Description Logic: A Formal Foundation for Ontology Languages and Tools

Part 1: Languages

Ian Horrocks
<ian.horrocks@comlab.ox.ac.uk>
Information Systems Group
Oxford University Computing Laboratory
Contents

• Motivation
• Brief review of (first order) logic
• Description Logics as fragments of FOL
• Description Logic syntax and semantics
• Brief review of relevant complexity notions
• Description Logics and OWL
• Ontology applications
• Ontologies –v- databases
DL Basics
What Are Description Logics?
What Are Description Logics?

- Decidable fragments of First Order Logic

Thank you for listening

Any questions?
What Are Description Logics?

• A family of logic based Knowledge Representation formalisms
 – Originally descended from semantic networks and KL-ONE
 – Describe domain in terms of concepts (aka classes), roles (aka properties, relationships) and individuals

[Quillian, 1967]
What Are Description Logics?

• Modern DLs (after Baader et al) distinguished by:
 – Fully fledged logics with formal semantics
 • Decidable fragments of FOL (often contained in C_2)
 • Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment
 – Computational properties well understood (worst case complexity)
 – Provision of inference services
 • Practical decision procedures (algorithms) for key problems
 (satisfiability, subsumption, query answering, etc)
 • Implemented systems (highly optimised)

• The basis for widely used ontology languages
Web Ontology Language OWL (2)

• **W3C** recommendation(s)

• Motivated by **Semantic Web** activity

 Add meaning to web content by annotating it with terms defined in ontologies

• Supported by **tools and infrastructure**

 – APIs (e.g., OWL API, Thea, OWLink)
 – Development environments
 (e.g., Protégé, Swoop, TopBraid Composer, Neon)
 – Reasoners & Information Systems
 (e.g., Pellet, Racer, HermiT, Quonto, …)

• Based on **Description Logics** (**SHOIN / SROIQ**)
and now:

A Word from our Sponsors
Crash Course in (simplified) FOL

• Syntax
 – Non-logical symbols (signature)
 • Constants: Felix, MyMat
 • Predicates(arity): Animal(1), Cat(1), has-color(2), sits-on(2)
 – Logical symbols:
 • Variables: x, y
 • Operators: ∧, ∨, →, ¬, …
 • Quantifiers: ∃, ∀
 • Equality: =
 – Formulas:
 • Cat(\text{Felix}), \text{Mat(\text{MyMat})}, \text{sits-on(\text{Felix, MyMat})}
 • Cat(x), Cat(x) ∨ \text{Human}(x), ∃y.\text{Mat}(y) ∧ \text{sits-on}(x, y)
 • ∀x.\text{Cat}(x) → \text{Animal}(x), ∀x.\text{Cat}(x) → (∃y.\text{Mat}(y) ∧ \text{sits-on}(x, y))
Crash Course in (simplified) FOL

- Semantics
Crash Course in (simplified) FOL

- Semantics
Crash Course in (simplified) FOL

• Semantics
Crash Course in (simplified) FOL

• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!
Crash Course in (simplified) FOL

• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!
Crash Course in (simplified) FOL

• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.
Crash Course in (simplified) FOL

- Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.

That's OK, but I don't get paid for philosophy.
Crash Course in (simplified) FOL

• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.

From a practical POV, in order to specify, build and test (ontology-based) tools/systems we need to precisely define relationships (like entailment) between logical statements – this defines the intended behaviour of tools/systems.
Crash Course in (simplified) FOL

• Semantics

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which “objects” in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.
Crash Course in (simplified) FOL

• Semantics

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which “objects” in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.

Note that this is exactly the same kind of model as used in a database: objects in the world are modeled as values (elements) and relationships as tables (sets of tuples).
Crash Course in (simplified) FOL

- Semantics
 - Model: a pair \(\langle D, \cdot^I \rangle \) with \(D \) a non-empty set and \(\cdot^I \) an interpretation
 - \(C^I \) is an element of \(D \) for \(C \) a constant
 - \(v^I \) is an element of \(D \) for \(v \) a variable
 - \(P^I \) is a subset of \(D^n \) for \(P \) a predicate of arity \(n \)
 - E.g., \(D = \{a, b, c, d, e, f\} \), and
 - \(\text{Felix}^I = a \)
 - \(\text{MyMat}^I = b \)
 - \(\text{Cat}^I = \{a, c\} \)
 - \(\text{Mat}^I = \{b, e\} \)
 - \(\text{Animal}^I = \{a, c, d\} \)
 - \(\text{sits-on}^I = \{\langle a, b \rangle, \langle c, e \rangle\} \)
Crash Course in (simplified) FOL

• Semantics
 – Evaluation: truth value in a given model \(M = \langle D, \cdot^I \rangle \)
 - \(P(t_1, \ldots, t_n) \) is \textit{true} iff \(\langle t_1^I, \ldots, t_n^I \rangle \in P^I \)
 - \(A \land B \) is \textit{true} iff \(A \) is \textit{true} and \(B \) is \textit{true}
 \(\neg A \) is \textit{true} iff \(A \) is not \textit{true}
 – E.g.,

\[
\begin{align*}
\text{Cat}(Felix) & \quad \text{true} \\
\text{Cat}(MyMat) & \quad \text{false} \\
\neg \text{Mat}(Felix) & \quad \text{true} \\
\text{sits-on}(Felix, MyMat) & \quad \text{true} \\
\text{Mat}(Felix) \lor \text{Cat}(Felix) & \quad \text{true}
\end{align*}
\]

\[
\begin{align*}
D &= \{a, b, c, d, e, f\} \\
Felix^I &= a \\
MyMat^I &= b \\
\text{Cat}^I &= \{a, c\} \\
\text{Mat}^I &= \{b, e\} \\
\text{Animal}^I &= \{a, c, d\} \\
\text{sits-on}^I &= \{\langle a, b \rangle, \langle c, e \rangle\}
\end{align*}
\]
Crash Course in (simplified) FOL

