Description Logic: A Formal Foundation for Ontology Languages and Tools

Part 1: Languages

Ian Horrocks

<ian.horrocks@comlab.ox.ac.uk> Information Systems Group Oxford University Computing Laboratory

Contents

- Motivation
- Brief review of (first order) logic
- Description Logics as fragments of FOL
- Description Logic syntax and semantics
- Brief review of relevant complexity notions
- Description Logics and OWL
- Ontology applications
- Ontologies –v- databases

DL Basics

Hill

• Decidable fragments of First Order Logic

Thank you for listening

Any questions?

- A family of logic based Knowledge Representation formalisms
 - Originally descended from semantic networks and KL-ONE
 - Describe domain in terms of concepts (aka classes), roles (aka properties, relationships) and individuals

- Modern DLs (after Baader et al) distinguished by:
 - Fully fledged logics with formal semantics
 - Decidable fragments of FOL (often contained in C₂)
 - Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment
 - Computational properties well understood (worst case complexity)
 - Provision of inference services
 - Practical decision procedures (algorithms) for key problems (satisfiability, subsumption, query answering, etc)
 - Implemented systems (highly optimised)
- The basis for widely used ontology languages

Web Ontology Language OWL (2)

- W3C recommendation(s)
- Motivated by Semantic Web activity

Add meaning to web content by annotating it with terms defined in ontologies

- Supported by tools and infrastructure
 - APIs (e.g., OWL API, Thea, OWLink)
 - Development environments
 (e.g., Protégé, Swoop, TopBraid Composer, Neon)
 - Reasoners & Information Systems
 (e.g., Pellet, Racer, HermiT, Quonto, ...)
- Based on Description Logics (SHOIN / SROIQ)

and now:

A Word from our Sponsors

- Syntax
 - Non-logical symbols (signature)
 - Constants: Felix, MyMat
 - Predicates(arity): Animal(1), Cat(1), has-color(2), sits-on(2)
 - Logical symbols:
 - Variables: x, y
 - Operators: \land , \lor , \rightarrow , \neg , ...
 - Quantifiers: ∃, ∀
 - Equality: =
 - Formulas:
 - Cat(Felix), Mat(MyMat), sits-on(Felix, MyMat)
 - Cat(x), $Cat(x) \lor Human(x)$, $\exists y.Mat(y) \land sits-on(x, y)$
 - $\forall x. \operatorname{Cat}(x) \to \operatorname{Animal}(x), \ \forall x. \operatorname{Cat}(x) \to (\exists y. \operatorname{Mat}(y) \land \operatorname{sits-on}(x, y))$

Semantics

Semantics

Semantics

Semantics

Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.

Semantics

Semantics

Semantics

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which "objects" in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.

Semantics

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which "objects" in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.

- Semantics
 - Model: a pair $\langle D, \cdot^I \rangle$ with D a non-empty set and \cdot^I an interpretation
 - C^{I} is an element of D for C a constant
 - v^I is an element of D for v a variable
 - P^{I} is a subset of D^{n} for P a predicate of arity n

- Semantics
 - Evaluation: truth value in a given model M = $\langle D, \cdot^I \rangle$
 - $P(t_1, \ldots, t_n)$ is true iff $\langle t_1^I, \ldots, t_n^I \rangle \in P^I$
 - $A \wedge B$ is true iff A is true and B is true $\neg A$ is true iff A is not true
 - E.g.,

$\operatorname{Cat}(\operatorname{Felix})$	true
Cat(MyMat)	false
\neg Mat(Felix)	true
sits-on(Felix, MyMat)	true
$Mat(Felix) \lor Cat(Felix)$	true

$$egin{aligned} D &= \{a,b,c,d,e,f\} \ \mathrm{Felix}^I &= a \ \mathrm{MyMat}^I &= b \ \mathrm{Cat}^I &= \{a,c\} \ \mathrm{Mat}^I &= \{b,e\} \ \mathrm{Animal}^I &= \{a,c,d\} \ \mathrm{sits\text{-}on}^I &= \{\langle a,b
angle, \langle c,e
angle \} \end{aligned}$$

- Semantics
 - Evaluation: truth value in a given model M = $\langle D, \cdot^I \rangle$
 - $\exists x.A \text{ is } true \text{ iff exists } \cdot^{I'} \text{ s.t. } \cdot^{I} \text{ and } \cdot^{I'} \text{ differ only w.r.t. } x, and A \text{ is } true \text{ w.r.t. } \langle D, \cdot^{I'} \rangle$
 - $\forall x.A \text{ is } true \text{ iff for all } \cdot^{I'} \text{ s.t. } \cdot^{I} \text{ and } \cdot^{I'} \text{ differ only w.r.t. } x, A \text{ is } true \text{ w.r.t. } \langle D, \cdot^{I'} \rangle$

