Description Logic: A Formal Foundation for Languages and Tools

Ian Horrocks

<ian.horrocks@comlab.ox.ac.uk> Information Systems Group Oxford University Computing Laboratory

Contents

- Description Logic Basics
 - Syntax and semantics
- Description Logics and Ontology Languages
 - OWL ontology language
 - Ontology -v- Database
- Description Logic Reasoning
 - Reasoning services
 - Reasoning techniques
- Recent and Future work

DL Basics

it....ti

(Hiti)

i tiitii

• Decidable fragments of First Order Logic

Thank you for listening

Any questions?

- A family of logic based Knowledge Representation formalisms
 - Originally descended from semantic networks and KL-ONE
 - Describe domain in terms of concepts (aka classes), roles (aka properties, relationships) and individuals

- Modern DLs (after Baader et al) distinguished by:
 - Fully fledged logics with formal semantics
 - Decidable fragments of FOL (often contained in C₂)
 - Closely related to Propositional Modal & Dynamic Logics
 - Closely related to Guarded Fragment
 - Provision of inference services
 - Practical decision procedures (algorithms) for key problems (satisfiability, subsumption, etc)
 - Implemented systems (highly optimised)

and now:

A Word from our Sponsors

- Syntax
 - Non-logical symbols (signature)
 - Constants: Felix, MyMat
 - Predicates(arity): Animal(1), Cat(1), has-color(2), sits-on(2)
 - Logical symbols:
 - Variables: x, y
 - Operators: \land , \lor , \rightarrow , \neg , ...
 - Quantifiers: ∃, ∀
 - Equality: =
 - Formulas:
 - Cat(Felix), Mat(MyMat), sits-on(Felix, MyMat)
 - Cat(x), $Cat(x) \lor Human(x)$, $\exists y.Mat(y) \land sits-on(x, y)$
 - $\forall x. \operatorname{Cat}(x) \to \operatorname{Animal}(x), \ \forall x. \operatorname{Cat}(x) \to (\exists y. \operatorname{Mat}(y) \land \operatorname{sits-on}(x, y))$

Semantics

Semantics

Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.

Semantics

Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way! Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe. That's OK, but I don't get paid for philosophy. From a practical POV, we need to define relationships (like entailment) between logical statements -- without such a definition we can't spec software such as a reasoner.

Semantics

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which "objects" in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.

Semantics

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which "objects" in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.

> Note that this is exactly the same kind of model as used in a database: objects in the world are modeled as values (elements) and relationships as tables (sets of tuples).

- Semantics
 - Model: a pair $\langle D, \cdot^I \rangle$ with D a non-empty set and \cdot^I an interpretation
 - + C^{I} is an element of D for C a constant
 - v^I is an element of D for v a variable
 - P^I is a subset of D^n for P a predicate of arity n

- Semantics
 - Evaluation: truth value in a given model M = $\langle D, \cdot^I \rangle$
 - $P(t_1, \ldots, t_n)$ is true iff $\langle t_1^I, \ldots, t_n^I \rangle \in P^I$
 - $A \wedge B$ is true iff A is true and B is true $\neg A$ is true iff A is not true

Cat(Felix)trueCat(MyMat)false¬Mat(Felix)truesits-on(Felix, MyMat)trueMat(Felix) ∨ Cat(Felix)true

$$egin{aligned} D &= \{a,b,c,d,e,f\} \ \mathrm{Felix}^I &= a \ \mathrm{MyMat}^I &= b \ \mathrm{Cat}^I &= \{a,c\} \ \mathrm{Mat}^I &= \{b,e\} \ \mathrm{Animal}^I &= \{a,c,d\} \ \mathrm{sits\text{-}on}^I &= \{\langle a,b
angle, \langle c,e
angle\} \end{aligned}$$

- Semantics
 - Evaluation: truth value in a given model M = $\langle D, \cdot^I \rangle$
 - $\exists x.A \text{ is } true \text{ iff exists } \cdot^{I'} \text{ s.t. } \cdot^{I} \text{ and } \cdot^{I'} \text{ differ only w.r.t. } x, and A \text{ is } true \text{ w.r.t. } \langle D, \cdot^{I'} \rangle$
 - $\forall x.A \text{ is } true \text{ iff for all } \cdot^{I'} \text{ s.t. } \cdot^{I} \text{ and } \cdot^{I'} \text{ differ only w.r.t. } x, A \text{ is } true \text{ w.r.t. } \langle D, \cdot^{I'} \rangle$