• Semantics
 – Evaluation: truth value in a given model $M = \langle D, \cdot^I \rangle$
 • $\exists x.A$ is true iff exists \cdot^I' s.t. \cdot^I and \cdot^I' differ only w.r.t. x, and A is true w.r.t. $\langle D, \cdot^I' \rangle$
 • $\forall x.A$ is true iff for all \cdot^I' s.t. \cdot^I and \cdot^I' differ only w.r.t. x, A is true w.r.t. $\langle D, \cdot^I' \rangle$

E.g.,
\[
\begin{align*}
\exists x.\text{Cat}(x) & \quad \text{true} \\
\forall x.\text{Cat}(x) & \quad \text{false} \\
\exists x.\text{Cat}(x) \land \text{Mat}(x) & \quad \text{false} \\
\forall x.\text{Cat}(x) \rightarrow \text{Animal}(x) & \quad \text{true} \\
\forall x.\text{Cat}(x) \rightarrow (\exists y.\text{Mat}(y) \land \text{sits-on}(x, y)) & \quad \text{true}
\end{align*}
\]

\[
\begin{array}{ll}
D = \{a, b, c, d, e, f\} \\
\text{Felix}^I = a \\
\text{MyMat}^I = b \\
\text{Cat}^I = \{a, c\} \\
\text{Mat}^I = \{b, e\} \\
\text{Animal}^I = \{a, c, d\} \\
\text{sits-on}^I = \{\langle a, b\rangle, \langle c, e\rangle\}
\end{array}
\]
Crash Course in (simplified) FOL

- **Semantics**
 - Given a model M and a formula F, M is a model of F (written $M \models F$) iff F evaluates to true in M.
 - A formula F is **satisfiable** iff there exists a model M s.t. $M \models F$.
 - A formula F **entails** another formula G (written $F \models G$) iff every model of F is also a model of G (i.e., $M \models F$ implies $M \models G$).

E.g.,

\[
\begin{align*}
M \models & \exists x. \text{Cat}(x) \\
M \not\models & \forall x. \text{Cat}(x) \\
M \not\models & \exists x. \text{Cat}(x) \land \text{Mat}(x) \\
M \models & \forall x. \text{Cat}(x) \rightarrow \text{Animal}(x) \\
M \models & \forall x. \text{Cat}(x) \rightarrow (\exists y. \text{Mat}(y) \land \text{sits-on}(x, y))
\end{align*}
\]

\[
D = \{a, b, c, d, e, f\} \\
\text{Felix}^I = a \\
\text{MyMat}^I = b \\
\text{Cat}^I = \{a, c\} \\
\text{Mat}^I = \{b, e\} \\
\text{Animal}^I = \{a, c, d\} \\
\text{sits-on}^I = \{\langle a, b \rangle, \langle c, e \rangle\}
\]
Crash Course in (simplified) FOL

• Semantics

 – Given a model M and a formula F, M is a model of F (written $M \models F$) iff F evaluates to true in M.

 – A formula F is **satisfiable** iff there exists a model M s.t. $M \models F$.

 – A formula F **entails** another formula G (written $F \models G$) iff every model of F is also a model of G (i.e., $M \models F$ implies $M \models G$).

E.g.,

<table>
<thead>
<tr>
<th>Formula</th>
<th>Truth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x. \text{Cat}(x)$</td>
<td>\models</td>
</tr>
<tr>
<td>$\exists x. \text{Cat}(x)$</td>
<td>\models</td>
</tr>
<tr>
<td>$(\forall x. \text{Cat}(x) \rightarrow \text{Animal}(x)) \land \text{Cat}(\text{Felix})$</td>
<td>\models</td>
</tr>
<tr>
<td>$(\forall x. \text{Cat}(x) \rightarrow \text{Animal}(x)) \land \neg \text{Animal}(\text{Felix})$</td>
<td>$\not\models$</td>
</tr>
<tr>
<td>$\text{Cat}(\text{Felix})$</td>
<td>$\not\models$</td>
</tr>
<tr>
<td>$\neg \text{Cat}(\text{Felix})$</td>
<td>$\not\models$</td>
</tr>
<tr>
<td>$\text{sits-on}(\text{Felix}, \text{Mat1}) \land \text{sits-on}(\text{Tiddles}, \text{Mat2})$</td>
<td>$\not\models$</td>
</tr>
<tr>
<td>$\neg \text{sits-on}(\text{Felix}, \text{Mat2})$</td>
<td>$\not\models$</td>
</tr>
<tr>
<td>$\text{sits-on}(\text{Felix}, \text{Mat1}) \land \text{sits-on}(\text{Tiddles}, \text{Mat1})$</td>
<td>\models</td>
</tr>
<tr>
<td>$\exists^{\geq 2} x. \text{sits-on}(x, \text{Mat1})$</td>
<td>$\not\models$</td>
</tr>
</tbody>
</table>
Decidable Fragments

• FOL (satisfiability) well known to be undecidable
 – A sound, complete and terminating algorithm is impossible

• Interesting decidable fragments include, e.g.,
 – C2: FOL with 2 variables and Counting quantifiers \((\exists^{\geq n}, \exists^{\leq n})\)
 • Counting quantifiers abbreviate pairwise (in-) equalities, e.g.:
 \[\exists^{\geq 3} x. \text{Cat}(x) \] equivalent to
 \[\exists x, y, z. \text{Cat}(x) \land \text{Cat}(y) \land \text{Cat}(z) \land x \neq y \land x \neq z \land y \neq z \]
 \[\exists^{\leq 2} x. \text{Cat}(x) \] equivalent to
 \[\forall x, y, z. \text{Cat}(x) \land \text{Cat}(y) \land \text{Cat}(z) \rightarrow x = y \lor x = z \lor y = z \]
 – Propositional modal and description logics
 – Guarded fragment
Back to our Scheduled Program
DL Syntax

