
MTab: Matching Tabular Data to Knowledge
Graph using Probability Models

Phuc Nguyen1,2, Natthawut Kertkeidkachorn3,
Ryutaro Ichise1,2,3, and Hideaki Takeda1,2

1 National Institute of Informatics, Japan
2 SOKENDAI (The Graduate University for Advanced Studies), Japan

3 National Institute of Advanced Industrial Science and Technology, Japan

Abstract. This paper presents the design of our system, namely MTab,
for Semantic Web Challenge on Tabular Data to Knowledge Graph
Matching (SemTab 2019). MTab combines the voting algorithm and the
probability models to solve critical problems of the matching tasks. Re-
sults on SemTab 2019 show that MTab obtains promising performance
for the three matching tasks.

1 Introduction

Tabular Data to Knowledge Graph Matching (SemTab 2019)4 is a challenge
on matching semantic tags from table elements to knowledge graphs (KGs),
especially DBpedia. Fig. 1 depicts the three sub-tasks for SemTab 2019. Given
a table data, CTA (Fig. 1a) is the task of assigning a semantic type (e.g., a
DBpedia class) to a column. In CEA (Fig. 1b), a cell is linked to an entity in
KG. The relation between two columns is assigned to a property or predicate in
KG in CPA (Fig. 1c).

Class (dbo:)

(a) CTA

Entity (dbr:)
(b) CEA

Property

(c) CPA

Fig. 1. Tabular Data Matching to Knowledge Graph (DBpedia)

1.1 Problem Definition

We denotes DBpedia as a knowledge graph G = (E, T,R), where E, T,R are the
set of entities, the set of types (or classes), and the set of relations (or predicates)
respectively. e is an entity e ∈ E, te is the type of an entity te ∈ T , and r is a
relation of entity-entity or entity-literal r ∈ R.

4 http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 Phuc Nguyen et al.

Let a table S be a two-dimensional tabular structure consisting of an ordered
set of N rows, and M columns. ni is a row of table (i = 1...N), mj is a column
of table (j = 1...M). The intersection between a row ni and a column mj is ci,j
is a value of the cell Si,j . In general, the tabular to KG matching problems could
be formalized the three sub-tasks as follows.

– CEA: matching a cell value ci,j into a relevance entity e ∈ E.
– CTA: matching a column mj into a exact relevance type and its ancestors.
– CPA: matching the relation between two columns mj1 and mj2 (j1, j2 ∈

[1,M], j1 6= j2) into a relation r ∈ R.

1.2 Assumption

In MTab, we adopt the following assumptions:

Assumption 1 MTab is built on a closed-world assumption. It means that the
target KG is completed and corrected.

Assumption 2 The type of input table is vertical relational table.

Assumption 3 Input tables are independence, it means there is no sharing in-
formation between input tables.

Assumption 4 Column cell values have the same entity types and data types.

Assumption 5 The first row of table (n1) is table header. The first cell of
column is header of this column, c1,j ∈ mj.

In practice, table headers could have more complicated structures. Headers could
available or non-available, be located at the beginning of the table or not, have
one rows or multiple rows. In this work, we omit those issues and assume that
the table header is located at the first row.

2 Approach

MTab is built on the joint probability distribution of many signals inspired by
the graphical probability model-based approach [1]. However, MTab improves
the matching performance by solving two major problems:
– Entity lookup: We found that using only DBpedia lookup (the most popu-

lar service) does not usually get relevance entities for non-English queries.
Therefore, we perform entity lookup on multiple services (with language
parameter) to increase the possibility of finding the relevance entities.

– Literal matching: We found that mapping cell values to corresponding values
in a KG is less effective because the corresponding value in KG is rarely equal
with a query value. Therefore, with Assumption 4, we adopt literal columns
matching to find a relevance relation (property) and aggregate these signals
to enhance MTab performance.

Additionally, we also adopt more signals from table elements, introduce a scoring
function to estimate the uncertainly from ranking. Note that, the probabilities
in this paper could be interpreted as subjective confidences.

