Description Logic: A Formal Foundation for Languages and Tools

Ian Horrocks
<i>ian.horrocks@comlab.ox.ac.uk</i>
Information Systems Group
Oxford University Computing Laboratory
Contents

• Description Logic Basics
 – Syntax and semantics

• Description Logics and Ontology Languages
 – OWL ontology language
 – Ontology -v- Database

• Description Logic Reasoning
 – Reasoning services
 – Reasoning techniques

• Recent and Future work
DL Basics
What Are Description Logics?
What Are Description Logics?

- Decidable fragments of First Order Logic

Thank you for listening

Any questions?
What Are Description Logics?

- A family of logic based Knowledge Representation formalisms
 - Originally descended from semantic networks and KL-ONE
 - Describe domain in terms of concepts (aka classes), roles (aka properties, relationships) and individuals

[Quillian, 1967]
What Are Description Logics?

• Modern DLs (after Baader et al) distinguished by:
 – Fully fledged logics with formal semantics
 • Decidable fragments of FOL (often contained in C_2)
 • Closely related to Propositional Modal & Dynamic Logics
 • Closely related to Guarded Fragment
 – Provision of inference services
 • Practical decision procedures (algorithms) for key problems (satisfiability, subsumption, etc)
 • Implemented systems (highly optimised)
and now:

A Word from our Sponsors
Crash Course in (simplified) FOL

• Syntax
 – Non-logical symbols (signature)
 • Constants: Felix, MyMat
 • Predicates(arity): Animal(1), Cat(1), has-color(2), sits-on(2)
 – Logical symbols:
 • Variables: x, y
 • Operators: ∧, ∨, →, ¬, ...
 • Quantifiers: ∃, ∀
 • Equality: =
 – Formulas:
 • Cat(Felix), Mat(MyMat), sits-on(Felix, MyMat)
 • Cat(x), Cat(x) ∨ Human(x), ∃y.Mat(y) ∧ sits-on(x, y)
 • ∀x.Cat(x) → Animal(x), ∀x.Cat(x) → (∃y.Mat(y) ∧ sits-on(x, y))
Crash Course in (simplified) FOL

• Semantics
Crash Course in (simplified) FOL

• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!
Crash Course in (simplified) FOL

• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.
Crash Course in (simplified) FOL

• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.
Crash Course in (simplified) FOL

- Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.

From a practical POV, we need to define relationships (like entailment) between logical statements -- without such a definition we can’t spec software such as a reasoner.
Crash Course in (simplified) FOL

- Semantics

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which “objects” in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.
Crash Course in (simplified) FOL

• Semantics

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which “objects” in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.

Note that this is exactly the same kind of model as used in a database: objects in the world are modeled as values (elements) and relationships as tables (sets of tuples).
Crash Course in (simplified) FOL

- Semantics
 - Model: a pair \(\langle D, \cdot^I \rangle \) with \(D \) a non-empty set and \(\cdot^I \) an interpretation
 - \(C^I \) is an element of \(D \) for \(C \) a constant
 - \(v^I \) is an element of \(D \) for \(v \) a variable
 - \(P^I \) is a subset of \(D^n \) for \(P \) a predicate of arity \(n \)
 - E.g., \(D = \{ a, b, c, d, e, f \} \), and
 - \(\text{Felix}^I = a \)
 - \(\text{MyMat}^I = b \)
 - \(\text{Cat}^I = \{ a, c \} \)
 - \(\text{Mat}^I = \{ b, e \} \)
 - \(\text{Animal}^I = \{ a, c, d \} \)
 - \(\text{sits-on}^I = \{ \langle a, b \rangle, \langle c, e \rangle \} \)
Crash Course in (simplified) FOL