• **Signature**
 - **Concept** (aka class) names, e.g., Cat, Animal, Doctor
 • Equivalent to FOL unary predicates
 - **Role** (aka property) names, e.g., sits-on, hasParent, loves
 • Equivalent to FOL binary predicates
 - **Individual** names, e.g., Felix, John, Mary, Boston, Italy
 • Equivalent to FOL constants
DL Syntax

• Operators
 – Many kinds available, e.g.,
 • Standard FOL Boolean operators (\(\cap, \cup, \neg\))
 • Restricted form of quantifiers (\(\exists, \forall\))
 • Counting (\(\geq, \leq, =\))
 • …
DL Syntax

• Concept expressions, e.g.,
 – Doctor ⊔ Lawyer
 – Rich ⊓ Happy
 – Cat ⊓ ∃sits-on.Mat

• Equivalent to FOL formulae with one free variable
 – Doctor(x) ∨ Lawyer(x)
 – Rich(x) ∧ Happy(x)
 – ∃y.(Cat(x) ∧ sits-on(x, y))
DL Syntax

• Special concepts
 – \top (aka top, Thing, most general concept)
 – \bot (aka bottom, Nothing, inconsistent concept)

used as abbreviations for
 – $(A \sqcup \neg A)$ for any concept A
 – $(A \sqcap \neg A)$ for any concept A
DL Syntax

• Role expressions, e.g.,
 – loves
 – hasParent o hasBrother

• Equivalent to FOL formulae with two free variables
 – loves(y, x)
 – ∃z.(hasParent(x, z) ∧ hasBrother(z, y))
DL Syntax

• “Schema” Axioms, e.g.,
 - `Rich ⊑ ¬Poor` (concept inclusion)
 - `Cat ⊓ ∃sits-on.Mat ⊑ Happy` (concept inclusion)
 - `BlackCat ≡ Cat ⊓ ∃hasColour.Black` (concept equivalence)
 - `sits-on ⊑ touches` (role inclusion)
 - `Trans(part-of)` (transitivity)

• Equivalent to (particular form of) FOL sentence, e.g.,
 - `∀x.(Rich(x) → ¬Poor(x))`
 - `∀x.(Cat(x) ∧ ∃y.(sits-on(x,y) ∧ Mat(y)) → Happy(x))`
 - `∀x.(BlackCat(x) ↔ (Cat(x) ∧ ∃y.(hasColour(x,y) ∧ Black(y))))`
 - `∀x,y.(sits-on(x,y) → touches(x,y))`
 - `∀x,y,z.((sits-on(x,y) ∧ sits-on(y,z)) → sits-on(x,z))`
DL Syntax

• “Data” **Axioms** (aka Assertions or Facts), e.g.,
 – BlackCat(Felix) (concept assertion)
 – Mat(Mat1) (concept assertion)
 – Sits-on(Felix,Mat1) (role assertion)

• Directly equivalent to FOL “ground facts”
 – Formulae with no variables
DL Syntax

• A set of axioms is called a **TBox**, e.g.:

\[
\{\text{Doctor} \sqsubseteq \text{Person}, \\
\text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \\
\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}
\}
\]

• A set of facts is called an **ABox**, e.g.:

\[
\{\text{HappyParent}(\text{John}), \\
\text{hasChild}(\text{John}, \text{Mary})\}
\]

• A **Knowledge Base** (KB) is just a TBox plus an Abox
 – Often written \(\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle \)

Note
Facts sometimes written
- John:HappyParent,
- John hasChild Mary,
- \langle John, Mary \rangle: hasChild
The DL Family

• Many different DLs, often with “strange” names
 – E.g., EL, ALC, $SHIQ$

• Particular DL defined by:
 – Concept operators (\cap, \cup, \neg, \exists, \forall, etc.)
 – Role operators (\cdot, \circ, etc.)
 – Concept axioms (\sqsubseteq, \equiv, etc.)
 – Role axioms (\sqsubseteq, Trans, etc.)
The DL Family

• E.g., \mathcal{EL} is a well known “sub-Boolean” DL
 – Concept operators: \land, \neg, \exists
 – No role operators (only atomic roles)
 – Concept axioms: \sqsubseteq, \equiv
 – No role axioms

• E.g.:

 \begin{align*}
 \text{Parent} & \equiv \text{Person} \land \exists \text{hasChild}.\text{Person}
 \end{align*}
The DL Family

- \textbf{\textit{ALC}} is the smallest propositionally closed DL
 - Concept operators: \cap, \cup, \neg, \exists, \forall
 - No role operators (only atomic roles)
 - Concept axioms: \subseteq, \equiv
 - No role axioms

- E.g.:

$$\text{ProudParent} \equiv \text{Person} \sqcap \forall \text{hasChild.}(\text{Doctor} \sqcup \exists \text{hasChild.}\text{Doctor})$$
The DL Family

- *S* used for *ALC* extended with (role) transitivity axioms
- **Additional letters** indicate various extensions, e.g.:
 - *H* for role hierarchy (e.g., hasDaughter ⊆ hasChild)
 - *R* for role box (e.g., hasParent ◦ hasBrother ⊆ hasUncle)
 - *O* for nominals/singleton classes (e.g., {Italy})
 - *I* for inverse roles (e.g., isChildOf ≡ hasChild⁻)
 - *N* for number restrictions (e.g., ≥2hasChild, ≤3hasChild)
 - *Q* for qualified number restrictions (e.g., ≥2hasChild.Doctor)
 - *F* for functional number restrictions (e.g., ≤1hasMother)
- E.g., *SHIQ* = *S* + role hierarchy + inverse roles + QNRs
The DL Family