MTab 3

Language Prediction

Data Type Prediction

Entity
Candidate
Estimation

Step 2

Entity Type Prediction

Type
Candidate
Estimation

Step 3

Relation
Candidate
Estimation

Input Step 4

Output CTA
Class Candidates

CEA
Entity Candidates

CPA
Property Candidates

Entity
Candidate

Re-
Estimation

Type
Candidate

Re-
Estimation

Relation
Candidate

Re-
Estimation

Step 5 Step 6 Step 7

Step 1
Text Decoding

Entity Lookup

Fig. 2. The design of MTab framework

2.1 Framework
We design our system (MTab) as 7-steps pipeline (Fig. 2). Step 1 is to pre-process
a table data S by decoding textual data, predicting languages, data type, entity
type prediction, and entity lookup. Step 2 is to estimate entity candidates for
each cell. Step 3 is to estimate type candidates for columns. Step 4 is to estimate
relationship between two columns. Step 5 is to re-estimate entity candidates with
confidence aggregation from step 2, step 3, and step 4. Step 6, and Step 7 are to
re-estimate type and relation candidates with results from Step 5, respectively.

2.2 Step 1: Pre-processing
We perform five processes as follows.
– Text Decoding: Reading table data has a problem of textual encoding

where some characters are loaded as noisy sequences. Loading incorrect en-
coding might strongly affect the lookup performance, therefore, we used the
ftfy tool [2] to fix all noisy textual data in tables.

– Language Prediction: We used the pre-trained fasttext models (126 MB)
[3] to predict the languages for tables (concatenate all table cell values) and
each cell in the table. Since table data is not only written in English but also
other languages, determining the language of the input query helpful for the
lookup tasks.

– Data Type Prediction: Next, we perform data type prediction to predict
13 pre-defined data types of duckling 5 for each cell value in a table ci,j .
Those types are about numerical tags, email, URL, or phone number. If
there is no tag assigned, we assign this cell type as a text tag.

– Entity Type Prediction: For each cell value in a table ci,j , we also perform
entity type prediction with the pre-trained SpaCy models [4] (OntoNotes 5
dataset) to predict 18 entity types. If there is no tag assigned, this cell type
is assigned to a text tag. We also manually map from those textual entity
types (11 entity types) OntoNotes 5 to some DBpedia classes.

5 Duckling, link: https://github.com/facebook/duckling

4 Phuc Nguyen et al.

– Entity Lookup: We search the relevance entity on many services including
DBpedia Lookup6, DBpedia endpoint7. Also, we search relevant entities on
Wikipedia and Wikidata by redirected links to DBpedia to increase the
possibility of finding the relevant entities. We use the language information
of the table and cell values as the lookup parameters. If there is any non-
English lookup URL, it is redirected to the corresponding English URL. We
use α 8 as the limit of lookup results. The search query could be each cell
value in a table ci,j , or other neighbor cells in the same rows i.

2.3 Step 2: Entity Candidate Estimation

In this section, we explain how we estimate the entity candidates. Given a cell
value ci,j , we have a set of ranking result lists from lookup services Qci,j . q is
a list of ranking of entities ordered by degree of relevance of a lookup service,
where q ∈ Qci,j . In MTab, we adopted the four services as DBpedia lookup,
DBpedia Endpoint, Wikidata lookup, and Wikipedia lookup. However, we can
use any services as long as their output is a ranking list of relevance entities.

Denote EQci,j
is a set of relevance entities in Qci,j , sqe is a confidence score of

an entity e where e ∈ EQci,j
. The confidence score of entity e is calculated as sQe =

max(sqe). sqe is the confidence score of entity e in q, sqe = α− ranke, where ranke
is the ranking index of entity in q. We normalize those entity confidence score to

[0, 1], where Pr(EQci,j
|Qci,j) = 1, Pr(e|Qci,j) =

sQe∑
e∈EQci,j

sQe
and associate those

scores as the potential probability of entities given lookup results.

