Ian Horrocks Information Management Group University of Manchester, UK

Ulrike Sattler Institut für Theoretische Informatik TU Dresden, Germany

Overview of the Tutorial

- History and Basics: Syntax, Semantics, ABoxes, Tboxes, Inference Problems and their interrelationship, and Relationship with other (logical) formalisms
- Applications of DLs: ER-diagrams with i.com demo, ontologies, etc. including system demonstration
- Reasoning Procedures: simple tableaux and why they work
- Reasoning Procedures II: more complex tableaux, non-standard inference problems
- Complexity issues
- Implementing/Optimising DL systems

Description Logics

• family of logic-based knowledge representation formalisms well-suited for the representation of and reasoning about

- terminological knowledge
- configurations
- ontologies
- database schemata
 - schema design, evolution, and query optimisation
 - source integration in heterogeneous databases/data warehouses
 - conceptual modelling of multidimensional aggregation

••••

descendents of semantics networks, frame-based systems, and KL-ONE

• aka terminological KR systems, concept languages, etc.

TU Dresden Germany

A Description Logic - mainly characterised by a set of constructors that allow to build complex concepts and roles from atomic ones,

concepts correspond to classes / are interpreted as sets of objects,

roles correspond to relations / are interpreted as binary relations on objects,

Example: Happy Father in the DL \mathcal{ALC}

Man □ (∃has-child.Blue) □ (∃has-child.Green) □ (∀has-child.Happy ⊔ Rich)

TU Dresden Germany

Introduction to DL: Syntax and Semantics of \mathcal{ALC}

Semantics given by means of an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$:

Constructor	Syntax	Example	Semantics		
atomic concept	A	Human	$A^\mathcal{I} \subseteq \Delta^\mathcal{I}$		
atomic role	$oldsymbol{R}$	likes	$R^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$		
For C, D concepts and R a role name					
conjunction	$C \sqcap D$	Human ⊓ Male	$C^\mathcal{I}\cap D^\mathcal{I}$		
disjunction	$C \sqcup D$	Nice ⊔ Rich	$C^\mathcal{I} \cup D^\mathcal{I}$		
negation	$\neg C$	¬ Meat	$\Delta^\mathcal{I} \setminus C^\mathcal{I}$		
exists restrict.	$\exists R.C$	∃has-child.Human	$\{x \mid \exists y. \langle x, y angle \in R^\mathcal{I} \land y \in C^\mathcal{I}\}$		
value restrict.	$\forall R.C$	∀has-child.Blond	$\{x \mid orall y. \langle x, y angle \in R^\mathcal{I} \Rightarrow y \in C^\mathcal{I}\}$		

Constructor	Syntax	Example	Semantics
number restriction	$(\geq n R)$	$(\geq 7$ has-child)	$\{x \mid \{y.\langle x,y angle \in R^\mathcal{I}\} \geq n\}$
	$(\leq n \; R)$	$(\leq 1$ has-mother)	$\{x \mid \{y.\langle x,y angle \in R^\mathcal{I}\} \leq n\}$
inverse role	R^-	has-child $^-$	$\{\langle x,y angle \mid \langle y,x angle \in R^{\mathcal{I}}\}$
trans. role	$oldsymbol{R}^*$	has-child*	$(R^{\mathcal{I}})^*$
concrete domain	$u_1,\ldots,u_n.P$	h-father \cdot age, age. $>$	$\{x \mid \langle u_1^\mathcal{I}, \dots, u_n^\mathcal{I} angle \in P\}$
etc.			

Many different DLs/DL constructors have been investigated

TU Dresden Germany

Introduction to DL: Knowledge Bases: TBoxes						
For terminological knowledge: TBox contains						
Concept definitions	$A \doteq C$ (A a concept name, C a complex concept) Father \doteq Man $\sqcap \exists$ has-child.Human Human \doteq Mammal $\sqcap \forall$ has-child ⁻ .Human \rightsquigarrow introduce macros/names for concepts, can be (a)cyclic					
Axioms ∃favourite.E	$C_1 \sqsubseteq C_2$ (C_i complex concepts) Brewery $\sqsubseteq \exists$ drinks.Beer \rightsquigarrow restrict your models					
An interpretation ${\mathcal I}$ satisfies						
a concept definition	$A\doteq C$ iff $A^{\mathcal{I}}=C^{\mathcal{I}}$					
an axiom	$C_1 \sqsubseteq C_2 \hspace{0.2cm} ext{iff} \hspace{0.2cm} C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$					
a TBox	${\mathcal T}$ iff ${\mathcal I}$ satisfies all definitions and axioms in ${\mathcal T}$ $\rightsquigarrow {\mathcal I}$ is a model of ${\mathcal T}$					