• Numerous other extensions have been investigated
 – Concrete domains (numbers, strings, etc)
 – DL-safe rules (Datalog-like rules)
 – Fixpoints
 – Role value maps
 – Additional role constructors (\cap, \cup, \neg, \circ, id, …)
 – Nary (i.e., predicates with arity >2)
 – Temporal
 – Fuzzy
 – Probabilistic
 – Non-monotonic
 – Higher-order
 – …
DL Semantics

Via translation to FOL, or directly using FO model theory:

- **Interpretation function** \mathcal{I}
- **Interpretation domain** $\Delta^\mathcal{I}$

Individuals $i^\mathcal{I} \in \Delta^\mathcal{I}$
- John
- Mary

Concepts $C^\mathcal{I} \subseteq \Delta^\mathcal{I}$
- Lawyer
- Doctor
- Vehicle

Roles $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$
- hasChild
- owns
DL Semantics

- Interpretation function extends to **concept expressions** in the obvious(ish) way, e.g.:

\[
(C \equiv D) = C \cap D
\]
\[
(C \equiv D) = C \cup D
\]
\[
(\neg C) = \Delta \setminus C
\]
\[
\{x\} = \{x\}
\]
\[
(\exists R.C) = \{x \mid \exists y.\langle x, y \rangle \in R \land y \in C\}
\]
\[
(\forall R.C) = \{x \mid \forall y.\langle x, y \rangle \in R \Rightarrow y \in C\}
\]
\[
(\leq n R) = \{x \mid \#\{y \mid \langle x, y \rangle \in R\} \leq n\}
\]
\[
(\geq n R) = \{x \mid \#\{y \mid \langle x, y \rangle \in R\} \geq n\}
\]
DL Semantics

- Given a model $M = \langle D, I \rangle$
 - $M \models C \subseteq D$ iff $C^I \subseteq D^I$
 - $M \models C \equiv D$ iff $C^I = D^I$
 - $M \models C(a)$ iff $a^I \in C^I$
 - $M \models R(a, b)$ iff $\langle a^I, b^I \rangle \in R^I$
 - $M \models \langle T, A \rangle$ iff for every axiom $ax \in T \cup A$, $M \models ax$
DL Semantics

• Satisfiability and entailment

 – A KB \mathcal{K} is satisfiable iff there exists a model M s.t. $M \models \mathcal{K}$

 – A concept C is satisfiable w.r.t. a KB \mathcal{K} iff there exists a model $M = \langle D, \cdot^1 \rangle$ s.t. $M \models \mathcal{K}$ and $C^1 \neq \emptyset$

 – A KB \mathcal{K} entails an axiom ax (written $\mathcal{K} \models \text{ax}$) iff for every model M of \mathcal{K}, $M \models \text{ax}$ (i.e., $M \models \mathcal{K}$ implies $M \models \text{ax}$)
DL Semantics

E.g.,
\[T = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \]
\[\quad \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \} \]
\[A = \{ \text{John:HappyParent}, \text{John hasChild Mary}, \text{John hasChild Sally}, \]
\[\quad \text{Mary:}\neg\text{Doctor}, \text{Mary hasChild Peter}, \text{Mary:(} \leq 1 \text{ hasChild}) \}

\[\checkmark - \mathcal{K} \models \text{John:Person} ? \]
\[\checkmark - \mathcal{K} \models \text{Peter:Doctor} ? \]
\[\checkmark - \mathcal{K} \models \text{Mary:HappyParent} ? \]
\[- \text{What if we add “Mary hasChild Jane”?} \]
\[\quad \mathcal{K} \models \text{Peter = Jane} \]
\[- \text{What if we add “HappyPerson} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Doctor”?} \]
\[\quad \mathcal{K} \models \text{HappyPerson} \sqsubseteq \text{Parent} \]
DL and FOL

• Most DLs are subsets of C2
 – But reduction to C2 may be (highly) non-trivial
 • Trans(R) naively reduces to $\forall x, y, z. R(x, y) \land R(y, z) \rightarrow R(x, z)$

• Why use DL instead of C2?
 – Syntax is succinct and convenient for KR applications
 – Syntactic conformance guarantees being inside C2
 • Even if reduction to C2 is non-obvious
 – Different combinations of constructors can be selected
 • To guarantee decidability
 • To reduce complexity
 – DL research has mapped out the decidability/complexity landscape in great detail
 • See Evgeny Zolin’s DL Complexity Analyzer
 http://www.cs.man.ac.uk/~ezolin/dl/
Complexity of reasoning in Description Logics

Base description logic: Attributive Language with Complements

\[
\text{ALC} := \bot \mid A \mid \neg C \mid C \land D \mid C \lor D \mid \text{ER}C \mid \forall R.C
\]

Concept constructors:
- $\exists R$: functionality (≤ 1 R)
- $\forall R$: (unqualified) number restrictions ($\geq n$ R), ($\leq n$ R)
- $\forall R.C$: qualified number restrictions ($\geq n$ R.C), ($\leq n$ R.C)
- $\exists R.C$: nominals: \{a\} or \{a_1, \ldots, a_n\} ("one-of" constructor)
- μ - least fixpoint operator: $\mu X.C$
- $R \subseteq S$: role-value-maps
- $f = g$: agreement of functional role chains ("same-as")

Role constructors:
- \top: role inverses: R^-
- $\bigcap R$: role intersection ($\forall R.S$)
- $\bigcup R$: role union: $R \cup S$
- $\neg R$: role complement: $\neg R$
- \circ: role chain (composition): $R \circ S$
- \star: reflexive-transitive closure ($\forall R.S$)
- $\mu X.C$: concept identity: $id(C)$
- $\mu X.C$: complex roles in number restrictions