E.g.,true $\exists x. \operatorname{Cat}(x)$ true $\forall x. \operatorname{Cat}(x)$ false $\exists x. \operatorname{Cat}(x) \land \operatorname{Mat}(x)$ false $\forall x. \operatorname{Cat}(x) \rightarrow \operatorname{Animal}(x)$ true $\forall x. \operatorname{Cat}(x) \rightarrow (\exists y. \operatorname{Mat}(y) \land \operatorname{sits-on}(x, y))$ true

$$egin{aligned} D &= \{a,b,c,d,e,f\}\ \mathrm{Felix}^I &= a\ \mathrm{MyMat}^I &= b\ \mathrm{Cat}^I &= \{a,c\}\ \mathrm{Mat}^I &= \{b,e\}\ \mathrm{Mat}^I &= \{b,e\}\ \mathrm{Animal}^I &= \{a,c,d\}\ \mathrm{sits\text{-}on}^I &= \{\langle a,b
angle, \langle c,e
angle \} \end{aligned}$$

- Semantics
 - Given a model M and a formula F, M is a model of F (written M ⊨ F) iff
 F evaluates to true in M
 - A formula F is **satisfiable** iff there exists a model M s.t. $M \models F$
 - A formula F entails another formula G (written $F \models G$) iff every model of F is also a model of G (i.e., $M \models F$ implies $M \models G$)

$$\begin{array}{l} \mathsf{E}.\mathsf{g}., \\ M \models \exists x. \mathrm{Cat}(x) \\ M \not\models \forall x. \mathrm{Cat}(x) \\ M \not\models \exists x. \mathrm{Cat}(x) \land \mathrm{Mat}(x) \\ M \models \forall x. \mathrm{Cat}(x) \rightarrow \mathrm{Animal}(x) \\ M \models \forall x. \mathrm{Cat}(x) \rightarrow (\exists y. \mathrm{Mat}(y) \land \mathrm{sits-on}(x, y)) \end{array} \begin{array}{l} D = \{a, b, c, d, e, f\} \\ \mathrm{Felix}^{I} = a \\ \mathrm{MyMat}^{I} = b \\ \mathrm{Cat}^{I} = \{a, c\} \\ \mathrm{Mat}^{I} = \{b, e\} \\ \mathrm{Animal}^{I} = \{b, e\} \\ \mathrm{Animal}^{I} = \{a, c, d\} \\ \mathrm{sits-on}^{I} = \{\langle a, b \rangle, \langle c, e \rangle\} \end{array}$$

- Semantics
 - Given a model M and a formula F, M is a model of F (written M ⊨ F) iff
 F evaluates to true in M
 - A formula F is **satisfiable** iff there exists a model M s.t. $M \models F$
 - A formula F entails another formula G (written $F \models G$) iff every model of F is also a model of G (i.e., $M \models F$ implies $M \models G$)

E.g.,

- ✓ $Cat(Felix) \models \exists x.Cat(x)$ (Cat(Felix) $\land \neg \exists x.Cat(x)$ is not satisfiable)
- $\checkmark (\forall x. \operatorname{Cat}(x) \to \operatorname{Animal}(x)) \land \operatorname{Cat}(\operatorname{Felix}) \models \operatorname{Animal}(\operatorname{Felix})$
- $\checkmark (\forall x. \operatorname{Cat}(x) \to \operatorname{Animal}(x)) \land \neg \operatorname{Animal}(\operatorname{Felix}) \models \neg \operatorname{Cat}(\operatorname{Felix})$
- \checkmark Cat(Felix) $\models \forall x.Cat(x)$
- \checkmark sits-on(Felix, Mat1) \land sits-on(Tiddles, Mat2) $\models \neg$ sits-on(Felix, Mat2)
- ★ sits-on(Felix, Mat1) \land sits-on(Tiddles, Mat1) $\models \exists^{\geq 2} x$.sits-on(x, Mat1)

Decidable Fragments

- FOL (satisfiability) well known to be undecidable
 - A sound, complete and terminating algorithm is impossible
- Interesting decidable fragments include, e.g.,
 - C2: FOL with 2 variables and Counting quantifiers $(\exists^{\geq n}, \exists^{\leq n})$
 - Counting quantifiers abbreviate pairwise (in-) equalities, e.g.: $\exists^{\geq 3}x.\operatorname{Cat}(x)$ equivalent to

 $\exists x, y, z. \mathrm{Cat}(x) \land \mathrm{Cat}(y) \land \mathrm{Cat}(z) \land x \neq y \land x \neq z \land y \neq z$

 $\exists^{\leq 2} x. \operatorname{Cat}(x)$ equivalent to

 $\forall x, y, z. \operatorname{Cat}(x) \wedge \operatorname{Cat}(y) \wedge \operatorname{Cat}(z) \rightarrow x = y \lor x = z \lor y = z$

- Propositional modal and description logics
- Guarded fragment

Back to our Scheduled Program

- Signature
 - Concept (aka class) names, e.g., Cat, Animal, Doctor
 - Equivalent to FOL unary predicates
 - Role (aka property) names, e.g., sits-on, hasParent, loves
 - Equivalent to FOL binary predicates
 - Individual names, e.g., Felix, John, Mary, Boston, Italy
 - Equivalent to FOL constants

- Operators
 - Many kinds available, e.g.,
 - Standard FOL Boolean operators (\Box , \sqcup , \neg)
 - Restricted form of quantifiers (\exists, \forall)
 - Counting (\geq , \leq , =)
 - ...

