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Abstract—When RDF datasets become too large to be managed by centralised systems, they are often distributed in a cluster of
shared-nothing servers, and queries are answered using a distributed join algorithm. Although such solutions have been extensively
studied in relational and RDF databases, we argue that existing approaches exhibit two drawbacks. First, they usually decide statically
(i.e., at query compile time) how to shuffle the data, which can lead to missed opportunities for local computation. Second, they often
materialise large intermediate relations whose size is determined by the entire dataset (and not the data stored in each server), so
these relations can easily exceed the memory of individual servers. As a possible remedy, we present a novel distributed join algorithm
for RDF. Our approach decides when to shuffle data dynamically, which ensures that query answers that can be wholly produced within
a server involve only local computation. It also uses a novel flow control mechanism to ensure that every query can be answered even if
each server has a bounded amount of memory that is much smaller than the intermediate relations. We complement our algorithm with
a new query planning approach that balances the cost of communication against the cost of local processing at each server. Moreover,
as in several existing approaches, we distribute RDF data using graph partitioning so as to maximise local computation, but we refine
the partitioning algorithm to produce more balanced partitions. We show empirically that our techniques can outperform the state of the
art by orders of magnitude in terms of query evaluation times, network communication, and memory use. In particular, bounding the
memory use in individual servers can mean the difference between success and failure for answering queries with large answer sets.
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1 INTRODUCTION

R ESOURCE Description Framework (RDF) is a popular
graph-like data model. RDF applications often need to

integrate large datasets that cannot be jointly processed on
a single sever. This problem is particularly acute in applica-
tions that require high levels of performance that can only
be obtained by storing data in RAM. A common solution
is to store the data in a cluster of shared-nothing servers.
However, triples needed to answer a query can then reside
on distinct servers so the servers may need to exchange
partial query answers, and key challenges are to reduce
communication overheads and promote parallelisation.

Based on this idea, a number of distributed RDF systems
have been developed [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18]. The adopted
technical approaches vary significantly, from reusing big
data frameworks such as Hadoop and Spark to building
specialised solutions. Abdelaziz et al. [19] recently surveyed
22 and evaluated 11 systems on a variety of data and query
loads. AdPart [16] and TriAD [18] consistently offered the
best performance. Both are specialised, RAM-based systems
that support distributed query evaluation: AdPart uses left-
deep plans consisting of hash joins and semijoins, and TriAD
uses bushy query plans consisting of distributed merge and
hash joins. In Section 3.2, we survey existing systems and
argue that most exhibit two important drawbacks.

First, decisions as to when and how partial answers
should be exchanged between the servers are made statically
(i.e., during query planning). For example, partial answers
are exchanged after each Map phase in Hadoop-based sys-
tems, and the strategies used to partition the data govern
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data exchange in AdPart and TriAD. We argue in Section 3.3
that such an approach can miss opportunities for local
computation: servers might exchange partial answers even
when all triples necessary to compute a query answer are
collocated on one server. Network communication is one of
the main bottlenecks in distributed RDF stores, so measures
to reduce and/or eliminate communication directly affect
the performance and scalability of distributed systems.

Second, servers often need to store intermediate relations
(e.g., as hash tables in hash joins). The size of such relations
is worst-case exponential in the size of the entire graph,
rather than the data stored in the servers. Thus, increas-
ing capacity by adding new servers can disproportionally
increase the size of the intermediate relations, which can
severely limit the type of queries that can be processed. In
our experiments (see Section 8), TriAD and AdPart could
efficiently answer queries with small result sets, but both
systems failed due to memory exhaustion on nonselective
chain queries returning hundreds of millions of answers.

In Sections 4 and 5 we present a new technique for
distributed query answering that aims to address these two
challenges. We address the first challenge by making data
exchange dynamic: decisions about data exchange are made
during query processing, rather than at compile time. The
track join algorithm [20] has a similar aim, but it can still
incur unnecessary communication in the so-called tracking
phase to identify pairs of servers that need to exchange
partial answers. In contrast, our approach tracks the occur-
rences of RDF resources in a lightweight data structure, and
it computes an answer locally whenever all relevant triples
are collocated. We address the second challenge using index
nested loop joins. Similar to TriAD and AdPart, we index the
data in RAM using exhaustive hash-based indexes; hence,
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index nested loop joins can be seen as hash joins where hash
tables are constructed in advance. Importantly, index sizes
are determined only by the size of the data stored in each
server (rather than the total data size), and memory require-
ments for index nested loop joins are determined only by
the size of the query (and not the data) since intermediate
relations are never stored explicitly. To also limit the amount
of memory used for communication between the servers,
we use a novel flow control strategy where a key challenge
is to ensure that the system remains deadlock-free. In this
way, our approach can process complex queries with large
answer sets even if the memory available at each server is
severely limited. Finally, query processing in our approach
is fully asynchronous (i.e., no synchronisation at various
points in a query plan is needed); this benefits parallelism,
although it does complicate detecting termination.

We complement our approach with two additional con-
tributions. First, in Section 6 we present a query planning
approach that balances the costs of local computation and
network communication. A key ingredient of our cost model
is the number of messages exchanged between the servers.
To estimate this number using an off-the-shelf query car-
dinality estimator, we reduce the problem of estimating
the number of messages to the problem of estimating the
cardinality of a specific query. Second, as in existing systems
[9], [18], [21], we distribute the data using graph partitioning
[22] to maximise data locality; however, we observe that
existing approaches often produce unbalanced partitions,
which can hinder scalability. To remedy this, in Section 7 we
present a refinement based on weighted graph partitioning,
which ensures that partitions are balanced in the numbers
of triples, rather than the numbers of resources.

In Section 8 we present the results of a performance
evaluation where we compared our approach with AdPart,
TriAD, S2RDF [5], and PEDA [15] on the WatDiv [23] and
LUBM [24] benchmarks. Our approach often outperformed
the others in terms of query evaluation times, network
communication, and memory usage, sometimes by orders of
magnitude. Moreover, our system was the only one to suc-
cessfully answer several complex chain queries that produce
hundreds of millions of answers, which shows the benefits
of limiting memory use in distributed join algorithms.

2 PRELIMINARIES

We next present an overview of the definitions and notations
that allow us to present our approach precisely. An (RDF)
resource is an IRI reference, a blank node, or a literal (e.g., string
or integer). A triple has the form 〈ts, tp, to〉 where ts, tp, and
to are resources, and an RDF graph G is a finite set of triples.
SPARQL is an expressive RDF query language. For example,
the following query retrieves all people with a sister.

SELECT ?X WHERE { ?X rdf:type :Person . ?X :sister ?Y }

Since the SPARQL syntax is very verbose, we next introduce
a more compact notation for queries. We denote variables
by possibly indexed uppercase letters without a question
mark. A term is a resource or a variable, and an atom (also
called a triple pattern) has the form 〈ts, tp, to〉 where ts, tp,
and to are terms (so each triple is an atom). A conjunctive
query (CQ) has the form Q(X1, . . . , Xm) = A1 ∧ · · · ∧An,

where each Xi is an answer variable and each Aj is an
atom. CQs capture basic graph patterns with projection in
SPARQL. For example, the above SPARQL query is captured
by Q(X) = 〈X, rdf :type, :Person〉 ∧ 〈X, :sister , Y 〉.

To define conjunctive query answers, we first define an
assignment as a finite mapping of variables to resources. For
σ an assignment and γ a term or an atom, γσ is the result
of replacing in γ each occurrence of a variable X on which
σ is defined with σ(X). Assignment σ is an answer to a
query Q(X1, . . . , Xm) = A1 ∧ · · · ∧An on an RDF graph G
if σ is defined on X1, . . . , Xm and it can be extended to
an assignment ν defined on the variables of A1, . . . , An
such that Ajν ∈ G for 1 ≤ j ≤ n. SPARQL uses the bag
semantics, so we define ans(Q,G) as the multiset containing
each answer σ to Q on G with multiplicity equal to the
number of such ν. We define the cardinality [Q]G of Q on G
as the sum of the multiplicities of all answers to Q on G.

We study CQ answering when an RDF graph G is stored
in a cluster C of shared-nothing servers connected by a
network. Data distribution is determined by a partition P
of G, which assigns to each server k ∈ C an RDF graph Pk
called a partition element. A (data) partitioning strategy is an
algorithm that computes a partition P given G and C . Each
triple must be stored on some server—that is, G =

⋃
k∈C Pk

must hold. While partitioning strategies can store a triple on
several servers in general, P is strict if Pk ∩ Pk′ = ∅ holds for
all k, k′ ∈ C with k 6= k′. Given a conjunctive query Q, we
consider ways of computing ans(Q,G) using P.

We next introduce some useful notation. The set of
positions is defined as Π = {s, p, o}. For A = 〈ts, tp, to〉 an
atom, vars(A) is the set of variables ofA, and termπ(A) = tπ
for π ∈ Π. The vocabulary of an RDF graph G is de-
fined by vocπ(G) = {termπ(A) | A ∈ G} for π ∈ Π, and
voc(G) =

⋃
π∈Π vocπ(G). We often abbreviate a vector of

elements α1, . . . , αn as α and treat it as a set (e.g., we
write αi ∈ α). For f a function, dom(f) is the domain
of f ; for D a set, f |D is the function f restricted to the
set D ∩ dom(f); and we often write f as a set of map-
pings {α1 7→ β1, . . . , αn 7→ βn}. If g is a function where
f(α) = g(α) for each α ∈ dom(f) ∩ dom(g), then f ∪ g is
a function whose domain is dom(f) ∪ dom(g).

By convention, in this paper we denote RDF graphs by
G; partitions and their elements by P; clusters by C ; servers
by k and `; atoms by A; positions by s, p, and o, and π; the
set of positions by Π; variables by X , Y , Z , and W ; terms by
t; queries by Q; and resources by the remaining lowercase
letters. All letters can be indexed if needed.

3 RELATED WORK AND OUR CONTRIBUTION

We now discuss the main difficulties in distributed query
answering, survey the existing approaches and their draw-
backs, and summarise our technical contributions.

3.1 Problems of Distributed Join Evaluation
Let G be the RDF graph in Figure 1a partitioned into two
elements by subject hashing: triple 〈ts, tp, to〉 is assigned to
P(h(ts) mod 2)+1, where h is a suitable hash function. Re-
source c is shown in grey as it occurs in both P1 and P2.

