Institute of Theoretical Computer Science Chair for Automata Theory

THE BAYESIAN ONTOLOGY REASONER IS BORN!

İsmail İlkan Ceylan, Julian Mendez and Rafael Peñaloza

Bayesian Networks

Probabilistic graphical models that can compactly represent the joint probability distribution

Bayesian Networks

Probabilistic graphical models that can compactly represent the joint probability distribution

$$P(\neg x, \neg y, z) = P(z|\neg x, \neg y)P(\neg y|\neg x)P(\neg x)$$
$$= 0.9 \times 0.5 \times 0.3$$
$$= 0.135$$

Extends \mathcal{EL} by defining a joint probability distribution over the axioms of an \mathcal{EL} ontology

Extends \mathcal{EL} by defining a joint probability distribution over the axioms of an \mathcal{EL} ontology

$$\begin{array}{ccc} \mathcal{EL} & \text{concept language} & V & \text{of propositional variables} & & \text{contextual TBox} \\ & C, D & \kappa = \{x, \neg y\} & & \langle C \sqsubseteq D : \kappa \rangle \\ \end{array}$$

Extends \mathcal{EL} by defining a joint probability distribution over the axioms of an \mathcal{EL} ontology

Extends \mathcal{EL} by defining a joint probability distribution over the axioms of an \mathcal{EL} ontology

$$\begin{array}{ccc} \mathcal{EL} & \text{concept language} & V & \text{of propositional variables} & & \text{contextual TBox} \\ & C,D & \kappa = \{x, \neg y\} & & \langle C \sqsubseteq D : \kappa \rangle \\ \end{array}$$

$${\cal BEL}$$
 Knowledge Base ${\cal K}=({\cal T},{\cal B})$
 ${\cal T}$ a (contextual) TBox
 ${\cal B}$ a Bayesian network defined over the same variables ${\it V}$

Contextual interpretations

$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \mathcal{V}^{\mathcal{I}})$$
 with $\mathcal{I} \models \langle C \sqsubseteq D : \kappa \rangle$ iff $\mathcal{V}^{\mathcal{I}} \not\models \kappa$ or $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

Extends \mathcal{EL} by defining a joint probability distribution over the axioms of an \mathcal{EL} ontology

$$\begin{array}{ccc} \mathcal{EL} & \text{concept language} & V & \text{of propositional variables} & & \text{contextual TBox} \\ & C, D & \kappa = \{x, \neg y\} & \langle C \sqsubseteq D : \kappa \rangle \\ \end{array}$$

$$\mathcal{BEL}$$
 Knowledge Base $\mathcal{K} = (\mathcal{T}, \mathcal{B})$

$${\cal T}$$
 a (contextual) TBox ${\cal B}$ a Bayesian network $iggr bar{V}$

Contextual interpretations

$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}, \mathcal{V}^{\mathcal{I}}) \text{ with } \mathcal{I} \models \langle C \sqsubseteq D : \kappa \rangle \text{ iff } \mathcal{V}^{\mathcal{I}} \not\models \kappa \text{ or } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$$

Probabilistic interpretation $\mathcal{P} = (\mathfrak{I}, P_{\mathfrak{I}})$ Probabilistic model $\mathcal{P} = (\mathfrak{I}, P_{\mathfrak{I}})$

Probabilistic model
$$\mathcal{P} = (\mathfrak{I}, P_{\mathfrak{I}})$$

- \mathfrak{I} a set of contextual interpretations $\mathcal{I} \models \mathcal{T}$ for all $\mathcal{I} \in \mathfrak{I}$
- $P_{\mathfrak{I}}$ a probability distribution over \mathfrak{I}

•
$$\mathcal{I} \models \mathcal{T}$$
 for all $\mathcal{I} \in \mathfrak{I}$

•
$$\sum_{\mathcal{I} \in \mathfrak{I}, \mathcal{V}^{\mathcal{I}} = \mathcal{W}} P_{\mathfrak{I}}(\mathcal{I}) = P_{\mathcal{B}}(\mathcal{W})$$