For assertional knowledge:	ABox co	ntai	ns
Concept assertions	a:CJohn:Mai	(a 1 □	an individual name, C a complex concept) \forall has-child.(Male \sqcap Happy)
Role assertions $\langle a_1 \\ \langle John, \rangle$	$egin{array}{l} ,a_2 angle :R \ {\sf Bill} angle : {\sf has}^2 \end{array}$	(a ∙chil	u_i individual names, $oldsymbol{R}$ a role) d
An interpretation ${\mathcal I}$ satisfie	es		
a concept assertion	a:C	iff	$a^\mathcal{I} \in C^\mathcal{I}$
a role assertion $\langle a_1 \rangle$	$,a_{2} angle :R$	iff	$\langle a_1^\mathcal{I}, a_2^\mathcal{I} angle \in R^\mathcal{I}$
an ABox	${\cal A}$	iff ↔	${\mathcal I}$ satisfies all assertions in ${\mathcal A}$ ${\mathcal I}$ is a model of ${\mathcal A}$

TU Dresden Germany

Introduction to DL: Basic Inference Problems

 $-\tau$.

Subsumption: $C \sqsubseteq D$	Is $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I} ?
w.r.t. TBox \mathcal{T} : $C \sqsubseteq_{\mathcal{T}} D$	Is $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{T} ?
\rightsquigarrow structure your knowledge, compute taxo	onomy
Consistency: Is C consistent w.r.t. T ?	Is there a model $\mathcal I$ of $\mathcal T$ with $C^{\mathcal I} eq \emptyset$?

of ABox \mathcal{A} : Is \mathcal{A} consistent?Is there a model of \mathcal{A} ?of KB $(\mathcal{T}, \mathcal{A})$: Is $(\mathcal{T}, \mathcal{A})$ consistent?Is there a model of both \mathcal{T} and \mathcal{A} ?

Inference Problems are closely related:

 $\begin{array}{c} C \sqsubseteq_{\mathcal{T}} D \quad \text{iff} \quad C \sqcap \neg D \text{ is inconsistent w.r.t. } \mathcal{T}, \\ (\text{no model of } \mathcal{I} \text{ has an instance of } C \sqcap \neg D) \end{array}$ $C \text{ is consistent w.r.t. } \mathcal{T} \quad \text{iff not } C \sqsubseteq_{\mathcal{T}} A \sqcap \neg A$

 \sim Decision Procdures for consistency (w.r.t. TBoxes) suffice

TU Dresden Germany

Introduction to DL: Basic Inference Problems II

For most DLs, the basic inference problems are **decidable**, with complexities between P and **ExpTime**.

Why is decidability important? Why does semi-decidability not suffice?

If subsumption (and hence consistency) is undecidable, and

- subsumption is semi-decidable, then consistency is **not** semi-decidable
- me consistency is semi-decidable, then subsumption is not semi-decidable
- Quest for a "highly expressive" DL with "practicable" inference problems

where expressiveness depends on the application practicability changed over the time

Introduction to DL: History

Complexity of Inferences provided by DL systems over the time

In the last 5 years, DL-based systems were built that

- \checkmark can handle DLs far more expressive than \mathcal{ALC} (close relatives of converse-DPDL)
 - Number restrictions: "people having at most 2 cats and exactly 1 dog"
 - Complex roles: inverse ("has-child" "child-of"),

transitive closure ("offspring" — "has-child"), role inclusion ("has-daughter" — "has-child"), etc.