TBox is internalized in extensions of ALCQIO, see [75, Lemma 4.12], [54, p.3]
- Empty TBox
- Acyclic TBox ($A \equiv C$, A is a concept name; no cycles)
- General TBox ($C \subseteq D$ for arbitrary concepts C and D)

Role axioms (RBox):
- \top: Role transitivity: $\text{Trans}(R)
- $\bigcup R$: Role hierarchy: $R \subseteq S$
- $\bigcap R$: Complex role inclusions: $R \subseteq S$, $R \subseteq S$
- \star: some additional features

Complexity of reasoning problems

<table>
<thead>
<tr>
<th>Reasoning problem</th>
<th>Complexity</th>
<th>Comments and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept satisfiability</td>
<td>NExpTime-complete</td>
<td>Hardness of even ALCQIO is proved in [76, Corollary 4.13]. In that paper, the result is formulated for ALCQIO, but only number restrictions of the form (≤ 1R) are used in the proof. A different proof of the NExpTime-hardness for ALCQIO is given in [54] (even with 1 nominal, and role inverses not used in number restrictions). Upper bound for SHOIQ is proved in [77, Corollary 6.31] with numbers coded in unary (for binary coding, the upper bound remains an open problem for all logics in between ALCQIO and SHIQ). Important: in number restrictions, only simple roles (i.e. which are neither transitive nor have a transitive subrole) are allowed; otherwise we gain undecidability even in SHIQ; see [46]. Remark: recently [47] it was observed that, in many cases, one can use transitive roles in number restrictions – and still have a decidable logic! So the above notion of a simple role could be substantially extended.</td>
</tr>
<tr>
<td>ABox consistency</td>
<td>NExpTime-complete</td>
<td>By reduction to concept satisfiability problem in presence of nominals shown in [69, Theorem 3.7].</td>
</tr>
</tbody>
</table>
Complexity Measures

• **Taxonomic** complexity
 Measured w.r.t. total size of “schema” axioms

• **Data** complexity
 Measured w.r.t. total size of “data” facts

• **Query** complexity
 Measured w.r.t. size of query

• **Combined** complexity
 Measured w.r.t. total size of KB (plus query if appropriate)
Complexity Classes

• LogSpace, PTime, NP, PSpace, ExpTime, etc
 – worst case for a given problem w.r.t. a given parameter
 – X-hard means at-least this hard (could be harder);
 in X means no harder than this (could be easier);
 X-complete means both hard and in, i.e., exactly this hard
 • e.g., SROIQ KB satisfiability is 2NExpTime-complete w.r.t.
 combined complexity and NP-hard w.r.t. data complexity

• Note that:
 – this is for the worst case, not a typical case
 – complexity of problem means we can never devise a more
 efficient (in the worst case) algorithm
 – complexity of algorithm may, however, be even higher
 (in the worst case)
DLs and Ontology Languages
DLs and Ontology Languages

- W3C’s OWL 2 (like OWL, DAML+OIL & OIL) based on DL
 - OWL 2 based on SROIQ, i.e., ALC extended with transitive roles, a role box nominals, inverse roles and qualified number restrictions
 - OWL 2 EL based on EL
 - OWL 2 QL based on DL-Lite
 - OWL 2 EL based on DLP
- OWL was based on SHOIN
 - only simple role hierarchy, and unqualified NRs
Class/Concept Constructors

<table>
<thead>
<tr>
<th>OWL Constructor</th>
<th>DL Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersectionOf</td>
<td>$C_1 \sqcap \ldots \sqcap C_n$</td>
<td>Human \sqcap Male</td>
</tr>
<tr>
<td>unionOf</td>
<td>$C_1 \sqcup \ldots \sqcup C_n$</td>
<td>Doctor \sqcup Lawyer</td>
</tr>
<tr>
<td>complementOf</td>
<td>$\neg C$</td>
<td>\neg Male</td>
</tr>
<tr>
<td>oneOf</td>
<td>${x_1} \sqcup \ldots \sqcup {x_n}$</td>
<td>${john} \sqcup {mary}$</td>
</tr>
<tr>
<td>allValuesFrom</td>
<td>$\forall P.C$</td>
<td>\forall hasChild.Doctor</td>
</tr>
<tr>
<td>someValuesFrom</td>
<td>$\exists P.C$</td>
<td>\exists hasChild.Lawyer</td>
</tr>
<tr>
<td>maxCardinality</td>
<td>$\leq nP$</td>
<td>≤ 1 hasChild</td>
</tr>
<tr>
<td>minCardinality</td>
<td>$\geq nP$</td>
<td>≥ 2 hasChild</td>
</tr>
</tbody>
</table>
Ontology Axioms

<table>
<thead>
<tr>
<th>OWL Syntax</th>
<th>DL Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>subClassOf</td>
<td>$C_1 \sqsubseteq C_2$</td>
<td>Human \sqsubseteq Animal \sqcap Biped</td>
</tr>
<tr>
<td>equivalentClass</td>
<td>$C_1 \equiv C_2$</td>
<td>Man \equiv Human \sqcap Male</td>
</tr>
<tr>
<td>subPropertyOf</td>
<td>$P_1 \sqsubseteq P_2$</td>
<td>hasDaughter \sqsubseteq hasChild</td>
</tr>
<tr>
<td>equivalentProperty</td>
<td>$P_1 \equiv P_2$</td>
<td>cost \equiv price</td>
</tr>
<tr>
<td>transitiveProperty</td>
<td>$P^+ \sqsubseteq P$</td>
<td>ancestor$^+$ \sqsubseteq ancestor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OWL Syntax</th>
<th>DL Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>$a : C$</td>
<td>John : Happy-Father</td>
</tr>
<tr>
<td>property</td>
<td>$\langle a, b \rangle : R$</td>
<td>\langleJohn, Mary$\rangle :$ has-child</td>
</tr>
</tbody>
</table>