 $\mathcal{K} = (\mathcal{T}, \mathcal{B})$ a knowledge base, ${\color{red}\mathcal{P}}$ a probabilistic interpretation

 $\mathcal{K} = (\mathcal{T}, \mathcal{B})$ a knowledge base, ${\color{red}\mathcal{P}}$ a probabilistic interpretation

Probability of a subsumption w.r.t. \mathcal{P}

$$P_{\mathbf{p}}(C \sqsubseteq D) = \sum_{\substack{\mathcal{I} \in \mathfrak{I} \\ \mathcal{I} \models C \sqsubseteq D}} P_{\mathfrak{I}}(\mathcal{I})$$

 $\mathcal{K} = (\mathcal{T}, \mathcal{B})$ a knowledge base, \mathcal{P} a probabilistic interpretation

Probability of a subsumption w.r.t. \mathcal{P}

$$P_{\mathbf{P}}(C \sqsubseteq D) = \sum_{\substack{\mathcal{I} \in \mathfrak{I} \\ \mathcal{I} \models C \sqsubseteq D}} P_{\mathfrak{I}}(\mathcal{I})$$

Probability of a subsumption w.r.t. ${\cal K}$

$$P_{\mathcal{K}}(C \sqsubseteq D) = \inf_{\mathcal{P} \models \mathcal{K}} P_{\mathcal{P}}(C \sqsubseteq D)$$

 $\mathcal{K} = (\mathcal{T}, \mathcal{B})$ a knowledge base, \mathcal{P} a probabilistic interpretation

Probability of a subsumption w.r.t. \mathcal{P}

$$P_{\mathbf{P}}(C \sqsubseteq D) = \sum_{\substack{\mathcal{I} \in \mathfrak{I} \\ \mathcal{I} \models C \sqsubseteq D}} P_{\mathfrak{I}}(\mathcal{I})$$

Probability of a subsumption w.r.t. ${\cal K}$

$$P_{\mathcal{K}}(C \sqsubseteq D) = \inf_{\mathcal{P} \models \mathcal{K}} P_{\mathcal{P}}(C \sqsubseteq D)$$

 $\mathcal{K} = (\mathcal{T}, \mathcal{B})$ a knowledge base, \mathcal{P} a probabilistic interpretation

Probability of a subsumption w.r.t. \mathcal{P}

$$P_{\mathbf{P}}(C \sqsubseteq D) = \sum_{\substack{\mathcal{I} \in \mathfrak{I} \\ \mathcal{I} \models C \sqsubseteq D}} P_{\mathfrak{I}}(\mathcal{I})$$

Probability of a subsumption w.r.t. ${\cal K}$

$$P_{\mathcal{K}}(C \sqsubseteq D) = \inf_{\mathcal{P} \models \mathcal{K}} P_{\mathcal{P}}(C \sqsubseteq D)$$

 $P_{\mathcal{K}}(C \sqsubseteq D)$ can be computed by

$$\sum_{\substack{\mathcal{T}_{\mathcal{W}} \models C \sqsubseteq D \\ \mathcal{W}(\kappa) = 1}} P_{\mathcal{B}}(\mathcal{W})$$

(IJCAR 2014)

and is a PP-complete problem

(JELIA 2014)

Example

Given a \mathcal{BEL} KB is $\mathcal{K}_0 = (\mathcal{T}_0, \mathcal{B}_0)$ where \mathcal{B}_0 is as depicted:

and the contextual TBox \mathcal{T}_0 given as:

$$\mathcal{T}_0 := \{ \, \langle A \sqsubseteq C : \{x,y\} \rangle \,, \; \langle A \sqsubseteq B : \{\neg x\} \rangle \,, \; \langle B \sqsubseteq C : \{\neg x\} \rangle \}.$$

