Knowledge Representation & Reasoning:
From Foundations to Products

lan Horrocks

DEPARTMENT OF

COMPUTER

SCIENCE

Background and Motivation

KRR Historical Perspective

[

* Long and distinguished history

Porphyry’s depiction of
Aristotle’s categories

KRR Historical Perspective

* Long and distinguished history
* General Problem Solver (GPS)

llluminated the conceptual
F underpinnings of Al,
‘ contributed to

\# list processing.

\}‘;

) WAL LN NEWERL &
HERBERTRSIMION

KRR Historical Perspective

* Long and distinguished history
* General Problem Solver (GPS)

* Expert systems Shonie RULE-BASED
we EXPERT SYSTEMS
EXPERT THE MYCIN EXPERIMENTS OF THE STANFORD
SYSTEMS HEURISTIC PROGRAMMING PROJECT

Bruce G. Buchanan
Edward H.Shortliffe

KRR Historical Perspective

T A \ Knowledge
/ Expert System f \ fromanfx it
' pe
I - \

|

I

Non expert user | I

|

T =) |

f m U Knowledge | |

| ' i i I Base(rules | !

' . Interface Engine ShG) |

Advice Input <: |

< T & Ul g :
I

\ |

\ /

\ /

Why use a graph?

Supreme genus:

Differentiae:

Subordinate genera:

Differentiae:

Subordinate genera:

Differentiae:
Proximate genera:
Differentiae:

Species:

Individuals:

Substance

\
/

material immaterial

Spirit

S
<

\/
/
/

animate inanimate

/

Living Mineral

\/
/

sensitive insensitive

/
/

Animal

\
/

rational irrational

/
/

Human Beast

Socrates Plato Aristotle etc.

Why use a graph?

ConceptNet semantic network

ied m has common sense
e o
nowledge grap knowledge
lpart of
is used for natural language part of artificial
; >
understanding intelligence

T.Dart of @ #Cheapest

word embeddings
lives at eats at \Js located sa

crowdsourced . ®a
knowledge @ #Along { #PLACE) @ @
lexicography

isa has @

made of

; isa #Residence has
games with a

purpose
s
bﬁdt)f
has a Web API : JSON-LD has origin |has destination isa isa
is used for
N #Place @
ds property open content -
AW multilingue
multilingual isynonym
M
Vm =iE
domain-general 58
motivated by goal

let computers understand what people already know

W
h
Yy
u
S
eagr
3
ph
?

J

-

Why use a graph?
W3C

o
7

Semantic
Web

SPARQL

Why use a graph?

The Knowledge Graph
&

Why use a graph?

alexa |I| |I
c

— WIKIDATA

DBpedia
ebay Beam -

A Distributed Graph Store

.

s ® @ . . .Q
» ® e »
a
® . «® o
¢ .'00.

FESTO

» DC Voltage -

requires provides

- requires . {9 \/oltg <« Provides ——

DC * requires provides DC Power
Motor * 2 Amps 4 Amps * Supply

compatible
with

*Staintess steel Type 321'

i3 -
_— ‘Stainless steel Type 565°
_lxa——" = .
- - <l —
"Austenitic stainless steel wj—lid < 'Stainless steel Type 316" b
. < -2
——ta =3
‘Stainless steel Type OMo'
T - — %
il 'Stainless steel Type Lean Duplex P

. 'iAuﬂtmue-Fﬂﬁhe stainless steel’ oy 15y

_—— ~

4 'Generic Material Object P}l Stoel Prpdiodnd

< > &
3 steol wediea ‘Duplex stainless steel’
s = <P

‘Staintess steel Type 25Ct Duplex P

3 ‘Mattensitic Stainless Slus_ . =il

- . = T'Stainless steel Type 8307
‘Fenitic Stainless Steel -

Introduction to
Knowledge Graphs

Anatomy of a Knowledge Graph

Anatomy of a Knowledge Graph

capital of

member of member of

Anatomy of a Knowledge Graph

subject

lcapitalof <Z predicate

object

Anatomy of a Knowledge Graph

Architectural Structure

Name Height Location
Eiffel Tower 324 Paris
Shard 310 London
Building

N Name Name
Eiffel Tower Shard
Name Capital Of

capital of Paris France

London UK

member of member of

Country Union
France EU

UK EU

Anatomy of a Knowledge Graph

v Intuitive (e.g., no “foreign keys”)