- Concept expressions, e.g.,
 - Doctor \sqcup Lawyer
 - Rich ⊓ Happy
 - Cat ⊓ ∃sits-on.Mat
- Equivalent to FOL formulae with one free variable
 - Doctor $(x) \lor$ Lawyer(x)
 - $\operatorname{Rich}(x) \wedge \operatorname{Happy}(x)$
 - $= \exists y.(\operatorname{Cat}(x) \land \operatorname{sits-on}(x, y))$

- Special concepts
 - \top (aka top, Thing, most general concept)
 - \perp (aka bottom, Nothing, inconsistent concept)

used as abbreviations for

- (A $\sqcup \neg$ A) for any concept A
- (A \sqcap ¬ A) for any concept A

- Role expressions, e.g.,
 - loves⁻
 - hasParent hasBrother
- Equivalent to FOL formulae with two free variables
 - $\operatorname{loves}(y, x)$
 - $= \exists z.(\text{hasParent}(x, z) \land \text{hasBrother}(z, y))$

- "Schema" Axioms, e.g.,
 - Rich $\sqsubseteq \neg$ Poor
 - − Cat $\sqcap \exists$ sits-on.Mat \sqsubseteq Happy
 - − BlackCat \equiv Cat \sqcap ∃hasColour.Black
 - sits-on \sqsubseteq touches
 - Trans(part-of)

(concept inclusion)
(concept inclusion)
(concept equivalence)
(role inclusion)
(transitivity)

- Equivalent to (particular form of) FOL sentence, e.g.,
 - $\forall x.(\operatorname{Rich}(x) \rightarrow \neg \operatorname{Poor}(x))$
 - $\neg \forall x.(Cat(x) \land \exists y.(sits-on(x,y) \land Mat(y)) \rightarrow Happy(x))$
 - $\forall x.(BlackCat(x) \leftrightarrow (Cat(x) \land \exists y.(hasColour(x,y) \land Black(y)))$
 - $\forall x, y.(sits-on(x,y) \rightarrow touches(x,y))$
 - − $\forall x, y, z.((sits-on(x,y) \land sits-on(y,z)) \rightarrow sits-on(x,z))$

- "Data" Axioms (aka Assertions or Facts), e.g.,
 - BlackCat(Felix) (concept assertion)
 - Mat(Mat1) (concept assertion)
 - Sits-on(Felix,Mat1)

(role assertion)

- Directly equivalent to FOL "ground facts"
 - Formulae with no variables

• A set of axioms is called a **TBox**, e.g.:

$\{\text{Doctor} \sqsubseteq \text{Person},$		
	Parent \equiv Person $\sqcap \exists$ hasChild.Pers	
	HappyParent ≡ Parent ⊓ ∀hasChil	
		Facts sometimes written
	A set of facts is called an A	John:HappyParent,
	{HappyParent(John),	John hasChild Mary,
	hasChild(John,Mary)}	(John,Mary):hasChild

- A Knowledge Base (KB) is just a TBox plus an Abox
 - Often written $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

The DL Family

- Many different DLs, often with "strange" names
 - E.g., \mathcal{EL} , \mathcal{ALC} , \mathcal{SHIQ}
- Particular DL defined by:
 - Concept operators (\Box , \sqcup , \neg , \exists , \forall , etc.)
 - Role operators (⁻, ∘, etc.)
 - Concept axioms (\sqsubseteq , \equiv , etc.)
 - Role axioms (\sqsubseteq , Trans, etc.)

- E.g., \mathcal{EL} is a well known "sub-Boolean" DL
 - Concept operators: \Box , \neg , \exists
 - No role operators (only atomic roles)
 - Concept axioms: \sqsubseteq , ≡
 - No role axioms
- E.g.:

```
Parent \equiv Person \sqcap \exists hasChild.Person
```


- *ALC* is the smallest propositionally closed DL
 - − Concept operators: \Box , \sqcup , \neg , \exists , \forall
 - No role operators (only atomic roles)
 - Concept axioms: \sqsubseteq , ≡
 - No role axioms
- E.g.:

 $ProudParent \equiv Person \sqcap \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor)$

- *S* used for *ALC* extended with (role) transitivity axioms
- Additional letters indicate various extensions, e.g.:
 - \mathcal{H} for role hierarchy (e.g., hasDaughter \sqsubseteq hasChild)
 - \mathcal{R} for role box (e.g., hasParent \circ hasBrother \sqsubseteq hasUncle)
 - *O* for nominals/singleton classes (e.g., {Italy})
 - \mathcal{I} for inverse roles (e.g., isChildOf = hasChild⁻)
 - \mathcal{N} for number restrictions (e.g., \geq 2hasChild, \leq 3hasChild)
 - Q for qualified number restrictions (e.g., \geq 2hasChild.Doctor)
 - \mathcal{F} for functional number restrictions (e.g., ≤ 1 hasMother)
- E.g., SHIQ = S + role hierarchy + inverse roles + QNRs