2.4 Step 3: Type Candidate Estimation

Regarding Assumption 4, we categorize table columns to entity columns and lit-
eral columns. We aggregate the data type (Duckling Tags and SpaCy Tags) from
each cell in a column using majority voting. If the majority tag is text or entity-
related, the columns is an entity column, else a numerical column. Regarding
numerical columns, we perform semantic labeling with EmbNum method [5] to
annotate relations (DBpedia properties) for numerical columns 9. Then, we infer
types (DBpedia classes) from those relations.

Numerical Column The set of numerical columns in table S is Mnum. Given
a numerical column mj , we use re-trained EmbNum model on DBpedia [5] to
derive embedding vector for the list of all numerical values of the column and
then search the corresponding relations from the database of labeled attributes
10. The result qmj

is a ranking of relevance numerical attributes in terms of dis-
tribution similarity. We also use α as the limit for ranking result. The confidence
score of a relation r is calculated as s

mj
r = α−rankr, where rankr is the ranking

index of r. These scores are also normalized to a range of [0,1] to associate the
probability of potential of relation for numerical columns Pr(r|mj).

6 DBpedia Lookup, link: https://wiki.dbpedia.org/Lookup
7 DBpedia Endpoint, link: https://dbpedia.org/sparql
8 In MTab, we set α = 100
9 We only use EmbNum for those columns have at least 10 numerical values

10 We used all numerical attributes of DBpedia as the labeled data

MTab 5

Next, we use DBpedia endpoint to infer the classes (types) from those re-
lations as Figure 3. Tqmj

is a set of inferred types, t denotes a type t ∈ Tqmj
.

Those types will be used for entity columns. The confidence score of types is
estimated as srt = max(sMnum

r). Then, we normalized those scores to [0,1] so
that Pr(TqMnum

) = 1, those confidence scores are associated as the probabilities
of type potential Pr(t|Mnum) given Mnum.

oclc finalPublicationYear

numerical column

EmbNum

PeriodicalLiteratureWrittenWork

WrittenWork

DBpeida Ontology: Domains

DBpeida Ontology: Subclass of

textual column

Relation Candidates

Type Candidates

Fig. 3. Property lookup with EmbNum

Entity Column Given a set of entity columns in table S is Ment, we consider
these signals from

1. Pr(t|Mnum): the probabilities of type potential from numerical columns
2. Pr(t|mj , Qmj

): the probabilities of type potential aggregated from the
types of entity lookup for the all cells in column mj (Pr(t|mj , Qmj

) =∑
ci,j∈mj

Pr(t|Qci,j)). We normalized these aggregated potentials and asso-

ciates these as potential probabilities.
3. Pr(t|mj , SpaCymj

): the probabilities of type potential aggregated from
SpaCy entity type prediction for the all cell in column mj . We used ma-
jority voting and normalized these voting value to [0,1]. Then, we associate
those normalized voting value type potential probabilities.

4. Pr(t|c1,j): the probabilities of type potential given header value of the col-
umn mj . We associate the normalized Levenshtein distance as potential
probability that a type (DBpedia class) correspond with a header value.

The probabilities of type potential is derived from the four signals as Pr(t|mj) =
w1Pr(t|Mnum)w2Pr(t|mj , Qmj)w3Pr(t|mj , SpaCymj)w4Pr(t|c1,j), where w1,
w2, w3, w4 are learnable weights. Note that, some probabilities of signals might
be 0 or too small, and aggregate those might add too much noise to the final
aggregation. Therefore, if any signal probabilities less than β11, we omit those
signals. After aggregation, we also perform normalization for Pr(t|mj) to a range
of [0,1] so that Pr(Tmj |mj) = 1.

2.5 Step 4: Relation Candidate Estimation
Given two columns mj1 and mj2 , we estimate the probabilities of relation poten-
tial of Pr(r|mj1 ,mj2). We consider two type of relation between two columns:

11 In MTab, β = 0.5

6 Phuc Nguyen et al.

Entity column to Entity column and Entity column to non-Entity column. To
be simple, we associate the first entity column is mj1 . If the second column is
entity column, we denote it as ment

j2
, else mnon−ent

j2
.