- An **Ontology** is *usually* considered to be a TBox
 - but an **OWL** ontology is a mixed set of TBox and ABox axioms
Other OWL Features

- XSD datatypes and (in OWL 2) facets, e.g.,
 - integer, string and (in OWL 2) real, float, decimal, datetime, …
 - minExclusive, maxExclusive, length, …
 - PropertyAssertion(hasAge Meg "17"^^xsd:integer)
 - DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer)

These are equivalent to (a limited form of) DL concrete domains

- Keys
 - E.g., HasKey(Vehicle Country LicensePlate)
 - Country + License Plate is a unique identifier for vehicles

This is equivalent to (a limited form of) DL safe rules
E.g., Person $\sqcap \forall$hasChild.(Doctor $\sqcap \exists$hasChild.Doctor):

```xml
<owl:Class>
  <owl:intersectionOf rdf:parseType="collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasChild"/>
      <owl:allValuesFrom>
        <owl:unionOf rdf:parseType="collection">
          <owl:Class rdf:about="#Doctor"/>
          <owl:Restriction>
            <owl:onProperty rdf:resource="#hasChild"/>
            <owl:someValuesFrom rdf:resource="#Doctor"/>
          </owl:Restriction>
        </owl:unionOf>
      </owl:allValuesFrom>
    </owl:Restriction>
  </owl:intersectionOf>
</owl:Class>
```
Complexity/Scalability

• From the complexity navigator we can see that:
 – OWL (aka SHOIN) is \text{NExpTime-complete}
 – OWL Lite (aka SHIF) is \text{ExpTime-complete} (oops!)
 – OWL 2 (aka SROIQ) is \text{2NExpTime-complete}
 – OWL 2 EL (aka EL) is \text{PTIME-complete} (robustly scalable)
 – OWL 2 RL (aka DLP) is \text{PTIME-complete} (robustly scalable)
 • And implementable using rule based technologies
e.g., rule-extended DBs
 – OWL 2 QL (aka DL-Lite) is in \text{AC}^0 \text{ w.r.t. size of data}
 • same as DB query answering -- nice!
Why (Description) Logic?

- OWL exploits results of 20+ years of DL research
 - Well defined (model theoretic) semantics

<table>
<thead>
<tr>
<th>Constructor</th>
<th>DL Syntax</th>
<th>Example</th>
<th>FOL Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersectionOf</td>
<td>$C_1 \sqcap \ldots \sqcap C_n$</td>
<td>Human \sqcap Male</td>
<td>$C_1(x) \wedge \ldots \wedge C_n(x)$</td>
</tr>
<tr>
<td>unionOf</td>
<td>$C_1 \sqcup \ldots \sqcup C_n$</td>
<td>Doctor \sqcup Lawyer</td>
<td>$C_1(x) \vee \ldots \vee C_n(x)$</td>
</tr>
<tr>
<td>complementOf</td>
<td>$\neg C$</td>
<td>\neg Male</td>
<td>$\neg C(x)$</td>
</tr>
<tr>
<td>oneOf</td>
<td>${x_1} \sqcup \ldots \sqcup {x_n}$</td>
<td>${john} \sqcup {mary}$</td>
<td>$x = x_1 \vee \ldots \vee x = x_n$</td>
</tr>
<tr>
<td>allValuesFrom</td>
<td>$\forall P.C$</td>
<td>\forall hasChild.Doctor</td>
<td>$\forall y. P(x, y) \rightarrow C(y)$</td>
</tr>
<tr>
<td>someValuesFrom</td>
<td>$\exists P.C$</td>
<td>\exists hasChild.Lawyer</td>
<td>$\exists y. P(x, y) \wedge C(y)$</td>
</tr>
<tr>
<td>maxCardinality</td>
<td>$\leq np$</td>
<td>≤ 1 hasChild</td>
<td>$\exists y. P(x, y)$</td>
</tr>
<tr>
<td>minCardinality</td>
<td>$\geq np$</td>
<td>≥ 2 hasChild</td>
<td>$\exists y. P(x, y)$</td>
</tr>
</tbody>
</table>
Why (Description) Logic?

- OWL exploits results of 20+ years of DL research
 - Well defined (model theoretic) semantics
 - Formal properties well understood (complexity, decidability)

I can’t find an efficient algorithm, but neither can all these famous people.

Why (Description) Logic?

- **OWL** exploits results of 20+ years of DL research
 - Well defined (model theoretic) **semantics**
 - **Formal properties** well understood (complexity, decidability)
 - Known reasoning algorithms