- Numerous other extensions have been investigated
 - Concrete domains (numbers, strings, etc)
 - DL-safe rules (Datalog-like rules)
 - Fixpoints
 - Role value maps
 - Additional role constructors (\cap , \cup , \neg , \circ , id, ...)
 - Nary (i.e., predicates with arity >2)
 - Temporal
 - Fuzzy
 - Probabilistic
 - Non-monotonic
 - Higher-order

Via translaton to FOL, or directly using FO model theory:

 Interpretation function extends to concept expressions in the obvious(ish) way, e.g.:

 $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$ $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ $\{x\}^{\mathcal{I}} = \{x^{\mathcal{I}}\}$ $(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$ $(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$ $(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$ $(\geqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geqslant n\}$

- Given a model M = $\langle D, \cdot^I \rangle$
 - $M \models C \sqsubseteq D \text{ iff } C^I \subseteq D^I$
 - $M \models C \equiv D \text{ iff } C^I = D^I$
 - $M \models C(a) \text{ iff } a^I \in C^I$
 - $M \models R(a,b) \text{ iff } \langle a^I, b^I \rangle \in R^I$
 - $M \models \langle \mathcal{T}, \mathcal{A} \rangle \text{ iff for every axiom } ax \in \mathcal{T} \cup \mathcal{A}, M \models ax$

- Satisfiability and entailment
 - A KB \mathcal{K} is satisfiable iff there exists a model M s.t. M $\models \mathcal{K}$
 - A concept C is satisfiable w.r.t. a KB \mathcal{K} iff there exists a model M = $\langle D, \cdot^{I} \rangle$ s.t. M $\models \mathcal{K}$ and C^I $\neq \emptyset$
 - A KB \mathcal{K} entails an axiom ax (written $\mathcal{K} \models ax$) iff for every model M of \mathcal{K} , M $\models ax$ (i.e., M $\models \mathcal{K}$ implies M $\models ax$)

- E.g.,
- $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \\ \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild.(Doctor} \sqcup \exists \text{hasChild.Doctor}) \} \\ \mathcal{A} = \{ \text{John:HappyParent}, \text{John hasChild Mary, John hasChild Sally,} \}$
 - Mary: \neg Doctor, Mary hasChild Peter, Mary: (≤ 1 hasChild)
- ✓ $\mathcal{K} \models$ John:Person ?
- ✓ $\mathcal{K} \models$ Peter:Doctor ?
- ✓ $\mathcal{K} \models$ Mary:HappyParent?
 - What if we add "Mary hasChild Jane"?

 $\mathcal{K} \models \text{Peter} = \text{Jane}$

- What if we add "HappyPerson \equiv Person \sqcap \exists hasChild.Doctor"?

 $\mathcal{K}\vDash HappyPerson \sqsubseteq Parent$

DL and FOL

- Most DLs are subsets of C2
 - But reduction to C2 may be (highly) non-trivial
 - Trans(R) naively reduces to $\forall x, y, z.R(x, y) \land R(y, z) \rightarrow R(x, z)$
- Why use DL instead of C2?
 - Syntax is succinct and convenient for KR applications
 - Syntactic conformance guarantees being inside C2
 - Even if reduction to C2 is non-obvious
 - Different combinations of constructors can be selected
 - To guarantee decidability
 - To reduce complexity
 - DL research has mapped out the decidability/complexity landscape in great detail
 - See Evgeny Zolin's DL Complexity Analyzer <u>http://www.cs.man.ac.uk/~ezolin/dl/</u>

Complexity of reasoning in Description Logics Note: the information here is (always) incomplete and <u>updated</u> often

Base description logic: Attributive $\mathcal{L}\!anguage$ with $\mathcal{C}\!omplements$

 $\mathcal{ALC} := \perp | A | \neg C | C \land D | C \lor D | \exists R.C | \forall R.C$

Concept constructors:	Role constructors:	trans reg
$\exists \mathcal{F}$ -functionality ² : ($\leq 1 R$)	\blacksquare <i>I</i> -role inverses: <i>R</i> ⁻	
 ✓ <i>N</i>- (unqualified) number restrictions: (≥n R), (≤n R) □ <i>Q</i>- qualified number restrictions: (≥n R.C), (≤n R.C) ✓ <i>O</i>- nominals: {<i>a</i>} or {<i>a</i>₁,,<i>a</i>_n} ("one-of" constructor) 	□ ∩ – role intersection ³ : $R \cap S$ □ ∪ – role union: $R \cup S$ □ ¬ – role complement: full = ‡	
	 o - role chain (composition): RoS * - reflexive-transitive closure⁴: R* id - concept identity: id(C) Forbid = complex roles⁵ in number restrictions⁶ 	
TBox is <i>internalized</i> in extensions of <i>ALCIO</i> , see [<u>76</u> , Lemma 4.12],	Role axioms (RBox):	OWL-Lite
[<u>54</u> , p.3]	\checkmark S – Role transitivity: Trans(R)	OWL-DL OWL 1.1
 Empty TBox Acyclic TBox (A≡C, A is a concept name; no cycles) General TBox (C⊆D for arbitrary concepts C and D) 	 	