• **Semantics**
 - **Evaluation:** truth value in a given model $M = \langle D, \cdot^I \rangle$
 - $P(t_1, \ldots, t_n)$ is *true* iff $\langle t_1^I, \ldots, t_n^I \rangle \in P^I$
 - $A \land B$ is *true* iff A is *true* and B is *true*
 - $\neg A$ is *true* iff A is not *true*
 - **E.g.,**
 - $\text{Cat}(\text{Felix})$ true
 - $\text{Cat}(\text{MyMat})$ false
 - $\neg \text{Mat}(\text{Felix})$ true
 - $\text{sits-on}(\text{Felix, MyMat})$ true
 - $\text{Mat}(\text{Felix}) \lor \text{Cat}(\text{Felix})$ true

- **D = \{a, b, c, d, e, f\}**
- $\text{Felix}^I = a$
- $\text{MyMat}^I = b$
- $\text{Cat}^I = \{a, c\}$
- $\text{Mat}^I = \{b, e\}$
- $\text{Animal}^I = \{a, c, d\}$
- $\text{sits-on}^I = \{(a, b), (c, e)\}$
Crash Course in (simplified) FOL

• Semantics
 – Evaluation: truth value in a given model $M = \langle D, \cdot^I \rangle$
 • $\exists x. A$ is true iff exists \cdot^I' s.t. \cdot^I and \cdot^I' differ only w.r.t. x, and A is true w.r.t. $\langle D, \cdot^I' \rangle$
 • $\forall x. A$ is true iff for all \cdot^I' s.t. \cdot^I and \cdot^I' differ only w.r.t. x, A is true w.r.t. $\langle D, \cdot^I' \rangle$

E.g.,

$\exists x. \text{Cat}(x)$
$\forall x. \text{Cat}(x)$
$\exists x. \text{Cat}(x) \land \text{Mat}(x)$
$\forall x. \text{Cat}(x) \rightarrow \text{Animal}(x)$
$\forall x. \text{Cat}(x) \rightarrow (\exists y. \text{Mat}(y) \land \text{sits-on}(x, y))$

$D = \{a, b, c, d, e, f\}$
$\text{Felix}^I = a$
$\text{MyMat}^I = b$
$\text{Cat}^I = \{a, c\}$
$\text{Mat}^I = \{b, e\}$
$\text{Animal}^I = \{a, c, d\}$
$s\text{its-on}^I = \{\langle a, b \rangle, \langle c, e \rangle\}$
Crash Course in (simplified) FOL

• Semantics
 – Given a model M and a formula F, M is a model of F (written $M \models F$) iff F evaluates to true in M
 – A formula F is **satisfiable** iff there exists a model M s.t. $M \models F$
 – A formula F **entails** another formula G (written $F \models G$) iff every model of F is also a model of G (i.e., $M \models F$ implies $M \models G$)

E.g.,

\[
M \models \exists x.\text{Cat}(x) \\
M \not\models \forall x.\text{Cat}(x) \\
M \not\models \exists x.\text{Cat}(x) \land \text{Mat}(x) \\
M \models \forall x.\text{Cat}(x) \rightarrow \text{Animal}(x) \\
M \models \forall x.\text{Cat}(x) \rightarrow (\exists y.\text{Mat}(y) \land \text{sits-on}(x, y))
\]

\[
D = \{a, b, c, d, e, f\} \\
\text{Felix}^I = a \\
\text{MyMat}^I = b \\
\text{Cat}^I = \{a, c\} \\
\text{Mat}^I = \{b, e\} \\
\text{Animal}^I = \{a, c, d\} \\
\text{sits-on}^I = \{(a, b), (c, e)\}
\]
Crash Course in (simplified) FOL

• Semantics
 – Given a model M and a formula F, M is a model of F (written $M \models F$) iff F evaluates to true in M
 – A formula F is **satisfiable** iff there exists a model M s.t. $M \models F$
 – A formula F **entails** another formula G (written $F \models G$) iff every model of F is also a model of G (i.e., $M \models F$ implies $M \models G$)