- implement provably sound and complete inference algorithms (for ExpTime-complete problems)
- ✓ can handle large knowledge bases (e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)
- ✓ are highly optimised versions of tableau-based algorithms
- ✓ perform (surprisingly well) on benchmarks for modal logic reasoners (Tableaux'98, Tableaux'99)

TU Dresden Germany

Relationship with Other Logical Formalisms: First Order Predicate Logic

Most DLs are decidable fragments of FOL: Introduce

a unary predicate A for a concept name Aa binary relation R for a role name R

Translate complex concepts C, D as follows:

$$egin{aligned} t_x(A) &= \mathrm{A}(x), & t_y(A) &= \mathrm{A}(y), \ t_x(C &\sqcap D) &= t_x(C) \wedge t_x(D), & t_y(C &\sqcap D) &= t_y(C) \wedge t_y(D), \ t_x(C &\sqcup D) &= t_x(C) \lor t_x(D), & t_y(C &\sqcup D) &= t_y(C) \lor t_y(D), \ t_x(\exists R.C) &= \exists y.\mathrm{R}(x,y) \wedge t_y(C), & t_y(\exists R.C) &= \exists x.\mathrm{R}(y,x) \wedge t_x(C), \ t_x(orall R.C) &= orall y.\mathrm{R}(x,y) \Rightarrow t_y(C), & t_y(\forall R.C) &= orall x.\mathrm{R}(y,x) \Rightarrow t_x(C). \end{aligned}$$

A TBox $\mathcal{T} = \{C_i \doteq D_i\}$ is translated as

$$\Phi_{\mathcal{T}} = orall x. igwedge_{1 \leq i \leq n} t_x(C_i) \Leftrightarrow t_x(D_i)$$

13

C is consistent iff its translation $t_x(C)$ is satisfiable, C is consistent w.r.t. \mathcal{T} iff its translation $t_x(C) \land \Phi_{\mathcal{T}}$ is satisfiable, $C \sqsubseteq D$ iff $t_x(C) \Rightarrow t_x(D)$ is valid $C \sqsubseteq_{\mathcal{T}} D$ iff $\Phi_t \Rightarrow \forall x.(t_x(C) \Rightarrow t_x(D))$ is valid. $\sim \mathcal{ALC}$ is a fragment of FOL with 2 variables (L2), known to be decidable

- $\rightsquigarrow \mathcal{ALC}$ with inverse roles and Boolean operators on roles is a fragment of L2
- → further adding number restrictions yields a fragment of C2 (L2 with "counting quantifiers"), known to be decidable
 - in contrast to most DLs, adding transitive roles (binary relations/ transitive closure operator) to L2 leads to undecidability
 - many DLs (like many modal logics) are fragments of the Guarded Fragment
 - most DLs are less complex than L2:
 L2 is NExpTime-complete, most DLs are in ExpTime

TU Dresden Germany

Relationship with Other Logical Formalisms: Modal Logics

DLs and Modal Logics are closely related:

 $\mathcal{ALC} \rightleftharpoons \text{ multi-modal K:}$ $C \sqcap D \rightleftharpoons C \land D, \qquad C \sqcup D \rightleftharpoons C \lor D$ $\neg C \rightleftharpoons \neg C ,$ $\exists R.C \rightleftharpoons \langle R \rangle C , \qquad \forall R.C \rightleftharpoons [R]C$ $\text{transitive roles} \rightleftharpoons \text{transitive frames (e.g., in K4)}$ $\text{regular expressions on roles} \rightleftharpoons \text{regular expressions on programs (e.g., in PDL)}$ $\text{inverse roles} \rightleftharpoons \text{converse programs (e.g., in C-PDL)}$ $\text{number restrictions} \rightleftharpoons \text{deterministic programs (e.g., in D-PDL)}$ $\nleftrightarrow \text{ no TBoxes available in modal logics}$ $\rightsquigarrow \text{``internalise'' axioms using a universal role u: } C \doteq D \rightleftharpoons [u](C \Leftrightarrow D)$ $\Leftrightarrow \text{ no ABox available in modal logics} \rightsquigarrow \text{ use nominals}}$

15

Applications of Description Logics

Applications - p. 1/9

Application Areas I

Terminological KR and Ontologies

- DLs initially designed for terminological KR (and reasoning)
- Natural to use DLs to build and maintain ontologies

Semantic Web

- Semantic markup will be added to web resources
 - → Aim is "machine understandability"
- Markup will use Ontologies to provide common terms of reference with clear semantics
- Requirement for web based ontology language
 - → Well defined semantics
 - → Builds on existing Web standards (XML, RDF, RDFS)
- Resulting language (DAML+OIL) is **based on a DL** (SHIQ)
- DL reasoning can be used to, e.g.,
 - → Support ontology design and maintenance
 - → Classify resources w.r.t. ontologies

Application Areas II

- Configuration
 - Classic system used to configure telecoms equipment
 - Characteristics of components described in DL KB
 - Reasoner checks validity (and price) of configurations
- Software information systems
 - LaSSIE system used DL KB for flexible software documentation and query answering
- Database applications

R ...