We say that answer σ ∈ ans(Q,G) is local to server k
if σ ∈ ans(Q,Pk), and that σ is local if it is local to some
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(a) Partition of G of Size 2

Q2(X,Y, Z) =
〈X, r2, Y 〉 ∧ 〈Y, r1, Z〉
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〈Y, r1, Z〉

(b) Plan for Q2

Q3(X,Y, Z,W ) = 〈X, r1, Y 〉
∧〈X, r2, Z〉 ∧ 〈W, r3, Z〉

./

⊗

./

〈X, r1, Y 〉 〈X, r2, Z〉

⊗

〈W, r3, Z〉

(c) Plan for Q3

Fig. 1: Example RDF Data and Query Plans

k ∈ C . If all answers of Q are local, we can evaluate Q
by taking the union of the answers obtained by evalu-
ating Q at independently at all servers. For example, let
Q1(X,Y, Z) = 〈X, r1, Y 〉 ∧ 〈X, r2, Z〉. Triples are assigned
to partition elements by subject hashing and the query in-
volves only a subject–subject join, so all triples participating
in a join are collocated and all query answers are local.

Now let Q2(X,Y, Z) = 〈X, r2, Y 〉 ∧ 〈Y, r1, Z〉. Answer
σ1 = {X 7→ b, Y 7→ c, Z 7→ e} to Q2 on G is not local: the
relevant triples reside in different partition elements, so
servers must communicate to compute σ1.

Many distributed join techniques are known [25]. Query
plans can be constructed using standard operators such
as hash or merge join, and a new data exchange (or shuf-
fle) operator [26] encapsulates all communication. Based on
data partitioning, these operators are inserted into plans
as necessary for the other operators to receive all relevant
information. Semijoins [27], [28] can reduce communication:
to join relations R1 and R2 residing at two servers, server 1
first sends the projection of R1 on the join attributes to
server 2, and the latter sends only the relevant part of R2

to the former; one can sometimes only send a Bloom filter of
the projected relation R1. Track join [20] uses tracking phases
to identify pairs of servers that must exchange data.

Figure 1b shows a possible evaluation plan for the ex-
ample query Q2. Variable Y occurs in the second atom of
Q2 in the subject position so, due to subject hashing, the
join counterparts of each triple 〈tX , r2, tY 〉matching the first
atom of Q2 are found in P(h(tY ) mod 2)+1. The data exchange
operator ⊗ thus sends each assignment σ from its input to
server (h(σ(Y )) mod 2) + 1, and receives assignments sent
from other servers and forwards them to the parent join
operator. The plan can be evaluated in parallel on all servers.
If the root join is blocking (e.g., if it is a hash join), the servers
must synchronise after exchanging data.

3.2 Data Exchange in Distributed RDF Systems
Many distributed RDF systems have been developed, with
significant variation in implementation techniques. We clas-
sify them broadly into the following five groups.

The first, prominent group comprises systems that store
data in a distributed file system such as HDFS and use a
big data framework to process queries: CliqueSquare [1],
EAGRE [2], HadoopRDF [3], H2RDF+ [10], and SHARD [4]
use MapReduce on Hadoop; S2RDF [5] uses Spark SQL; S2X
[6] uses the GraphX framework on Spark; PigSPARQL [7]
uses Apache Pig; and Sempala [8] uses Apache Impala.

Systems in the second group compute the join on a
single server after retrieving the assignments for the atoms
from the cluster. In addition, 4store [12] optimises subject–
subject joins; Trinity.RDF [13] prunes the retrieved assign-
ments using graph exploration that roughly corresponds to
semijoins; and YARS2 [14] uses index nested loop joins.

Systems in the third group distribute the data so that
answers to common queries are local. Other queries are split
into subqueries with only local answers, the subqueries are
evaluated in the cluster, and their answers are combined in
a ‘final join’ phase. This phase is realised in several ways: H-
RDF-3X [9] and SHAPE [11] use MapReduce joins; SemStore
[29] passes the answers between servers; and DREAM [30]
and WARP [31] use a single server. These systems replicate
data to increase the likelihood of queries having only local
answers. H-RDF-3X first splits the graph using the METIS
[22] algorithm and then applies n-hop duplication; thus, each
query containing a term that is at most n hops away from
any other term has only local answers, but already for n = 2
data size can increase by a factor of 4.8 [9]. SHAPE hashes
resources grouped based on their URI structure and uses
a form of n-hop duplication. SemStore partitions coarse-
grained rooted subgraphs. DREAM replicates all data to all
servers, so the main motivation is to increase parallelism.
WARP replicates data based on a query workload.

The fourth group contains PECA and PEDA [15]. In both,
servers partially evaluate a query (without any decompo-
sition) using a custom form of query evaluation that can
map variables to wildcards. Another custom join operator
combines such answers in a ‘final join’ phase, which is
centralised in PECA and distributed in PEDA. These custom
operators differ from relational algebra, thus departing from
the principles in Section 3.1. Our investigation of a closely
related idea [21] suggests that query evaluation with wild-
cards often produces very large numbers of partial answers.

Systems in the fifth group closely follow the principles
from Section 3.1 by computing and exchanging partial an-
swers in a distributed way. AdPart [16] uses left-deep hash
joins and semijoins. It hashes the data by subject, but also
redistributes the data based on an observed query load.
TriAD [18] uses bushy plans consisting of merge joins, hash
joins, and data exchange operators. It hashes the data by
subject and object, thus replicating the data twice, and it
can prune irrelevant bindings using a summary graph. Both
systems store data in RAM. Partout [17] partitions data
based on a query workload, uses distributed query plans,
and stores the data on disk using the RDF-3X [32] store.

Abdelaziz et al. [19] recently surveyed 22 of these sys-
tems and conducted a comprehensive performance evalu-
ation on 11 of them. They observed that big data frame-
works usually incur considerabe overheads (e.g., by running
MapReduce jobs), and that a ‘final join’ phase is a common
bottleneck on complex queries. AdPart and TriAD convinc-
ingly outperformed all other systems on most queries.
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3.3 Drawbacks of the Existing Techniques
Although the systems from Section 3.2 can process large
datasets, they still face two main scalability bottlenecks.

First, they consult the data partitioning strategy to de-
cide statically (i.e., at query compile time) when to exchange
data, which can be suboptimal. Consider evaluating

Q3(X,Y, Z,W ) = 〈X, r1, Y 〉 ∧ 〈X, r2, Z〉 ∧ 〈W, r3, Z〉

on the RDF graph G in Figure 1a. As in Q1, the join between
the first two atoms can be computed locally. Variable Z ,
however, occurs in Q3 only in the object position, so sub-
ject partitioning does not tell us where to find the triples
matching the third atom. This is addressed in the plan
from Figure 1c: both data exchange operators distribute
their inputs based on the value of Z , ensuring that nonlocal
answer σ2 = {X 7→ b, Y 7→ a, Z 7→ c,W 7→ g} is computed.
However, answer σ3 = {X 7→ b, Y 7→ a, Z 7→ c,W 7→ d} is
local to P1, but, since resource c is hashed to server 2, the
partial answers are unnecessarily sent to server 2 to compute
the join. Track join [20] aims to address such situations and
it will indeed detect that answer σ2 is local, but the tracking
phases may still incur unnecessary communication.

Second, intermediate relations produced during query
evaluation can be very large (i.e., worst-case exponential in
the size of G). Thus, adding data to a system by adding
servers can disproportionally increase the sizes of the inter-
mediate relations that the servers must store during query
evaluation (e.g., as hash tables in hash join operators). The
sizes of such relations will eventually exceed the servers’
capacity, which, as we show experimentally in Section 8, can
prevent answering queries returning many answers. Thus,
limiting the amount of memory used for query processing
is critical to ensuring scalability of distributed RDF systems.

3.4 Our Contribution
To address these drawbacks, our distributed join algorithm
evaluates a query Q (without any decomposition) on all
servers using index nested loop joins. That is, on server k,
the empty assignment is extended by recursively matching
the atoms of Q in Pk; we call each match of a subset of
the atoms of Q a partial answer. Such approaches have been
extensively used in centralised systems, and their main ad-
vantage is that their memory use is linear in the number of
query atoms and is independent from the size of G (or even
Pk); hence, this addresses the memory issues mentioned in
Section 3.3. For efficiency, the data must be indexed so that,
given an atom A, we can find each substitution ρ such that
Aρ ∈ Pk. When data is stored on disk, the high latency of
index lookups can make index nested loop joins inefficient.
However, they become feasible when data is stored in RAM:
Motik et al. [33] describe a scheme for exhaustive indexing
of RDF data in RAM based on hashing, so index nested loop
joins can be understood as RAM-based hash joins where
hash tables are built in advance. While AdPart and TriAD
construct hash tables over potentially very large intermedi-
ate relations, index sizes in our approach are determined by
the sizes of partition elements. Intermediate relations are not
materialised, which considerably reduces memory use. This
style of query evaluation incorporates sideways information
passing [34], [35] as a side-effect.

Our main contribution is in adapting index nested loop
joins to a distributed setting. By letting all servers evaluate
Q in parallel over their partition elements, we obtain all local
answers to Q without any communication or synchronisa-
tion. To also compute the remaining answers, when a server
k attempts to extend a partial answer σ to an atom A of Q,
in order to take into account that other servers may contain
matching triples, the server consults locally stored occurrence
mappings to identify all servers that contain all resources in
Aσ. Server k forwards σ to all such servers, which continue
matching the remaining atoms of Q. The occurrences are
thus used to ensure the algorithm’s completeness, as well as
to reduce communication by avoiding sending σ to servers
that definitely cannot extend σ to an answer to Q. Data
exchange is thus determined by the occurrences at runtime,
allowing servers to compute all local answers locally.

Consider again the query Q3 from Figure 1c. Evalu-
ating the first two atoms of Q3 in P1 produces a partial
answer σ = {X 7→ b, Y 7→ a, Z 7→ c}, so we must next eval-
uate 〈W, r3, Z〉σ = 〈W, r3, c〉. By consulting the occurrence
mappings, server 1 determines that resources c and r3 occur
in both P1 and P2 so it branches its execution: it continues
evaluating the query locally and thus computes σ3, but it
also sends the partial answer σ and atom index 3 to server 2.
Upon receiving this message, server 2 continues evaluating
the query starting from atom 3 and computes answer σ2.

We track the occurrences for each position separately,
which allows subject–subject joins to be answered without
any communication when triples are collocated by subject.
Messages are exchanged asynchronously, which benefits
parallelisation, but also requires a novel distributed termi-
nation condition. Finally, storing partial answer messages is
akin to storing intermediate answers in related approaches,
and a novel flow control strategy ensures that each query
can be answered with a limited amount of message storage.
Our technique belongs to the fifth group from Section 3.2,
but with a slightly different take on data exchange.

We also present two complementary techniques. First, in
Section 6 we reduce the problem of estimating the number
of messages sent between the servers to the problem of
estimating the cardinality of a conjunctive query, thus al-
lowing us to estimate the former using any query cardinality
estimator. We also present a model of query evaluation cost
and discuss query planning issues. Second, in Section 7
we refine the known RDF partitioning techniques based on
graph partitioning [9], [18], [21] to produce more balanced
partitions and thus promote scalability.