E.g.,

- \checkmark Cat(Felix) $\models \exists x.\text{Cat}(x)$ (Cat(Felix) $\land \neg \exists x.\text{Cat}(x)$ is not satisfiable)
- \checkmark $(\forall x.\text{Cat}(x) \rightarrow \text{Animal}(x)) \land \text{Cat}(\text{Felix}) \models \text{Animal}(\text{Felix})$
- \checkmark $(\forall x.\text{Cat}(x) \rightarrow \text{Animal}(x)) \land \neg \text{Animal}(\text{Felix}) \models \neg \text{Cat}(\text{Felix})$
- \times Cat(Felix) $\models \forall x.\text{Cat}(x)$
- \times sits-on(Felix, Mat1) \land sits-on(Tiddles, Mat2) $\models \neg$ sits-on(Felix, Mat2)
- \times sits-on(Felix, Mat1) \land sits-on(Tiddles, Mat1) $\models \exists \geq 2 x.\text{sits-on}(x, \text{Mat1})$
Decidable Fragments

• FOL (satisfiability) well known to be undecidable
 - A sound, complete and terminating algorithm is impossible

• Interesting decidable fragments include, e.g.,
 - C2: FOL with 2 variables and Counting quantifiers ($\exists^{\geq n}, \exists^{\leq n}$)
 • Counting quantifiers abbreviate pairwise (in-) equalities, e.g.:
 - $\exists^{\geq 3}x.\text{Cat}(x)$ equivalent to
 - $\exists x, y, z.\text{Cat}(x) \land \text{Cat}(y) \land \text{Cat}(z) \land x \neq y \land x \neq z \land y \neq z$
 - $\exists^{\leq 2}x.\text{Cat}(x)$ equivalent to
 - $\forall x, y, z.\text{Cat}(x) \land \text{Cat}(y) \land \text{Cat}(z) \rightarrow x = y \lor x = z \lor y = z$
 - Propositional modal and description logics
 - Guarded fragment
Back to our Scheduled Program
DL Syntax

• **Signature**
 - **Concept** (aka class) names, e.g., Cat, Animal, Doctor
 • Equivalent to FOL unary predicates
 - **Role** (aka property) names, e.g., sits-on, hasParent, loves
 • Equivalent to FOL binary predicates
 - **Individual** names, e.g., Felix, John, Mary, Boston, Italy
 • Equivalent to FOL constants
DL Syntax

• Operators
 – Many kinds available, e.g.,
 • Standard FOL Boolean operators (\(\cap, \cup, \neg\))
 • Restricted form of quantifiers (\(\exists, \forall\))
 • Counting (\(\geq, \leq, =\))
 • …
DL Syntax

• Concept expressions, e.g.,
 – Doctor ⊔ Lawyer
 – Rich ⊓ Happy
 – Cat ⊓ ∃sits-on.Mat

• Equivalent to FOL formulae with one free variable
 – Doctor(x) ∨ Lawyer(x)
 – Rich(x) ∧ Happy(x)
 – ∃y.(Cat(x) ∧ sits-on(x, y))
DL Syntax

• Special concepts
 – \top (aka top, Thing, most general concept)
 – \bot (aka bottom, Nothing, inconsistent concept)

used as abbreviations for
 – $(A \sqcup \neg A)$ for any concept A
 – $(A \sqcap \neg A)$ for any concept A
DL Syntax

• Role expressions, e.g.,
 - loves^-
 - $\text{hasParent} \circ \text{hasBrother}$

• Equivalent to FOL formulae with two free variables
 - $\text{loves}(y, x)$
 - $\exists z. (\text{hasParent}(x, z) \land \text{hasBrother}(z, y))$
DL Syntax

• “Schema” Axioms, e.g.,
 - Rich $\subseteq \neg$Poor
 (concept inclusion)
 - Cat $\cap \exists$sits-on.Mat \subseteq Happy
 (concept inclusion)
 - BlackCat \equiv Cat $\cap \exists$hasColour.Black
 (concept equivalence)
 - sits-on \subseteq touches
 (role inclusion)
 - Trans(part-of)
 (transitivity)