Entity - Entity columns Pr(r|mj1 ,m
ent
j2

): Given ci,j1 is a cell value of the

column mj1 and the row ri, ci,j2 is a cell value of the column ment
j2

. We assume
that there is a relation between entity candidates of ci,j1 and ci,j2 , therefore we
use DBpedia endpoint to find how many links (relations or properties) between
entity candidates of ci,j1 and ci,j2 . The confidence score of relation is calculated
as s

ci,j1 ,ci,j2
r = 1 if there is any relation between entity candidates of two columns.

Then, we aggregate those scores of all rows to get the candidate score for two

columns as s
mj1

,ment
j2

r =
∑

i∈[1,N]

s
ci,j1 ,ci,j2
r . Then, we normalize those score to a

range of [0,1] so that Pr(Rmj1
,ment

j2
|mj1 ,m

ent
j2

) and associate it as the probability

of relation potential of Entity and Entity Columns Pr(r|mj1 ,m
ent
j2

).

Entity - Non-Entity columns Pr(r|mj1 ,m
non−ent
j2

): Given ci,j1 is a
cell value of the column mj1 and the row ri, ci,j2 is a cell value of the col-
umn mnon−ent

j2
. We estimate the relevance ratio between entity candidates and

non-entity value ci,j2 . Given an entity candidate e have pairs of relation(re)-
values(ve), we compare the non-entity value ci,j2 with all attribute values ve. We
select those pairs have ratio larger than β. We only compare two values of ci,j1
and ve based on there data types (textual type or numerical type).

– For textual values: We use the normalized Levenshtein distance to estimate
the relevance ratio between ve and ci,j2 as s(ve, ci,j2).

– For numerical values: the relevance ratio is calculated as

s(ve, ci,j2) =

0, if max(|ci,j2 |, |ve|) = 0 and |ci,j2 − ve| 6= 0

1, if max(|ci,j2 |, |ve|) = 0 and |ci,j2 − ve| = 0

1− |ci,j2−ve|
max(|ci,j2 |,|ve|)

, if max(|ci,j2 |, |ve|) 6= 0

(1)
We aggregate all relevance ratio with respect to relations. Then we normal-
ize those aggregated ratio to [0,1], and associate this as probability of relation
potential. Pr(r|mj1 ,mj2). If the column of mj2 is numerical columns, we also
aggregate the re-calculated probability from Pr(r|mj2) (step 3) as:

Pr(r|mj1 ,mj2 ,mj2 is numerical) = w5Pr(r|mj1 ,mj2)w6Pr(r|mj2) (2)

where w5, w6 are learnable parameters.

2.6 Step 5: Entity candidate Re-Estimation

In this step, we present a method to re-estimate the probabilities of entity candi-
dates Pr(e|S). Given a cell Si,j containing a cell value ci,j at row ni, and column
mj , we consider these signals from:

– Pr(e|Qci,j): The entity candidate probabilities given look up results.

MTab 7

– Pr(e|mj): The probabilities of entity candidates given their type’s probabil-
ities (Step 3). This can be estimated by Pr(e|mj) = max(Pr(te|mj , Qmj

)),
where te is a type of the entity e.

– Pr(e|ci,j): The probabilities of entity candidates given the cell value ci,j .
We get the mean ratio of the normalized Levenshtein distance, heuristic
abbreviation rules (first character of words, titles, dates, time).

– Pr(e|ni,mj1): The probabilities of entity candidates given cell values in a
row ci,j ∈ ni. We do the same procedure as Step 4 to compare all entity
values with a cell value, and compute the mean probability for all cell value
in a row. Pr(e|ni,mj1) = mean(Pr(e|mj1 ,mj2)), where j1 6= j2.

Overall, the equation is as follows.

Pr(e|S) = w7Pr(e|Qci,j)w8Pr(e|mj)w9Pr(e|ci,j)w10Pr(e|ni,mj1) (3)

where w7, w8, w9, w10 are learnable parameters.

