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Background and Motivation
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Why use a graph?
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Why use a graph?
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Why use a graph?
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Why use a graph?

The Knowledge Graph
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Why use a graph?
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Introduction to
Knowledge Graphs



Anatomy of a Knowledge Graph




Anatomy of a Knowledge Graph
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Anatomy of a Knowledge Graph
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Anatomy of a Knowledge Graph

Architectural Structure
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Anatomy of a Knowledge Graph

v Intuitive (e.g., no “foreign keys”)

capital of

member of member of
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Anatomy of a Knowledge Graph
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Anatomy of a Knowledge Graph
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Anatomy of a Knowledge Graph
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Anatomy of a Knowledge Graph
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Challenges and Solutions (1)



Vague Semantics
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Vague Semantics
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Vague Semantics

Architectural
Structure

e Architectural Structure
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* Semantics of type and
kind of edges?
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Solution: Logic!

4 (OWL) ontology / conceptual schema )
Vx Tower(z) — ArchitecturalStructure(x)
Vz Building(z) — ArchitecturalStructure(x)
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Solution: Logic!
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Solution: Logic!
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Solution: Logic!
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Solution: Logic!

* |dentify/devise algorithms that compute query answers
* E.g., using natural deduction rules:

Q(a) ArchitecturalStructure(Eiffel Tower)
VeP(x) -+ Q(z) P(a) VzBuilding(z) — ArchitecturalStructure(z) Building(EiffelTower)

* Can check/prove algorithms are sound and complete w.r.t. semantics



Problem Solved?

* Some problems cannot be completely solved
using standard computational model
* halting problem
* FOL entailment problem

A\

* Even if decidable, reasoning might be of inherently
high complexity and so take an infeasibly long time



So what to do?

* These are worst case results
* Even if logic is undecidable, some problems may still be decidable
* Even if logic is intractable, some problems may still be tractable

* Study KR languages to find suitable balance of expressive power and
computability

* Design reasoning algorithms that work well in typical cases
* Develop highly optimised implementations



Description Logic

* Family of logic-based KR languages
* Most are decidable subsets of FOPC (usually in C2)

* Provide a range of different constructors

e Booleans (and, or, not)
e Restricted forms of quantification (exists, forall)
e Counting (atmost, atleast)

* Decidability/complexity and (efficient) algorithms known for many
combinations of constructors

* Effective reasoners available for several “sweet-spot” DLs



W3C and the Semantic Web

e Goal: to make web data machine-readable
e KRR on the web

e Standardized RDF

* Graphical data model for representing facts

* Extended RDF with OWL
* Ontology language based on expressive DL (SROIQ)

* Developed SPARQL query language
e Similar to SQL
 Tailored to graphical data model

AMERICAN . -

(TOMORROW'S WEB WILL)




Challenges and Solutions (2)



Ontology-centric Applications

* Development of large/complex ontologies
* Class axioms (usually <10° classes) with few or no facts
* Main reasoning task is consistency/subsumption

* OWL/DL reasoners such as HermiT and ELK used

 to identify errors and inconsistencies
e to compute class hierarchy (classification)

e Widely used in medicine and life sciences

e Bioportal (900+ ontologies)
* SNOMED CT

SNOMED CT



Data-centric Applications

* Development and deployment of large knowledge graphs
* Ontology/rules plus large number of facts (can be >10° edges)
* Main reasoning task is (SPARQL) query answering WIKIDATA

* OWL/DL reasoners don’t scale well to this task
* Query answering reduces to multiple entailment checks
 Number of checks is polynomial in size of graph
* Each such check can be costly




OWL 2 Profiles

* OWL 2 is based on powerful but still decidable DL (SROIQ)

e OWL 2 also introduced three “profiles” based on tractable subsets
* QL: based on the DL-Lite description logic
* EL: based on the EL description logic
* RL: based on the DL fragment of Datalog (aka DLP)

* Profiles allow for algorithmic techniques suited to query answering
* Query rewriting for QL
* Materialisation for RL
 Combined approach for EL