E.g.,true $\exists x. \operatorname{Cat}(x)$ true $\forall x. \operatorname{Cat}(x)$ false $\exists x. \operatorname{Cat}(x) \land \operatorname{Mat}(x)$ false $\forall x. \operatorname{Cat}(x) \rightarrow \operatorname{Animal}(x)$ true $\forall x. \operatorname{Cat}(x) \rightarrow (\exists y. \operatorname{Mat}(y) \land \operatorname{sits-on}(x, y))$ true

$$egin{aligned} D &= \{a,b,c,d,e,f\} \ \mathrm{Felix}^I &= a \ \mathrm{MyMat}^I &= b \ \mathrm{Cat}^I &= \{a,c\} \ \mathrm{Mat}^I &= \{b,e\} \ \mathrm{Mat}^I &= \{b,e\} \ \mathrm{Animal}^I &= \{a,c,d\} \ \mathrm{sits\text{-}on}^I &= \{\langle a,b
angle, \langle c,e
angle \} \end{aligned}$$

- Semantics
 - Given a model M and a formula F, M is a model of F (written M ⊨ F) iff
 F evaluates to true in M
 - A formula F is **satisfiable** iff there exists a model M s.t. $M \models F$
 - A formula F entails another formula G (written $F \models G$) iff every model of F is also a model of G (i.e., $M \models F$ implies $M \models G$)

$$\begin{array}{l} \mathsf{E.g.,} \\ M \models \exists x. \mathrm{Cat}(x) \\ M \not\models \forall x. \mathrm{Cat}(x) \\ M \not\models \exists x. \mathrm{Cat}(x) \land \mathrm{Mat}(x) \\ M \models \forall x. \mathrm{Cat}(x) \rightarrow \mathrm{Animal}(x) \\ M \models \forall x. \mathrm{Cat}(x) \rightarrow (\exists y. \mathrm{Mat}(y) \land \mathrm{sits-on}(x, y)) \end{array} \begin{array}{l} D = \{a, b, c, d, e, f\} \\ \mathrm{Felix}^{I} = a \\ \mathrm{MyMat}^{I} = b \\ \mathrm{Cat}^{I} = \{a, c\} \\ \mathrm{Mat}^{I} = \{b, e\} \\ \mathrm{Animal}^{I} = \{b, e\} \\ \mathrm{Animal}^{I} = \{a, c, d\} \\ \mathrm{sits-on}^{I} = \{\langle a, b \rangle, \langle c, e \rangle\} \end{array}$$

- Semantics
 - Given a model M and a formula F, M is a model of F (written M ⊨ F) iff
 F evaluates to true in M
 - A formula F is **satisfiable** iff there exists a model M s.t. $M \models F$
 - A formula F entails another formula G (written $F \models G$) iff every model of F is also a model of G (i.e., $M \models F$ implies $M \models G$)

E.g.,

- ✓ $Cat(Felix) \models \exists x.Cat(x) \quad (Cat(Felix) \land \neg \exists x.Cat(x) \text{ is not satisfiable})$
- $\checkmark \quad (\forall x. \operatorname{Cat}(x) \to \operatorname{Animal}(x)) \land \operatorname{Cat}(\operatorname{Felix}) \models \operatorname{Animal}(\operatorname{Felix})$
- $\checkmark (\forall x. \operatorname{Cat}(x) \to \operatorname{Animal}(x)) \land \neg \operatorname{Animal}(\operatorname{Felix}) \models \neg \operatorname{Cat}(\operatorname{Felix})$
- \checkmark Cat(Felix) $\models \forall x.Cat(x)$
- \checkmark sits-on(Felix, Mat1) \land sits-on(Tiddles, Mat2) $\models \neg$ sits-on(Felix, Mat2)
- ★ sits-on(Felix, Mat1) \land sits-on(Tiddles, Mat1) $\models \exists^{\geq 2} x$.sits-on(x, Mat1)