| □-rule | if 1. \((C_1 \cap C_2) \in \mathcal{L}(v), v\) is not indirectly blocked, and
| | 2. \(\{C_1, C_2\} \notin \mathcal{L}(v)\)
| | then \(\mathcal{L}(v) \rightarrow \mathcal{L}(v) \cup \{C_1, C_2\}\). |
| □-rule | if 1. \((C_1 \cup C_2) \in \mathcal{L}(v), v\) is not indirectly blocked, and
| | 2. \(\{C_1, C_2\} \cap \mathcal{L}(v) = \emptyset\)
| | then \(\mathcal{L}(v) \rightarrow \mathcal{L}(v) \cup \{E\}\) for some \(E \in \{C_1, C_2\}\). |
| ∃-rule | if 1. ∃r.C \(\in \mathcal{L}(v_1)\), \(v_1\) is not blocked, and
| | 2. \(v_1\) has no safe r-neighbour \(v_2\) with \(C \in \mathcal{L}(v_1)\),
| | then create a new node \(v_2\) and an edge \((v_1, v_2)\)
| | with \(\mathcal{L}(v_2) = \{C\}\) and \(\mathcal{L}(v_1, v_2) = \{r\}\). |
| ∀-rule | if 1. ∀r.C \(\in \mathcal{L}(v_1)\), \(v_1\) is not indirectly blocked, and
| | 2. there is an r-neighbour \(v_2\) of \(v_1\) with \(C \notin \mathcal{L}(v_2)\)
| | then \(\mathcal{L}(v_2) \rightarrow \mathcal{L}(v_2) \cup \{C\}\). |
| ∀+.-rule | if 1. ∀r.C \(\in \mathcal{L}(v_1)\), \(v_1\) is not indirectly blocked, and
| | 2. there is some role \(r'\) with\(Trans(r')\) and \(r' \sqsubseteq r\)
| | 3. there is an r'-neighbour \(v_2\) of \(v_1\) with \(\forall r'.C \notin \mathcal{L}(v_2)\)
| | then \(\mathcal{L}(v_2) \rightarrow \mathcal{L}(v_2) \cup \{\forall r'.C\}\). |
| choose-rule | if 1. \(\exists n. r.C \in \mathcal{L}(v_1)\), \(v_1\) is not indirectly blocked, and
| | 2. there is an r-neighbour \(v_2\) of \(v_1\) with \(\{C, \neg C\} \cap \mathcal{L}(v_2) = \emptyset\)
| | then \(\mathcal{L}(v_2) \rightarrow \mathcal{L}(v_2) \cup \{E\}\) for some \(E \in \{C, \neg C\}\). |
| ≥.-rule | if 1. \(\geq n. r.C \in \mathcal{L}(v)\), \(v\) is not blocked, and
| | 2. there are not \(n\) safe r-neighbours \(v_1, \ldots, v_n\) of \(v\)
| | with \(C \in \mathcal{L}(v_i)\) and \(v_i \neq v_j\) for \(1 \leq i < j \leq n\). |
Why (Description) Logic?

• OWL exploits results of 20+ years of DL research
 – Well defined (model theoretic) **semantics**
 – **Formal properties** well understood (complexity, decidability)
 – Known **reasoning algorithms**
 – **Scalability** demonstrated by **implemented systems**
Tools, Tools, Tools

Major benefit of OWL has been huge increase in range and sophistication of tools and infrastructure:
Tools, Tools, Tools

Major benefit of OWL has been huge increase in range and sophistication of tools and infrastructure:

• Editors/development environments
Tools, Tools, Tools

Major benefit of OWL has been huge increase in range and sophistication of tools and infrastructure:

- Editors/development environments
- Reasoners

Hermit

Racer

KAON2

FaCT++

Pellet

CEL
Tools, Tools, Tools

Major benefit of OWL has been huge increase in range and sophistication of tools and infrastructure:

• Editors/development environments

• Reasoners

• Explanation, justification and pinpointing
Tools, Tools, Tools

Major benefit of OWL has been huge increase in range and sophistication of tools and infrastructure:

- Editors/development environments
- Reasoners
- Explanation, justification and pinpointing
- Integration and modularisation
Tools, Tools, Tools

Major benefit of OWL has been huge increase in range and sophistication of tools and infrastructure:

- Editors/development environments
- Reasoners
- Explanation, justification and pinpointing
- Integration and modularisation
- APIs, in particular the **OWL API**
Motivating Applications

- OWL playing **key role** in increasing number & range of applications
 - eScience

3D Analysis of Patterns of Gene Expression

Ontology of Zebrafish Developmental Anatomy

<table>
<thead>
<tr>
<th></th>
<th>20 somite</th>
<th>...Head</th>
<th>Perihiral Nervous System</th>
</tr>
</thead>
<tbody>
<tr>
<td>trigeminal (V) ganglion</td>
<td>...Head</td>
<td></td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>Rohon-Beard neurons</td>
<td>20 somite</td>
<td></td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>primary motorneurons</td>
<td>20 somite</td>
<td>...Head</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>brain</td>
<td>...Head</td>
<td>14 somite</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>hindbrain</td>
<td>14 somite</td>
<td>...Head</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>midbrain</td>
<td>14 somite</td>
<td>...Head</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>forebrain</td>
<td>14 somite</td>
<td>...Head</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>ear</td>
<td>20 somite</td>
<td>...Head</td>
<td>Auditory</td>
</tr>
<tr>
<td>eye</td>
<td>14 somite</td>
<td>...Head</td>
<td>Visual</td>
</tr>
</tbody>
</table>

Integration of Heterogeneous gene expression data
Motivating Applications

- OWL playing **key role** in increasing number & range of applications
 - eScience, geography
Motivating Applications

• OWL playing **key role** in increasing number & range of applications
 – eScience, geography, engineering,

 Experience of OWL in use has identified restrictions:
 – on expressivity
 – on scalability

These restrictions are problematic in some applications
Research has now shown how some restrictions can be overcome
– W3C OWL WG is updating OWL accordingly
Motivating Applications

- OWL playing key role in increasing number & range of applications
 - eScience, geography, engineering, medicine

Experience of OWL in use has identified restrictions:
- on expressivity
- on scalability

These restrictions are problematic in some applications.

Research has now shown how some restrictions can be overcome:
- W3C OWL WG is updating OWL accordingly
Motivating Applications

- OWL playing **key role** in increasing number & range of applications
 - eScience, geography, engineering, medicine, biology

Experience of OWL in use has identified restrictions:
- on expressivity
- on scalability

These restrictions are problematic in some applications.