Applications - p. 3/9

Database Schema and Query Reasoning

- INF DLR (n-ary DL) can capture semantics of many conceptual modelling methodologies (e.g., EER)
- Satisfiability preserving mapping to SHIQ allows use of DL reasoners (e.g., FaCT, RACER)
- DL Abox can also capture semantics of conjunctive queries
 - Can reason about query containment w.r.t. schema
- DL reasoning can be used to support
 - Schema design, evolution and query optimisation
 - Source integration in heterogeneous databases/data warehouses
 - Conceptual modelling of multidimensional aggregation
- E.g., I.COM Intelligent Conceptual Modelling tool (Enrico Franconi)
 - Uses FaCT system to provide reasoning support for EER

I.COM Demo

Applications - p. 5/9

Terminological KR and Ontologies

- General requirement for medical terminologies
- Static lists/taxonomies difficult to build and maintain
 - Need to be very large and highly interconnected
 - Inevitably contain many errors and omissions
- Galen project aims to replace static hierarchy with DL
 - **Describe** concepts (e.g., spiral fracture of left femur)
 - Use DL classifier to build taxonomy
- Needed expressive DL and efficient reasoning
 - Descriptions use transitive/inverse roles, GCIs etc.
 - Very large KBs (tens of thousands of concepts)
 - → Even prototype KB is very large (≈3,000 concepts)
 - → Existing (incomplete) classifier took ≈24 hours to classify KB
 - → FaCT system (sound and complete) takes ≈60 seconds

Reasoning Support for Ontology Design

- DL reasoner can be used to support design and maintenance
- Example is OilEd ontology editor (for DAML+OIL)
 - Frame based interface (like Protegé, OntoEdit, etc.)
 - Extended to clarify semantics and capture whole DAML+OIL language
 - Slots explicitly existential or value restrictions
 - → Boolean connectives and nesting
 - → Properties for slot relations (transitive, functional etc.)
 - → General axioms
- Reasoning support for OilEd provided by FaCT system
 - Frame representation translated into SHIQ
 - Communicates with FaCT via CORBA interface
 - Indicates inconsistencies and implicit subsumptions
 - Can make implicit subsumptions explicit in KB

Applications - p. 7/9

DAML+OIL Medical Terminology Examples

E.g., DAML+OIL medical terminology ontology

- In Transitive roles capture transitive partonomy, causality, etc. Smoking ⊑ ∃causes.Cancer plus Cancer ⊑ ∃causes.Death ⇒ Cancer ⊑ FatalThing
- GCIs represent additional non-definitional knowledge
 Stomach-Ulcer ≐ Ulcer □ ∃hasLocation.Stomach plus
 Stomach-Ulcer ⊑ ∃hasLocation.Lining-Of-Stomach
 ⇒ Ulcer □ ∃hasLocation.Stomach ⊑ OrganLiningLesion

Inverse roles capture e.g. causes/causedBy relationship Death □ ∃causedBy.Smoking □ PrematureDeath ⇒ Smoking □ CauseOfPrematureDeath

■ Cardinality restrictions add consistency constraints BloodPressure $\sqsubseteq \exists hasValue.(High \sqcup Low) \sqcap \leqslant 1hasValue plus$ High $\sqsubseteq \neg Low \Rightarrow$ HighLowBloodPressure $\sqsubseteq \bot$

OilEd Demo

Classes Slots Individual	s Axion	ns Container					
Classes		Documentatio	on				
© animal							
© animal_lover		Properties					
C bicycle		Same Lange					
C boy		Primitive					
C broadsheet		Superclasses					
C bus driver		person					
C nar							
© cat							
cat_hater		-					×
© cat_liker		Slot Constraints					
Cat_owner							
C colour		type	slot		filler	and the second of	SCALE.
© company		has-value	drives	bus			a second second
C) dog							
C dog_hater							
C dog owner							
C driver							
© girl	Bar S	December 2	ASS PARSE		Line and		0813
C magazine		Sec. 10				+	×
-		a state where the state					