2.7 Step 6, 7: Re-Estimate Types and Relations

We select the highest probabilities of entity candidates in Step 5 for each cell
Si,j to re-estimate types and relations with majority voting.

3 Results

Table 1 reports the overall results (The Primary Score) of MTab for three match-
ing tasks in the four rounds of SemTab 2019 [6]. Overall, these results show that
MTab achieves promising performances for the three matching tasks.

Table 1. Overall result of MTab system on the four round dataset of SemTab 2019

SemTab CEA (F1) CTA (AH) CPA (F1)

Round 1 1.000 1.000 (F1) 0.987

Round 2 0.911 1.414 0.881

Round 3 0.97 1.956 0.844

Round 4 0.983 2.012 0.832

4 Discussion

In this paper, we present MTab for the three matching tasks in SemTab 2019.
Novelty: The MTab performance might be explained in part by tackle the

two major problems of the three matching tasks. MTab is built on top of multiple
lookup services, therefore, it increases the possibility of finding the relevant enti-
ties. Additionally, MTab adopted many new signals (literal) from table elements
and use them to enhance matching performance.

Limitation: Since MTab is built on the top of lookup services, therefore,
the upper bound of accuracy strongly relies on the lookup results. In MTab, it is
computation-intensive because of aggregating the confidence signals from many

11 https://github.com/phucty/MTab

8 Phuc Nguyen et al.

parts of the table. Therefore, MTab is not suitable for the real-time application,
where we need to get the result as fast as possible. MTab could be modified to
match only some parts of the table to reduce the processing time as Table Miner+
[7]. However, we find that this is a trade-off between effectiveness and efficiency
when using Table Miner+ [7] method. A concrete analysis of the trade-off issue
is left as our future investigation.

Future work: MTab could be improved by relaxing our assumptions:

– Assumption 1: The closed-world assumption might not hold in practice. Im-
proving the completeness and correctness of knowledge graph might improve
MTab performance.

– Assumption 2: Classify table types before matching could help to improve
MTab performance [8].

– Assumption 3: In reality, some tables could have shared schema. For example,
tables on the Web could be divided to many web pages, therefore we can
expect improving matching performance by stitching those tables in the same
web page (or domain) [9], [10]. Therefore, performing holistic matching could
help improve MTab performance.

– Assumption 5: Correctly recognize table headers could help to improve MTab
performance.

References

1. Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and search-
ing web tables using entities, types and relationships. PVLDB, 3(1):1338–1347,
2010.

2. Robyn Speer. ftfy. Zenodo, 2019. Version 5.5.
3. Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of

tricks for efficient text classification. In EACL 2017, pages 427–431. ACL, April
2017.

4. Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding
with Bloom embeddings, convolutional neural networks and incremental parsing.
2017.

5. Phuc Nguyen, Khai Nguyen, Ryutaro Ichise, and Hideaki Takeda. Embnum: Se-
mantic labeling for numerical values with deep metric learning. In Semantic Tech-
nology, pages 119–135, Cham, 2018. Springer.

6. Oktie Hassanzadeh, Vasilis Efthymiou, Jiaoyan Chen, Ernesto Jiménez-Ruiz, and
Kavitha Srinivas. SemTab2019: Semantic Web Challenge on Tabular Data to
Knowledge Graph Matching - 2019 Data Sets, October 2019.

7. Ziqi Zhang. Effective and efficient semantic table interpretation using tableminer+.
Semantic Web, 8(6):921–957, 2017.

8. Kyosuke Nishida, Kugatsu Sadamitsu, Ryuichiro Higashinaka, and Yoshihiro Mat-
suo. Understanding the semantic structures of tables with a hybrid deep neural
network architecture. In AAAI, pages 168–174, 2017.

9. Oliver Lehmberg and Christian Bizer. Stitching web tables for improving matching
quality. Proc. VLDB Endow., 10(11):1502–1513, August 2017.

10. Dominique Ritze. Web-scale web table to knowledge base matching. PhD thesis,
Mannheim, 2017.