Research has now shown how some restrictions can be overcome:
- W3C OWL WG is updating OWL accordingly
Motivating Applications

- OWL playing **key role** in increasing number & range of applications
 - eScience, geography, engineering, medicine, biology, defence, …

Experience of OWL in use has identified restrictions:
- on expressivity
- on scalability

These restrictions are problematic in some applications.

Research has now shown how some restrictions can be overcome:
- W3C OWL WG is updating OWL accordingly.
NHS £6.2 £12 Billion IT Programme

Key component is “Care Records Service”

• “Live, interactive patient record service accessible 24/7”
• Patient data distributed across local and national DBs
 – Diverse applications support radiology, pharmacy, etc
 – Applications exchange “semantically rich clinical information”
 – Summaries sent to national database
• SNOMED-CT ontology provides clinical **vocabulary**
 – Data uses terms drawn from ontology
 – New terms with well defined meaning can be added “on the fly”
Ontology -v- Database
Obvious Database Analogy

• Ontology axioms analogous to DB schema
 – Schema describes structure of and constraints on data
• Ontology facts analogous to DB data
 – Instantiates schema
 – Consistent with schema constraints
• But there are also important differences…
Obvious Database Analogy

Database:

- Closed world assumption (CWA)
 - Missing information treated as false
- Unique name assumption (UNA)
 - Each individual has a single, unique name
- Schema behaves as constraints on structure of data
 - Define legal database states

Ontology:

- Open world assumption (OWA)
 - Missing information treated as unknown
- No UNA
 - Individuals may have more than one name
- Ontology axioms behave like implications (inference rules)
 - Entail implicit information
Database -v- Ontology

E.g., given the following ontology/schema:

- \(\text{HogwartsStudent} \equiv \text{Student} \sqcap \exists \text{attendsSchool.Hogwarts} \)
- \(\text{HogwartsStudent} \subseteq \forall \text{hasPet.(Owl or Cat or Toad)} \)
- \(\text{hasPet} \equiv \text{isPetOf}^- \) (i.e., hasPet inverse of isPetOf)
- \(\exists \text{hasPet.} \top \subseteq \text{Human} \) (i.e., domain of hasPet is Human)
- \(\text{Phoenix} \sqsubseteq \forall \text{isPetOf.Wizard} \) (i.e., only Wizards have Phoenix pets)
- \(\text{Muggle} \sqsubseteq \neg \text{Wizard} \) (i.e., Muggles and Wizards are disjoint)
Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: Is Draco Malfoy a friend of HarryPotter?

- DB: No
- Ontology: Don’t Know

OWA (didn’t say Draco was not Harry’s friend)
Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: How many friends does Harry Potter have?

- DB: 2
- Ontology: at least 1

No UNA (Ron and Hermione may be 2 names for same person)
Database -v- Ontology

And the following facts/data:

- HarryPotter: Wizard
- DracoMalfoy: Wizard
- HarryPotter hasFriend RonWeasley
- HarryPotter hasFriend HermioneGranger
- HarryPotter hasPet Hedwig

\[\text{RonWeasley} \neq \text{HermioneGranger}\]

Query: How many friends does Harry Potter have?

- DB: 2
- Ontology: at least 2

OWA (Harry may have more friends we didn’t mention yet)
Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

RonWeasley ≠ HermioneGranger

 anállysis:

HarryPotter: ∀hasFriend.{RonWeasley} U {HermioneGranger}

Query: How many friends does Harry Potter have?

- DB: 2
- Ontology: 2!
Database -v- Ontology

Inserting new facts/data:

Dumbledore: Wizard
Fawkes: Phoenix
Fawkes isPetOf Dumbledore

What is the response from DBMS?

– Update rejected: *constraint violation*

 Domain of hasPet is Human; Dumbledore is not Human (CWA)

What is the response from Ontology reasoner?

– **Infer** that Dumbledore is Human (domain restriction)

– Also infer that Dumbledore is a Wizard (only a Wizard can have a pheonix as a pet)
DB Query Answering

• Schema plays **no role**
 – Data must explicitly satisfy schema constraints

• Query answering amounts to **model checking**
 – I.e., a “look-up” against the data

• Can be very **efficiently implemented**
 – Worst case complexity is low (logspace) w.r.t. size of data
Ontology Query Answering

• Ontology axioms play a powerful and crucial role
 – Answer may include implicitly derived facts
 – Can answer conceptual as well as extensional queries
 • E.g., Can a Muggle have a Phoenix for a pet?

• Query answering amounts to theorem proving
 – I.e., logical entailment

• May have very high worst case complexity
 – E.g., for OWL, NP-hard w.r.t. size of data
 (upper bound is an open problem)
 – Implementations may still behave well in typical cases
 – Fragments/profiles may have much better complexity
Ontology Based Information Systems

• Analogous to relational database management systems
 – Ontology \approx schema; instances \approx data

• Some important (dis)advantages
 + (Relatively) easy to maintain and update schema
 • Schema plus data are integrated in a logical theory
 + Query answers reflect both schema and data
 + Can deal with incomplete information
 + Able to answer both intensional and extensional queries
 – Semantics can seem counter-intuitive, particularly w.r.t. data
 • Open -v- closed world; axioms -v- constraints
 – Query answering (logical entailment) may be much more difficult
 • Can lead to scalability problems with expressive logics
Ontology Based Information Systems

• Analogous to relational database management systems
 – Ontology ≈ schema; instances ≈ data

• Some important (dis)advantages
 + (Relatively) easy to maintain and update schema
 + Schema plus data are integrated in a logical theory
 + Query answers reflect both schema and data
 + Can deal with incompleteness
 + Able to answer both intensional and extensional queries
 – Semantics can seem counter-intuitive, particularly w.r.t. data
 • Open -v- closed world; axioms -v- constraints
 – Query answering (logical entailment) may be much more difficult
 • Can lead to scalability problems with expressive logics