Applications - p. 9/9

Reasoning Procedures: Deciding Consistency of \mathcal{ALCN} Concepts

As a warm-up, we describe a tableau-based algorithm that

- decides consistency of \mathcal{ALCN} concepts,
- tries to build a (tree) model \mathcal{I} for input concept C_0 ,
- breaks down C_0 syntactically, inferring constraints on elements in \mathcal{I} ,
- uses tableau rules corresponding to operators in \mathcal{ALCN} (e.g., \rightarrow_{\Box} , \rightarrow_{\exists})
- works non-deterministically, in PSpace
- stops when clash occurs
- terminates
- returns " C_0 is consistent" iff C_0 is consistent

- works on a tree (semantics through viewing tree as an ABox): nodes represent elements of $\Delta^{\mathcal{I}}$, labelled with sub-concepts of C_0 edges represent role-successorships between elements of $\Delta^{\mathcal{I}}$
- works on concepts in negation normal form: push negation inside using de Morgan' laws and

$$\begin{array}{ll} \neg(\exists R.C) \rightsquigarrow \forall R.\neg C & \neg(\forall R.C) \rightsquigarrow \exists R.\neg C \\ \neg(\leq n \; R) \rightsquigarrow (\geq (n+1)R) & \neg(\geq n \; R) \rightsquigarrow (\leq (n-1)R) & (n \geq 1) \\ \neg(\geq 0 \; R) \rightsquigarrow A \sqcap \neg A \end{array}$$

- is initialised with a tree consisting of a single (root) node x_0 with $\mathcal{L}(x_0) = \{C_0\}$:
- a tree T contains a clash if, for a node x in T,

• returns " C_0 is consistent" if rules can be applied s.t. they yield clah-free, complete (no more rules apply) tree

TU Dresden Germany

Reasoning Procedures: *ALC* Tableau Rules

$\boxed{x \bullet \{C_1 \sqcap C_2, \ldots\}}$	→⊓	$x ullet \{C_1 \sqcap C_2, C_1, C_2, \ldots\}$
$xullet \{C_1\sqcup C_2,\ldots\}$	\rightarrow_{\sqcup}	$xullet \{C_1 \sqcup C_2, oldsymbol{C}, \ldots\}$ for $C \in \{C_1, C_2\}$
$x \bullet \{ \exists R.C, \ldots \}$	-→∃	$\begin{array}{c} x \bullet \{ \exists R.C, \ldots \} \\ R \\ y \bullet \{ C \} \end{array}$
$\begin{array}{c} x \bullet \{\forall R.C, \ldots\} \\ R \\ y \bullet \{\ldots\} \end{array}$	$\rightarrow \forall$	$\begin{array}{c c} x \bullet \{\forall R.C, \ldots\} \\ R \\ y \bullet \{\ldots, C\} \end{array}$

18

Reasoning Procedures: Soundness and Completeness

Lemma Let C_0 be an \mathcal{ALCN} concept and T obtained by applying the tableau rules to C_0 . Then

- 1. the rule application terminates,
- 2. if T is clash-free and complete, then T defines (canonical) (tree) model for C_0 , and
- 3. if C_0 has a model \mathcal{I} , then the rules can be applied such that they yield a clash-free and complete T.

Corollary

- (1) The tableau algorithm is a (PSpace) decision procedure for consistency (and subsumption) of ALCN concepts
- (2) ALCN has the tree model property

Proof of the Lemma

- 1. (Termination) The algorithm "monotonically" constructs a tree whose depth is linear in $|C_0|$: quantifier depth decreases from node to succs. breadth is linear in $|C_0|$ (even if number in NRs are coded binarily)
- 2. (Canonical model) Complete, clash-free tree T defines a (tree) pre-model \mathcal{I} :

nodes xcorrespond to elements $x \in \Delta^{\mathcal{I}}$ edges $x \xrightarrow{R} y$ define role-relationship $x \in A^{\mathcal{I}}$ iff $A \in \mathcal{L}(x)$ for concept names A

 \sim Easy to that $C \in \mathcal{L}(x) \Rightarrow x \in C^{\mathcal{I}}$ — if $C \neq (\geq n R)$ If $(\geq n R) \in \mathcal{L}(x)$, then x might have less than n R-successors, but the \rightarrow_{\geq} -rule ensures that there is $\geq 1 R$ -successor...

TU Dresden Germany

Reasoning Procedures: Soundness and Completeness III

 \rightsquigarrow canonical tree model for input concept

3. (Completeness) Use model \mathcal{I} of C_0 to steer application of non-determistic rules $(\rightarrow_{\sqcup}, \rightarrow_{\leq})$ via mapping

 $\pi: ext{Nodes of Tree} \longrightarrow \Delta^\mathcal{I} \quad ext{with} \quad C \in \mathcal{L}(x) \Rightarrow \pi(x) \in C^\mathcal{I}.$

This easily implies clash-freenes of the tree generated.

