

A swarm of Mini-MEs: reasoning and information aggregation in ubiquitous multi-agent contexts

Floriano Scioscia Michele Ruta Eugenio Di Sciascio

Politecnico di Bari, Bari, Italy

4th OWL Reasoner Evaluation Workshop Athens, Greece June 6th, 2015

- Information aggregation in ubiquitous multi-agent contexts
- Proposed approach and tools
- Information dissemination and fusion
 - 4 Experiments
- 5 Conclusion

The Semantic Web of Things

- Interoperability and intelligence from Semantic Web technologies
- Pervasiveness from the Internet of Things (connected micro devices)
- Flexibility and scalability from the Multi-Agent System (MAS) architectural paradigm
- Applications:
 - Ubiquitous commerce, learning, healthcare
 - Home and building automation
 - Smart mobility
 - Environmental monitoring
 - ...

Issues

- Performance constraints of mobile and pervasive devices: processing, memory, energy
- Software platform limitations for porting existing Semantic Web tools to pervasive contexts
- Effective and efficient approaches for information management:
 - Distributed architectures for data exchange and processing
 - Multi-agent information fusion
 - Achieving local and global situation awareness

Proposed approach

Objectives

- Decentralized information dissemination in a ubiquitous MAS
- Non-monotoning reasoning services for information fusion
- Swarm intelligence: emergent situation awareness from many local interactions
- Thrifty, efficient reasoning engine

Mini-ME: a mini history

- 2012: Version 1.0 [Ruta et. al., ORE 2012]
 - Matchmaker optimized for mobile and ubiquitous contexts
 - Support for standard Semantic Web languages (OWL) through the OWL API [Horridge and Bechhofer, OWLED 2009]
 - Expressiveness-complexity trade-off (target: \mathcal{ALN} with acyclic TBoxes)
 - Reasoning services: Concept Satisfiability, Subsumption, Contraction, Abduction; Ontology Coherence, Classification
- 2014: Version 2.0 [Ruta et. al., ORE 2014]
 - Re-engineering for improved efficiency and maintainability
 - OWLlink protocol support for standard inferences
 - Concept Covering reasoning service
- 2015: Version 2.1
 - Concept Difference and Compute Bonus reasoning services

Exploited reasoning services 1/2

- Be S and R two (universally quantified) concept expressions, both formalized in a Description Logic according to a common ontology T
- Concept contraction: [Colucci et. al., IJEC 12(2), 2007]
 - If S □ R ⊑ ⊥, Contract(S, R, T) finds the part G of R causing the inconsistency and the part K which can be kept
 - Explanation for (un)satisfiability
- Concept abduction: [Colucci et. al., IJEC 12(2), 2007]
 - If S □ R ⊈ ⊥ but S ⊈ R, Abduce(S, R, T) finds the hypothesis H which should be made on S in order to reach a full match S □ H ⊑ R
 - Explanation for (missed) subsumption
- Minimality criterion for solution selection in both services

Exploited reasoning services 2/2

• Bonus: [Colucci et. al., IJEC 12(2), 2007]

- ComputeBonus(S, R, T) finds what is missing in R from S
- Equivalent to abduction of mutually contracted versions of ${\cal R}$ and ${\cal S}$
- Concept difference: [Teege, KR 1994]
 - S R (*i.e.* Difference(S, R, T)) finds all the information which is part of S but not of R
 - Maximality criterion for solution selection

Message-based MAS

- (Pervasive) multi-agent system
- Mobile agents are not synchronized
- Each agent produces annotated descriptions from its sensing organs, runs a reasoner and exchanges messages
- For each agent, a cache stores the most recent received message
- Time-to-live: when messages become too old, they are discarded

Message structure

• t: timestamp

- Four conjunctive concept expressions
 - C (Confirmed): terms observed by both the sender and other agents
 - X (Clash): terms observed by the sender, inconsistent with observations by other agents
 - *M* (My): terms observed by the sender, but not by other agents
 - E (External): terms observed by other agents, but not by the sender

Agent behavior

- Each agent loops in data gathering and annotation rounds, then looks at its cache and prepares its outgoing message. Three cases:
 - **(**) Generate, when there is a new annotation N but no message in cache

2 Relay, when there is a message P in cache but no new annotation

3 Integration and relay, when both N and P exist and must be integrated

Integration reasoning service

Scioscia, Ruta, Di Sciascio

Relevant properties

- Information integration always preserves consistency as long as any integrated annotation N is consistent
- Integration reaches a steady state in two steps after every variation in observations
 - Two consecutive observations of a concept S make $C\sqsubseteq S$ even when starting from $C\sqsubseteq \neg S$
- Computational complexity entirely depends on that of the exploited reasoning services

Example scenario

Note: not reported in the submitted version of the paper due to lack of space.

- VANETs (Vehicular Ad-hoc NETworks) for collaborative monitoring of road and traffic conditions
- Agents: vehicles equipped with a smartphone running Mini-ME and connected to the OBD-II (On-Board Diagnostics) port
- Data sources: OBD-II readings, smartphone sensors (accelerometer, gyroscope, magnetometer)
- Reference \mathcal{ALN} ontology modeling road, traffic, weather and driving style
- Data \rightarrow concepts transformation via machine learning
- Parameters joined in conjunctive concept expressions
- Communications via IEEE 802.11p ad-hoc wireless protocol

Experimental setup

- Scenario simulations in NCTuns network simulator [Wang and Chou, SMPT Journal, 17(7), 2009]
- Maps with pre-defined data, different for each map zone

Agents

- moving according to the Manhattan mobility model
- running Mini-ME 2.1
- communicating through simulated IEEE 802.11p interfaces
- Experiment materials available on

http://sisinflab.poliba.it/swottools/minime/download/ore2015exp.zip

Simulation parameters

Scenario	1	2
No. of agents	60	80
Sense & process period (sec)	2	2
Max agent speed (m/sec)	36	50
Map size (km)	5 × 2	10 × 2
No. of map zones	9	10
Duration (sec)	300	300

Results

Scenario	1	2
CIP resolutions	9330	16444
Avg. CIP time (msec)	9.8	8.1

Preliminary indication of node-level performance-wise feasibility of the proposed approach

Conclusion

Contributions

- Multi-agent framework for information fusion and dissemination in ubiquitous contexts
 - Exchange of semantically annotated information
 - Swarm intelligence: emergent collective situation awareness from local interactions
 - Ability to follow rapidly changing data
 - Quick recovery from detection mistakes
- A novel reasoning service for concept expression integration
 - Fusion of local (detected) and external (received) information
 - Preservation of agents' "perspective"
 - Combination of existing non-monotonic reasoning services
- Efficient implementation in the Mini-ME reasoner for mobile and pervasive devices
- Early performance results

Future work

- Comprehensive experimental evaluations
 - Reasoning performance on real, very constrained devices (*e.g.* sensor motes)
 - Scalability
 - Size and complexity of managed ontology and expressions
 - Number and topology of agents
 - Number and type of monitored parameters
 - Communication performance of the information exchange protocol
 - Quality of the disseminated information with respect to application goals
- Implementation in a message-oriented mobile middleware
- Comparison with the state of the art
- Extension of the approach toward multi-item fusion