• Equivalent to (particular form of) FOL sentence, e.g.,
 - $\forall x.(\text{Rich}(x) \rightarrow \neg\text{Poor}(x))$
 - $\forall x.(\text{Cat}(x) \land \exists y.(\text{sits-on}(x,y) \land \text{Mat}(y)) \rightarrow \text{Happy}(x))$
 - $\forall x.(\text{BlackCat}(x) \leftrightarrow (\text{Cat}(x) \land \exists y.(\text{hasColour}(x,y) \land \text{Black}(y))))$
 - $\forall x,y.(\text{sits-on}(x,y) \rightarrow \text{touches}(x,y))$
 - $\forall x,y,z.((\text{sits-on}(x,y) \land \text{sits-on}(y,z)) \rightarrow \text{sits-on}(x,z))$
DL Syntax

• “Data” Axioms (aka Assertions or Facts), e.g.,
 – BlackCat(Felix) (concept assertion)
 – Mat(Mat1) (concept assertion)
 – Sits-on(Felix,Mat1) (role assertion)

• Directly equivalent to FOL “ground facts”
 – Formulae with no variables
DL Syntax

• A set of axioms is called a TBox, e.g.:

{Doctor ⊆ Person,
 Parent ≡ Person ⊓ ∃hasChild.Paren
 HappyParent ≡ Parent ⊓ ∀hasChild.

• A set of facts is called an ABox:

{HappyParent(John),
 hasChild(John,Mary)}

• A Knowledge Base (KB) is just a TBox plus an Abox
 – Often written $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}\rangle$

Note
Facts sometimes written
John:HappyParent,
John hasChild Mary,
⟨John,Mary⟩:hasChild
The DL Family

• Many different DLs, often with “strange” names
 – E.g., \textit{EL}, \textit{ALC}, \textit{SHIQ}

• Particular DL defined by:
 – Concept operators (\textit{\Pi}, \textit{\sqcup}, \textit{\neg}, \textit{\exists}, \textit{\forall}, etc.)
 – Role operators (\textit{\cdot}, \textit{o}, etc.)
 – Concept axioms (\textit{\sqsubseteq}, \textit{\equiv}, etc.)
 – Role axioms (\textit{\sqsubseteq}, \textit{Trans}, etc.)
The DL Family

• E.g., \mathcal{EL} is a well known “sub-Boolean” DL
 – Concept operators: \sqcap, \neg, \exists
 – No role operators (only atomic roles)
 – Concept axioms: \sqsubseteq, \equiv
 – No role axioms

• E.g.:

 \[\text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.P} \text{erson} \]
The DL Family

- **ALC** is the smallest propositionally closed DL
 - Concept operators: \cap, \cup, \neg, \exists, \forall
 - No role operators (only atomic roles)
 - Concept axioms: \equiv, \equiv
 - No role axioms

- E.g.:

 \[
 \text{ProudParent} \equiv \text{Person} \cap \forall \text{hasChild.}(\text{Doctor} \sqcup \exists \text{hasChild.}\text{Doctor})
 \]
The DL Family

- S used for ALC extended with (role) transitivity axioms
- **Additional letters** indicate various extensions, e.g.:
 - \mathcal{H} for role hierarchy (e.g., $\text{hasDaughter} \sqsubseteq \text{hasChild}$)
 - \mathcal{R} for role box (e.g., $\text{hasParent} \circ \text{hasBrother} \sqsubseteq \text{hasUncle}$)
 - \mathcal{O} for nominals/singleton classes (e.g., $\{\text{Italy}\}$)
 - \mathcal{I} for inverse roles (e.g., $\text{isChildOf} \equiv \text{hasChild}^-$)
 - \mathcal{N} for number restrictions (e.g., $\geq 2\text{hasChild}$, $\leq 3\text{hasChild}$)
 - \mathcal{Q} for qualified number restrictions (e.g., $\geq 2\text{hasChild.\text{Doctor}}$)
 - \mathcal{F} for functional number restrictions (e.g., $\leq 1\text{hasMother}$)
- E.g., $\text{SHIQ} = S + \text{role hierarchy} + \text{inverse roles} + \text{QNRs}$
The DL Family