Reset

You have selected the Description Logic: SHOLN

Complexity of reasoning problems ⁷			
Reasoning problem Complexity ⁸ Comments and references			
Concept satisfiability	NExpTime-complete	 <u>Hardness</u> of even <i>ALCFIO</i> is proved in [76, Corollary 4.13]. In that paper, the result is formulated for <i>ALCQIO</i>, but only number restrictions of the form (≤1R) are used in the proof. A different proof of the NExpTime-hardness for <i>ALCFIO</i> is given in [54] (even with 1 nominal, and role inverses not used in number restrictions). <u>Upper bound</u> for <i>SHOIQ</i> is proved in [77, Corollary 6.31] with numbers coded in unary (for binary coding, the upper bound remains an open problem for all logics in between <i>ALCNIO</i> and <i>SHOIQ</i>. Important: in number restrictions, only <i>simple</i> roles (i.e. which are neither transitive nor have a transitive subroles) are allowed; otherwise we gain undecidability even in <i>SHN</i>, see [46]. Remark: recently [47] it was observed that, in many cases, one can use transitive roles in number restrictions – and still have a decidable logic! So the above notion of a <i>simple</i> role could be substantially extended. 	
ABox consistency	NExpTime-complete	By reduction to concept satisfiability problem in presence of nominals shown in [69, Theorem 3.7].	

Complexity Measures

Taxonomic complexity

Measured w.r.t. total size of "schema" axioms

• Data complexity

Measured w.r.t. total size of "data" facts

• Query complexity

Measured w.r.t. size of query

Combined complexity

Measured w.r.t. total size of KB (plus query if appropriate)

Complexity Classes

- LogSpace, PTime, NP, PSpace, ExpTime, etc
 - worst case for a given problem w.r.t. a given parameter
 - X-hard means at-least this hard (could be harder);
 in X means no harder than this (could be easier);
 X-complete means both hard and in, i.e., exactly this hard
 - e.g., *SROIQ* KB satisfiability is 2NExpTime-complete w.r.t. combined complexity and NP-hard w.r.t. data complexity
- Note that:
 - this is for the worst case, not a typical case
 - complexity of problem means we can never devise a more efficient (in the worst case) algorithm
 - complexity of algorithm may, however, be even higher (in the worst case)

DLs and Ontology Languages

DLs and Ontology Languages

- W3C's OWL 2 (like OWL, DAML+OIL & OIL) based on DL
 - OWL 2 based on *SROIQ*, i.e., *ALC* extended with transitive roles, a role box nominals, inverse roles and qualified number restrictions
 - OWL 2 EL based on \mathcal{EL}
 - OWL 2 QL based on DL-Lite
 - OWL 2 EL based on \mathcal{DLP}
 - OWL was based on $\ensuremath{\mathcal{SHOIN}}$
 - only simple role hierarchy, and unqualified NRs

Class/Concept Constructors

OWL Constructor	DL Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$
complementOf	$\neg C$
oneOf	$\{x_1\}\sqcup\ldots\sqcup\{x_n\}$
allValuesFrom	$\forall P.C$
someValuesFrom	$\exists P.C$
maxCardinality	$\leqslant nP$
minCardinality	$\geqslant nP$

	Example
ı	Human ⊓ Male
ı	Doctor ⊔ Lawyer
	¬Male
${}^{i}n\}$	{john} ⊔ {mary}
	∀hasChild.Doctor
	∃hasChild.Lawyer
	≤1hasChild
	≥2hasChild
	1

Ontology Axioms

OWL Syntax	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human \sqsubseteq Animal \sqcap Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human ⊓ Male
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	$cost \equiv price$
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $+ \sqsubseteq$ ancestor

OWL Syntax	DL Syntax	Example
type	a : C	John : Happy-Father
property	$\langle a,b angle$: R	$\langle John, Mary \rangle$: has-child

- An Ontology is *usually* considered to be a TBox
 - but an OWL ontology is a mixed set of TBox and ABox axioms

Other OWL Features

- XSD datatypes and (in OWL 2) facets, e.g.,
 - integer, string and (in OWL 2) real, float, decimal, datetime, ...
 - minExclusive, maxExclusive, length, ...
 - PropertyAssertion(hasAge Meg "17"^^xsd:integer)
 - DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer)

These are equivalent to (a limited form of) **DL concrete domains**

• Keys

- E.g., HasKey(Vehicle Country LicensePlate)
 - Country + License Plate is a unique identifier for vehicles