To make the tableau algorithm run in PSpace:

- ① observe that branches are independent from each other
- ⁽²⁾ observe that each node (label) requires linear space only
- ③ recall that paths are of length $\leq |C_0|$
- **④** construct/search the tree **depth** first
- **⑤** re-use space from already constructed branches
- \rightsquigarrow space polynomial in $|C_0|$ suffices for each branch/for the algorithm
- \rightarrow tableau algorithm runs in NPspace (Savitch: NPspace = PSpace)

Reasoning Procedures: Extensibility

This tableau algorithm can be modified to a PSpace decision procedure for

- ✓ ALC with qualifying number restrictions (≥ $n \ R \ C$) and (≤ $n \ R \ C$)
- ✓ ALC with inverse roles has-child⁻
- ✓ \mathcal{ALC} with role conjunction ∃ $(R \sqcap S).C$ and $\forall (R \sqcap S).C$
- ✓ TBoxes with acyclic concept definitions:

unfolding (macro expansion) is easy, but suboptimal: may yield exponential blow-up

lazy unfolding (unfolding on demand) is optimal, consistency in PSpace decidable

Language extensions that require more elaborate techniques include

TBoxes with general axioms $C_i \sqsubseteq D_i$: each node must be labelled with $\neg C_i \sqcup D_i$ quantifier depth no longer decreases \rightsquigarrow termination not guaranteed

Transitive closure of roles: node labels $(\forall R^*.C)$ yields *C* in all R^n -successor labels quantifier depth no longer decreases \rightsquigarrow termination not guaranteed

> Use **blocking** (cycle detection) to ensure termination (but the right blocking to retain soundness and completeness)

TU Dresden Germany

Reasoning Procedures II

Non-Termination

- As already mentioned, for ALC with general axioms basic algorithm is non-terminating
- E.g. if human $\sqsubseteq \exists$ has-mother.human $\in \mathcal{T}$, then ¬human $\sqcup \exists$ has-mother.human added to every node

Reasoning Procedures II – p. 2/9

Blocking

- When creating new node, check ancestors for equal (superset) label
- If such a node is found, new node is **blocked**

$$\mathcal{L}(w) = \{ \text{human}, (\neg \text{human} \sqcup \exists \text{has-mother.human}), \exists \text{has-mother.human} \}$$

$$\text{has-mother}$$

$$\mathcal{L}(x) = \{ \text{human}, (\neg \text{human} \sqcup \exists \text{has-mother.human}) \}$$

Blocking with More Expressive DLs

- Simple subset blocking may not work with more complex logics
- E.g., reasoning with inverse roles
 - Expanding node label can affect predecessor
 - Label of blocking node can affect predecessor
 - E.g., testing $C \sqcap \exists S.C$ w.r.t. Tbox

$$\mathcal{T} = \{\top \sqsubseteq \forall R^-. (\forall S^-. \neg C), \top \sqsubseteq \exists R.C\}$$

Reasoning Procedures II - p. 4/9

Dynamic Blocking

Solution (for inverse roles) is dynamic blocking

- Blocks can be established broken and re-established
- Continue to expand $\forall R.C$ terms in blocked nodes
- Check that cycles satisfy $\forall R.C$ concepts

Non-finite Models

- With number restrictions some satisfiable concepts have only non-finite models
- E.g., testing $\neg C$ w.r.t. $\mathcal{T} = \{\top \sqsubseteq \exists R.C, \top \sqsubseteq \leqslant 1R^{-}\}$

Reasoning Procedures II – p. 6/9

Inadequacy of Dynamic Blocking

- With non-finite models, even dynamic blocking not enough
- $\blacksquare E.g., \text{ testing } \neg C \text{ w.r.t. } \mathcal{T} = \{ \top \sqsubseteq \exists R.(C \sqcap \exists R^-.\neg C), \top \sqsubseteq \leqslant 1R^- \}$

