Ian Horrocks
Information Management Group
University of Manchester, UK
Ulrike Sattler
Institut für Theoretische Informatik TU Dresden, Germany

- History and Basics: Syntax, Semantics, ABoxes, Tboxes, Inference Problems and their interrelationship, and Relationship with other (logical) formalisms
- Applications of DLs: ER-diagrams with i.com demo, ontologies, etc. including system demonstration
- Reasoning Procedures: simple tableaux and why they work
- Reasoning Procedures II: more complex tableaux, non-standard inference problems
- Complexity issues
- Implementing/Optimising DL systems
- family of logic-based knowledge representation formalisms well-suited for the representation of and reasoning about

Inl terminological knowledge
nint configurations
|n* ontologies
nult database schemata

- schema design, evolution, and query optimisation
- source integration in heterogeneous databases/data warehouses
- conceptual modelling of multidimensional aggregation
- descendents of semantics networks, frame-based systems, and KL-ONE
- aka terminological KR systems, concept languages, etc.

A Description Logic - mainly characterised by a set of constructors that allow to build complex concepts and roles from atomic ones,
concepts correspond to classes / are interpreted as sets of objects, roles correspond to relations / are interpreted as binary relations on objects,

Example: Happy Father in the DL $\mathcal{A L C}$


```
Man }\sqcap(\exists\mathrm{ (.as-child.Blue) }
(\existshas-child.Green) }
(\forallhas-child.Happy }\sqcup\mathrm{ Rich)
```

Semantics given by means of an interpretation $\mathcal{I}=\left(\Delta^{\mathcal{I}},{ }^{\mathcal{I}}\right)$:

Constructor	Syntax	Example	Semantics
atomic concept	\boldsymbol{A}	Human	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
atomic role	\boldsymbol{R}	likes	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

For C, D concepts and R a role name

conjunction	$C \sqcap D$	Human \sqcap Male	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
disjunction	$C \sqcup D$	Nice \sqcup Rich	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
negation	$\neg C$	\neg Meat	$\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}}$
exists restrict.	$\exists R . C$	\exists has-child.Human	$\left\{x \mid \exists y .\langle x, y\rangle \in R^{\mathcal{I}} \wedge y \in C^{\mathcal{I}}\right\}$
value restrict.	$\forall R . C$	\forall has-child.Blond	$\left\{x \mid \forall y .\langle x, y\rangle \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\right\}$

Constructor	Syntax	Example	Semantics
number restriction	$(\geq n \boldsymbol{R})$	$(\geq 7$ has-child $)$	$\left\{x\left\|\left\|\left\{y \cdot\langle x, y\rangle \in R^{\mathcal{I}}\right\}\right\| \geq n\right\}\right.$
	$(\leq n \boldsymbol{R})$	$(\leq 1$ has-mother $)$	$\left\{x\left\|\left\|\left\{y \cdot\langle x, y\rangle \in R^{\mathcal{I}}\right\}\right\| \leq n\right\}\right.$
inverse role	\boldsymbol{R}^{-}	has-child $^{-}$	$\left\{\langle x, y\rangle \mid\langle y, x\rangle \in R^{\mathcal{I}}\right\}$
trans. role	\boldsymbol{R}^{*}	has-child* *	$\left(\boldsymbol{R}^{\mathcal{I}}\right)^{*}$
concrete domain	$u_{1}, \ldots, u_{n} . P$	h-father•age, age. $>$	$\left\{x \mid\left\langle u_{1}^{\mathcal{I}}, \ldots, u_{n}^{\mathcal{I}}\right\rangle \in P\right\}$
etc.			

Many different DLs/DL constructors have been investigated

For terminological knowledge: TBox contains
Concept definitions $\quad A \doteq C \quad(A$ a concept name, C a complex concept)
Father \doteq Man $\sqcap \exists$ has-child.Human
Human \doteq Mammal $\sqcap \forall$ has-child ${ }^{-}$.Human
\leadsto introduce macros/names for concepts, can be (a)cyclic
Axioms
$C_{1} \sqsubseteq C_{2} \quad\left(C_{i}\right.$ complex concepts)
\exists favourite.Brewery $\sqsubseteq \exists$ drinks.Beer
\sim restrict your models
An interpretation \mathcal{I} satisfies
a concept definition $\quad A \doteq C$ iff $A^{\mathcal{I}}=C^{\mathcal{I}}$
an axiom $\quad C_{1} \sqsubseteq C_{2}$ iff $C_{1}^{\mathcal{I}} \subseteq C_{2}^{\mathcal{I}}$
a TBox
\mathcal{T} iff \mathcal{I} satisfies all definitions and axioms in \mathcal{T} $\leadsto \mathcal{I}$ is a model of \mathcal{T}