4 QUERY ANSWERING ALGORITHM

We now present our approach for computing ans(G,Q),
where an RDF graph G is distributed by a strict partition P
in a cluster C . In this section we present the core concepts,
and in Section 5 we present the full, optimised version.

4.1 Setting
Before presenting our algorithm, we discuss the operations
that servers in the cluster must support.

Each server k ∈ C stores the partition element Pk. For
A an atom, function EVALUATE(A,Pk) should return each
assignment ρ such that dom(ρ) = vars(A) and Aρ ∈ Pk.
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For each position π ∈ Π, server k must also store the oc-
currence mapping µπ : voc(G)→ 2C that provides the occur-
rences µπ(r) = {k′ ∈ C | r ∈ vocπ(Pk′)} for each resource
r ∈ voc(G). To present our main ideas clearly, in this section
we assume that each server stores µπ fully. However, the
size of µπ is determined by the number of resources in
G, which can significantly reduce scalability; hence, in Sec-
tion 5.1 we present an optimisation that allows each server
k to store occurrences only for the resources in Pk.

Servers must be able to exchange messages. To process a
query with n atoms, each server must provide n + 1 inde-
pendent message queues indexed from 1 to n + 1. Queues
can be of arbitrary size, as long as they can store at least one
message. Then, PUTINQUEUE(`, i,msg) attempts to insert
message msg into queue i on server `. The call returns
true if the infrastructure can guarantee that msg will be
delivered eventually; otherwise, the call returns false (e.g.,
if the destination queue is full). Finally, GETFROMQUEUE(i)
extracts and returns a message from a queue with index i or
higher, or it returns null if no such queue or message exists.

4.2 Computing Query Answers

Using Algorithm 1, a client submits a query Q to any sever
kc, which becomes the coordinator for Q. The coordinator
first identifies a left-deep join plan (line 2) using an approach
we discuss in Section 6, and it then distributes the plan to
all servers (line 3) synchronously. Once all servers become
ready, the coordinator kick-starts distributed query process-
ing by sending to each server the empty partial answer
(line 4), and then returns the control to the client. The client
receives ans(Q,G) from kc asynchronously (i.e., as answers
are produced) as pairs 〈σ,m〉, where σ is an assignment and
m is a positive integer called the multiplicity. Some σ can be
output more than once, but the corresponding multiplicities
will add up to the multiplicity of σ in the multiset ans(Q,G).
The basic algorithm in this section always produces m = 1,
but this changes with the optimisations in Section 5.

Each server k ∈ C (including the coordinator) accepts Q
for processing using the procedure START in Algorithm 2.
The procedure initialises several variables (lines 6–11), pre-
pares data structures used in the optimisations we discuss
in Section 5 (line 12), starts a number of message processing
threads (line 13), and then terminates. All further processing
at server k is driven by message processing treads, which
repeatedly call GETFROMQUEUE(1) and pass the result to
PROCESSMESSAGE. There are three types of message.

• PAR[i, σ,m,λ] says that σ is a partial answer up to
the i-th atom of Q, with integer multiplicity m and
partial occurrence mappings λ (cf. Section 5).

• FIN[i, S] is used to detect termination (cf. Section 4.3).
• ANS[σ,m] says that σ is an answer to the query Q

with multiplicity m.

Each message has an integer stage: the stage of PAR and FIN
messages is i, and the stage of ANS messages is n+ 1.

A partial answer message PAR[i, σ,m,λ] is passed to
the MATCHATOM procedure, but parameters m and λ are
only used by the optimisations described in Section 5. The
procedure computes recursively all extensions of the partial
answer σ to the n atoms Ai, . . . , An of Q using index nested

Algorithm 1 Initiating the Query at Coordinator kc
1: procedure ANSWERQUERY(Q,X)
2: Reorder the atoms of Q as A = A1 ∧ · · · ∧An

to obtain an efficient evaluation plan
3: for k ∈ C do Call START(kc,X,A) on server k synchronously
4: SEND(C,PAR[1, ∅, 1,∅])

Algorithm 2 Processing at Server k
5: procedure START(kc,X,A)
6: for 1 ≤ i ≤ n+ 1 do
7: for ` ∈ C do Si,` := 0

8: Di := 0
9: Ri := (i = 1 ? 1 : 0)

10: Ni := (i = 1 ? |C| : 0)
11: Fi := false

12: PREPAREOPTIMISATIONS(X,A)
13: Start message processing threads

14: procedure PROCESSMESSAGE(msg)
15: if msg = PAR[i, σ,m,λ] then
16: MATCHATOM(i, σ,m,λ)
17: Di := Di + 1
18: CHECKTERMINATION(i)
19: else if msg = ANS[σ,m] then
20: Output answer 〈σ,m〉 to the client
21: Dn+1 := Dn+1 + 1
22: CHECKTERMINATION(n+ 1)
23: else if msg = FIN[i, S] then
24: Ni := Ni + 1
25: Ri := Ri + S
26: CHECKTERMINATION(i)

27: procedure CHECKTERMINATION(i)
28: if Di = Ri ∧Ni = |C| ∧ SWAP(Fi, true) = false then
29: if i = n+ 1 then
30: Tell client that Q has been answered and exit
31: else if i = n then
32: SEND({kc},FIN[n+ 1, Sn+1,kc ])
33: if k 6= kc then exit
34: else
35: for ` ∈ C do SEND({`},FIN[i+ 1, Si+1,`])

36: procedure SEND(L,msg)
37: i := the stage index of msg
38: for ` ∈ L do
39: while PUTINTOQUEUE(`, i,msg) = false do
40: msg′ := GETFROMQUEUE(i+ 1)
41: if msg′ 6= null then PROCESSMESSAGE(msg)
42: if msg is a PAR or an ANS message then Si,` := Si,` + 1

loop joins. It evaluates Aiσ in Pk (line 44) and, for each
match ρ, it extends σ with ρ to an assignment σ′ covering
all atoms of Q up to Ai. The recursion base is given by i = n
(line 46): σ′ is then an answer to Q on G, so the projection
σ′|X of σ′ to the answer variables X is output to the client
if server k is the coordinator (line 48); otherwise, σ′|X is
sent to the coordinator (line 50). If i 6= n, atom Ai+1σ

′ must
be matched recursively, and this might be done on servers
other than k due to data distribution. Function OCCURS
identifies the set L of relevant servers (line 52): server `
is included in L only if, for each position π ∈ Π such that
t = termπ(Ai+1σ

′) is a resource, we have ` ∈ µπ(t)—that
is, resource t occurs in partition element P` in position π.
Computation is then branched to each server in L \ {k} via
a PAR[i+ 1, σ′, 1,∅] message (line 53); moreover, matching
also proceeds on server k via a recursive call if k ∈ L
(line 54). Note that, if triples are partitioned by subject, then
for each resource r, set µs(r) contains at most one server, so
subject–subject joins incur no communication.
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Algorithm 3 Simplified Atom Matching at Server k
43: procedure MATCHATOM(i, σ)
44: for ρ ∈ EVALUATE(Aiσ, Pk) do
45: σ′ := σ ∪ ρ
46: if i = n then
47: if k = kc then
48: Output answer 〈σ′|X , 1〉 to the client
49: else
50: SEND({kc},ANS[σ′|X , 1])
51: else
52: L := OCCURS(Ai+1σ

′)
53: SEND(L \ {k},PAR[i+ 1, σ′, 1,∅])
54: if k ∈ L then MATCHATOM(i+ 1, σ′)

55: function OCCURS(A)
56: L := C
57: for π ∈ Π and t = termπ(A) do
58: if t ∈ dom(µπ) then L := L ∩ µπ(t)

59: return L

4.3 Detecting Termination
Eliminating global coordination benefits parallelisation, but
complicates termination: even if a server is (temporarily)
idle, it could be reactivated by receiving a partial answer
message. Our query answering algorithm addresses this
issue by a novel asynchronous termination condition.

Server k has finished processing a stage i when (i) it
has processed all received partial answers for stage i, and
(ii) all servers have finished processing stages up to i− 1
and will thus not send to server k any more partial answers
for stage i. To detect these two conditions, when server
` finishes processing a stage i− 1, it sends to server k a
FIN[i, S] message, where S is the total number of partial
answers for stage i that server ` sent to server k. Server
k processes this message by incrementing counter Ni and
adding S to counter Ri (lines 24–25); thus, Ni counts the
servers that informed server k of finishing stage i− 1, and
Ri counts the messages that server k will receive for stage i.
Thus, when Ni = |C| holds at server k, all other servers
have processing stages up to i− 1. Moreover, whenever
server k is done processing a partial answer message for
stage i, it increments a counter Di (line 17 or 21). If Di = Ri
holds as well, then server k has finished stage i, and it
sends a FIN message to the coordinator if i = n (line 32)
or to each server ` otherwise (line 35); these FIN messages
include the number of sent partial answers, so these are
also counted (line 42). Operation SWAP(Fi, true) (line 28)
atomically stores true into Fi and returns the previous value
of Fi; thus, false is returned just once, so only one thread of
server k can send a termination message for a stage. Each
server sends a message to all other servers per stage, so
detecting termination requires Θ(n|C|2) messages.

4.4 Memory and Termination Guarantees
A nested index loop join in a centralised system requires
one iterator per query atom. A query with n atoms thus
needs O(n) memory, which is independent of the data size
and is particularly important in RAM-based RDF stores.
However, our distributed algorithm does not exhibit this
property: partial answers produced in line 53 must be stored
in queues of the receiving server, which is tantamount to
storing potentially large intermediate relations. If G is of
size m, a query with n atoms can produce mn answers in

the worst case, so the cumulative size of all messages sent to
a server can easily exceed the server’s capacity. Flow control
techniques such as the sliding window protocol can limit the
space required, but can lead to deadlocks where two servers
wait indefinitely for the other server’s queues to free up.

We address this problem by a sophisticated flow control
mechanism. As mentioned in Section 4.1, for a query with
n atoms, each server must provide n + 1 distinct message
queues, one per stage. Function SEND delivers each message
msg to the queue determined by the stage ofmsg, and it will
try doing so until the target queue becomes free (lines 39–
41); hence, this is the only place in our algorithm where
synchronisation between servers may be necessary. To avoid
deadlocks, after each unsuccessful delivery attempt, the
function will process a message for stages i + 1 to n, if any
exist. The recursion depth of each thread is thus O(n), and
each level requires O(n) memory, so we need at most O(n2)
memory per thread: more memory can benefit parallelism,
but is not strictly needed to process the query.