capital of

member of member of

Anatomy of a Knowledge Graph

Architectural Structure

~-- Name Height Location -—-n
1 1
| Eiffel Tower 324 Paris |
1 1
X Shard 310 London X
e - |
1 | 1
: .
1 1 1
b--- Name t--- Name :
1
Eiffel Tower Shard X
. i
1
|
1
- - Name Capital Of ----
1
capital of Paris France i
London UK X
1
r ————————————————————————— -
1
B vember
member of member of :
- - Country Union
France EU

UK EU

Anatomy of a Knowledge Graph

Architectural
Structure

kind of kind of

_ [-] [City][Building]

A =

A

type

type

e

lcapital of lcapital of

S [

membeMber of

e]

v Intuitive (e.g., no “foreign keys”)

v/ Data + schema (ontology)

Anatomy of a Knowledge Graph

v Intuitive (e.g., no “foreign keys”)

v/ Data + schema (ontology)

Anatomy of a Knowledge Graph

Architectural Structure

~--» Name Height Location -———

1
| Eiffel Tower 324
1
X 310 London
-

o]
=
=
5
0a

1
1
1
1
- - Name Capital Of ----

1
1
capital of France !
London UK X
1
r ————————————————————————— -
1
B Viemper |
member of member of :
- - Country Union
France EU

UK EU

Anatomy of a Knowledge Graph

www.wikidata

i of Kindic? v Data + schema (ontology)

v Intuitive (e.g., no “foreign keys”)

[Tower][=][ouldng | v/ URIs not strings

typeT Ttype

[Eiffel Tower]

v [e [e][

lcapital of lcapital of

S [

membeMber of

e]

Anatomy of a Knowledge Graph

www.wikidata
.org/wiki/Q811979

v Intuitive (e.g., no “foreign keys”)

Gind of kind f v Data + schema (ontology)
[Emile Nouguier [Tower] [i J [Building] [Renzo Piano J ‘/ U RIS nOt Strings
‘ Maurice Koechlin] Quehitaet typeT Ttype \/ FleX|b|e & exten5|b|e
« type type architect
architect Eiffel Tower] [Shard

height

v [e [e][

lcapital of lcapital of

S)

membeMber of

e]

Anatomy of a Knowledge Graph

www.wikidata
.org/wiki/Q811979

v Intuitive (e.g., no “foreign keys”)

Gind of kind f v Data + schema (ontology)
[Emile Nouguier [Tower] [i J [Building] [Renzo Piano J ‘/ U RIS nOt Strings
‘ Maurice Koechlin] Quehitaet typeT Ttype \/ FleX|b|e & exten5|b|e
« type type architect
architect Eiffel Tower] [Shard

height

v [e [e][

lcapital of lcapital of

S

membeMber of B¢
-

e]

Anatomy of a Knowledge Graph

www.wikidata
.org/wiki/Q811979

‘ Emile Nouguier

‘ Maurice Koech|in]

architect

R

|

capital of capitaIHof

A\ 4 A\ 4

e

-
membeMber of ...

N

[Renzo Piano]

architect

S NN NS

Intuitive (e.g., no “foreign keys”)
Data + schema (ontology)

URIs not strings

Flexible & extensible

Other kinds of query

e similarity & locality

Challenges and Solutions (1)

Vague Semantics

sits-on

[Quillian, 1967]

Vague Semantics

Black

[Quillian, 1967]

Vague Semantics

Black }

[Quillian, 1967]

Vague Semantics

e Architectural Structure
with location in the EU?

capital of

member of member of

Vague Semantics

Architectural
Structure

e Architectural Structure
with location in the EU?

* Semantics of type and
kind of edges?

Vague Semantics

Architectural
Structure

w (D OED Rl -

typeT

Eiffel Tower

) D S

lcapital of lcapit?ﬂ of location

location

France] { UK

membeMber of

[B e
= |

location

location

e Architectural Structure
with location in the EU?

* Semantics of type and
kind of edges?

 Semantics of location +
capital of + member of
edges?