Example

Given a \mathcal{BEL} KB is $\mathcal{K}_0 = (\mathcal{T}_0, \mathcal{B}_0)$ where \mathcal{B}_0 is as depicted:

and the contextual TBox \mathcal{T}_0 given as:

$$\mathcal{T}_0 := \{ \left. \left\langle A \sqsubseteq C : \left\{ x, y \right\} \right\rangle, \, \left\langle A \sqsubseteq B : \left\{ \neg x \right\} \right\rangle, \, \left\langle B \sqsubseteq C : \left\{ \neg x \right\} \right\rangle \right\}.$$

Let $A \sqsubseteq C$ be a subsumption query, then $P_{\mathcal{K}}(A \sqsubseteq C) = 1$

Example

Given a \mathcal{BEL} KB is $\mathcal{K}_0 = (\mathcal{T}_0, \mathcal{B}_0)$ where \mathcal{B}_0 is as depicted:

and the contextual TBox \mathcal{T}_0 given as:

$$\mathcal{T}_0 := \{ \left\langle A \sqsubseteq C : \{x,y\} \right\rangle, \left\langle A \sqsubseteq B : \{\neg x\} \right\rangle, \left\langle B \sqsubseteq C : \{\neg x\} \right\rangle \}.$$

Let
$$A \sqsubseteq C$$
 be a subsumption query, then $P_{\mathcal{K}}(A \sqsubseteq C) = 1$

This is a Well connected TBox, but are real ontologies really well-connected?

BORN first computes a module

Consider \mathcal{BEL} KB is $\mathcal{K}_0 = (\mathcal{T}_1, \mathcal{B}_0)$ where:

```
 \begin{split} \mathcal{T}_{\mathbf{1}} := \left\{ \left\langle A \sqsubseteq C : \left\{ x, y \right\} \right\rangle, \ \left\langle A \sqsubseteq B : \left\{ \neg x \right\} \right\rangle, \ \left\langle B \sqsubseteq C : \left\{ \neg x \right\} \right\rangle \\ \left\langle D \sqsubseteq E : \left\{ \neg y \right\} \right\rangle, \ \left\langle E \sqsubseteq \exists r.F : \left\{ y \right\} \right\rangle, \ \left\langle F \sqsubseteq G : \left\{ x, y \right\} \right\rangle, \ldots \right\} \end{split}
```

BORN first computes a module

Consider \mathcal{BEL} KB is $\mathcal{K}_0 = (\mathcal{T}_1, \mathcal{B}_0)$ where:

```
 \begin{split} \mathcal{T}_{\mathbf{1}} &:= \{ \left. \left\langle A \sqsubseteq C : \{x,y\} \right\rangle, \, \left\langle A \sqsubseteq B : \{\neg x\} \right\rangle, \, \left\langle B \sqsubseteq C : \{\neg x\} \right\rangle \\ & \left\langle D \sqsubseteq E : \{\neg y\} \right\rangle, \, \left\langle E \sqsubseteq \exists r.F : \{y\} \right\rangle, \, \left\langle F \sqsubseteq G : \{x,y\} \right\rangle, \ldots \} \end{split}
```

New axioms do not carry information about the query $A \sqsubseteq C$.

The idea is to compute a module w.r.t. the query and the TBox.

BORN first computes a module

Consider \mathcal{BEL} KB is $\mathcal{K}_0 = (\mathcal{T}_1, \mathcal{B}_0)$ where:

$$\begin{split} \mathcal{T}_{\mathbf{1}} := \left\{ \left\langle A \sqsubseteq C : \left\{ x, y \right\} \right\rangle, \ \left\langle A \sqsubseteq B : \left\{ \neg x \right\} \right\rangle, \ \left\langle B \sqsubseteq C : \left\{ \neg x \right\} \right\rangle \\ \left\langle D \sqsubseteq E : \left\{ \neg y \right\} \right\rangle, \ \left\langle E \sqsubseteq \exists r.F : \left\{ y \right\} \right\rangle, \left\langle F \sqsubseteq G : \left\{ x, y \right\} \right\rangle, \ldots \right\} \end{split}$$

New axioms do not carry information about the query $A \sqsubseteq C$.