For assertional knowledge: ABox contains

Concept assertions
$a: C \quad(a$ an individual name, C a complex concept) John : Man $\sqcap \forall$ has-child.(Male \sqcap Happy)

Role assertions $\quad\left\langle a_{1}, a_{2}\right\rangle: R \quad\left(a_{i}\right.$ individual names, R a role)〈John, Bill〉: has-child

An interpretation \mathcal{I} satisfies
a concept assertion $\quad a: C$ iff $a^{\mathcal{I}} \in C^{\mathcal{I}}$
a role assertion $\quad\left\langle a_{1}, a_{2}\right\rangle: R$ iff $\left\langle a_{1}^{\mathcal{I}}, a_{2}^{\mathcal{I}}\right\rangle \in R^{\mathcal{I}}$
an ABox
\mathcal{A} iff \mathcal{I} satisfies all assertions in \mathcal{A} $\leadsto \mathcal{I}$ is a model of \mathcal{A}

Subsumption: $C \sqsubseteq D \quad$ Is $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations \mathcal{I} ?
w.r.t. TBox $\mathcal{T}: C \sqsubseteq_{\mathcal{T}} D \quad$ Is $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{T} ?
\sim structure your knowledge, compute taxonomy
Consistency: Is C consistent w.r.t. \mathcal{T} ? Is there a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$? of $\operatorname{ABox} \mathcal{A}$: Is \mathcal{A} consistent? Is there a model of \mathcal{A} ?
of $\mathrm{KB}(\mathcal{T}, \mathcal{A})$: Is $(\mathcal{T}, \mathcal{A})$ consistent?

Inference Problems are closely related: (no model of \mathcal{I} has an instance of $C \sqcap \neg D$)
C is consistent w.r.t. \mathcal{T} iff not $C \sqsubseteq_{\mathcal{T}} A \sqcap \neg A$
\leadsto Decision Procdures for consistency (w.r.t. TBoxes) suffice

For most DLs, the basic inference problems are decidable, with complexities between \mathbf{P} and ExpTime.

Why is decidability important? Why does semi-decidability not suffice?
If subsumption (and hence consistency) is undecidable, and
nut subsumption is semi-decidable, then consistency is not semi-decidable
num consistency is semi-decidable, then subsumption is not semi-decidable
"n+ Quest for a "highly expressive" DL with "practicable" inference problems where expressiveness depends on the application practicability changed over the time

Introduction to DL: History

Complexity of Inferences provided by DL systems over the time

In the last 5 years, DL-based systems were built that
\checkmark can handle DLs far more expressive than $\mathcal{A L C}$ (close relatives of converse-DPDL)

- Number restrictions: "people having at most 2 cats and exactly 1 dog"
- Complex roles: inverse ("has-child" - "child-of"), transitive closure ("offspring" - "has-child"), role inclusion ("has-daughter" - "has-child"), etc.
\checkmark implement provably sound and complete inference algorithms
(for ExpTime-complete problems)
$\boldsymbol{\checkmark}$ can handle large knowledge bases
(e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)
$\boldsymbol{\checkmark}$ are highly optimised versions of tableau-based algorithms
\checkmark perform (surprisingly well) on benchmarks for modal logic reasoners
(Tableaux'98, Tableaux'99)

Most DLs are decidable fragments of FOL: Introduce

a unary predicate A for a concept name \boldsymbol{A}
a binary relation R for a role name \boldsymbol{R}
Translate complex concepts C, D as follows:

$$
\begin{aligned}
t_{x}(A) & =\mathrm{A}(x), & t_{y}(A) & =\mathrm{A}(y), \\
t_{x}(C \sqcap D) & =t_{x}(C) \wedge t_{x}(D), & t_{y}(C \sqcap D) & =t_{y}(C) \wedge t_{y}(D), \\
t_{x}(C \sqcup D) & =t_{x}(C) \vee t_{x}(D), & t_{y}(C \sqcup D) & =t_{y}(C) \vee t_{y}(D), \\
t_{x}(\exists R \cdot C) & =\exists y \cdot \mathrm{R}(x, y) \wedge t_{y}(C), & t_{y}(\exists R \cdot C) & =\exists x \cdot \mathrm{R}(y, x) \wedge t_{x}(C), \\
t_{x}(\forall R \cdot C) & =\forall y \cdot \mathrm{R}(x, y) \Rightarrow t_{y}(C), & t_{y}(\forall R \cdot C) & =\forall x \cdot \mathrm{R}(y, x) \Rightarrow t_{x}(C) .
\end{aligned}
$$

