

A Simple Approach to Accurately Convert Tabular Data into Semantic Knowledge

prof. dr. Femke Ongenae (assistant professor, promotor)

Bram Steenwinckel

(PhD student)

Gilles Vandewiele (PhD student)

 $\widehat{}$

GHEN'

prof. dr. Filip De Turck (professor, promotor)

Problem statement

High-level overview

	Cell Lookup	Infer Columns	Infer Props	Head Annotation	Infer Other Cells	Infer Columns
1			/	/		

Phase 1: using lookups to create initial annotations

 \rightarrow detect names & only use family names REGEX: "^(\w\.)+([\w\-']+)\$"

→ disambiguation is done with
 Levenshtein distance for non-names
 & whoswho library for person names

https://github.com/rliebz/whoswho

Phase 2: infer columns based on cell annotations

Phase 3: infer properties based on cell annotations and disambiguate with column annotations

Disambiguation:

Look for domain & range in column types

SELECT ?domain ?range WHERE { <pred> rdfs:domain ?domain . <pred> rdfs:range ?range .

Phase 4: annotate the head cells with the properties

→ Take ?s with highest counts. In case of ex aequo, use Levenshtein.

Phase 5: annotate all other cells

\rightarrow Disambiguate with Levenshtein

Cell Infer Infer Props	Head Annotation Infer Other Cells	Infer Columns
------------------------	--	------------------

Phase 6: final column annotation

Some sly tricks to boost our score

- Many names (e.g. G. Vandewiele, B. Steenwinckel)
 → custom code for these
- CTA score is not bounded by 1! Add all the parents to the column annotation
 - \rightarrow Max score per row if perfect type is on depth d:

1 + (d - 1) * 0.5

- Reasoning to find equivalent classes and add these as well
- Find tables that are very similar (in earlier rounds the CSV headers often matched) and apply majority voting

Things we tried, but didn't work well

Clustering of lookup candidates using jaccard distances between their rdf types.

DBSCAN / outlier removal

Things we tried, but didn't work well

Playing around (outlier removal, clustering, ...) with pre-made RDF2Vec embeddings for DBPedia

https://github.com/IBCNServices/pyRDF2Vec

a) DBpedia vectors

-				
• 0)6 !	DLab IDLaD	0.833	0.833

<u>CEA</u>			
	• 02 IDLab	0.883	0.893
<u>CTA</u>			
	• 02 IDLab	1.376	0.257
<u>CPA</u>			
	• 02 IDLab	0.877	0.926

	• 03		0.907	0.912
CTA				
	• 02	IDLab IDLab	1.846	0.274
<u>CPA</u>				
	• 02	IDLab	0.830	0.835

Conclusion & future work

- We first tried more sophisticated approaches, they were all subpar \rightarrow KISS
- Simple approach performs really well (second place overall)
- The iterative approach can easily be replaced by a better approach that jointly learns to annotate properties, column types and cells (keeping track of all possible candidates)

Thank you!

gilles.vandewiele@ugent.be

https://twitter.com/Gillesvdwiele

https://www.linkedin.com/in/gillesvandewiele/

www.gillesvandewiele.com

Paper:

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/papers/IDLab.pdf Code (WIP): https://github.com/IBCNServices/CSV2KG