Decidable Fragments

- FOL (satisfiability) well known to be undecidable
 - A sound, complete and terminating algorithm is impossible
- Interesting decidable fragments include, e.g.,
 - C2: FOL with 2 variables and Counting quantifiers $(\exists^{\geq n}, \exists^{\leq n})$
 - Counting quantifiers abbreviate pairwise (in-) equalities, e.g.: $\exists^{\geq 3}x.\operatorname{Cat}(x) \text{ equivalent to}$ $\exists x, y, z.\operatorname{Cat}(x) \wedge \operatorname{Cat}(y) \wedge \operatorname{Cat}(z) \wedge x \neq y \wedge x \neq z \wedge y \neq z$ $\exists^{\leq 2}x.\operatorname{Cat}(x) \text{ equivalent to}$ $\forall x, y, z.\operatorname{Cat}(x) \wedge \operatorname{Cat}(y) \wedge \operatorname{Cat}(z) \rightarrow x = y \lor x = z \lor y = z$
 - Propositional modal and description logics
 - Guarded fragment

Back to our Scheduled Program

- Signature
 - Concept (aka class) names, e.g., Cat, Animal, Doctor
 - Equivalent to FOL unary predicates
 - Role (aka property) names, e.g., sits-on, hasParent, loves
 - Equivalent to FOL binary predicates
 - Individual names, e.g., Felix, John, Mary, Boston, Italy
 - Equivalent to FOL constants

- Operators
 - Many kinds available, e.g.,
 - Standard FOL Boolean operators (□, ⊔, ¬)
 - Restricted form of quantifiers (\exists, \forall)
 - Counting (\geq , \leq , =)

- Concept expressions, e.g.,
 - Doctor \sqcup Lawyer
 - Rich ⊓ Happy
 - − Cat \square ∃sits-on.Mat
- Equivalent to FOL formulae with one free variable
 - $Doctor(x) \lor Lawyer(x)$
 - $\operatorname{Rich}(x) \wedge \operatorname{Happy}(x)$
 - $\exists y.(\operatorname{Cat}(x) \land \operatorname{sits-on}(x,y))$

- Special concepts
 - − ⊤ (aka top, Thing, most general concept)
 - \perp (aka bottom, Nothing, inconsistent concept)

used as abbreviations for

- $(A \sqcup \neg A)$ for any concept A
- (A \sqcap ¬ A) for any concept A

- Role expressions, e.g.,
 - loves⁻
 - hasParent hasBrother
- Equivalent to FOL formulae with two free variables
 - loves(y, x)
 - $\exists z.(hasParent(x, z) \land hasBrother(z, y))$

- "Schema" Axioms, e.g.,
 - Rich $\sqsubseteq \neg$ Poor
 - − Cat $\sqcap \exists sits-on.Mat \sqsubseteq Happy$
 - − BlackCat \equiv Cat \sqcap ∃hasColour.Black
 - sits-on \sqsubseteq touches
 - Trans(part-of)

(concept inclusion)
(concept inclusion)
(concept equivalence)
(role inclusion)
(transitivity)

- Equivalent to (particular form of) FOL sentence, e.g.,
 - $\forall x.(\operatorname{Rich}(x) \rightarrow \neg \operatorname{Poor}(x))$
 - $\forall x.(Cat(x) \land \exists y.(sits-on(x,y) \land Mat(y)) \rightarrow Happy(x))$
 - $\forall x.(BlackCat(x) \leftrightarrow (Cat(x) \land \exists y.(hasColour(x,y) \land Black(y)))$
 - $\forall x, y.(sits-on(x,y) \rightarrow touches(x,y))$
 - $\forall x, y, z.((sits-on(x,y) \land sits-on(y,z)) \rightarrow sits-on(x,z))$

- "Data" Axioms (aka Assertions or Facts), e.g.,
 - BlackCat(Felix)

- (concept assertion)
- Mat(Mat1) (concept assertion)
- Sits-on(Felix,Mat1)

- (role assertion)
- Directly equivalent to FOL "ground facts"
 - Formulae with no variables

• A set of axioms is called a TBox, e.g.:

{Doctor \sqsubseteq Person,	
Parent \equiv Person $\sqcap \exists$ hasChild.Pers	
HappyParent \equiv Parent \sqcap \forall hasChi	NOTE
	Facts sometimes written
A set of facts is called an A	John:HappyParent,
{HappyParent(John),	John hasChild Mary,
hasChild(John,Mary)}	John,Mary>:hasChild