A TBox $\mathcal{T}=\left\{C_{i} \doteq D_{i}\right\}$ is translated as

$$
\Phi_{\mathcal{T}}=\forall x . \bigwedge_{1 \leq i \leq n} t_{x}\left(C_{i}\right) \Leftrightarrow t_{x}\left(D_{i}\right)
$$

$$
\begin{gathered}
C \text { is consistent iff its translation } t_{x}(C) \text { is satisfiable, } \\
C \text { is consistent w.r.t. } \mathcal{T} \text { iff its translation } t_{x}(C) \wedge \Phi_{\mathcal{T}} \text { is satisfiable, } \\
C \sqsubseteq_{D} \text { iff } t_{x}(C) \Rightarrow t_{x}(D) \text { is valid } \\
C \sqsubseteq_{\mathcal{T}} D \text { iff } \Phi_{t} \Rightarrow \forall x .\left(t_{x}(C) \Rightarrow t_{x}(D)\right) \text { is valid. }
\end{gathered}
$$

$\leadsto \mathcal{A L C}$ is a fragment of FOL with 2 variables (L2), known to be decidable $\leadsto \mathcal{A L C}$ with inverse roles and Boolean operators on roles is a fragment of L 2
\sim further adding number restrictions yields a fragment of C2
(L2 with "counting quantifiers"), known to be decidable
\uparrow in contrast to most DLs, adding transitive roles (binary relations/ transitive closure operator) to L2 leads to undecidability
\star many DLs (like many modal logics) are fragments of the Guarded Fragment

- most DLs are less complex than L2:

L2 is NExpTime-complete, most DLs are in ExpTime

DLs and Modal Logics are closely related:
$\mathcal{A L C} \rightleftarrows$ multi-modal $\mathrm{K}:$

$$
\begin{array}{rlrl}
C \sqcap D & \rightleftarrows C \wedge D, & & C \sqcup D \\
\neg C & \rightleftarrows \neg C & \rightleftarrows C \vee D \\
\exists R \cdot C & \rightleftarrows\langle R\rangle C, & & \forall R . C \\
\rightleftarrows[R] C
\end{array}
$$

transitive roles $\dot{\rightleftarrows}$ transitive frames (e.g., in K4)
regular expressions on roles $\dot{\rightleftarrows}$ regular expressions on programs (e.g., in PDL) inverse roles $\dot{\rightleftarrows}$ converse programs (e.g., in C-PDL) number restrictions $\dot{\rightleftarrows}$ deterministic programs (e.g., in D-PDL)
\Rightarrow no TBoxes available in modal logics
\sim "internalise" axioms using a universal role $u: C \doteq D \rightleftarrows[u](C \Leftrightarrow D)$
\Rightarrow no ABox available in modal logics \leadsto use nominals

Applications of Description Logics

Application Areas I

Terminological KR and Ontologies

- DLs initially designed for terminological KR (and reasoning)
- Natural to use DLs to build and maintain ontologies

Semantic Web

- Semantic markup will be added to web resources
\rightarrow Aim is "machine understandability"
- Markup will use Ontologies to provide common terms of reference with clear semantics
- Requirement for web based ontology language
\rightarrow Well defined semantics
\rightarrow Builds on existing Web standards (XML, RDF, RDFS)
- Resulting language (DAML+OIL) is based on a DL (SHIQ)
- DL reasoning can be used to, e.g.,
\rightarrow Support ontology design and maintenance
\rightarrow Classify resources w.r.t. ontologies

Application Areas II

Configuration

- Classic system used to configure telecoms equipment
- Characteristics of components described in DL KB
- Reasoner checks validity (and price) of configurations

Software information systems

- LaSSIE system used DL KB for flexible software documentation and query answering
Database applications
LI...

Database Schema and Query Reasoning

D $\mathcal{L R}$ (n-ary DL) can capture semantics of many conceptual modelling methodologies (e.g., EER)
 reasoners (e.g., FaCT, RACER)
DL Abox can also capture semantics of conjunctive queries

- Can reason about query containment w.r.t. schema

DL reasoning can be used to support

- Schema design, evolution and query optimisation
- Source integration in heterogeneous databases/data warehouses
- Conceptual modelling of multidimensional aggregation
E.g., I.COM Intelligent Conceptual Modelling tool (Enrico Franconi)
- Uses FaCT system to provide reasoning support for EER

I.COM Demo

Applications - p. 5/9

Terminological KR and Ontologies

General requirement for medical terminologies
Static lists/taxonomies difficult to build and maintain

- Need to be very large and highly interconnected
- Inevitably contain many errors and omissions