The idea is to compute a module w.r.t. the query and the TBox.

Module of \mathcal{T}_1 w.r.t. the query $\{A, C\}$ yields:

$$\mathcal{T}_0 := \left\{ \left. \left\langle A \sqsubseteq C : \left\{ x, y \right\} \right\rangle, \right. \left\langle A \sqsubseteq B : \left\{ \neg x \right\} \right\rangle, \right. \left\langle B \sqsubseteq C : \left\{ \neg x \right\} \right\rangle$$

BORN converts the knowledge base into a probabilistic logic program:

BORN converts the knowledge base into a probabilistic logic program:

The subsumption $\langle \mathbf{A} \sqsubseteq \exists \mathbf{r}.\mathbf{B} : x \rangle$ is represented as:

```
con('a'). con('b'). role('r').
subs('a', exists('r', 'b')) :- x0.
```

BORN converts the knowledge base into a probabilistic logic program:

The subsumption $\langle \mathbf{A} \sqsubseteq \exists \mathbf{r}.\mathbf{B} : x \rangle$ is represented as:

```
con('a'). con('b'). role('r').
subs('a', exists('r', 'b')) :- x0.
```

the Bayesian network \mathcal{B}_0 as:

```
.7::x.

1::y:-x.

.5::y:-\+x.

.3::z:-x,y.

.1::z:-x,\+y.

.0::z:-\+x,y.

.9::z:-\+x,\+y.
```

BORN converts the knowledge base into a probabilistic logic program:

The subsumption $\langle A \sqsubseteq \exists r.B : x \rangle$ is represented as:

```
con('a'). con('b'). role('r').
subs('a', exists('r', 'b')) :- x0.
```

the Bayesian network \mathcal{B}_0 as:

```
.7::x.

1::y:-x.

.5::y:-\+x.

.3::z:-x,y.

.1::z:-x,\+y.

.0::z:-\+x,y.

.9::z:-\+x,\+y.
```

and the query $\langle A \sqsubseteq C \rangle$ as:

```
query(subs('a', 'c')).
```

BORN converts the knowledge base into a probabilistic logic program:

The subsumption $\langle \mathbf{A} \sqsubseteq \exists \mathbf{r}.\mathbf{B} : x \rangle$ is represented as:

```
con('a'). con('b'). role('r').
subs('a', exists('r', 'b')) :- x0.
```

the Bayesian network \mathcal{B}_0 as:

```
.7::x.
1::y:-x.
.5::y:-\+x.
.3::z:-x,y.
.1::z:-x,\+y.
.0::z:-\+x,y.
```

and the query $\langle A \sqsubseteq C \rangle$ as:

```
query(subs('a', 'c')).
```

This is the syntax of ProbLog, a probabilistic logic programming tool based on efficient techniques such as weighted model counting, etc...

EL completion rules added to the program:

EL completion rules added to the program:

EL completion rules added to the program:

Initial Experiments on Ontologies

Ontology	Size of the terminology	Size of the BN
$\begin{array}{c} (\mathtt{ABC},\mathcal{B}_\mathtt{ABC}) \\ (\mathtt{ABC},\mathcal{B}_\mathtt{ABC}') \end{array}$	6	8
$\begin{array}{c} (\texttt{DBPEDIA}, \mathcal{B}_{\texttt{DBPEDIA}}) \\ (\texttt{DBPEDIA}, \mathcal{B}'_{\texttt{DBPEDIA}}) \end{array}$	266	17
$\begin{array}{c} (\texttt{GO},\mathcal{B}_{\texttt{GO}}) \\ (\texttt{GO},\mathcal{B}_{\texttt{GO}}') \end{array}$	23507	200

Primitive Experimental Results

Primitive Experimental Results

Primitive Experimental Results

Thanks