This is equivalent to (a limited form of) DL safe rules

OWL RDF/XML Exchange Syntax

E.g., Person □ ∀hasChild.(Doctor ⊔ ∃hasChild.Doctor):

```
<owl Class>
  <owl:intersectionOf rdf:parseType=" collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasChild"/>
      <owl:allValuesFrom>
        <owl:unionOf rdf:parseType=" collection">
          <owl:Class rdf:about="#Doctor"/>
          <owl:Restriction>
            <owl:onProperty rdf:resource="#hasChild"/>
            <owl:someValuesFrom rdf:resource="#Doctor"/>
          </owl:Restriction>
        </owl:unionOf>
      </owl:allValuesFrom>
    </owl:Restriction>
  </owl:intersectionOf>
</owl:Class>
```

Complexity/Scalability

- From the complexity navigator we can see that:
 - OWL (aka \mathcal{SHOIN}) is NExpTime-complete
 - OWL Lite (aka *SHIF*) is ExpTime-complete (oops!)
 - OWL 2 (aka SROIQ) is 2NExpTime-complete
 - OWL 2 EL (aka \mathcal{EL}) is PTIME-complete (robustly scalable)
 - OWL 2 RL (aka DLP) is PTIME-complete (robustly scalable)
 - And implementable using rule based technologies e.g., rule-extended DBs
 - OWL 2 QL (aka DL-Lite) is in AC⁰ w.r.t. size of data
 - same as DB query answering -- nice!

- OWL exploits results of 20+ years of DL research
 - Well defined (model theoretic) semantics

Constructor	DL Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1(x) \wedge \ldots \wedge C_n(x)$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1(x) \lor \ldots \lor C_n(x)$
complementOf	$\neg C$	¬Male	$\neg C(x)$
oneOf	$\{x_1\} \sqcup \ldots \sqcup \{x_n\}$	{john} ⊔ {mary}	$x = x_1 \lor \ldots \lor x = x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	$\forall y. P(x, y) \rightarrow C(y)$
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\exists y. P(x, y) \land C(y)$
maxCardinality	$\leqslant nP$	≤1hasChild	$\exists^{\leqslant n}y.P(x,y)$
minCardinality	$\geqslant nP$	≥2hasChild	$\exists^{\geqslant n}y.P(x,y)$

- OWL exploits results of 20+ years of DL research
 - Well defined (model theoretic) semantics
 - Formal properties well understood (complexity, decidability)

I can't find an efficient algorithm, but neither can all these famous people.

[Garey & Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, 1979.]

- OWL exploits results of 20+ years of DL research
 - Well defined (model theoretic) semantics
 - Formal properties well understood (complexity, decidability)
 - Known reasoning algorithms

□-rule	if 1. $(C_1 \sqcap C_2) \in \mathcal{L}(v)$, v is not indirectly blocked, and
	2. $\{C_1, C_2\} \not\subseteq \mathcal{L}(v)$
	then $\mathcal{L}(v) \to \mathcal{L}(v) \cup \{C_1, C_2\}.$
⊔-rule	if 1. $(C_1 \sqcup C_2) \in \mathcal{L}(v)$, v is not indirectly blocked, and
	2. $\{C_1, C_2\} \cap \mathcal{L}(v) = \emptyset$
	then $\mathcal{L}(v) \to \mathcal{L}(v) \cup \{E\}$ for some $E \in \{C_1, C_2\}$
∃-rule	if 1. $\exists r. C \in \mathcal{L}(v_1), v_1$ is not blocked, and
	2. v_1 has no safe r-neighbour v_2 with $C \in \mathcal{L}(v_1)$,
	then create a new node v_2 and an edge $\langle v_1, v_2 \rangle$
	with $\mathcal{L}(v_2) = \{C\}$ and $\mathcal{L}(\langle v_1, v_2 \rangle) = \{r\}.$
∀-rule	if 1. $\forall r.C \in \mathcal{L}(v_1), v_1$ is not indirectly blocked, and
	2. there is an r-neighbour v_2 of v_1 with $C \notin \mathcal{L}(v_2)$
	then $\mathcal{L}(v_2) \to \mathcal{L}(v_2) \cup \{C\}.$
∀ ₊ -rule	if 1. $\forall r. C \in \mathcal{L}(v_1), v_1$ is not indirectly blocked, and
	2. there is some role r' with $Trans(r')$ and $r' \equiv r$
	3. there is an r'-neighbour v_2 of v_1 with $\forall r'.C \notin \mathcal{L}(v_2)$
	then $\mathcal{L}(v_2) \to \mathcal{L}(v_2) \cup \{ \forall r'.C \}.$
choose-rule	if $1 \leq n r.C \in \mathcal{L}(v_1)$, v_1 is not indirectly blocked, and
	2. there is an r-neighbour v_2 of v_1 with $\{C, \neg C\} \cap \mathcal{L}(v_2) = \emptyset$
	then $\mathcal{L}(v_2) \to \mathcal{L}(v_2) \cup \{E\}$ for some $E \in \{C, \neg C\}$.
≽-rule	if $1. \ge n r.C \in \mathcal{L}(v), v$ is not blocked, and
	2. there are not n safe r-neighbours v_1, \ldots, v_n of v
	with $C \in \mathcal{L}(v_i)$ and $v_i \neq v_j$ for $1 \leq i < j \leq n$
A SHALL A	a a construction of the second s