A Knowledge Base (KB) is just a TBox plus an Abox
 Often written K = (T, A)

- Many different DLs, often with "strange" names
 - E.g., \mathcal{EL} , \mathcal{ALC} , \mathcal{SHIQ}
- Particular DL defined by:
 - Concept operators (\Box , \sqcup , \neg , \exists , \forall , etc.)
 - Role operators (⁻, ∘, etc.)
 - Concept axioms (\sqsubseteq , \equiv , etc.)
 - Role axioms (<u></u>, Trans, etc.)

- E.g., *EL* is a well known "sub-Boolean" DL
 - Concept operators: \Box , \neg , \exists
 - No role operators (only atomic roles)
 - Concept axioms: \sqsubseteq , ≡
 - No role axioms
- E.g.:

 $Parent \equiv Person \sqcap \exists hasChild.Person$

- *ALC* is the smallest propositionally closed DL
 - − Concept operators: \Box , \Box , \neg , \exists , \forall
 - No role operators (only atomic roles)
 - Concept axioms: \sqsubseteq , ≡
 - No role axioms
- E.g.:

 $ProudParent \equiv Person \sqcap \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor)$

- S used for ALC extended with (role) transitivity axioms
- Additional letters indicate various extensions, e.g.:
 - \mathcal{H} for role hierarchy (e.g., hasDaughter \sqsubseteq hasChild)
 - \mathcal{R} for role box (e.g., hasParent \circ hasBrother \sqsubseteq hasUncle)
 - O for nominals/singleton classes (e.g., {Italy})
 - \mathcal{I} for inverse roles (e.g., isChildOf = hasChild⁻)
 - \mathcal{N} for number restrictions (e.g., \geq 2hasChild, \leq 3hasChild)
 - Q for qualified number restrictions (e.g., ≥ 2 hasChild.Doctor)
 - \mathcal{F} for functional number restrictions (e.g., ≤ 1 hasMother)
- E.g., SHIQ = S + role hierarchy + inverse roles + QNRs

- Numerous other extensions have been investigated
 - Concrete domains (numbers, strings, etc)
 - DL-safe rules (Datalog-like rules)
 - Fixpoints
 - Role value maps
 - Additional role constructors (\cap , \cup , \neg , \circ , id, ...)
 - Nary (i.e., predicates with arity >2)
 - Temporal
 - Fuzzy
 - Probabilistic
 - Non-monotonic
 - Higher-order

Via translaton to FOL, or directly using FO model theory:

 Interpretation function extends to concept expressions in the obvious(ish) way, e.g.:

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$
$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$
$$\{x\}^{\mathcal{I}} = \{x^{\mathcal{I}}\}$$
$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$$
$$(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$$
$$(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$$
$$(\geqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geqslant n\}$$

- Given a model M = $\langle D, \cdot^I \rangle$
 - $\quad M \models C \sqsubseteq D \quad \text{iff} \quad C^I \subseteq D^I$
 - $M \models C \equiv D$ iff $C^I = D^I$
 - $M \models C(a)$ iff $a^I \in C^I$
 - $M \models R(a, b) \text{ iff } \langle a^I, b^I \rangle \in R^I$
 - $M \models \langle \mathcal{T}, \mathcal{A} \rangle \text{ iff for every axiom } ax \in \mathcal{T} \cup \mathcal{A}, M \models ax$

- Satisfiability and entailment
 - A KB \mathcal{K} is satisfiable iff there exists a model M s.t. M $\models \mathcal{K}$
 - A concept C is satisfiable w.r.t. a KB \mathcal{K} iff there exists a model M = $\langle D, \cdot^{I} \rangle$ s.t. M $\models \mathcal{K}$ and C^I $\neq \emptyset$
 - A KB \mathcal{K} entails an axiom ax (written $\mathcal{K} \models ax$) iff for every model M of \mathcal{K} , M $\models ax$ (i.e., M $\models \mathcal{K}$ implies M $\models ax$)

- E.g., $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \\ \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild.(Doctor} \sqcup \exists \text{hasChild.Doctor}) \}$
 - $A = \{$ John:HappyParent, John hasChild Mary, John hasChild Sally, Mary:¬Doctor, Mary hasChild Peter, Mary:(≤ 1 hasChild)
- $\mathcal{K} \models$ John:Person ?
- ✓ $\mathcal{K} \models$ Peter:Doctor ?
- \checkmark $\mathcal{K} \models$ Mary:HappyParent?
 - What if we add "Mary hasChild Jane"?