- Numerous other extensions have been investigated
 - Concrete domains (numbers, strings, etc)
 - DL-safe rules (Datalog-like rules)
 - Fixpoints
 - Role value maps
 - Additional role constructors (\cap, \cup, \neg, \circ, id, …)
 - Nary (i.e., predicates with arity >2)
 - Temporal
 - Fuzzy
 - Probabilistic
 - Non-monotonic
 - Higher-order
 - …
DL Semantics

Via translation to FOL, or directly using FO model theory:

- **Interpretation function** \mathcal{I}
- **Interpretation domain** $\Delta^\mathcal{I}$

Individuals $i^\mathcal{I} \in \Delta^\mathcal{I}$
- John
- Mary

Concepts $C^\mathcal{I} \subseteq \Delta^\mathcal{I}$
- Lawyer
- Doctor
- Vehicle

Roles $r^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$
- hasChild
- owns
DL Semantics

• Interpretation function extends to concept expressions in the obvious(ish) way, e.g.:

\[(C \cap D)^I = C^I \cap D^I\]
\[(C \sqcup D)^I = C^I \cup D^I\]
\[(\neg C)^I = \Delta^I \setminus C^I\]
\[\{x\}^I = \{x^I\}\]
\[(\exists R.C)^I = \{x \mid \exists y.\langle x, y \rangle \in R^I \land y \in C^I\}\]
\[(\forall R.C)^I = \{x \mid \forall y.\langle x, y \rangle \in R^I \Rightarrow y \in C^I\}\]
\[(\leq nR)^I = \{x \mid \#\{y \mid \langle x, y \rangle \in R^I\} \leq n\}\]
\[(\geq nR)^I = \{x \mid \#\{y \mid \langle x, y \rangle \in R^I\} \geq n\}\]
DL Semantics

• Given a model $M = \langle D, I \rangle$

 - $M \models C \subseteq D$ iff $C^I \subseteq D^I$
 - $M \models C \equiv D$ iff $C^I = D^I$
 - $M \models C(a)$ iff $a^I \in C^I$
 - $M \models R(a, b)$ iff $\langle a^I, b^I \rangle \in R^I$
 - $M \models \langle T, A \rangle$ iff for every axiom $ax \in T \cup A$, $M \models ax$
DL Semantics

• Satisfiability and entailment
 - A KB \mathcal{K} is satisfiable iff there exists a model M s.t. $M \models \mathcal{K}$
 - A concept C is satisfiable w.r.t. a KB \mathcal{K} iff there exists a model $M = \langle D, \cdot^I \rangle$ s.t. $M \models \mathcal{K}$ and $C^I \neq \emptyset$
 - A KB \mathcal{K} entails an axiom ax (written $\mathcal{K} \models ax$) iff for every model M of \mathcal{K}, $M \models ax$ (i.e., $M \models \mathcal{K}$ implies $M \models ax$)
DL Semantics

E.g.,

\[\mathcal{T} = \{\text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Parent}, \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor})\}\]

\[\mathcal{A} = \{\text{John:HappyParent, John hasChild Mary, John hasChild Sally, Mary:\neg\text{Doctor, Mary hasChild Peter, Mary:(\leq 1 hasChild)}\}\}\]

✓ - \(\mathcal{K} \models \text{John:Person}？\)
✓ - \(\mathcal{K} \models \text{Peter:Doctor}？\)
✓ - \(\mathcal{K} \models \text{Mary:HappyParent}？\)