- OWL exploits results of 20+ years of DL research
 - Well defined (model theoretic) semantics
 - Formal properties well understood (complexity, decidability)
 - Known reasoning algorithms
 - Scalability demonstrated by implemented systems

Major benefit of OWL has been huge increase in range and sophistication of tools and infrastructure:

Editors/development environments

- Editors/development environments
- Reasoners

- Editors/development environments
- Reasoners
- Explanation, justification and pinpointing

File View Bookmarks Resource Holder A	dvanced About		
Address: http://www.	nindswap.org/ontologies/tambis-full.owl		
Ontology List		Show Inherited Changes/Annotations Edit	
ambis-full.owl		Ontology Info Species Validation	
	OWL Ontology: <u>tambis-full.owl</u> Annotations:		
Add C Add Add Add Add Add Add Add Add Ad	Root/Derived Debugging Informa 144 unsatisfiable classes: root unsat. classes (3) metal (141)	ation:	
Show Imports QNames Pellet Class Tree Property Tree List o owl:Thing	metalloid (140) nonmetal (140)		
▶ © function	derived unsat. classes (141)	parent dependencies	
C mental C modifier	acetylation-site	modification-site, protein-part,	
▶ ⓒ physical	active-site	macromolecule-part, protein, site, protein-part,	
C process C structure	<u>alkali-metal</u>	nonmetal, ?, metal, metalloid,	
© substance © xsd:integer	alpha-helix	protein-structure, protein-secondary-structure, macromolecular-compound,	
© xsd:string	amidation-site	modification-site, protein-part,	
Owl:Nothing methylation-site	amino-acid	organic-molecular-compound, small-organic-molecular-compound,	
complement-dna phosphorylation-site	anti-codon	rna-part, macromolecule-part, rna,	
geranyl-geranyl-attachment-site	astatine	nonmetal, ?, metal, metalloid,	
dna-binding-site alkali-metal	atom	nonmetal, metal, metalloid,	
	beta-sheet	protein-structure, protein-secondary-structure, macromolecular-compound,	
Lookup All Ontologies	7		

- Editors/development environments
- Reasoners
- Explanation, justification and pinpointing
- Integration and modularisation

Major benefit of OWL has been huge increase in range and sophistication of tools and infrastructure:

- Editors/development environments
- Reasoners
- Explanation, justification and pinpointing
- Integration and modularisation

Revision 1403 - (download) (annotate) Fri Dec 18 17:14:37 2009 UTC (4 months, 2 weeks ago) by matthewhorridge File size: 4711 byte(s) package org.coode.owlapi.examples; import org.semanticweb.owlapi.apibinding.OWLManager; import org.semanticweb.owlapi.model.*; import org.semanticweb.owlapi.util.DefaultPrefixManager; Copyright (C) 2009, University of Manchester * Modifications to the initial code base are copyright of their 10 * respective authors, or their employers as appropriate. Authorship 11 * of the modifications may be determined from the ChangeLog placed at 12 * the end of this file. 13 14 * This library is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU Lesser General Public 16 * License as published by the Free Software Foundation; either 17 * version 2.1 of the License, or (at your option) any later version. 18 19 * This library is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * Lesser General Public License for more details.

APIs, in particular the OWL API

- OWL playing key role in increasing number & range of applications
 - eScience

3D Analysis of Patterns of Gene Expression

Ontology of Zebrafish Developmental Anatomy

😪 trigeminal (V) ganglion	20 somite	Head	Periphiral Nervous System
Rohon-Beard neurons	20 somite	Head	Central Nervous System
le primary motorneurons	20 somite	Head	Central Nervous System
🚯 primary neurons	20 somite	Head	Central Nervous System
🍋 brain	14 somite	Head	Central Nervous System
🗢 🏘 hindbrain	14 somite	Head	Central Nervous System
🀔 midbrain	14 somite	Head	Central Nervous System
🗢 🏘 forebrain	14 somite	Head	Central Nervous System
😪 ear	20 somite	Head	Auditory
👫 eye	14 somite	Head	Visual

Integration of Heterogeneous gene expression data

- OWL playing key role in increasing number & range of applications
 - eScience, geography

- OWL playing key role in increasing number & range of applications
 - eScience, geography, engineering,

- OWL playing key role in increasing number & range of applications
 - eScience, geography, engineering, medicine

- OWL playing key role in increasing number & range of applications
 - eScience, geography, engineering, medicine, biology

- OWL playing key role in increasing number & range of applications
 - eScience, geography, engineering, medicine, biology, defence, ...