Galen project aims to replace static hierarchy with DL

- Describe concepts (e.g., spiral fracture of left femur)
- Use DL classifier to build taxonomy

Needed expressive DL and efficient reasoning

- Descriptions use transitive/inverse roles, GCls etc.
- Very large KBs (tens of thousands of concepts)
\rightarrow Even prototype KB is very large ($\approx 3,000$ concepts)
\rightarrow Existing (incomplete) classifier took $\approx \mathbf{2 4}$ hours to classify KB
\rightarrow FaCT system (sound and complete) takes ≈ 60 seconds

Reasoning Support for Ontology Design

DL reasoner can be used to support design and maintenance
Example is OilEd ontology editor (for DAML+OIL)

- Frame based interface (like Protegé, OntoEdit, etc.)
- Extended to clarify semantics and capture whole DAML+OIL language
\rightarrow Slots explicitly existential or value restrictions
\rightarrow Boolean connectives and nesting
\rightarrow Properties for slot relations (transitive, functional etc.)
\rightarrow General axioms
Reasoning support for OilEd provided by FaCT system
- Frame representation translated into $\mathcal{S H I Q}$
- Communicates with FaCT via CORBA interface
- Indicates inconsistencies and implicit subsumptions
- Can make implicit subsumptions explicit in KB

DAML+OIL Medical Terminology Examples

E.g., DAML+OIL medical terminology ontology

Transitive roles capture transitive partonomy, causality, etc.
Smoking $\sqsubseteq \exists$ causes.Cancer plus Cancer $\sqsubseteq \exists$ causes.Death \Rightarrow Cancer \sqsubseteq FatalThing
GCIs represent additional non-definitional knowledge Stomach-Ulcer \doteq Ulcer $\sqcap \exists$ hasLocation.Stomach plus Stomach-Ulcer $\sqsubseteq \exists$ hasLocation.Lining-Of-Stomach \Rightarrow Ulcer $\sqcap \exists$ hasLocation.Stomach \sqsubseteq OrganLiningLesion
(1) Inverse roles capture e.g. causes/causedBy relationship

Death $\sqcap \exists$ causedBy.Smoking \sqsubseteq PrematureDeath
\Rightarrow Smoking \sqsubseteq CauseOfPrematureDeath
Cardinality restrictions add consistency constraints
BloodPressure $\sqsubseteq \exists$ hasValue.(High \sqcup Low) $\sqcap \leqslant 1$ hasValue plus High $\sqsubseteq \neg$ Low \Rightarrow HighLowBloodPressure $\sqsubseteq \perp$

OilEd Demo

As a warm-up, we describe a tableau-based algorithm that

- decides consistency of $\mathcal{A L C N}$ concepts,
- tries to build a (tree) model \mathcal{I} for input concept C_{0},
- breaks down C_{0} syntactically, inferring constraints on elements in \mathcal{I},
- uses tableau rules corresponding to operators in $\mathcal{A L C N}$ (e.g., $\rightarrow_{\square}, \rightarrow_{\exists}$)
- works non-deterministically, in PSpace
- stops when clash occurs
- terminates
- returns " C_{0} is consistent" iff C_{0} is consistent
- works on a tree (semantics through viewing tree as an ABox):
nodes represent elements of $\Delta^{\mathcal{I}}$, labelled with sub-concepts of C_{0}
edges represent role-successorships between elements of $\Delta^{\mathcal{I}}$
- works on concepts in negation normal form: push negation inside using de Morgan' laws and

$$
\begin{aligned}
\neg(\exists R . C) & \leadsto \forall R . \neg C & \neg(\forall R . C) & \leadsto \exists R . \neg C \\
\neg(\leq n R) & \leadsto(\geq(n+1) R) & \neg(\geq n R) & \leadsto(\leq(n-1) R) \quad(n \geq 1) \\
& & \neg(\geq 0 R) & \leadsto A \sqcap \neg A
\end{aligned}
$$

- is initialised with a tree consisting of a single (root) node x_{0} with $\mathcal{L}\left(x_{0}\right)=\left\{C_{0}\right\}$:
- a tree T contains a clash if, for a node \boldsymbol{x} in T ,

$$
\begin{aligned}
\{A, \neg A\} & \subseteq \mathcal{L}(x) \text { or } \\
\{(\geq m R),(\leq n R)\} & \subseteq \mathcal{L}(x) \text { for } n<m
\end{aligned}
$$

- returns " C_{0} is consistent" if rules can be applied s.t. they yield clah-free, complete (no more rules apply) tree