We next argue that this solution avoids deadlocks re-
gardless of the message queue sizes. First, processing a
message for stage i can produce messages only for stages
j > i. Second, at any given point in time, the cluster con-
tains at least one highest-indexed nonempty queue across
the cluster, and messages from this queue can always be
processed. Thus, although individual servers in the cluster
can become blocked at different points in time, at least one
server in the cluster makes progress at any given point in
time, which eventually ensures termination.

5 OPTIMISATIONS

We now extend the basic dynamic data exchange approach
presented in Section 4 with several optimisations that avoid
unnecessary computation, and reduce storage requirements
and network communication. Algorithm 4 shows the opti-
mised version of the MATCHATOM procedure, as well as the
PREPAREOPTIMISATIONS procedure that precomputes data
structures used during optimised atom matching. Thus, our
optimised approach consists of Algorithms 1, 2, and 4.

5.1 Partial Occurrences
In Section 4.1 we assumed that server k stores occurrence
mappings covering all resources of G. In such a case, the
size of G, rather than the size of Pk, determines the memory
requirements of server k, which can reduce scalability.

To address this, we let server k store only the mapping
µk,π = µπ|voc(Pk) for each position π ∈ Π. As µk,π covers
only the resources contained in voc(Pk), its size is deter-
mined by the size of Pk. Note that we require µk,π(r) to be
defined for a resource r ∈ voc(Pk) even if r 6∈ vocπ(Pk).

Storing µk,π instead of µπ at server k introduces a
problem, which we illustrate using the following query Q4

and partition elements P1 and P2.

Q4(x) = 〈X, r1, Y 〉 ∧ 〈Y, r2, Z〉 ∧ 〈X, r2,W 〉
P1 = {〈a, r1, b〉, 〈a, r2, d〉} P2 = {〈b, r2, c〉}

Matching the first two atoms in P1 and P2 produces a partial
answer σ′′ = {X 7→ a, Y 7→ b, Z 7→ c}, which, applied to
the third atom, produces 〈a, r2,W 〉. Hence, the occurrences
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Algorithm 4 Optimised Atom Matching at Server k
60: procedure PREPAREOPTIMISATIONS(X,A)
61: for X ∈ vars(A) do
62: IX := min{j | X ∈ vars(Aj)}
63: UX := {π ∈ Π | ∃i > IX such that X = termπ(Ai)}
64: for 1 ≤ i ≤ n do
65: Bi := max[{0} ∪ {IX | X ∈ vars(Ai) and IX < i}]
66: V i := X ∪ vars(Ai+1) ∪ · · · ∪ vars(An)

67: function MATCHATOM(i, σ,m,λ)
68: E := EVALUATE(Aiσ, Pk,V i)
69: if E = ∅∧Bi 6= i−1∧OCCURS(Aiσ,λ) ⊆ {k} then return Bi
70: for 〈ρ, c〉 ∈ E such that CANPRUNE(ρ) = false do
71: σ′ := (σ ∪ ρ)|V i

72: m′ := m · c
73: if i = n then
74: if k = kc then
75: Output answer 〈σ′,m′〉 to the client
76: else
77: SEND({kc},ANS[σ′,m′])
78: else
79: L := OCCURS(Ai+1σ

′,λ)
80: for π ∈ Π do
81: λ′π := (λπ ∪ µk,π)|T where

T := {termπ(Ajσ
′) | i+ 1 < j ≤ n}

82: SEND(L \ {k},PAR[i+ 1, σ′,m′,λ′])
83: if k ∈ L then
84: j := MATCHATOM(i+ 1, σ′,m′,λ)
85: if j < i then return j
86: return i− 1

87: function CANPRUNE(ρ)
88: for x ∈ dom(ρ) and π ∈ UX do
89: if µk,π(ρ(x)) = ∅ then return true

90: return false

91: function OCCURS(A,λ)
92: L := C
93: for π ∈ Π and t = termπ(A) do
94: if t ∈ dom(λπ) then L := L ∩ λπ(t)
95: else if t ∈ dom(µk,π) then L := L ∩ µk,π(t)

96: return L

of a and r2 determine how to proceed, but resource a does
not occur in P2 so µ2,s(a) is undefined. The only solution is
to send σ to all servers containing r2, which is inefficient.

To address this, each message PAR[i, σ,m,λ] includes
a vector λ = λs, λp, λo of partial occurrence mappings, where
each λπ records the occurrences of the resources appearing
in Ai+1σ, . . . , Anσ at position π. Upon receiving this mes-
sage, when server k extends σ to σ′ by matching Aiσ in
Pk, the occurrences of the resources in Ai+1σ

′ determine
where to send σ′, and the occurrences of resources in
Ai+2σ

′, . . . , Anσ
′ determine where to send any subsequent

messages. These observations are used as follows.
First, OCCURS(Ai+1σ

′,λ) in line 79 determines the set
L of servers that must receive the partial answer σ′ by
combining the occurrences λ sent to server k with the
occurrences µk,π stored locally. Note that if Ai+1σ

′ contains
a resource r at position π on which neither λπ(r) nor µk,π(r)
is defined, set L can contain a server ` such that ` 6∈ µπ(r),
but this can only cause superfluous PAR messages.

Second, for each position π ∈ Π, the received partial
occurrences λπ are combined with the locally stored occur-
rences µk,π and the result is projected to the set of terms T ,
which is constructed to contain all terms occurring in atoms
Ai+2σ

′, . . . , Anσ
′ at position π (line 81). The resulting par-

tial occurrences λ′s, λ
′
p, λ
′
o are sent to the servers matching

atom i + 1 (line 82). The recursive call in line 84 uses λ
instead of λ′ since this is necessary for the correct operation
of backjumping in line 69, as described in Section 5.3.

Consider again our example query Q4. Server 1 matches
the first atom of Q4 in P1 producing the partial answer
σ′ = {X 7→ a, Y 7→ b}. The server uses the occurrences of
〈Y, r2, Z〉σ′ = 〈b, r2, Z〉 to identify L = {2} as the set of
servers that should receive σ′. Thus, server 1 sends σ′ to
server 2 together with partial occurrences λ′s = { a 7→ {1} },
λ′p = { r2 7→ {1, 2} }, and λ′o = ∅. Note that λ′s is not defined
on b: the rest of the query 〈X, r2,W 〉σ′ = 〈a, r2,W 〉 does
not contain b so its occurrences are not relevant for future
messages. Server 2 receives σ′ and λ′, extends σ′ to σ′′ as
outlined earlier, and uses λ′s(a) = {1} to determine that the
third atom of Q4 can be matched only on server 1.

5.2 Projecting Variables Eagerly
Projecting variables eagerly can reduce local processing and
network communication, as the following example shows.

Q5(X) = 〈X, r2, Y 〉 ∧ 〈X, r3, Z〉
P1 = {〈a, r2, bi〉 | 1 ≤ i ≤ u} P2 = {〈a, r3, cj〉 | 1 ≤ j ≤ v}
SPARQL uses bag semantics, so query Q5 has just one an-
swer σ = {X 7→ a} with multiplicity u · v, and our unopti-
mised algorithm uses u · v steps and u messages to compute
it. We can, however, evaluate 〈X, r2, Y 〉 in P1 and project
Y , and thus obtain just one partial answer σ1 = {X 7→ a}
with multiplicity u. We send σ1 and u to P2, and then we
evaluate 〈a, r3, Z〉 and project Z , and thus obtain just one
match ρ = ∅with multiplicity v. Finally, we combine σ1 and
u with ρ and v into the answer σ = σ1 ∪ ρ with multiplicity
u · v. We thus need only u+ v steps and just one message.

Grouping assignments after variable projection can be
costly, so we only project variables when matching single
atoms. In particular, we match an atom A in a partition
element Pk using function EVALUATE(A,Pk,V ), where set
V contains the relevant variables of A. The function re-
turns a set of pairs 〈ρ, c〉 where ρ is an assignment with
dom(ρ) = V ∩ vars(A) and c is the (positive) number of
distinct extensions ρ′ of ρ such that Aρ′ ∈ Pk. In our ex-
ample, EVALUATE(〈X, r1, y〉, P1, {X}) returns just one pair
〈{X 7→ a}, u〉. This operation can be easily implemented in
RDF stores with hierarchical indexes [32], [33], [36].

For each atom Ai, set V i is computed (line 66) to contain
the variables relevant to the rest of the query, and it is used
to project unnecessary variables from the matches of Aiσ
(line 68) and the partial answer σ′ (line 71). Also, each partial
answer message PAR[i, σ,m,λ] includes the multiplicity m
of σ, which is combined (line 72) with the multiplicity c of a
match ρ of Aiσ to obtain the multiplicity m′ of σ′.

5.3 Backjumping
Index nested loop joins can sometimes perform unnecessary
work, as the following example shows.

Q6(X,Y1, Y2, Y3) = 〈X, r1, Y1〉 ∧ 〈X, r2, Y2〉 ∧ 〈X, r3, Y3〉
P1 = {〈a, r1, b〉, 〈a, r2, c1〉, . . . , 〈a, r2, ck〉,

〈d, r1, b〉, 〈d, r2, c1〉, . . . , 〈d, r2, ck〉} P2 = {〈d, r3, e〉}

Let σi = {X 7→ a, Y1 7→ b, Y2 7→ ci}. Matching the first two
atoms of Q6 produces partial answer σ1. Since 〈X, r3, Y3〉σ1
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cannot be matched, the unoptimised algorithm tries σ2.
However, σ2 differs from σ1 only on Y2, which does not
occur in 〈X, r3, Y3〉, so 〈X, r3, Y3〉σ2 still cannot be matched.
Thus, the unoptimised algorithm explores all σi in vain.

This can be avoided by observing that, when matching
〈X, r3, Y3〉σ1 fails, we must change the value of X to have
a chance of a match; thus, we can backjump to the first atom
and continue evaluation there. To generalise this idea, our
algorithm computes, for each variable X , the index IX of
the atom in the left-to-right plan that produces a binding for
X (line 62). Moreover, for each atomAi, it also computes the
index Bi of the closest preceding atom that binds a variable
in Ai (line 65). Then, if Aiσ cannot be matched (line 69),
function MATCHATOM returns the index of the atom where
query evaluation should continue (line 69), which is used to
unwind the recursive calls to the desired stage (line 85).

Our example also illustrates a subtlety that arises in
a distributed setting. Let νi = {X 7→ d, Y1 7→ b, Y2 7→ ci}.
Server 1 computes ν1 and sends it to server 2, which com-
putes ν1 ∪ {Y3 7→ e}. Now ν1 cannot be extended on server
1, but backjumping to the first atom misses νj for j > 1, each
leading to an answer νj ∪ {Y3 7→ e}. Intuitively, backjump-
ing is possible only if an atom cannot be matched in the en-
tire graph, and not just on the current server. Backjumping
is thus initiated only if OCCURS(Aiσ,λ) determines that no
server other than the current one can match Aiσ (line 69);
this is why the recursive call to MATCHATOM in line 84
uses λ instead of λ′. This check can be expensive, so it
is performed only if backjumping can have an effect (i.e.,
if Bi 6= i− 1). With this change, our algorithm backjumps
after considering σ1 (resource a occurs only on server 1),
but not after ν1 (resource d also occurs on server 2).