NHS £6.2 £12 Billion IT Programme

Key component is "Care Records Service"

- "Live, interactive patient record service accessible 24/7"
- Patient data **distributed** across local and national DBs
 - Diverse applications support radiology, pharmacy, etc
 - Applications exchange "semantically rich clinical information"
 - Summaries sent to national database
- SNOMED-CT ontology provides clinical vocabulary
 - Data uses terms drawn from ontology
 - New terms with well defined meaning can be added "on the fly"

Ontology -v- Database

Obvious Database Analogy

- Ontology axioms analogous to DB schema
 - Schema describes structure of and constraints on data
- Ontology facts analogous to DB data
 - Instantiates schema
 - Consistent with schema constraints
- But there are also important differences...

Obvious Database Analogy

Database:

- Closed world assumption (CWA)
 - Missing information treated as false
- Unique name assumption (UNA)
 - Each individual has a single, unique name
- Schema behaves as constraints on structure of data
 - Define legal database states

Ontology:

- Open world assumption (**OWA**)
 - Missing information treated as unknown
- No UNA
 - Individuals may have more than one name
- Ontology axioms behave like implications (inference rules)
 - Entail implicit information

E.g., given the following **ontology/schema**:

HogwartsStudent \equiv Student $\sqcap \exists$ attendsSchool.Hogwarts HogwartsStudent \sqsubseteq \forall hasPet.(Owl or Cat or Toad) (i.e., hasPet inverse of isPetOf) hasPet \equiv isPetOf⁻ \exists hasPet. $\top \sqsubseteq$ Human (i.e., domain of hasPet is Human)

Phoenix $\sqsubseteq \forall isPetOf.Wizard$

Muggle $\sqsubseteq \neg$ Wizard

(i.e., only Wizards have Phoenix pets)

(i.e., Muggles and Wizards are disjoint)

And the following facts/data:

HarryPotter: Wizard DracoMalfoy: Wizard HarryPotter hasFriend RonWeasley HarryPotter hasFriend HermioneGranger HarryPotter hasPet Hedwig

Query: Is Draco Malfoy a friend of HarryPotter?

- DB: No
- Ontology: Don't Know

OWA (didn't say Draco was not Harry's friend)

And the following **facts/data**:

HarryPotter: Wizard DracoMalfoy: Wizard HarryPotter hasFriend RonWeasley HarryPotter hasFriend HermioneGranger HarryPotter hasPet Hedwig

Query: How many friends does Harry Potter have?

- DB: 2
- Ontology: at least 1

No UNA (Ron and Hermione may be 2 names for same person)

And the following facts/data:

HarryPotter: Wizard DracoMalfoy: Wizard HarryPotter hasFriend RonWeasley HarryPotter hasFriend HermioneGranger HarryPotter hasPet Hedwig

- RonWeasley ≠ HermioneGranger
- **Query**: How many friends does Harry Potter have?
 - DB: 2
 - Ontology: at least 2

OWA (Harry may have more friends we didn't mention yet)

And the following facts/data:

HarryPotter: Wizard DracoMalfoy: Wizard HarryPotter hasFriend RonWeasley HarryPotter hasFriend HermioneGranger HarryPotter hasPet Hedwig

RonWeasley ≠ HermioneGranger

HarryPotter: ∀hasFriend.{RonWeasley} ⊔ {HermioneGranger}

Query: How many friends does Harry Potter have?

- DB: 2
- Ontology: 2!

Inserting new facts/data:

Dumbledore: Wizard Fawkes: Phoenix Fawkes isPetOf Dumbledore \exists hasPet. $\top \sqsubseteq$ Human Phoenix $\sqsubseteq \forall$ isPetOf.Wizard

What is the response from DBMS?

- Update rejected: constraint violation

Domain of hasPet is Human; Dumbledore is not Human (CWA)

What is the response from Ontology reasoner?

- Infer that Dumbledore is Human (domain restriction)
- Also infer that Dumbledore is a Wizard (only a Wizard can have a pheonix as a pet)

DB Query Answering

- Schema plays no role
 - Data must explicitly satisfy schema constraints
- Query answering amounts to model checking
 - I.e., a "look-up" against the data
- Can be very efficiently implemented
 - Worst case complexity is low (logspace) w.r.t. size of data

Ontology Query Answering

- Ontology axioms play a powerful and crucial role
 - Answer may include implicitly derived facts
 - Can answer conceptual as well as extensional queries
 - E.g., Can a Muggle have a Phoenix for a pet?
- Query answering amounts to theorem proving
 - I.e., logical entailment
- May have very high worst case complexity
 - E.g., for OWL, NP-hard w.r.t. size of data (upper bound is an open problem)
 - Implementations may still behave well in typical cases
 - Fragments/profiles may have much better complexity

Ontology Based Information Systems

- Analogous to relational database management systems
 - Ontology \approx schema; instances \approx data
- Some important (dis)advantages
 - + (Relatively) easy to maintain and update schema
 - Schema plus data are integrated in a logical theory
 - + Query answers reflect both schema and data
 - + Can deal with incomplete information
 - + Able to answer both intensional and extensional queries
 - Semantics can seem counter-intuitive, particularly w.r.t. data
 - Open -v- closed world; axioms -v- constraints
 - Query answering (logical entailment) may be much more difficult
 - Can lead to scalability problems with expressive logics

Ontology Based Information Systems