 $\mathcal{K} \models \text{Peter} = \text{Jane}$

- What if we add "HappyPerson \equiv Person $\sqcap \exists$ hasChild.Doctor"?

 $\mathcal{K} \vDash$ HappyPerson \sqsubseteq Parent

DL and FOL

- Most DLs are subsets of C2
 - But reduction to C2 may be (highly) non-trivial
 - Trans(R) naively reduces to $\forall x, y, z.R(x, y) \land R(y, z) \rightarrow R(x, z)$
- Why use DL instead of C2?
 - Syntax is succinct and convenient for KR applications
 - Syntactic conformance guarantees being inside C2
 - Even if reduction to C2 is non-obvious
 - Different combinations of constructors can be selected
 - To guarantee decidability
 - To reduce complexity
 - DL research has mapped out the decidability/complexity landscape in great detail
 - See Evgeny Zolin's DL Complexity Analyzer <u>http://www.cs.man.ac.uk/~ezolin/dl/</u>

Complexity of reasoning in Description Logics Note: the information here is (always) incomplete and <u>updated</u> often

Base description logic: Attributive Language with Complements

 \mathcal{ALC} := $\perp | A | \neg C | C \land D | C \lor D | \exists R.C | \forall R.C$

Concept constructors:	Role constructors:	trans reg
	✓ <i>I</i> - role inverses: R^- ∩ - role intersection ³ : $R \cap S$ ∪ - role union: $R \cup S$ ¬ - role complement: <i>full</i> : o - role chain (composition): RoS * - reflexive-transitive closure ⁴ : R^* <i>id</i> - concept identity: <i>id</i> (<i>C</i>) <i>Forbid</i> : complex roles ⁵ in number restrictions ⁶	
 TBox is <i>internalized</i> in extensions of <i>ALCIO</i>, see [76, Lemma 4.12], [54, p.3] Empty TBox Acyclic TBox (<i>A</i>≡<i>C</i>, <i>A</i> is a concept name; no cycles) General TBox (<i>C</i>⊆<i>D</i> for arbitrary concepts <i>C</i> and <i>D</i>) 	Role axioms (RBox):	OWL-Lite OWL-DL OWL 1.1

6	R	e	s	e	t
1.5					

You have selected the Description Logic: SHOLN

Complexity of reasoning problems ^Z			
Reasoning problem	Complexity ⁸	Comments and references	
Concept satisfiability	NExpTime-complete	 <u>Hardness</u> of even <i>ALCFIO</i> is proved in [76, Corollary 4.13]. In that paper, the result is formulated for <i>ALCQIO</i>, but only number restrictions of the form (≤1<i>R</i>) are used in the proof. A different proof of the NExpTime-hardness for <i>ALCFIO</i> is given in [54] (even with 1 nominal, and role inverses not used in number restrictions). <u>Upper bound</u> for <i>SHOIQ</i> is proved in [77, Corollary 6.31] with numbers coded in unary (for binary coding, the upper bound remains an open problem for all logics in between <i>ALCMIO</i> and <i>SHOIQ</i>. Important: in number restrictions, only <i>simple</i> roles (i.e. which are neither transitive nor have a transitive subroles) are allowed; otherwise we gain undecidability even in <i>SHN</i>; see [46]. Remark: recently [47] it was observed that, in many cases, one can use transitive roles in number restrictions – and still have a decidable logic! So the above notion of a <i>simple</i> role could be substantially extended. 	
ABox consistency	NExpTime-complete	By reduction to concept satisfiability problem in presence of nominals shown in [69, Theorem 3.7].	

Complexity Measures

Taxonomic complexity

Measured w.r.t. total size of "schema" axioms

Data complexity

Measured w.r.t. total size of "data" facts

• Query complexity

Measured w.r.t. size of query

Combined complexity

Measured w.r.t. total size of KB (plus query if appropriate)