5.4 Early Pruning
Occurrences can be used to further reduce the work during
matching, as the following example shows.

Q7(x) = 〈X, r1, Y 〉 ∧ 〈Y, r2, Z〉 ∧ 〈Z, r3, X〉

Assume now that server k matches 〈X, r1, Y 〉 via assign-
ment ρ. Since X occurs in 〈Z, r3, X〉 in object position, ρ(X)
must occur in G in object position for ρ to be extended to
an answer. Also, 〈X, r1, Y 〉ρ ∈ Pk ensures ρ(X) ∈ voc(Pk),
so µk,o(ρ(X)) is defined; hence, server k can check whether
ρ(X) occurs on some partition element in object position.

Our algorithm thus computes, for each variable X , the
set of positions UX at which X occurs in the query (line 63).
Then, a match ρ of Aiσ is skipped (line 70) if a variable X
matched by ρ and a position π ∈ UX exist such that ρ(X)
does not occur in G in position π (lines 88–90).

5.5 Correctness
Theorem 1 captures the properties of our approach, and it is
proved in the appendix available from the IEEE Web site.
Theorem 1. If Algorithms 1, 2, and 4 are applied to a strict

partition P of an RDF graph G distributed over a cluster C
of servers where each server has n+ 1 finite message queues,

1) servers terminate after sending Θ(n|C|2) FIN messages,
2) the coordinator for Q correctly outputs ans(Q,G), and
3) at most O(n2) memory is needed per server thread.

6 QUERY PLANNING

RDF stores typically use a query planner to identify a query
plan that reduces the time/space required for query eval-
uation. A typical planner comprises (i) a query cardinality
estimator, which uses statistics about the data to estimate
the number of answers to the query or its subparts, (ii) a
cost model, which combines these estimates into a numeric
measure of the time/space needed, and (iii) a query planning
algorithm, which identifies (or approximates) a plan with the
least cost. We can apply these principles in our setting, but
distributed processing raises several important issues.

First, the cost of processing at a server is determined by
the number of messages that the server produces as well
as the number of partial answers that it considers. Thus, in
Section 6.1 we present a novel technique that can estimate
these numbers by reusing any query cardinality estimator.

Second, when combining the costs of processing and
communication of all servers, we must take into account
that servers (and sometimes even communication) operate
in parallel. Thus, in Section 6.2 we discuss how to define the
plan cost so that it approximates the system’s performance.

For the rest of this section, we fix a query Q(X) to be
evaluated over a strict partition P of an RDF graph G. Since
we use left-deep index nested loop joins, a plan for Q is a
reorderingA = A1, . . . , An of the atoms of Q. Also, we con-
sider the MATCHATOM variant from Algorithm 3: capturing
the optimisations from Section 5 seems very challenging, but
doing so would not significantly affect plan quality.

6.1 Counting Partial Answers and Sent Messages

Consider calling MATCHATOM for stage i of plan A on
server k. We present a query PA,i,k that, on an RDF graphG′

obtained by extending G with information about resource
occurrences, returns precisely the partial answers σ′ consid-
ered in line 45; hence, the number of such σ′ determines the
number of passes through the loop in lines 44–54. We also
present a query SA,i,k,` whose number of answers is equal
to the number of messages sent from server k to server ` in
line 50 or 53. As we discuss in Section 6.2, these numbers
are the basic building blocks of our cost model. Moreover,
since PA,i,k and SA,i,k,` are just CQs, we can estimate the
numbers of their answers using an arbitrary cardinality
estimator (which is likely to require statistics about G′).

We first defineG′. Let occs, occp, occo, and srvk for k ∈ C
be fresh resources not occurring in G. Then, G′ is obtained
by extending G with triples 〈r, occπ, srvk〉 for each position
π ∈ Π, resource r ∈ vocπ(G), and server k ∈ µπ(r). These
triples encode resource occurrences, but we need triple
occurrences as well. For simplicity, we first assume that all
triples containing a resource r in their subject are assigned
to the same partition element Pk; thus, µs(r) = {k}—that
is, r occurs in the subject position only on server k. Such
triple assignment is practically beneficial as it is allows an-
swering subject–subject joins without any communication.
We discuss later ways around this restriction.

Now let PA,i,k be the following query, where Xi are all
variables occurring in A1 ∧ · · · ∧Ai.

PA,i,k(Xi) = A1 ∧ · · · ∧Ai ∧ 〈terms(Ai), occs, srvk〉 (1)
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Evaluating A1 ∧ · · · ∧Ai on G clearly produces each assign-
ment σ′ considered in stage i in line 45 of Algorithm 3 on
any server. Moreover, by our assumption on data partition-
ing, the last atom of PA,i,k is true whenever atom Ai is
matched in Pk. Thus, σ′ is an answer to PA,i,k on G′ if and
only if σ′ is considered in stage i on server k.

Also, for i < n, let SA,i,k,` be as follows, where set B
contains each bound position π of Ai+i—that is, π ∈ B iff
termπ(Ai+1) is a resource or a variable occurring in Xi.

SA,i,k,`(Xi) = PA,i,k ∧
∧
π∈B
〈termπ(Ai+1), occπ, srv`〉 (2)

For each σ′, server k sends a PAR message for stage i+ 1 to
server ` if all resources of Ai+1σ

′ occur on server `. Since B
contains each position at which Ai+1σ

′ contains a resource,
σ′ is an answer to SA,i,k,` on G′ iff server k sends a PAR
message for stage i+ 1 containing σ′ to server `. For i = n,
the ANS messages that server k sends to the coordinator (if
k is not the coordinator) are determined by just PA,n,k.

We now discuss how to handle cases when triples are
not assigned to partition elements by subject. Query SA,i,k,`
then remains unchanged since it uses resource occurrences
only, but PA,i,k needs to be adapted. Intuitively, G′ must
then also capture locations of triples, which can be done
in (at least) one of two ways. First, we can use reifica-
tion: for each triple 〈ts, tp, to〉 ∈ P`, we introduce a fresh
resource t and transform the triple as 〈t, rdf :subject , ts〉,
〈t, rdf :predicate, tp〉, and 〈t, rdf :object , to〉, and we further
record the location of the triple by 〈t, occ, srv`〉. We also
transform the atoms of (1) accordingly, and we require atom
Ai to be matched on server k. Second, we can use quads—
an extension of RDF where basic data units are quadruples
of resources. Thus, we transform each 〈ts, tp, to〉 ∈ P` into
〈ts, tp, to, srv`〉, and we adapt the atoms of (1) accordingly.

6.2 The Cost Model
We next use the cardinalities of PA,i,k and SA,i,k,` to deter-
mine the cost of a query evaluation plan A.

6.2.1 The Cost at Each Server
We first consider the processing at each server in the cluster.
Capturing a server’s behaviour on A precisely is challeng-
ing, so we make several simplifying assumptions. First, we
assume that all servers in C have the same numbers of
threads, each taking an equal share of the server’s workload.
This will hold if local processing can be parallelised, but
a discussion of the issues involved is out of scope here.
Second, we assume that a server never waits for messages—
that is, a message is available whenever a server’s thread is
idle. This can be expected to hold whenever the number
of sent messages is not very small. Third, we assume that
the queues of all servers are large enough so that line 39
of Algorithm 2 always succeeds. As long as the queues are
reasonably large, this assumption should not significantly
affect query planning: flow control will be needed only
on plans producing many partial answers, but the cost of
such plans is likely to be high anyway. Fourth, we assume
that retrieving each assignment ρ in line 44 of Algorithm 3
requires a fixed amount of time. This can be expected to hold
in most implementations that match atoms using indexes.

With these assumptions in mind, the cost of local pro-
cessing at server k is proportional to the number of passes
through the loop in lines 44–54, which is given by

localk(A) =
n∑
i=1

[PA,i,k]G′ . (3)

To estimate the amount of data sent by server k, let
Mi be the average size of a PAR/ANS message for stage
1 ≤ i ≤ n+ 1. This should be easy given that the message
size depends on the number of variables being sent, which
is determined by i; in fact, we can derive Mi based on |V i|,
where V i is defined in line 66 of Algorithm 4. Then, if server
k is the coordinator, it will send a total of

sendk(A) =
n−1∑
i=1

Mi+1 ·
∑

`∈C\{k}

[SA,i,k,`]G′ (4)

bytes to other servers. If k is not the coordinator, we further
extend (4) by Mn+1 · [PA,i,k]G′ to also account for the ANS
messages that server k sends to the coordinator.

6.2.2 Combining the Cost of all Servers
The cost of a plan A must reflect the fact that servers are
largely independent and work in parallel. Ganguly et al.
[37] present a general query planning framework for such a
setting. They represent the cost of a plan A as a vector OA,
and they order such costs partially; as a consequence, the cost
of two plans can be incomparable. Moreover, they show that
such a framework is incompatible with standard dynamic
programming query planning algorithms, and they extend
such algorithms to handle partially ordered cost models.
To apply this well-known technique, we must define OA,
which requires addressing the following two issues.

First, localk(A) and sendk(A) are incomparable: the
former is the number of passes through a loop, and the
latter is the number of bytes. We therefore scale sendk(A)
by a factor f so that both numbers reflect processing time.
To select f , we can measure the average time for processing
one loop iteration and compare it with the cost of network
communication. For example, if each pass through the loop
takes about 10 µs, all servers use just one thread, the cluster
uses gigabit Ethernet, and we disregard network congestion,
then we can take f = 0.08 as the ratio of the times required
to send one byte and to process one loop iteration.

Second, we must combine localk(A) and sendk(A) as
appropriate for the implementation at hand. We see two
possibilities for this. First, if a call to PUTINTOQUEUE is
likely to block the sending thread (e.g., if sent messages
are written directly onto a TCP connection), then the two
costs should be added; hence, we define OA as containing
localk(A) + f · sendk(A) for each server k ∈ C . Second, if
PUTINTOQUEUE just copies messages into a large queue
that is processed in the background, then message sending
is just another parallel task and we defineOA as containing
both localk(A) and f · sendk(A) for each k ∈ C .