Solution: Logic!

4 (OWL) ontology / conceptual schema)
Vx Tower(z) — ArchitecturalStructure(x)
Vz Building(z) — ArchitecturalStructure(x)

g

capital of

member of

member of

Solution: Logic!

4 (OWL) ontology / conceptual schema)
Vx Tower(z) — ArchitecturalStructure(x)

Architectural
Structure
Vz Building(z) — ArchitecturalStructure(x)

e [w:f" e e | N

[Eiffel Tower]

Tower (Eiffel Tower) Building(Shard)
height i i City(Paris) City(London)
location(Eiffel Tower, Paris) height(EiffelTower, 324m)
=]] location(Shard, London) height(Shard, 310m)
lcapim of lcapitamf capital_of (Paris, France) capital_of (London, UK)
member _of (France, EU) member_of (UK, EU)

S e

\ L= (RDF) graph/facts/data/

Solution: Logic!
Knowledge base/graph

~

Architectural
Structure

Vx Tower(z) — ArchitecturalStructure(x)
Vz Building(z) — ArchitecturalStructure(x)

| Tower] oy | [suimg]

Ttype

type
[el Tower] Tower (Eiffel Tower) Building(Shard)
height i i height City(Paris) City(London)
location(Eiffel Tower, Paris) height(EiffelTower, 324m)
[o][parts][i }[o] location(Shard, London) height(Shard, 310m)
lcapita| of lcapitamf capital_of (Paris, France) capital_of (London, UK)
member_of (France, EU) member_of (UK, EU)

S [

membeMber of

e]

Solution: Logic!
Knowledge base/graph

~

Architectural
Structure

Vx Tower(z) — ArchitecturalStructure(x)

Vx Building(x) — ArchitecturalStructure(z)

Vzx,y, z location(x, y) A capital of (y, z) — location(z, 2)
(Tower] ‘ City J [Building] Vzx,y, z location(x,y) A member_of(y, z) — location(z, z)

Ttype

type

[el Tower]] Tower (Eiffel Tower) Building(Shard)
height i i height City(Paris) City(London)
location(Eiffel Tower, Paris) height(EiffelTower, 324m)
[o [parts][i }[o] location(Shard, London) height(Shard, 310m)
lcapita| of lcapitamf capital_of (Paris, France) capital_of (London, UK)
member_of (France, EU) member_of (UK, EU)

S [

membeMber of

e]

Solution: Logic!
Knowledge base/graph

~

Architectural
Structure

Vx Tower(z) — ArchitecturalStructure(x)

Vx Building(x) — ArchitecturalStructure(z)

Vzx,y, z location(z, y) A capital of (y, z) — location(z, z)
| Tower] iy] | uilding] Vx,y, z location(z, y) A member_of(y, z) — location(z, z)

Ttype

type

[el Tower]] Tower (Eiffel Tower) Building(Shard)
height i i height City(Paris) City(London)
location(Eiffel Tower, Paris) height(EiffelTower, 324m)
[o][parts][i }[o] location(Shard, London) height(Shard, 310m)
lcapim of capital of capital_of (Paris, France) capital_of (London, UK)
member_of (France, EU) member_of (UK, EU)

S [

membeMbe”f K E ArchitecturalStructure(Eiffel Tower) A
=] location(Eiffel Tower, EU) /

Solution: Logic!
Knowledge base/graph

4)

Architectural
Structure

Vx Tower(z) — ArchitecturalStructure(x)

Vx Building(x) — ArchitecturalStructure(z)

Vzx,y, z location(z, y) A capital of (y, z) — location(z, z)
Tower] iy J | uilding] Vx,y, z location(z, y) A member_of(y, z) — location(z, z)

type type
type

Eiffel Tower

type (

Tower (Eiffel Tower) Building(Shard)
height City(Paris) City(London)
location(Eiffel Tower, Paris) height(EiffelTower, 324m)
][Farts][i }[=om] location(Shard, London) height(Shard, 310m)
lcapita| oF capital of capital_of (Paris, France) capital_of (London, UK)
member_of (France, EU) member_of (UK, EU)

S [

jocation membeMbe”f K = ArchitecturalStructure(Eiffel Tower) A
9 L= | location(Eiffel Tower, EU) Y

Solution: Logic!