$x \bullet\left\{C_{1} \sqcap C_{2}, \ldots\right\}$	$\rightarrow \square$	$x \bullet\left\{C_{1} \sqcap C_{2}, C_{1}, C_{2}, \ldots\right\}$
$x \bullet\left\{C_{1} \sqcup C_{2}, \ldots\right\}$	$\rightarrow \sqcup$	$\begin{aligned} & x \bullet\left\{C_{1} \sqcup C_{2}, C, \ldots\right\} \\ & \quad \text { for } C \in\left\{C_{1}, C_{2}\right\} \end{aligned}$
$x \bullet\{\exists R . C, \ldots\}$	$\rightarrow \exists$	$\begin{aligned} & x \bullet\{\exists R . C, \ldots\} \\ & R \\ & y \bullet\{C\} \end{aligned}$
$\begin{aligned} & x \cdot\{\forall R . C, \ldots\} \\ & \boldsymbol{R} \\ & y \bullet\{\ldots\} \end{aligned}$	$\rightarrow \forall$	$\begin{aligned} & x \bullet\{\forall R . C, \ldots\} \\ & R \\ & y \bullet\{\ldots, C\} \end{aligned}$

$x \bullet\{(\geq n R), \ldots\}$ x has no R-succ.	$\rightarrow \geq$	$\begin{aligned} & x \bullet\{(\geq n R), \ldots\} \\ & R \\ & y \bullet\} \end{aligned}$
	$\rightarrow \leq$	merge two \boldsymbol{R}-succs.

Lemma Let C_{0} be an $\mathcal{A L C N}$ concept and T obtained by applying the tableau rules to C_{0}. Then

1. the rule application terminates,
2. if T is clash-free and complete, then T defines (canonical) (tree) model for C_{0}, and
3. if C_{0} has a model \mathcal{I}, then the rules can be applied such that they yield a clash-free and complete T .

Corollary

(1) The tableau algorithm is a (PSpace) decision procedure for consistency (and subsumption) of $\mathcal{A L C N}$ concepts
(2) $\mathcal{A L C N}$ has the tree model property

Proof of the Lemma

1. (Termination) The algorithm "monotonically" constructs a tree whose depth is linear in $\left|C_{0}\right|$: quantifier depth decreases from node to succs. breadth is linear in $\left|C_{0}\right|$ (even if number in NRs are coded binarily)
2. (Canonical model) Complete, clash-free tree T defines a (tree) pre-model \mathcal{I} :
nodes $x \quad$ correspond to elements $x \in \Delta^{\mathcal{I}}$
edges $x \xrightarrow{R} y$ define role-relationship
$x \in A^{\mathcal{I}} \quad$ iff $A \in \mathcal{L}(x)$ for concept names A
\sim Easy to that $C \in \mathcal{L}(x) \Rightarrow x \in C^{\mathcal{I}}$ - if $C \neq(\geq n R)$
If $(\geq n R) \in \mathcal{L}(x)$, then x might have less than $n \boldsymbol{R}$-successors, but the $\rightarrow \geq$-rule ensures that there is $\geq 1 R$-successor. . .
copy some R-successors (including sub-trees) to obtain $\boldsymbol{n} \boldsymbol{R}$-successors:

\sim canonical tree model for input concept
3. (Completeness) Use model \mathcal{I} of C_{0} to steer application of non-determistic rules $(\rightarrow \sqcup, \rightarrow \leq)$ via mapping

$$
\pi: \text { Nodes of Tree } \longrightarrow \Delta^{\mathcal{I}} \quad \text { with } \quad C \in \mathcal{L}(x) \Rightarrow \pi(x) \in C^{\mathcal{I}} .
$$

This easily implies clash-freenes of the tree generated.

To make the tableau algorithm run in PSpace:
(1) observe that branches are independent from each other
(2) observe that each node (label) requires linear space only
(3) recall that paths are of length $\leq\left|C_{0}\right|$
(4) construct/search the tree depth first
(5) re-use space from already constructed branches
\sim space polynomial in $\left|C_{0}\right|$ suffices for each branch/for the algorithm
\sim tableau algorithm runs in NPspace (Savitch: NPspace $=$ PSpace)

This tableau algorithm can be modified to a PSpace decision procedure for
$\checkmark \mathcal{A} \mathcal{L C}$ with qualifying number restrictions ($\geq n R C$) and ($\leq n R C$)
$\checkmark \mathcal{A L C}$ with inverse roles has-child ${ }^{-}$
$\checkmark \mathcal{A L C}$ with role conjunction
$\exists(R \sqcap S) . C$ and $\forall(R \sqcap S) . C$
\checkmark TBoxes with acyclic concept definitions:
unfolding (macro expansion) is easy, but suboptimal: may yield exponential blow-up
lazy unfolding (unfolding on demand) is optimal, consistency in PSpace decidable