7 OPTIMISED PARTITIONING OF RDF DATA

Ensuring that most query answers are local can be critical
to the efficiency of our algorithm, so we complement our
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approach by a new data partitioning strategy. Several exist-
ing approaches [2], [9], [18], [21] achieve this by using graph
partitioning: they divide the resources of an RDF graph into
sets of roughly the same size while minimising the number
of triples with resources from more than one set; then, they
assign triples to partitions based on their subject/object.
We also use graph partitioning, but we overcome several
drawbacks. First, all approaches mentioned in Section 3.2
replicate data to more than one server, which can be costly;
for example, 2-hop replication can increase the data size by
a factor of 4.8 [9]. In contrast, our approach produces strict
partitions, which benefits scalability. Second, a balanced
partition of resources does not guarantee that the sizes of
partition elements will be balanced as well: if triples are
assigned to partition elements based on their subject, then
high-degree subjects will bring more triples into a partition
element than the low-degree ones. We use weighted graph
partitioning to produce partitions balanced in the number of
triples. While we do not expect this to have a major impact
on the performance of query answering, in Section 8.4
we show experimentally that it produces more balanced
partitions, which benefits scalability by ensuring that the
servers use roughly the same amount of memory.

Let G be an RDF graph that we wish to partition into |C|
partition elements. We proceed in three steps.

First, we transformG into an undirected weighted graph
(V,E,w). We define V = vocs(G)—that is, vertices are the
resources occurring in G in the subject position. We add to
E an undirected edge {ts, to} for each triple 〈ts, tp, to〉 ∈ G
where tp 6= rdf :type , to ∈ V , and to is not a literal. We set
the weight w(r) of each resource r ∈ V to the number
of triples in G that contain r in the subject position. We
prune classes (i.e., objects of the rdf :type property) and
literals because these resources often have a large number of
incoming connections, which can confuse graph partitioning
algorithms. As we discuss shortly, this does not affect the
number of local answers on common queries.

Second, we use weighted graph partitioning on (V,E,w):
we compute a function τ : V → C such that (i) the number
of edges spanning partitions is minimised, while (ii) the sum
of the weights of the vertices assigned to each partition is
approximately the same for all partitions [22].

Third, we compute each partition element by assigning
triples based on subject—that is, we assign each triple
〈ts, tp, to〉 ∈ G to partition element Pτ(ts). Note that triples
are thus not duplicated between partition elements.

This strategy is tailored to common query loads: a study
of more than 3 million real-world SPARQL queries revealed
that approximately 60% of joins are subject–subject joins,
35% are subject–object joins, and less than 5% are object–
object joins [38]. Pruning classes and literals before graph
partitioning makes it more likely that these will end up
in different partitions, but this can affect the performance
only of object–object joins, which are the least common in
practice. In other words, pruning does not affect 95% of the
joins in practice, but it increases the chance of obtaining a
good partition, and it also makes (V,E,w) smaller. More-
over, by placing all triples with the same subject on a single
server, we can answer the most common subject–subject
joins without any communication. Finally, the weight w(r)
of each vertex r in (V,E,w) determines exactly the number

of triples that are added to Pτ(r) due to assigning r to
partition τ(r); since weighted graph partitioning balances
the sum of the weights of vertices in each partition, the
partition elements are balanced in the numbers of triples.

8 EVALUATION

We implemented our algorithms in the RDFox system.1 The
system’s core was written in C++ and it uses the METIS
[22] graph partitioner. The query planner was written in
Java as it reuses the recent SumRDF [39] query cardinality
estimator. To investigate the effects of data partitioning, we
evaluated the RDFoxGP and RDFoxHP versions of RDFox,
which respectively use graph partitioning from Section 7
and hash partitioning by subject. Our goals were to (i) com-
pare the performance of RDFox query answering with state
of the art systems, (ii) investigate how our approach scales
with increasing data load, and (iii) compare the uniformity
of partitions produced by different partitioning strategies.

8.1 Test Datasets
We based our evaluation on two well-known benchmarks.
WatDiv v0.6 [23] aims to simulate realistic data and query
loads. We used the original 20 query templates classified
into four categories: linear (L), star (S), snowflake (F), and
complex (C); each template contains at most one parameter
that is replaced with a resource from the RDF graph. In
addition to these queries, we also used the 18 incremental
linear (IL) queries developed by Schätzle et al. [5].

LUBM [24] is a widely used benchmark in the Semantic
Web community. It comes with 14 predefined queries, but
most of them do not return any results if reasoning is not
used. Thus, we instead used seven queries (T1–T7) by Zeng
et al. [13] that compensate for the lack of reasoning, and we
manually generated three new complex, cyclic queries.

Table 1 shows the sizes of our test graphs. All queries we
used are available in the literature, apart from the three new
LUBM queries, which are shown in Table 3.

8.2 Query Answering Experiments

Comparison Systems. In a recent, extensive comparison of
11 distributed RDF stores [19], AdPart [16] and TriAD [18]
consistently outperformed all other systems. Independently,
Gurajada et at. [18] argued that TriAD outperforms two
centralised (i.e., RDF-3X [32] and BitMat [40]) and four
distributed stores (i.e., SHARD [4], H-RDF-3X [9], 4store
[12], and Trinity.RDF [13]), the MonetDB [41] column store,
and ‘raw’ Apache Hadoop and Spark. We thus used AdPart
and TriAD as our main points of comparison. We configured
TriAD to use the summary graph. The adaptive partitioning
of AdPart affects query evaluation only on workloads con-
taining thousands of queries [16], so we did not use it: this
issue is orthogonal to core query evaluation and it could be
easily adapted to TriAD and RDFox as well.

To compare our approach against systems that use dif-
ferent implementation styles, we also considered S2RDF [5]
(which was shown to outperform H2RDF+ [10], Sempala
[8], PigSPARQL [7], and SHARD [4]) and PEDA [15] (which

1. http://www.cs.ox.ac.uk/isg/tools/RDFox/
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TABLE 1: Numbers of Resources and Triples in Our Test Datasets, and Idle Memory Use Per Server (GB)

Dataset Resources Triples RDFoxGP RDFoxHP AdPart TriAD
Mean Max Sdev Mean Max Sdev Mean Max Sdev Mean Max Sdev

WatDiv-10K 97.74 M 1.09 G 4.39 5.42 0.54 4.71 4.72 0.01 13.90 13.91 0.00 9.57 10.99 0.73
LUBM-10K 328.62 M 1.33 G 5.49 5.61 0.15 5.86 5.89 0.06 26.08 26.10 0.01 12.04 19.26 3.98

TABLE 2: The Performance of Query Answering

Query Evaluation Time (ms) Total Network Communication (kB) Total RAM Use (MB)

Query Answers RDFoxGP RDFoxHP AdPart TriAD S2RDF PEDA RDFoxGP RDFoxHP AdPart TriAD RDFoxGP RDFoxHP AdPart TriAD

W
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0K

Ba
si

c
Q

ue
ri

es

L1 2 2 2 5 11 471 15,356 31 30 62 227 1 2 1 1
L2 16,132 45 38 15 15 498 1,622 262 257 203 1,106 1 1 1 1
L3 24 2 2 2 6 549 16,889 17 17 11 76 1 1 1 1
L4 5,782 16 4 3 5 209 261 93 98 58 299 1 1 1 1
L5 12,957 23 28 18 17 270 49,539 304 300 218 940 1 1 1 1
S1 12 3 5 23 41 2,208 43,803 77 81 366 142 1 1 1 1
S2 6,685 11 12 5 33 607 74,479 184 180 96 517 1 1 1 1
S3 0 26 9 4 8 311 8,087 37 37 11 91 1 1 1 1
S4 153 21 23 17 22 329 16,520 3,061 3,010 420 108 1 2 1 1
S5 0 12 8 5 — 260 1,861 37 38 11 — 1 2 1 —
S6 453 8 4 2 8 235 50,865 37 38 17 151 1 1 1 1
S7 0 2 2 1 3 420 56,784 28 29 4 58 1 1 1 1
F1 324 42 15 11 15 590 64,748 855 1,693 127 265 1 2 1 1
F2 188 8 5 15 263 1,226 207,725 109 102 130 11,461 1 2 1 25
F3 865 12 6 14 208 1,969 4,831,257 197 269 280 337 1 1 1 29
F4 2,879 25 11 31 — 1,265 260,410 437 399 466 — 1 1 1 —
F5 65 3 4 16 348 2,254 26,208 59 62 238 29,900 1 1 1 76
C1 1,504 154 201 56 248 2,508 212,129 6,103 17,209 2,721 3,170 16 5 1 27
C2 288 175 198 69 343 2,740 1,787,692 8,564 12,772 2,290 45,520 2 14 33 97
C3 42.44 M 270 295 9,078 419 16,407 123,349 1,186 1,175 1,197,297 423 2 72 1,685 8
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IL-1-5 7,469 3 4 13 8,322 12,543 n/a 285 284 399 2,276,527 800 881 3 18,492
IL-1-6 0 3 4 4 19,957 12,252 n/a 54 55 52 6,595,267 269 217 1 37,599
IL-1-7 16,132 32 35 37 32,496 15,062 n/a 1,624 2,302 1,137 9,370,381 138 1,186 1 49,780
IL-1-8 0 3 5 6 17,985 15,003 n/a 69 71 51 5,756,890 33 36 1 28,713
IL-1-9 1,591 24 5 93 8,505 15,478 n/a 1,972 2,106 1,453 3,061,088 21 28 3 18,605
IL-1-10 758 12 19 51 8,294 16,124 n/a 1,032 979 887 3,097,132 23 22 3 18,604
IL-2-5 15,444 4 5 15 8,241 41,188 n/a 505 518 618 2,970,367 4 9 1 18,430
IL-2-6 0 3 3 9 14,471 13,276 n/a 56 55 140 5,149,633 1 5 1 27,260
IL-2-7 1,386 9 12 43 3,600 14,182 n/a 1,428 796 784 358,506 2 1 1 7,430
IL-2-8 267 6 7 31 18,128 15,261 n/a 519 282 491 5,302,047 5 1 1 28,660
IL-2-9 171 6 7 30 18,021 16,313 n/a 336 257 509 5,457,976 1 3 1 28,896
IL-2-10 32 8 10 41 17,718 13,922 n/a 768 565 649 5,131,115 3 1 1 28,812
IL-3-5 3.34 G 773,619 782,884 — — 29,590 n/a 105,472,000 112,019,456 — — 2,794 2,844 — —
IL-3-6 3.75 G 1,770,593 2,042,988 — — 87,525 n/a 263,450,624 284,635,136 — — 6,583 5,507 — —
IL-3-7 584.92 M 1,239,115 1,307,131 — — 102,971 n/a 72,719,360 99,340,288 — — 5,264 2,988 — —
IL-3-8 19.56 G 6,996,328 7,379,970 — — 2,068,100 n/a 307,225,600 1,007,030,272 — — 6,805 7,314 — —
IL-3-9 954.41 M 2,254,083 2,452,539 — — 158,595 n/a 153,052,160 185,125,888 — — 9,276 1,803 — —
IL-3-10 954.41 M 2,090,013 2,154,819 — — 141,940 n/a 175,571,968 208,282,624 — — 4,881 2,853 — —