Materialisation for OWL RL
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Materialisation for OWL RL
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Materialisation for OWL RL
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Materialisation for OWL RL
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Materialisation for OWL RL
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Materialisation for OWL RL
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P
(J) RDFOX

* Materialization reasoning seems ideal for data-centric applications
* Can support expressive ontology languages
* Fast query answering over very large graphs

e Challenges

* Materialisation can be costly in time and memory
* Materialisation may need to be repeated if data changes

e Solution: RDFox

* Optimised materialization exploiting modern multi-core architectures
* Incremental maintenance as data changes
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Novel algorithms developed at Oxford
Proven correctness
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* Novel algorithms developed at Oxford

Proven correctness

400

350

300

250

200

150

Cumulative time (s)

100

50

Graph DB Performance

P i

1 2 3 45 6 7 8 9 10111213 14151617 18 19 20 21 22 23

Queries

= RDFO0X
- 0OGDB1
OGDB2*

- OGDB3*
- 0GDB4
OGDB5*

*query only (pre-

materialised data)



P
(2) RDFOX

* Novel algorithms developed at Oxford

Proven correctness

400

350

300

250

200

150

Cumulative time (s)

100

50

Graph DB Performance

5.5 M answers

PR B

1 2 3 45 6 7 8 9 10111213 14151617 18 19 20 21 22 23

Queries

= RDFO0X
- 0OGDB1
OGDB2*

- OGDB3*
- 0GDB4
OGDB5*

*query only (pre-

materialised data)



P
(J) RDFOX

* Novel algorithms developed at Oxford

* Proven correctness

* Optimized in-memory data structures

* >10° triples on 128 Gb entry level server

* >10%'% triples on 1 Tb server
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* Novel algorithms developed at Oxford

* Proven correctness

* Optimized in-memory data structures

* >10° triples on 128 Gb entry level server

* >10%'% triples on 1 Tb server

* Parallelised materialisation

* Dynamic distribution of workload

* Mostly lock-free data structures
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S RDFOX

* Novel algorithms developed at Oxford
* Proven correctness

* Optimized in-memory data structures
* >10° triples on 128 Gb entry level server
e >10% triples on 1 Tb server

* Parallelised materialisation

* Dynamic distribution of workload

* Mostly lock-free data structures
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* Novel algorithms developed at Oxford
* Proven correctness

* Optimized in-memory data structures
* >10° triples on 128 Gb entry level server
e >10% triples on 1 Tb server

* Parallelised materialisation

* Dynamic distribution of workload

* Mostly lock-free data structures

* Incremental addition and retraction
* Novel B/F materialisation maintenance algorithm
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Challenges and Solutions (3)
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Extensions

 Arbitrary rules
* No restriction to OWL RL (tree-shaped) rules

* Data types and values
* Numbers, strings, dates, ...
* Built in functions and aggregation

* Value invention
* Add new (possibly computed) values to graph
* Add new URI nodes to graph

* Constraints and negation as failure
* SHACL+



System Architecture
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System Architecture
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Knowledge Graph Use Cases
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Wrap-up



Summary

* KGs are powerful tool for representing & reasoning about knowledge
* Many applications: configuration, data integration, compliance, ...
* Technical challenges: complexity, scalability, extensions, systemes, ...

 Solutions based on foundational research + systems engineering
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Thanks for Listening
Any Questions?

/ °
@) RDFOX : www.oxfordsemantic.tech

Background reading:

* Description Logic: Baader, Horrocks, Lutz, and Sattler. An Introduction to Description Logic.
Cambridge University Press, 2017.

* OWL: Horrocks, Patel-Schneider, and van Harmelen. From SHIQ and RDF to OWL: The Making
of a Web Ontology Language. J. of Web Semantics, 1(1):7-26, 2003.

* RDFox algorithms & data structures: Motik, Nenov, Piro, Horrocks, and Olteanu. Parallel
Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems. AAAI 2014.

* Incremental maintenance: Motik, Nenov, Robert Piro, and Horrocks. Maintenance of datalog
materialisations revisited. Artificial Intelligence, 269:76-136, 2019.