* |dentify/devise algorithms that compute query answers
* E.g., using natural deduction rules:

Q(a) ArchitecturalStructure(Eiffel Tower)
VeP(x) -+ Q(z) P(a) VzBuilding(z) — ArchitecturalStructure(z) Building(EiffelTower)

* Can check/prove algorithms are sound and complete w.r.t. semantics

Problem Solved?

* Some problems cannot be completely solved
using standard computational model
* halting problem
* FOL entailment problem

A\

* Even if decidable, reasoning might be of inherently
high complexity and so take an infeasibly long time

So what to do?

* These are worst case results
* Even if logic is undecidable, some problems may still be decidable
* Even if logic is intractable, some problems may still be tractable

* Study KR languages to find suitable balance of expressive power and
computability

* Design reasoning algorithms that work well in typical cases
* Develop highly optimised implementations

Description Logic

* Family of logic-based KR languages
* Most are decidable subsets of FOPC (usually in C2)

* Provide a range of different constructors

e Booleans (and, or, not)
e Restricted forms of quantification (exists, forall)
e Counting (atmost, atleast)

* Decidability/complexity and (efficient) algorithms known for many
combinations of constructors

* Effective reasoners available for several “sweet-spot” DLs

W3C and the Semantic Web

e Goal: to make web data machine-readable
e KRR on the web

e Standardized RDF

* Graphical data model for representing facts

* Extended RDF with OWL
* Ontology language based on expressive DL (SROIQ)

* Developed SPARQL query language
e Similar to SQL
 Tailored to graphical data model

AMERICAN . -

(TOMORROW'S WEB WILL)

Challenges and Solutions (2)

Ontology-centric Applications

* Development of large/complex ontologies
* Class axioms (usually <10° classes) with few or no facts
* Main reasoning task is consistency/subsumption

* OWL/DL reasoners such as HermiT and ELK used

 to identify errors and inconsistencies
e to compute class hierarchy (classification)

e Widely used in medicine and life sciences

e Bioportal (900+ ontologies)
* SNOMED CT

SNOMED CT

Data-centric Applications

* Development and deployment of large knowledge graphs
* Ontology/rules plus large number of facts (can be >10° edges)
* Main reasoning task is (SPARQL) query answering WIKIDATA

* OWL/DL reasoners don’t scale well to this task
* Query answering reduces to multiple entailment checks
 Number of checks is polynomial in size of graph
* Each such check can be costly

OWL 2 Profiles

* OWL 2 is based on powerful but still decidable DL (SROIQ)

e OWL 2 also introduced three “profiles” based on tractable subsets
* QL: based on the DL-Lite description logic
* EL: based on the EL description logic
* RL: based on the DL fragment of Datalog (aka DLP)

* Profiles allow for algorithmic techniques suited to query answering
* Query rewriting for QL
* Materialisation for RL
 Combined approach for EL

Materialisation for OWL RL

Q) (x) < Architectural _Structure(z)

capital of capital of

member of member of

Materialisation for OWL RL

Architectural
Structure
kind of

(e [v [s

A A

Q(x) < Architectural _Structure(x)

kind of

Tower C Architectural_Structure
Building C Architectural Structure

type type

Eiffel Tower

Tower (x) — Architectural Structure(z)
Building(z) — Architectural Structure(x)

height i i height

R I

capital of capital of
v v

G

membeMber of

e]

Materialisation for OWL RL

Architectural
Structure

kind of

T

A

kind of

J[Building]

A

type type

Eiffel Tower

[

location

e ||

capital of capital of
v v

France] [UK

membeMber of

e]

location

Q(x) < Architectural _Structure(x)

Tower C Architectural_Structure
Building C Architectural Structure

Tower (x) — Architectural Structure(z)
Building(z) — Architectural Structure(x)

location(z, y) A capital_of (y, z) — location(z, z)

Materialisation for OWL RL

Architectural
Structure

Q(x) < Architectural _Structure(x)

kind of

T

A

kind of

J[Building]

A

Tower C Architectural_Structure
Building C Architectural Structure

type type

Eiffel Tower

Tower (x) — Architectural Structure(z)
Building(z) — Architectural Structure(x)