LU
BM

-1
0K

T1 2,528 727 1,017 26,886 13,410 n/a 309,361 4,033 716,588 1,770,962 197,762 37 148 7,238 1,144
T2 10.80 M 699 975 711 927 n/a 23,685 150,073 151,466 86,683 104,657 144 153 1 154
T3 0 419 1,149 879 771 n/a 10,368 1,897 1,915 15 466 1 12 1 708
T4 10 4 4 2 7 n/a 753 51 44 11 115 1 8 1 1
T5 10 2 2 2 2 n/a 125 18 17 11 63 1 1 1 1
T6 125 3 3 1 85 n/a 1,914 38 41 4 153 1 1 1 1
T7 439,994 1,010 14,574 7,709 7,294 n/a 46,123 10,857 1,454,774 166,989 29,592 8 90 815 844
N1 2,528 1,723 9,263 — 1,755 n/a n/a 5,487 1,742,285 — 8,154 21 48 — 232
N2 4.11 M 4,487 32,226 — 23,711 n/a n/a 138,803 4,973,168 — 184,661 72 280 — 3,501
N3 2.22 M 920 6,297 — 33,661 n/a n/a 65,539 1,204,533 — 111,571 24 4 — 6,645

was shown comparable to EAGRE [2], H-RDF-X [9], SHAPE
[11], FedX [42], and SPLENDID [43]). We considered PEDA
rather than PECA since the former was shown to be more
efficient. S2RDF and PEDA were evaluated in the literature
in similar settings (S2RDF used 1.9 GHz processors, and
PEDA used 16 GB of RAM per server). Based on the
published results, AdPart and TriAD clearly outperform
S2RDF/PEDA by orders of magnitude on all but the IL-3-n
queries, which was confirmed in the recent comparison [19].
Thus, for S2RDF and PEDA we only recapitulate the query
evaluation times published in the literature.

Test Setting. All of our tested systems (AdPart, TriAD, and
RDFox) were configured to deliver query answers to the

coordinator, but not to store or print them. We evaluated
each query five times, and in each run we recorded the
query evaluation times as reported by each system, the
network communication as reported by running iptraf on
each server, and the total maximum memory use across all
servers. RDFox times do not cover query planning as the
planner was implemented separately, but this should not
affect our analysis as query planning in other systems is
very efficient. RDFox servers used five processing and one
communication thread, and TriAD determined the number
of threads internally. Graph partitioning for RDFox and
TriAD was conducted on one server with 256 GB of RAM
and two 2.6 GHz Intel Xeon E5-2640v3 CPUs. All queries
were run on a cluster of ten m4.2xlarge Amazon EC2
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TABLE 3: Three New Queries for LUBM

N1 SELECT ?P1 ?D1 ?S1 ?U1 WHERE { ?D1 ub:subOrganizationOf ?U1 .

?P1 ub:worksFor ?D1 . ?S1 ub:advisor ?P1 . ?S1 ub:undergraduateDegreeFrom ?U1 }

N2
SELECT ?S1 ?C1 ?P1 ?C2 ?S2 ?C3 WHERE { ?S2 ub:teachingAssistantOf ?C2 .

?P1 ub:teacherOf ?C2 . ?S2 ub:takesCourse ?C3 . ?S1 ub:takesCourse ?C3 .

?S1 ub:takesCourse ?C1 . ?P1 ub:teacherOf ?C1 }

N3
SELECT ?S1 WHERE { ?S2 ub:teachingAssistantOf ?C2 . ?P1 ub:teacherOf ?C2 .

?S2 ub:takesCourse ?C1 . ?P1 ub:teacherOf ?C1 . ?S2 ub:takesCourse ?C3 .

?S1 ub:takesCourse ?C1 . ?S1 ub:takesCourse ?C3 }

TABLE 4: Min./Max. Numbers of Triples and Average Number of
Resources Per Partition Element (M), and Partitioning Times (s)

WatDiv-10K LUBM-10K
Partitioning Scheme Min Max Res Time Min Max Res Time

Weighted, pruning 103.1 113.0 20.9 19,719 126.4 138.2 32.9 15,606
Weighted, no pruning 102.1 113.0 21.6 21,727 123.6 139.8 35.7 30,018
Unweighted, no pruning 22.5 410.7 18.1 24,118 123.7 142.3 36.0 30,396
Subject hashing 109.0 109.3 24.2 6,174 133.3 133.7 52.5 13,142

servers, each having 32 GB RAM and eight virtual cores
of 2.4 GHz Intel Xeon E5-2676v3 CPUs, connected by a
network with dedicated bandwidth of 1,000 Mbps. AdPart
could not load the LUBM dataset on these servers, so we
loaded the data on a server with 160 GB of RAM.

Results. For each query, the number of answers, and the
query evaluation time, the total network communication
(i.e., the total amount of data sent by all servers), and the
total memory used for query processing (i.e., the difference
between the amount of memory used each server during
and before query processing, added over all servers) av-
eraged over five runs are shown in Table 2. We evalu-
ated queries with no timeout; however, AdPart and TriAD
crashed due to running out of memory on nine and eight
queries, respectively, which are marked with ‘—’. For S2RDF
and PEDA, results that were not available in the literature
are marked with ‘n/a’. We verified all outputs using a
centralised RDF store, confirming that TriAD and RDFox
returned correct answers in all cases. In contrast, AdPart
returned duplicate answers on ten basic WatDiv queries and
produced incorrect results on LUBM queries T1 and T6.

Discussion. All systems outperformed PEDA, which we
believe is inherent in its query evaluation strategy. We have
studied a closely related idea in our earlier work [21] and
have observed that the initial modified evaluation of a query
on all servers tends to produce huge numbers of partial
answers. Indeed, even the partial query evaluation phase
of PEDA (see [15]) is already slower by orders of magnitude
than full query evaluation in the other systems.

On queries other than IL-3-n, AdPart, TriAD, and RDFox
outperformed S2RDF by up to four orders of magnitude. To
understand why, note that Spark partitions data at the level
of blocks of a distributed file system, rather than at the level
of triples. Triples are thus assigned to servers randomly, and
not even triples with the same subject are guaranteed to be
collocated; hence, each join requires data exchange, even
subject–subject joins. Also, Spark processes query plans
synchronously, reducing the potential for parallelism.

On the IL-3-n queries, S2RDF is up to an order of mag-
nitude faster than the two RDFox variants. These queries
were designed as a ‘torture test’ for RDF stores, and, as
Table 2 shows, they return several orders of magnitude more
answers than the other queries. These results are explained
by the fact that query evaluation in Spark materialises the
answers in a distributed file system. In contrast, our ap-
proach sends all answers to the coordinator, which becomes
a major source of overhead for such queries. For example,
during the evaluation of IL-3-5 on RDFoxGP , about 96%
of all network traffic (about 107 GB) is used for sending

answers, which requires 856 s using the available bandwidth
of 1000 Mbps. In practice, RDFoxGP evaluates the query
in 773 s, which is possible since not all data is sent from
the same server. The overhead of sending answers varies
across queries (e.g., about 56% of network traffic is used
on IL-3-6), but it is substantial in each case. This skews
the comparison between RDFox and S2RDF on queries with
large answer sets. Finally, if the user does not wish to iterate
over all answers, our approach can easily be modified to
store answers on the server where they are produced.

The three systems are roughly comparable on the linear
(Ln) and star (Sn) WatDiv queries. These queries contain
at most one join that is not subject–subject, and since all
three systems compute subject–subject joins without any
communication, performance variation is due to the imple-
mentation of local query evaluation. AdPart is fastest in nine
cases, despite the fact that TriAD uses faster merge joins.
The snowflake (Fn) queries involve two groups of atoms
mostly joined on subjects connected by a subject–object join.
Our approach computes most answers using at most one
hop between servers, allowing the two RDFox variants to
be fastest in four cases. Complex (Cn) queries C1 and C2
exhibit different join patters and AdPart is fastest by a factor
of three. Query C3 contains only subject–subject joins, but it
is not selective and returns 42.44 M answers. While RDFox
and TriAD can process C3 without any problems, AdPart is
slower by two orders of magnitude, uses four orders of mag-
nitude more communication, and three orders of magnitude
more memory. The RDFox variants outperformed TriAD on
the snowflake and complex queries by up to two orders
of magnitude (e.g., on F2, F3, and F5), even though TriAD
prunes the search space using a summary graph.

The RDFox variants outperformed AdPart and TriAD by
between one and four orders of magnitude on the extended
WatDiv queries, and on all LUBM queries apart from T4
and T5. The memory use of hash joins in AdPart and
TriAD is determined by the sizes of intermediate relations,
which, as we argue in Section 3.3, can significantly limit the
scalability of distributed systems. This is particularly acute
on queries returning large answer sets: both systems ran
out of memory on all IL-3-n queries, and AdPart could also
not answer any of the Nn queries. In contrast, index nested
loop joins coupled with dynamic data exchange and careful
flow control limited memory use in the RDFox variants and
allowed them to successfully process all queries.

RDFoxHP was often slightly faster than RDFoxGP on
the WatDiv linear and star queries, and their performance
was broadly the same on the IL-m-n queries since sending
answers is the main source of overhead there. In contrast,
RDFoxGP performed much better than RDFoxHP on all
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measures (time, communication, and memory use) on the
snowflake and complex WatDiv queries and on LUBM.
The uniform structure of LUBM is particularly amenable to
graph partitioning, and the benefits of graph partitioning
seem most significant there. This confirms our intuition
that dynamic data exchange is particularly useful when a
substantial proportion of answers can be produced locally.
In general, communication overhead seems to be lowest
in AdPart, followed by RDFoxGP , TriAD, and RDFoxHP .
However, RDFoxHP is still generally faster than AdPart and
TriAD, and it uses much less memory on query T1.

Table 1 shows the average and maximal memory use per
server (excluding dictionaries) and the standard deviation
across servers after loading the data and before query pro-
cessing. RDFox does not duplicate data and thus uses about
half the memory of TriAD, which hashes triples by subject
and object. AdPart uses the most memory.

8.3 Scalability Experiments
To analyse the horizontal scalability of our approach, Fig-
ure 2 shows the evaluation times of the basic WatDiv queries
on datasets with scale factors 1,000, 3,000, 5,000, 7,000, and
10,000. The times for all linear queries apart from L2, all
star and snowflake queries, and complex queries C1 and C2
scale sublinearily with the data sizes. The times for L3, S1,
S7, and F5 are constant on all data sets. Finally, times for C3
scale roughly linearly with the data size. Thus, we conclude
that our approach scales very well.

