
Reasoning with Forest Logic
Programs

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der technischen Wissenschaften

eingereicht von

Cristina Maria Feier
Matrikelnummer 0928183

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Prof. Dr. Thomas Eiter

Diese Dissertation haben begutachtet:

(Prof. Dr. Thomas Eiter) (Prof. Dr. Torsten Schaub)

Wien, 15.08.2014
(Cristina Maria Feier)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Reasoning with Forest Logic
Programs

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der technischen Wissenschaften

by

Cristina Maria Feier
Registration Number 0928183

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Prof. Dr. Thomas Eiter

The dissertation has been reviewed by:

(Prof. Dr. Thomas Eiter) (Prof. Dr. Torsten Schaub)

Wien, 15.08.2014
(Cristina Maria Feier)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Cristina Maria Feier

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Cristina Maria Feier)

i

Acknowledgements

I would like thank first the two persons who were the most influential as concerns the devel-
opment of this thesis: Prof. Thomas Eiter and Dr. Stijn Heymans. Stijn introduced me to the
topic and gave me lots of helpful technical and editorial advice in the first part of my PhD jour-
ney. I am deeply indebted to Thomas who supported and guided my work after Stijn left to US.
His professional advice was very helpful in shaping up this thesis and his integrity and equa-
nimity were, and are, always an inspiration. I would also like to thank Thomas for the careful
proofreading of the thesis and the extremely detailed and useful comments.

To my mother who had infinite patience with me even when I could not be beside her when
she needed me most. And to my father who unfortunately is no longer here with us, but whose
smile still shines through.

Many thanks go to my colleagues and friends: Katrin, Guohui, Michael, Minh, TK, Se-
bastian, Peter, Patrik, Joerg, Magdalena, Dasha, Mantas, whose pleasant and warm company I
enjoyed many times. Special thanks go to Eva and Matthias who were always very helpful with
solving various administrative and technical issues. My thoughts go also to my out-of-work
friends Mihai, Edi, Franka, Alina,... Thank you guys for your friendship and time! And to the
Vienna flickr group who gave me the opportunity to immerse a bit in the local Viennese scene
and practice my shabby German; I regret I did not have time to join more of your photo walks,
but who knows, we might still meet sometime in the future...

Special thanks go to my former colleague and friend Uwe Keller who selflessly helped me
edit and translate the abstract of a project proposal which eventually funded part of my research.
And of course to the EU Comission and the FWF funding agency who funded my work.

Finally, these acknowledgements would not be complete without mentioning ic hir; our
countless discussions helped me grow and get to know myself better. He was also always very
supporting as concerns my PhD endeavour. Finally, he helped with the German translation of
the abstract of the thesis which was then further refined by Thomas.

iii

Abstract

Answer Set Programming (ASP) is a popular rule-based formalism for describing and solving
combinatorial search problems. Open Answer Set Programming (OASP) extends Answer Set
Programming with an open domain semantics: programs are interpreted with respect to arbi-
trary domains which might contain anonymous individuals, i.e. individuals which do not occur
explicitly in the program. This makes it possible to state generic knowledge using OASP. At the
same time, OASP inherits from ASP the non-monotonic treatment of negation under the stable
model semantics. As such, OASP bridges two important knowledge representation paradigms:
the classical First Order Logic (FOL) world and the non-monotonic rules world.

In the general case, OASP is undecidable. With the purpose of achieving decidability, sev-
eral fragments have been defined by means of syntactical restrictions on the shape of rules. Some
such fragments are Conceptual Logic Programs (CoLPs) – a fragment which disallows the oc-
currence of constants and which exhibits the tree model property –, and Forest Logic Programs
(FoLPs) – a fragment which has the forest model property. CoLPs can simulate reasoning in
the Description Logic SHQ and they were proved to be decidable by a reduction to two-way
alternating tree automata with a parity condition. FoLPs can simulate reasoning in the Descrip-
tion Logic SHOQ and their decidability status was not known at the beginning of this work.
Decidability had been previously established only for the fragments of acyclic and local FoLPs
in which the usage of recursion is heavily restricted.

Hence the reasoning support for CoLPs and FoLPs is rather limited. The forest model prop-
erty of FoLPs makes them a good candidate for being tackled by means of tableau-based pro-
cedures which construct forest shaped models. Unlike reductions to automata, goal-oriented
procedures like tableau algorithms, are usually not worst-case optimal, but are amenable to op-
timizations and they behave well in practice. As such the objective of this thesis is devising
tableau-based algorithms to reason with FoLPs. We choose to focus on FoLPs as they are
quite an expressive fragment which also subsume the fragment of CoLPs.

One of the main challenges when designing tableau algorithms for FoLPs consists in en-
suring that every atom in a constructed model is well-supported, i.e. there is a reason for the
presence of the atom in the model and this reason is not circular or infinite. Standard blocking
mechanisms employed by tableau algorithms enhanced with such well-supportedness checks are
no longer enough to guarantee termination. As such, our algorithms rely heavily on techniques
to achieve the finite model property for FoLPs which are then transposed in runtime termina-
tion conditions. Based on two such techniques, we devise algorithms for satisfiability checking
of unary predicates with respect to FoLPs which run in the worst-case in non-deterministic

v

double and non-deterministic single exponential time, respectively. The second class of algo-
rithms, while exhibiting a better worst-case runtime behaviour, requires extensive bookkeeping.
We identify a new fragment of FoLPs, called simple Forest Logic Programs, which generalizes
acyclic FoLPs and for which a straightforward non-deterministic algorithm can be devised.