[

location

e ||

capital of capital of
v v

location(z, y) A capital_of (y, z) — location(z, z)

location

F UK . .
i location(z, y) A member_of (y,) — location(z, z)
location
membeMber of location

-

Materialisation for OWL RL

Architectural
Structure

Q(x) < Architectural _Structure(x)

kind of

T

A

kind of

J[Building]

A

Tower C Architectural_Structure
Building C Architectural Structure

type type

Eiffel Tower

Tower (x) — Architectural Structure(z)
Building(z) — Architectural Structure(x)

[

location

e ||

capital of capital of
v v

location(z, y) A capital_of (y, z) — location(z, z)

location

F UK . .
e] [location(x, y) A member_of (y, z) — location(z, 2)
location
membewber of location

-

Materialisation for OWL RL

Architectural
Structure

kind of

T

A

kind of

J[Building]

A

Q(x) < Architectural _Structure(x)

Tower C Architectural_Structure
Building C Architectural Structure

type type

Eiffel Tower

Tower (x) — Architectural Structure(z)
Building(z) — Architectural Structure(x)

[

location

e ||

capital of capital of
v v

France] [UK

membewber of

> P
L EU N

location(z, y) A capital_of (y, z) — location(z, z)

location

location(x, y) A member_of (y, z) — location(z, 2)

location

location

P
(J) RDFOX

* Materialization reasoning seems ideal for data-centric applications
* Can support expressive ontology languages
* Fast query answering over very large graphs

e Challenges

* Materialisation can be costly in time and memory
* Materialisation may need to be repeated if data changes

e Solution: RDFox

* Optimised materialization exploiting modern multi-core architectures
* Incremental maintenance as data changes

P
() RDFOX

Novel algorithms developed at Oxford
Proven correctness

~
o

Graph DB Failures

Failure %
N w = (¥, ()]
o o o o o

[y
o

>

RDFox

OGDB1 OGDB2* OGDB3*

0oGDB4 OGDB5*
Graph DB Systems

®EWrong Ans. BError ®Timeout

*query only (pre-
materialised data)

P
(2) RDFOX

* Novel algorithms developed at Oxford

Proven correctness

400

350

300

250

200

150

Cumulative time (s)

100

50

Graph DB Performance

P i

1 2 3 45 6 7 8 9 10111213 14151617 18 19 20 21 22 23

Queries

= RDFO0X
- 0OGDB1
OGDB2*

- OGDB3*
- 0GDB4
OGDB5*

*query only (pre-

materialised data)

P
(2) RDFOX

* Novel algorithms developed at Oxford

Proven correctness

400

350

300

250

200

150

Cumulative time (s)

100

50

Graph DB Performance

5.5 M answers

PR B

1 2 3 45 6 7 8 9 10111213 14151617 18 19 20 21 22 23

Queries

= RDFO0X
- 0OGDB1
OGDB2*

- OGDB3*
- 0GDB4
OGDB5*

*query only (pre-

materialised data)

P
(J) RDFOX

* Novel algorithms developed at Oxford

* Proven correctness

* Optimized in-memory data structures

* >10° triples on 128 Gb entry level server

* >10%'% triples on 1 Tb server

spo

A

l, R, R, R, N, o
1| e+—1/3|2|e
2 |13l 214 @
b, |[pl1|1]2]|®
(1,3)| ® 1/3|4]| e
2,1)| 213
(1,1)| ® 111

P
(J) RDFOX

* Novel algorithms developed at Oxford

* Proven correctness

* Optimized in-memory data structures

* >10° triples on 128 Gb entry level server

* >10%'% triples on 1 Tb server

* Parallelised materialisation

* Dynamic distribution of workload

* Mostly lock-free data structures

spo

A

| R, R, R, N, on
1| e+—1(3 2| e
2 |3l 214 @
b ([Pl 1] 21]2]®
(1,3)| ® 1(3 (4| e
2,1 ® 213
1,15 ® 111

o
S RDFOX

* Novel algorithms developed at Oxford
* Proven correctness

* Optimized in-memory data structures
* >10° triples on 128 Gb entry level server
e >10% triples on 1 Tb server