$$\begin{array}{c} (w) \mathcal{L}(w) = \{\neg C, \exists R. (C \sqcap \exists R^{-}. \neg C), \leqslant 1R^{-}\} \\ R \\ (x) \mathcal{L}(x) = \{(C \sqcap \exists R^{-}. \neg C), \exists R. (C \sqcap \exists R^{-}. \neg C), \leqslant 1R^{-}, C, \exists R^{-}. \neg C\} \\ R^{-} \\ (y) \mathcal{L}(y) = \{(C \sqcap \exists R^{-}. \neg C), \exists R. (C \sqcap \exists R^{-}. \neg C), \leqslant 1R^{-}, C, \exists R^{-}. \neg C\} \\ \mathbf{But} \ \exists R^{-}. \neg C \in \mathcal{L}(y) \text{ not satisfied} \\ \mathbf{Inconsistency due to} \leqslant 1R^{-} \in \mathcal{L}(y) \text{ and } C \in \mathcal{L}(x) \end{array}$$

Double Blocking I

■ Problem due to $\exists R^-.\neg C$ term **only** satisfied in **predecessor** of blocking node

$$\begin{split} & \bigotimes \mathcal{L}(w) = \{\neg C, \exists R.(C \sqcap \exists R^{-}.\neg C), \leqslant 1R^{-}\} \\ & R \\ & \swarrow \mathcal{L}(x) = \{(C \sqcap \exists R^{-}.\neg C), \exists R.(C \sqcap \exists R^{-}.\neg C), \leqslant 1R^{-}, C, \exists R^{-}.\neg C\} \end{split}$$

Solution is **Double Blocking** (pairwise blocking)

- Predecessors of blocked and blocking nodes also considered
- In particular, $\exists R.C$ terms satisfied in predecessor of blocking node must also be satisfied in predecessor of blocked node $\neg C \in \mathcal{L}(w)$

Reasoning Procedures II – p. 8/9

Double Blocking II

- Due to pairwise condition, block no longer holds
- Expansion continues and contradiction discovered

$$\begin{array}{c} (w) \mathcal{L}(w) = \{\neg C, \exists R. (C \sqcap \exists R^{-}. \neg C), \leqslant 1R^{-}\} \\ R \\ (x) \mathcal{L}(x) = \{(C \sqcap \exists R^{-}. \neg C), \exists R. (C \sqcap \exists R^{-}. \neg C), \leqslant 1R^{-}, C, \exists R^{-}. \neg C, \neg C\} \\ R \\ (y) \mathcal{L}(y) = \{(C \sqcap \exists R^{-}. \neg C), \exists R. (C \sqcap \exists R^{-}. \neg C), \leqslant 1R^{-}, C, \exists R^{-}. \neg C\} \end{array}$$

TU Dresden Germany

We left out a variety of complexity results for

- concept consistency of other DLs (e.g., those with "concrete domains")
- → other standard inferences
 - (e.g., deciding consistency of ABoxes w.r.t. TBoxes)
- "non-standard" inferences such as
 - matching and unification of concepts
 - rewriting concepts
 - least common subsumer (of a set of concepts)
 - most specific concept (of an ABox individual)

Implementing DL Systems

Implementation - p. 1/14

Naive Implementations

Problems include:

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice

Time usage

- Search required due to non-deterministic expansion
- Serious problem in practice
- Mitigated by:
 - → Careful choice of algorithm
 - → Highly optimised implementation

Careful Choice of Algorithm

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models
- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to "encode" additional operators/axioms
 - Powerful technique, particularly when used with FL closure
 - Can encode cardinality constraints, inverse roles, range/domain,
 ...
 - → E.g., (domain R.C) $\equiv \exists R.\top \sqsubseteq C$
 - (FL) encodings introduce (large numbers of) axioms
 - **BUT** even simple domain encoding is **disastrous** with large numbers of roles

Implementation - p. 3/14

Highly Optimised Implementation

Optimisation performed at 2 levels

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques
 - E.g., use enhanced traversal that exploits information from previous tests
 - Also use structural information from KB
 - ➡ E.g., to select order in which to classify concepts
- Computing subsumption between concepts
 - Objective is to minimise cost of single subsumption tests
 - Small number of hard tests can dominate classification time
 - Recent DL research has addressed this problem (with considerable success)

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

- Pre-processing optimisations
 - Aim is to simplify KB and facilitate subsumption testing
 - Largely algorithm independent
 - Particularly important when KB contains GCI axioms

Algorithmic optimisations

- Main aim is to **reduce search space** due to non-determinism
- Integral part of implementation
- But often generally applicable to search based algorithms

