjoint top level
classes like npdv:Agent, npdv:Area and npdv:Point. A small selection of classes
and properties that model geographical data are mapped to the GeoSPARQL

vocabulary. The generated ontology (called npd-v2-db), the set of SQL annotation
properties (npd-v2-sql), the added superclasses ontology (npd-v2-hm), and the
geographical mappings (npd-v2-geo) are kept in separate ontologies and files
which are all imported by a central “hub” ontology (npd-v2).

3.4 Results

The outcome of the conversion steps are summarised in the tables below. 70
CSV files containing a total of 963 columns are downloaded from the FactPages
application. These become 70 tables and 276 distinct columns in the relational
database. To map the database to RDF we use a D2RQ map containing 79
class maps and 859 property bridges. Dumping the database to RDF produced
(indirectly) 119 classes, 351 properties and 2.342.597 triples; this process takes
approximately 4,5 hours. The complete ontology contains 209 classes and 375
properties.

CSV SQL D2RQ Map RDF OWL

Files/Tables/Classes 70 70 79 119 209
Columns/Properties 963 276 859 341 375

The table below lists some numbers and the expressivity of the different ontologies,
excluding imports, as reported by Protégé.14 Figures in the last row of the table
include axioms from imported “external” ontologies; the other rows relate only
to “local” npd-v2-* ontologies.

14 http://protege.stanford.edu/, version 4.3

http://protege.stanford.edu/


Ontology Axioms Logical ax. Classes Obj. prop. Da. prop. Expressivity

npd-v2-db 3355 1006 109 87 221 ALE(D)
npd-v2-hm 81 71 75 6 1 ALCHI(D)
npd-v2-geo 7 3 3 2 0 ALI
npd-v2-sql 7 0 0 0 0 -

npd-v2 (local) 3450 1080 132 89 221 ALCHI(D)
npd-v2 (all) 4463 1271 209 131 229 SHIF(D)

All files, together with our LOD representation of the FactPages, are published
at the project website http://sws.ifi.uio.no/project/npd-v2/.

4 Query Evaluation

We have asked users of the FactPages to provide us with questions they would like
to have answered by the FactPages. A subset of these questions has been translated
to a total of 20 SPARQL and/or SQL queries. As part of our analysis of the costs
and benefits of using the different representation formats and database systems,
we want to evaluate how suited the two query languages are for representing the
questions, and whether the added semantics coupled with reasoning gives more
results and at what cost. That is, we wish to compare the systems with different
levels of semantic querying, not to benchmark them.

When translating the queries we found that, although the query languages
are very similar, formulating queries in SPARQL was slightly easier. This is in
part due to the simple format of RDF, and that creating graph patterns seems
to be a simpler and more natural process than finding the right tables and how
to correctly join them. (There is no need for FROM in SPARQL.) An advantage
for the SPARQL queries in our setup is, of course, that the somewhat oddly
shaped relational database is restructured in the conversion step to RDF and
OWL, making the graph model and class and property names more intuitive.
Moreover, as discussed in Section 3, the modelling of the database is not ideal,
and this may hamper query formulation.

The queries were executed against the MySQL database, a Fuseki15 triple store
with the post processed dump produced in step 2, and against a Stardog16 triple
store that was also loaded with the ontologies created and referenced in step 3. We
tested Stardog using five different reasoning configurations: none (i.e., RDF only),
RDFS, OWL 2 QL, OWL 2 EL and OWL 2 RL—note that, although our ontology
does not fit into any of the OWL profiles, Stardog simply ignores axioms that fall
outside the enabled profile. For each query and each system (configuration), we
measured the execution time and the number of results returned. All questions,
queries, execution times and (number of) results are published on the project
website, and we present a representative selection in Fig. 7.

The results of our experiment can be summarised as follows.

15 http://jena.apache.org/documentation/serving_data/, version 0.2.6
16 http://stardog.com/, version 1.2

http://sws.ifi.uio.no/project/npd-v2/
http://jena.apache.org/documentation/serving_data/
http://stardog.com/
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The chart shows the running times and the number of results returned for five different
queries. For each query the database systems from left to right are MySQL, Fuseki,
Stardog with no reasoning, then Stardog with respectively RDFS, QL, EL and RL
reasoning enabled. The running times are given in seconds on a logarithmic scale, and
the number of results returned are listed under each bar. A bar is marked by ‘=’ if its
number of results are the same as the bar to its left. MySQL does not have any query
for Query 19 and 20, as these questions require vocabulary which does not exist in the
database schema.

Fig. 7. Selected queries with running times and results returned.

– Queries are useful! This is of course well-known, but still true. We were able
to answer all the questions we were given, most of which result in information
which is not practically possible to retrieve from the FactPages in their
current official representation.

– The only queries that return more answers when reasoning is enabled are
queries which use vocabulary defined in the manually created ontology axioms,
cf. Queries 19 and 20. In these cases, however, reasoning made a dramatic
difference, increasing the number of answers from zero to several hundred.
This could clearly be important in some applications. In the case of Query 19,
RDFS reasoning produced the same number of answers as the OWL 2 profiles;
for Query 20, however, RDFS and QL reasoning did not produce any answers,
and EL and RL reasoning produced the same number of answers. This suggests
that careful choice of profile could also be important in some applications.

– For most queries in the experiment, MySQL is faster than the triple stores,
and Stardog is slightly faster than Fuseki. However, the worst performance
result for any query is Query 1 running on MySQL. This is due to a join on
a column which is not indexed, and illustrates a weakness with relational
databases which triple stores do not suffer from.

– Running times for queries with reasoning enabled are only significantly
different when more results are returned, as in Queries 19 and 20.



5 Conclusion

We have presented the results of a case study in which data published as CSV

files was transformed into relational data, RDF data, and RDF data augmented
with an ontology. Our goal was to analyse the costs and benefits of such transfor-
mations, with anticipated benefits being easier query formulation and enriched
query answers, and anticipated costs being the transformation process itself and
increased query answering times.

Simply translating the CSV files into relational data brought with it significant
benefits in being able to retrieve information that was otherwise almost impossible
to access. Additionally transforming the data into (LOD compliant) RDF brought
with it a range of additional benefits, including better availability and (re)usability.
Augmenting the data with an ontology adds semantic clarity, and can both extend
the range of possible queries, and improve the quality of query answers.

Regarding transformation cost, the transformation process was greatly facili-
tated by the range and quality of available tools, with D2RQ being used to good
effect in our case. Significant amounts of additional (largely manual) effort were
needed to produce good quality RDF data, but this was due at least in part to
quality issues relating to the source data. The cost of building the ontology was
less than might have been expected, and although relatively simple in structure,
the ontology was able to exploit existing work by mapping relevant classes and
properties to the GeoSPARQL vocabulary. Regarding query answering cost, the
results here were very encouraging, with query answering times only significantly
longer in those cases where use of the ontology resulted in greatly enriched query
answers.

For future work we are planning to improve the quality of the current on-
tology, and to make further developments with help from domain experts; we
may also develop versions of the ontology specifically designed for one or more
of the OWL 2 profiles. We anticipate that a more developed ontology will en-
able users to pose more sophisticated queries, and we plan to conduct a new
evaluation experiment using such queries. Secondly, we intend to apply the
ontology-based data access (OBDA) [3] methodology to the FactPages dataset,
using mappings between the relational database and the ontology to produce a
highly scalable query answering system. We believe that our existing conversion
methodology can relatively easy be adapted to produce mappings for this purpose.
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