- What if we add “Mary hasChild Jane”？
 \(\mathcal{K} \models \text{Peter = Jane}\)
- What if we add “HappyPerson \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Doctor}”？
 \(\mathcal{K} \not\models \text{HappyPerson} \sqsubseteq \text{Parent}\)
DL and FOL

• Most DLs are subsets of C2
 – But reduction to C2 may be (highly) non-trivial
 • Trans(R) naively reduces to $\forall x, y, z. R(x, y) \land R(y, z) \rightarrow R(x, z)$

• Why use DL instead of C2?
 – Syntax is succinct and convenient for KR applications
 – Syntactic conformance guarantees being inside C2
 • Even if reduction to C2 is non-obvious
 – Different combinations of constructors can be selected
 • To guarantee decidability
 • To reduce complexity
 – DL research has mapped out the decidability/complexity landscape in great detail
 • See Evgeny Zolin’s DL Complexity Analyzer
 http://www.cs.man.ac.uk/~ezolin/dl/
Complexity of reasoning in Description Logics

Concept constructors:
- f - functionality, ≤ 1 (R)
- \forall - (unqualified) number restrictions, $\geq n$ (R), $\leq n$ (R)
- Q - qualified number restrictions, $\geq n$ (R,C), $\leq n$ (R,C)
- O - nominals, a or $\{a_1, \ldots, a_n\}$ ("one-of" constructor)
- μ - least fixpoint operator, $\mu X.C$
- $R\subseteq S$ - role-value-maps
- $f = g$ - agreement of functional role chains ("same-as")

Role constructors:
- f^{-1} - role inverses, R^{-}
- \cap - role intersection, $R \cap S$
- \cup - role union, $R \cup S$
- \cap - role complement, $\text{Ref} \cap f$
- o - role chain (composition), $R \circ S$
- $*$ - reflexive-transitive closure, R^{*}
- id - concept identity, $id(C)$

TBox is internalized in extensions of \mathcal{ALCQI}, see [76, Lemma 4.12], [54, p.3]
- Empty TBox
- Acyclic TBox (A=C, A is a concept name; no cycles)
- General TBox (C\D for arbitrary concepts C and D)

You have selected the Description Logic: SHOIN

Complexity of reasoning problems

<table>
<thead>
<tr>
<th>Reasoning problem</th>
<th>Complexity</th>
<th>Comments and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept satisfiability</td>
<td>NExpTime-complete</td>
<td>Hardness of even \mathcal{ALCQI} is proved in [76, Corollary 4.13]. In that paper, the result is formulated for \mathcal{ALCQI}, but only number restrictions of the form ≤ 1 (R) are used in the proof. A different proof of the NExpTime-hardness for \mathcal{ALCQI} is given in [54] (even with 1 nominal, and role inverses not used in number restrictions). Upper bound for SHOIN is proved in [22, Corollary 6.31] with numbers coded in unary (for binary coding, the upper bound remains an open problem for all logics in between \mathcal{ALCQI} and SHOIN). Important: in number restrictions, only simple roles (i.e. which are neither transitive nor have a transitive subroles) are allowed; otherwise we gain undecidability even in SHOIN see [46]. Remark: recently [47] it was observed that, in many cases, one can use transitive roles in number restrictions – and still have a decidable logic! So the above notion of a simple role could be substantially extended.</td>
</tr>
<tr>
<td>ABox consistency</td>
<td>NExpTime-complete</td>
<td>By reduction to concept satisfiability problem in presence of nominals shown in [69, Theorem 3.7].</td>
</tr>
</tbody>
</table>
Complexity Measures

- **Taxonomic** complexity
 Measured w.r.t. total size of “schema” axioms

- **Data** complexity
 Measured w.r.t. total size of “data” facts

- **Query** complexity
 Measured w.r.t. size of query

- **Combined** complexity
 Measured w.r.t. total size of KB (plus query if appropriate)