Language extensions that require more elaborate techniques include

Int TBoxes with general axioms $C_{i} \sqsubseteq D_{i}$:
each node must be labelled with $\neg C_{i} \sqcup D_{i}$
quantifier depth no longer decreases
\sim termination not guaranteed
nin Transitive closure of roles:
node labels ($\forall \boldsymbol{R}^{*} . C$) yields C in all R^{n}-successor labels quantifier depth no longer decreases
\sim termination not guaranteed

Use blocking (cycle detection) to ensure termination (but the right blocking to retain soundness and completeness)

Reasoning Procedures II

Non-Termination

As already mentioned, for $\mathcal{A L C}$ with general axioms basic algorithm is non-terminating
E.g. if human $\sqsubseteq \exists$ has-mother.human $\in \mathcal{T}$, then \neg human $\sqcup \exists$ has-mother.human added to every node

```
(w) \mathcal{L}}(w)={\mathrm{ human, (`human }\sqcup\exists\mathrm{ has-mother.human), Эhas-mother.human}
    has-mother
x \mathcal{L}(x)={human, (\neghuman }\sqcup\exists\mathrm{ has-mother.human), Эhas-mother.human }
    has-mother
(y) \mathcal{L}}(y)={\mathrm{ human, (ᄀhuman }\sqcup\exists\mathrm{ has-mother.human), Эhas-mother.human}
v
```


Blocking

When creating new node, check ancestors for equal (superset) label If such a node is found, new node is blocked
(w) $\mathcal{L}(w)=$ \{human, (\neg human $\sqcup \exists$ has-mother.human), ヨhas-mother.human $\}$ has-mother Blocked
© $\mathcal{L}(x)=\{$ human, $(\neg$ human \sqcup Эhas-mother.human $)\}$

Blocking with More Expressive DLs

Simple subset blocking may not work with more complex logics
E.g., reasoning with inverse roles

- Expanding node label can affect predecessor
- Label of blocking node can affect predecessor
- E.g., testing $C \sqcap \exists S . C$ w.r.t. Tbox

$$
\mathcal{T}=\left\{\top \sqsubseteq \forall R^{-} .\left(\forall S^{-} . \neg C\right), \top \sqsubseteq \exists R . C\right\}
$$

Dynamic Blocking

Solution (for inverse roles) is dynamic blocking

- Blocks can be established broken and re-established
- Continue to expand $\forall R . C$ terms in blocked nodes
- Check that cycles satisfy $\forall R . C$ concepts

Non-finite Models

With number restrictions some satisfiable concepts have only non-finite models
E.g., testing $\neg C$ w.r.t. $\mathcal{T}=\left\{\top \sqsubseteq \exists R . C, \top \sqsubseteq \leqslant 1 R^{-}\right\}$

Inadequacy of Dynamic Blocking

With non-finite models, even dynamic blocking not enough
E.g., testing $\neg C$ w.r.t. $\mathcal{T}=\left\{\top \sqsubseteq \exists R .\left(C \sqcap \exists R^{-} . \neg C\right), \top \sqsubseteq \leqslant 1 R^{-}\right\}$

R^{-}Blocked
(y) $\mathcal{L}(y)=\left\{\left(C \sqcap \exists R^{-} . \neg C\right), \exists R .\left(C \sqcap \exists R^{-} . \neg C\right), \leqslant 1 R^{-}, C, \exists R^{-} . \neg C\right\}$

But $\exists R^{-} . \neg C \in \mathcal{L}(y)$ not satisfied
Inconsistency due to $\leqslant 1 R^{-} \in \mathcal{L}(y)$ and $C \in \mathcal{L}(x)$

Double Blocking I

Problem due to $\exists R^{-} . \neg C$ term only satisfied in predecessor of blocking node

```
(w) \(\mathcal{L}(w)=\left\{\neg C, \exists R .\left(C \sqcap \exists R^{-} . \neg C\right), \leqslant 1 R^{-}\right\}\)
    R
(x) \(\mathcal{L}(x)=\left\{\left(C \sqcap \exists R^{-} . \neg C\right), \exists R .\left(C \sqcap \exists R^{-} . \neg C\right), \leqslant 1 R^{-}, C, \exists R^{-} . \neg C\right\}\)
```

Solution is Double Blocking (pairwise blocking)

- Predecessors of blocked and blocking nodes also considered
- In particular, $\exists R . C$ terms satisfied in predecessor of blocking node must also be satisfied in predecessor of blocked node $\neg C \in \mathcal{L}(w)$