Implementation - p. 5/14

Pre-processing Optimisations

Useful techniques include

- Normalisation and simplification of concepts
 - Refinement of technique first used in *KRIS* system
 - Lexically normalise and simplify all concepts in KB
 - Combine with lazy unfolding in tableaux algorithm
 - Facilitates early detection of inconsistencies (clashes)
- Absorption (simplification) of general axioms
 - Eliminate GCIs by absorbing into "definition" axioms
 - Definition axioms efficiently dealt with by lazy expansion
- Revealed a set of potentially costly reasoning whenever possible
 - Normalisation can discover "obvious" (un)satisfiability
 - Structural analysis can discover "obvious" subsumption

Normalisation and Simplification

Implementation - p. 7/14

Absorption I

- Reasoning w.r.t. set of GCI axioms can be very costly
 - GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
 - Expansion of disjunctions leads to search
 - With 10 axioms and 10 nodes search space already 2^{100}
 - GALEN (medical terminology) KB contains hundreds of axioms
- Reasoning w.r.t. "primitive definition" axioms is relatively efficient
 - For $CN \sqsubseteq D$, add D only to node labels containing CN
 - For $CN \supseteq D$, add $\neg D$ only to node labels containing $\neg CN$
 - Can expand definitions lazily
 - Only add definitions after other local (propositional) expansion
 - Only add definitions one step at a time

Absorption II

- Transform GCIs into primitive definitions, e.g.
 - $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C$
 - $\mathsf{CN} \sqcup C \sqsupseteq D \longrightarrow \mathsf{CN} \sqsupseteq D \sqcap \neg C$
- Absorb into existing primitive definitions, e.g.
 - $\mathsf{CN} \sqsubseteq A, \mathsf{CN} \sqsubseteq D \sqcup \neg C \longrightarrow \mathsf{CN} \sqsubseteq A \sqcap (D \sqcup \neg C)$
 - $\mathsf{CN} \supseteq A, \mathsf{CN} \supseteq D \sqcap \neg C \longrightarrow \mathsf{CN} \supseteq A \sqcup (D \sqcap \neg C)$
- Use lazy expansion technique with primitive definitions
 - Disjunctions only added to "relevant" node labels
- Performance improvements often too large to measure
 - At least four orders of magnitude with GALEN KB

Implementation - p. 9/14

Algorithmic Optimisations

Useful techniques include

- Real Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking
- Caching
 - Cache partial models
 - Cache satisfiability status (of labels)
- Heuristic ordering of propositional and modal expansion
 - Min/maximise constrainedness (e.g., MOMS)
 - Maximise backtracking (e.g., oldest first)

Dependency Directed Backtracking

- Res Allows rapid recovery from bad branching choices
- Most commonly used technique is **backjumping**
 - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
 - Expansion rules combine and propagate tags
 - On discovering a clash, identify most recently introduced concepts involved
 - Jump back to relevant branch points without exploring alternative branches
 - Effect is to prune away part of the search space
 - Performance improvements with GALEN KB again too large to measure

Implementation - p. 11/14

Backjumping

E.g., if $\exists R. \neg A \sqcap \forall R. (A \sqcap B) \sqcap (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \subseteq \mathcal{L}(x)$

Caching

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 - → When $\mathcal{L}(x)$ initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem
- Cache (partial) models of concepts
 - Use to detect "obvious" non-subsumption
 - $C \not\sqsubseteq D$ if $C \sqcap \neg D$ is satisfiable
 - $C \sqcap \neg D$ satisfiable if models of C and $\neg D$ can be merged
 - If not, continue with standard subsumption test
 - Can use same technique in sub-problems

Implementation - p. 13/14

Summary

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

Solution (partial) is

- Careful choice of logic/algorithm
- Avoid encodings
- Highly optimised implementation
- Most important optimisations are
 - Absorption
 - Dependency directed backtracking (backjumping)
 - Caching
- Performance improvements can be very large
 - E.g., more than four orders of magnitude

- The official DL homepage: http://dl.kr.org/
- The DL mailing list: dl@dl.kr.org
- Patrick Lambrix's very useful DL site (including lots of interesting links): http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html
- The annual DL workshop:

DL2002 (co-located KR2002): http://www.cs.man.ac.uk/dl2002 Proceedings on-line available at:

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/

- The OIL homepage: http://www.ontoknowledge.org/oil/
- More about i-com: http://www.cs.man.ac.uk/~franconi/
- More about FaCT: http://www.cs.man.ac.uk/~horrocks/