* Parallelised materialisation

* Dynamic distribution of workload

* Mostly lock-free data structures

20
Speedup

e e Clarosr,

i Claros, g
18 + DBpediar,

DBpediay, g

+ LUBM 01K

16 —— [_ UBM ;01K

14

12

Threads

8 16 24 32

P
() RDFOX

* Novel algorithms developed at Oxford
* Proven correctness

* Optimized in-memory data structures
* >10° triples on 128 Gb entry level server
e >10% triples on 1 Tb server

* Parallelised materialisation

* Dynamic distribution of workload

* Mostly lock-free data structures

* Incremental addition and retraction
* Novel B/F materialisation maintenance algorithm

1200

900

600

300

1800

1350

900

450

UOBM-U

Claros-LE

B DRed®

DRed

11

0.825

0.55

0.2756

1800

1350

900

450

o

Reactome-U

SSPE

B/F¢

m BJF

Challenges and Solutions (3)

Oxford Semantic Technologies

@ [} Oxford Semantic Technologies | X +

&« C o O B https://www.oxfordsemantic.tech % Q Ssearch © & 0 8 =

7N
(\/) Oxford Semantic Technologies Product v Resources v Company v Contact

D
& RDFOX

High performance knowledge graph and
semantic reasoning engine.

Free Trial

Extensions

 Arbitrary rules
* No restriction to OWL RL (tree-shaped) rules

* Data types and values
* Numbers, strings, dates, ...
* Built in functions and aggregation

* Value invention
* Add new (possibly computed) values to graph
* Add new URI nodes to graph

* Constraints and negation as failure
* SHACL+

System Architecture

SPARQL API

Reasoning engine

///)) RDFO Command line

interface

© Oxford Semantic Technologies

System Architecture

e [| O

End user applications

3" Party
visualisations

Analytics and
Machine Learning

. 1 J .
Integration Development and operations
In-process
. HTTP SPARQL -
External HTTP SPARQL (embedded) T l T 1 E
 ——
integration —m—
solutions
4—
HTTP REST -
4 _—
e
RDF Datalog OWL
4—
Datalog oWL, HTTP REST .
—> — ——
SHACL,
- SWRL _ -
_ _ HTTP REST
— SHACL SWRL
solr™ | ———— aws -! -
= CSV FILE p - -
—_ sQlL ODBC e D '-) i
sQL CSV FTS® SOLR HTTP E] ot { G.CIA
Edge and mobile devices Personal machines, on-premises to cloud Azure
docker

© Oxford Semantic Technologies

Knowledge Graph Use Cases

Configuration Management

o . - Components DATA _
Their attributes &

® ‘ | constraints
. seens >>:>®

RDF Turtle files

il

Definitions of RULES Rotation Solutions

O ‘ compatibility &

- Valid configurations

Query via SPARQL
RDFox Datalog over REST

DC Voltage

requires provides
: , o e
-~ requires 12 Volts provides y
requires provides DC Power
2 Amps 4 Amps Supply

\ Compatible /

~
@) Oxford Semantic Technologies :
with

Wrap-up

Summary

* KGs are powerful tool for representing & reasoning about knowledge
* Many applications: configuration, data integration, compliance, ...
* Technical challenges: complexity, scalability, extensions, systemes, ...

 Solutions based on foundational research + systems engineering

Thanks to Colleagues Collaborators and Funders

SIEMENS

ebay

‘
~ S €DF

ORACLE

Thanks for Listening
Any Questions?

/ °
@) RDFOX : www.oxfordsemantic.tech

Background reading:

* Description Logic: Baader, Horrocks, Lutz, and Sattler. An Introduction to Description Logic.
Cambridge University Press, 2017.

* OWL: Horrocks, Patel-Schneider, and van Harmelen. From SHIQ and RDF to OWL: The Making
of a Web Ontology Language. J. of Web Semantics, 1(1):7-26, 2003.

* RDFox algorithms & data structures: Motik, Nenov, Piro, Horrocks, and Olteanu. Parallel
Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems. AAAI 2014.

* Incremental maintenance: Motik, Nenov, Robert Piro, and Horrocks. Maintenance of datalog
materialisations revisited. Artificial Intelligence, 269:76-136, 2019.