Double Blocking II

Due to pairwise condition, block no longer holds
[桨 Expansion continues and contradiction discovered

```
(w) \(\mathcal{L}(w)=\left\{\neg C, \exists R .\left(C \sqcap \exists R^{-} . \neg C\right), \leqslant 1 R^{-}\right\}\)
    \(R\)
\(\underset{\sim}{\mathcal{L}}(x)=\left\{\left(C \sqcap \exists R^{-} . \neg C\right), \exists R .\left(C \sqcap \exists R^{-} . \neg C\right), \leqslant 1 R^{-}, C, \exists R^{-} . \neg C, \neg C\right\}\)
    R
                                    Clash
(y) \(\mathcal{L}(y)=\left\{\left(C \sqcap \exists R^{-} . \neg C\right), \exists R .\left(C \sqcap \exists R^{-} . \neg C\right), \leqslant 1 R^{-}, C, \exists R^{-} . \neg C\right\}\)
```


We left out a variety of complexity results for
\Rightarrow concept consistency of other DLs
(e.g., those with "concrete domains")

\approx other standard inferences

(e.g., deciding consistency of ABoxes w.r.t. TBoxes)
\Rightarrow "non-standard" inferences such as

- matching and unification of concepts
- rewriting concepts
- least common subsumer (of a set of concepts)
- most specific concept (of an ABox individual)

Implementing DL Systems

Naive Implementations

Problems include:
Space usage

- Storage required for tableaux datastructures
- Rarely a serious problem in practice

Time usage

- Search required due to non-deterministic expansion
- Serious problem in practice
- Mitigated by:
\rightarrow Careful choice of algorithm
\rightarrow Highly optimised implementation

Careful Choice of Algorithm

Transitive roles instead of transitive closure

- Deterministic expansion of $\exists R . C$, even when $R \in \mathbf{R}_{+}$
- (Relatively) simple blocking conditions
- Cycles always represent (part of) cyclical models

Direct algorithm/implementation instead of encodings

- GCI axioms can be used to "encode" additional operators/axioms
- Powerful technique, particularly when used with FL closure
- Can encode cardinality constraints, inverse roles, range/domain,
\rightarrow E.g., (domain R.C) $\equiv \exists R . \top \sqsubseteq C$
- (FL) encodings introduce (large numbers of) axioms
- BUT even simple domain encoding is disastrous with large numbers of roles

Highly Optimised Implementation

Optimisation performed at 2 levels
Computing classification (partial ordering) of concepts

- Objective is to minimise number of subsumption tests
- Can use standard order-theoretic techniques
\rightarrow E.g., use enhanced traversal that exploits information from previous tests
- Also use structural information from KB
\rightarrow E.g., to select order in which to classify concepts
Computing subsumption between concepts
- Objective is to minimise cost of single subsumption tests
- Small number of hard tests can dominate classification time
- Recent DL research has addressed this problem (with considerable success)

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories
Pre-processing optimisations

- Aim is to simplify KB and facilitate subsumption testing
- Largely algorithm independent
- Particularly important when KB contains GCl axioms

Algorithmic optimisations

- Main aim is to reduce search space due to non-determinism
- Integral part of implementation
- But often generally applicable to search based algorithms

Pre-processing Optimisations

Useful techniques include
Normalisation and simplification of concepts

- Refinement of technique first used in $\mathcal{K} \mathcal{R} \mathcal{I} \mathcal{S}$ system
- Lexically normalise and simplify all concepts in KB
- Combine with lazy unfolding in tableaux algorithm
- Facilitates early detection of inconsistencies (clashes)

Absorption (simplification) of general axioms

- Eliminate GCIs by absorbing into "definition" axioms
- Definition axioms efficiently dealt with by lazy expansion

Avoidance of potentially costly reasoning whenever possible

- Normalisation can discover "obvious" (un)satisfiability
- Structural analysis can discover "obvious" subsumption

Normalisation and Simplification

Normalise concepts to standard form, e.g.:

- $\exists R . C \longrightarrow \neg \forall R . \neg C$
- $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$

Simplify concepts, e.g.:

- $(D \sqcap C) \sqcap(A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
- $\forall R . \top \longrightarrow \top$
- ... $\sqcap C \sqcap \ldots \sqcap \neg C \sqcap \ldots \longrightarrow \perp$

Lazily unfold concepts in tableaux algorithm

- Use names/pointers to refer to complex concepts
- Only add structure as required by progress of algorithm
- Detect clashes between lexically equivalent concepts
$\{$ HappyFather, \neg HappyFather\} \longrightarrow clash
$\{\forall$ has-child.(Doctor \sqcup Lawyer), ヨhas-child. $(\neg$ Doctor $\sqcap \neg$ Lawyer $)\} \longrightarrow$ search