8.4 Data Partitioning Experiments
Table 4 shows the triple and resource distributions as well
as partitioning times for the data partitioning strategy de-
scribed in Section 7 (weighted, pruning), the strategy used
without the pruning step (weighted, no pruning), vertex
graph partitioning (unweighted, no pruning), and subject
hashing. All times include writing the partitioned output to
files. Subject hashing involves almost no overhead in terms
of computing the partition elements, so its time is roughly
equal to a fixed overhead that is incurred in all cases.

Subject hashing produces very balanced partitions and
is much faster than graph partitioning. Moreover, weighted
partitions are much more uniform than unweighted ones,
particularly on WatDiv. Due to better clustering of connec-
tions, the average number of resources per partition element
is much smaller in partitioning-based approaches than for
subject hashing. This is in line with our observations from
Section 8.2: since local results do not require any communi-
cation, RDFoxGP often outperforms RDFoxHP .

Pruning also speeds up partitioning by reducing the size
of the graph being partitioned: on LUBM, the performance
gain is a factor of two.

9 CONCLUSION & OUTLOOK

We have presented a new technique for query answering in
distributed RDF systems based on dynamic data exchange.
A key feature of our technique is that the memory used
for query processing can be bounded, which allowed our
system to outperform two state of the art systems in terms
of response time and memory and network use, often by

orders of magnitude. A major line of our future research will
involve incorporating bushy join plans, and factorised query
evaluation [44] is a promising direction due to its strong
optimality guarantees. We will also investigate materialising
datalog rules over distributed RDF graphs.
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APPENDIX
PROOF OF THEOREM 1
Theorem 1. If Algorithms 1, 2, and 4 are applied to a strict

partition P of an RDF graph G distributed over a cluster C
of servers where each server has n+ 1 finite message queues,

1) servers terminate after sending Θ(n|C|2) FIN messages,
2) the coordinator for Q correctly outputs ans(Q,G), and
3) at most O(n2) memory is needed per server thread.

Proof of Claims 1 and 3: We assume that the servers
evolve over discrete time instants 1, 2, . . . where, at each
time t, one thread of one server performs an action. We say
that server k is finished for stage i ≥ 1 at time t if Di = Ri
and Ni = |C| hold at server k after the action at time t. Also,
to unify the case analyses, we define all servers as finished
for stage i = 0 at each time t ≥ 0, and we define all servers
as not finished for each stage i ≥ 1 at t = 0. When server
k becomes finished for stage i at time t, SWAP in line 28
ensures that the server sends precisely one FIN[i+ 1, Si+1,`]
message to each server ` ∈ C if i < n, or to the coordinator
if i = n. We next prove that, for each t ≥ 1,

1) if a server is finished for stage i at time t, then all
servers are finished for stage i− 1 at time t− 1,

2) a server finished for stage i at time t does not have a
queued PAR/ANS message for stage i and it is not
processing such a message at time t, and

3) if a server is finished for stage i at time t− 1, the
server remains finished for stage i at time t.

The proof is by induction on t, where the base case and
inductive step are the same. Consider a time t ≥ 1 such that
all properties hold for t− 1. Assume that server k that is
finished for stage i at time t. Server k increments its counter
Ni in line 24 once for each FIN message received for stage
i, and each server sends to server k just one FIN message
per stage; hence, Ni = |C| ensures that all servers have sent
their FIN messages for stage i− 1 before time t (if i ≥ 1),
so all servers are finished for stage i− 1 at time t− 1, as
required for property 1. Moreover, the inductive hypothesis
for properties 1 and 3 ensures that all servers are finished for
each stage j < i at time t− 1. Thus, by property 2, no server
is sending a PAR/ANS message for stage j < i to server k
at time t− 1, so server k is not retrieving such a message
from a message queue at time t. Lines 42 and 25 ensure
that counter Ri at server k contains the number of received
PAR/ANS messages for stage i, and counter Di at server k
is incremented in line 17 or 21 whenever such a message
is processed; hence, Di = Ri implies that server k has no
queued PAR/ANS messages for stage i and is not processing
such messages, as required for property 2. Finally, if server
k is finished for stage i at time t− 1, the observations made
thus far ensure that counters Ni, Ri, and Di of server k
remain unchanged at time t, so server k is finished for stage
i at time t, as required property 3.

To complete the proof, each Pk is finite so, in each
call to MATCHATOM, server k passes through the loop in
lines 70–85 a finite number of times and thus produces
finitely many PAR/ANS messages. Moreover, at each point
in time, at least one queue in the cluster contains a message
with the highest stage index, and this message is eventually

processed either in the message processing thread or in
line 40 of Algorithm 2. Thus, at each time, at least one server
makes progress, so all messages are processed eventually;
hence, all servers will eventually become finished for stage
n, and the coordinator will become finished for stage n+ 1.
Each server sends |C| FIN messages per stage, so the total
number of such messages is Θ(n|C|2). Finally, recursion
depth of each thread is n, and each recursion level can be
implemented using n iterators that explore set E in line 68
‘on the fly’, so each thread requires O(n2) memory.

Proof of Claim 2: Our algorithms are clearly sound
(i.e., σ ∈ ans(Q,G) holds for each 〈σ,m〉 that is output), so
we next prove completeness. Let IX , UX , Bi, and V i be as
in lines 61–66 of Algorithm 4; let A = A1, . . . , An be the re-
ordered atoms of Q(X) from line 2 of Algorithm 1; for each
1 ≤ i ≤ n, let Ki = V i ∩

⋃i−1
j=1 vars(Aj), let Xi = X \Ki,

and let Qi(Xi) = Ai ∧ · · · ∧An; and let µ = µs, µp, µo be
the vector of occurrence mappings from Section 4.1. We say
that a vector λ = λs, λp, λo of partial occurrence mappings
is consistent with µ if λπ ⊆ µπ for each π ∈ Π (i.e., each λπ
coincides with µπ on the common resources). We also say
that a server k can match an atom A if an assignment ρ exists
such that Aρ ∈ Pk. The following property clearly holds for
each atom A and vector λ consistent with µ:

(∗) k ∈ OCCURS(A,λ) holds for each server k ∈ C
that can match atom A.

Next, we show that, for each 1 ≤ i ≤ n, assignment σ
with dom(σ) = Ki, positive integer m, vector λ consistent
with µ, and k ∈ C , if MATCHATOM(i, σ,m,λ) is called on
server k and the call returns v < i− 1, then there exists j ≥ i
such that Bj = v and Ajσρ 6∈ G for all assignments ρ. The
proof is by induction on recursion depth. For the base case,
assume that v is returned in line 69 and consider an arbitrary
assignment ρ. Then, OCCURS(Aiσ,λ) ⊆ {k} and (∗) ensure
Aiσρ 6∈ G \ Pk, and E = ∅ ensures Aiσρ 6∈ Pk; thus, the
claim holds for j = i. For the induction step, assume that
v is returned in line 85 after a recursive call in line 84 for
assignment σ′. Due to v < i and the induction hypothesis,
there exists j ≥ i+ 1 > i such that Bj = v and Ajσ

′ρ 6∈ G
for all assignments ρ. But then, the definition of Bi and IX
ensure Ajσ′ = Ajσ, so the inductive claim holds for j.

Finally, we show that, for each 1 ≤ i ≤ n, assignment
σ with dom(σ) = Ki, positive integer m, and vectors λk
for k ∈ C consistent with µ, if MATCHATOM(i, σ,m,λk)
is called on each server k that can match Aiσ, then,
for each ν ∈ ans(Qiσ,G) with multiplicity w, the coordi-
nator outputs tuples 〈σ ∪ ν, p1〉, . . . , 〈σ ∪ ν, pr〉 such that
p1 + · · ·+ pr = m · w. This property proves Claim 2 of The-
orem 1 since line 4 of Algorithm 1 calls MATCHATOM (via
line 16) for i = 1, σ = ∅, m = 1, and λk = ∅. The proof is by
‘reverse’ induction on i going from n down to 1.

Many observations are the same for the base case and
the inductive step, so we consider them first. Let ρ = ν|V i ,
for k ∈ C let ck be the number of distinct extensions ρ′

of ρ where Aiσρ
′ ∈ Pk, let c be the number of such ρ′

where Aiσρ′ ∈ G, let σ′ = σ ∪ ρ, and let ν′ = ν \ ρ (i.e., ν′

contains the mappings of all variables in ν not covered
by ρ). Since P is strict, we have c =

∑
k ck. It should be

clear that ν′ ∈ ans(Qi+1σ
′, G), and that the multiplicity w′

of ν′ satisfies w = w′ · c. Now consider an arbitrary server
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k ∈ C with ck 6= 0; thus, server k can match atom Aiσ so
MATCHATOM is called there. By the definition of EVALUATE,
we have 〈ρ, ck〉 ∈ E in line 68. Thus,E 6= ∅ so MATCHATOM
does not return in line 69. For each variableX ∈ dom(ρ) and
position π ∈ UX , the definition of UX ensures that atom
Aj exists such that j > IX and X = termπ(Aj); but then,
ν′ being an answer to Qi+1σ

′ ensures µπ(ρ(X)) 6= ∅; also,
X ∈ dom(ρ) ensures ρ(X) ∈ voc(Pk), so µk,π is defined and
it satisfies µk,π(ρ(X)) 6= ∅ and CANPRUNE(ρ) returns false
in line 70. Finally, if a recursive call in line 84 were to return
a number smaller than i, then some j > i would exist such
that Ajσξ 6∈ G for all assignments ξ, so ν could not be an
answer to Qiσ. Hence, MATCHATOM does not return in
line 85, so ρ, ck, and σ′ are considered at some point in the
body of the loop in lines 70–85 on server k. We next show
that the servers jointly produce the required answers.

For the base case i = n, server k outputs σ′ with mul-
tiplicity m · ck in line 75 or via line 77 and lines 19–26
of Algorithm 2. The multiplicity of σ′ aggregated over all
servers is

∑
km · ck = m ·

∑
k ck = m · w, as required.

Now consider the induction step. Vector λ′ is clearly
consistent with µ. Property (∗) ensures that the set L in
line 79 contains each server ` that can matchAi+1σ

′; server k
sends to each such ` a partial answer message in line 82; and,
by Claim 1, ` eventually processes the message in lines 15–
17 of Algorithm 2. By the inductive assumption, then σ′

is output with aggregated multiplicity m · ck · w′. Finally,
MATCHATOM is called on each server k that can match
Aiσ, so the multiplicity of σ′ aggregated over all servers
is
∑
km · ck · w′ = m · (

∑
k ck) · w′ = m · w, as required.