Absorption I

Reasoning w.r.t. set of GCl axioms can be very costly

- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- With 10 axioms and 10 nodes search space already 2^{100}
- GaLEN (medical terminology) KB contains hundreds of axioms

Reasoning w.r.t. "primitive definition" axioms is relatively efficient

- For $\mathrm{CN} \sqsubseteq D$, add D only to node labels containing CN
- For $\mathrm{CN} \sqsupseteq D$, add $\neg D$ only to node labels containing $\neg \mathrm{CN}$
- Can expand definitions lazily
\rightarrow Only add definitions after other local (propositional) expansion
\rightarrow Only add definitions one step at a time

Absorption II

Transform GCls into primitive definitions, e.g.

- $\mathrm{CN} \sqcap C \sqsubseteq D \longrightarrow \mathrm{CN} \sqsubseteq D \sqcup \neg C$
- $\mathrm{CN} \sqcup C \sqsupseteq D \longrightarrow \mathrm{CN} \sqsupseteq D \sqcap \neg C$

Absorb into existing primitive definitions, e.g.

- $\mathrm{CN} \sqsubseteq A, \mathrm{CN} \sqsubseteq D \sqcup \neg C \longrightarrow \mathrm{CN} \sqsubseteq A \sqcap(D \sqcup \neg C)$
- $\mathrm{CN} \sqsupseteq A, \mathrm{CN} \sqsupseteq D \sqcap \neg C \longrightarrow \mathrm{CN} \sqsupseteq A \sqcup(D \sqcap \neg C)$

Use lazy expansion technique with primitive definitions

- Disjunctions only added to "relevant" node labels

Performance improvements often too large to measure

- At least four orders of magnitude with GaLEN KB

Algorithmic Optimisations

Useful techniques include
Avoiding redundancy in search branches

- Davis-Putnam style semantic branching search
- Syntactic branching with no-good list

Dependency directed backtracking

- Backjumping
- Dynamic backtracking

Caching

- Cache partial models
- Cache satisfiability status (of labels)

Heuristic ordering of propositional and modal expansion

- Min/maximise constrainedness (e.g., MOMS)
- Maximise backtracking (e.g., oldest first)

Dependency Directed Backtracking

Allows rapid recovery from bad branching choices
Most commonly used technique is backjumping

- Tag concepts introduced at branch points (e.g., when expanding disjunctions)
- Expansion rules combine and propagate tags
- On discovering a clash, identify most recently introduced concepts involved
- Jump back to relevant branch points without exploring alternative branches
- Effect is to prune away part of the search space
- Performance improvements with GaLEN KB again too large to measure

Backjumping

E.g., if $\exists R . \neg A \sqcap \forall R .(A \sqcap B) \sqcap\left(C_{1} \sqcup D_{1}\right) \sqcap \ldots \sqcap\left(C_{n} \sqcup D_{n}\right) \subseteq \mathcal{L}(x)$

Caching

Cache the satisfiability status of a node label

- Identical node labels often recur during expansion
- Avoid re-solving problems by caching satisfiability status
\rightarrow When $\mathcal{L}(x)$ initialised, look in cache
\rightarrow Use result, or add status once it has been computed
- Can use sub/super set caching to deal with similar labels
- Care required when used with blocking or inverse roles
- Significant performance gains with some kinds of problem

Cache (partial) models of concepts

- Use to detect "obvious" non-subsumption
- $C \nsubseteq D$ if $C \sqcap \neg D$ is satisfiable
- $C \sqcap \neg D$ satisfiable if models of C and $\neg D$ can be merged
- If not, continue with standard subsumption test
- Can use same technique in sub-problems

Summary

Naive implementation results in effective non-termination
Problem is caused by non-deterministic expansion (search)

- GCIs lead to huge search space

Solution (partial) is

- Careful choice of logic/algorithm
- Avoid encodings
- Highly optimised implementation

Most important optimisations are

- Absorption
- Dependency directed backtracking (backjumping)
- Caching

Performance improvements can be very large

- E.g., more than four orders of magnitude
- The official DL homepage: http://dl.kr.org/
- The DL mailing list: dl@dl.kr.org
- Patrick Lambrix's very useful DL site (including lots of interesting links): http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html
- The annual DL workshop:

DL2002 (co-located KR2002): http://www.cs.man.ac.uk/dl2002
Proceedings on-line available at:
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/

- The OIL homepage: http://www.ontoknowledge.org/oil/
- More about i.com: http://www.cs.man.ac.uk/~franconi/
- More about FaCT: http://www.cs.man.ac.uk/~horrocks/