The above-mentioned algorithms show that satisfiability checking of unary predicates with
respect to FoLPs can be decided in NEXPTIME. From the fact that FoLPs are able to simulate
reasoning within the DL SHOQ, we know that reasoning with respect to FoLPs is EXPTIME-
hard. In a quest to obtain worst-case optimal algorithms, we investigate the determinisation of
the above-mentioned algorithms by means of AND/OR data structures. We obtain two worst-
case optimal algorithms to reason with the fragments of CoLPs and simple FoLPs, respectively.

Kurzfassung

Answer Set Programming (ASP) ist ein beliebter, regelbasierter Formalismus zur Beschreibung
und Lösung von kombinatorischen Suchproblemen. Open Answer Set Programming (OASP) er-
weitert Answer Set Programming um eine Semantik mit offenen Domänen: Programme erhalten
eine Interpretation in beliebigen Dömanen, die anonyme Individuen enthalten kann, d.h. Indivi-
duen, die nicht explizit im Programm aufscheinen. Dies ermöglicht es mittels OASP generisches
Wissen zu formulieren. Gleichzeitig erbt OASP von ASP die nicht-monotone Behandlung der
Negation unter der stabilen Modell-Semantik (Stable Model Semantics). OASP verbindet auf
seine Art zwei wichtige Paradigmen der Wissensrepräsentation: die klassische Prädikatenlogik
erster Stufe (First-Order Logic, FOL) und die Welt der nicht-monotonen Regeln.

Im allgemeinen Fall ist OASP unentscheidbar. Um Entscheidbarkeit zu erreichen wurden
deshalb verschiedene Fragmente von OASP durch deshalb syntaktische Einschränkungen der
Form der Regeln definiert. Beispiele solcher Fragmente sind Conceptual Logic Programs (CoL-
Ps) – ein Fragment, das die Verwendung von Konstanten verbietet und die Tree-Modell Ei-
genschaft erfüllt –, und Forest Logic Programs (FoLPs) – ein Fragment mit der Forest-Modell
Eigenschaft. CoLPs können Schließen (engl. Reasoning) in der Beschreibungslogik (engl. De-
scription Logic) SHQ simulieren und es wurde durch eine Reduktion auf two-way alternating
tree automata gezeigt, dass sie entscheidbar sind. FoLPs hingegen können Reasoning in der
Beschreibungslogik SHOQ simulieren, aber es war vor dieser Arbeit nicht bekannt, ob sie ent-
scheidbar sind oder nicht. Entscheidbarkeit war vorher nur für Fragmente von azyklischen und
lokalen FOLPs bewiesen, in denen die Verwendung von Rekursion sehr stark eingeschränkt ist.
Deswegen ist der Reasoning-Support für CoLPs und FoLPs ziemlich begrenzt.

Die Forest-Modell Eigenschaft von FOLPs eröffnet die Möglichkeit, sie mit tableau-basierten
Methoden zu untersuchen, die Modelle mit Forest Form erzeugen. Im Gegensatz zur Reduktion
auf Automaten, sind zielorientierte Prozeduren wie Tableau-Algorithmen nicht worst-case opti-
mal, aber sie eignen sich für Optimierungen und verhalten sich in der Praxis gut. Daher ist das
Ziel der Arbeit, tableau-basierte Algorithmen für das Reasoning mit FoLPs zu entwickeln. Die
Wahl von FoLPs erfolgte, weil sie ein sehr ausdrucksstarkes Fragment von OASP sind, das auch
CoLPs umfasst.

Eine der größten Herausforderungen bei der Entwicklung von Tableau-Algorithmen für
FoLPs besteht darin, für jedes Atom im konstruierten Modell sicher zu stellen, dass es „well-
supported“ ist, d.h. dass es eine Begründung für das Atom im Modell gibt, die weder zirkulär
noch unendlich ist. Die Erweiterung des Standard Blocking, wie es von Tableau Algorithmen
angewandt wird, um die Überprüfung von Well-Supportedness ist aber nicht ausreichend, um
die Termination des Verfahrens zu garantieren. Deswegen stützen sich unsere Algorithmen stark

vii

auf Techniken mit denen für FoLPs die Finite-Modell Eigenschaft erreichtwerden kann; diese
werden dann in Laufzeit-Endbedingungen umgewandelt.

Basierend auf zwei solche Techniken entwickeln wir Algorithmen für die Überprüfung der
Erfüllbarkeit (engl. Satisfiability) für unäre Prädikate bezüglich FoLPs, die im schlechtesten
Fall nichtdeterministisch doppelt exponentielle bzw. nichtdeterministisch einfach exponentiel-
le Laufzeit haben. Während die zweite Klasse von Algorithmen ein besseres Laufzeitverhalten
im schlechtesten Fall aufweist, erfordert sie ausführliche Aufzeichnungen (engl. Bookkeeping).
Wir identifizieren ein neues Fragment von FoLPs, simple Forest Logic Programs, das azyklische
FoLPs verallgemeinert und für die man einen unkomplizierten nicht-deterministischen Algorith-
mus entwickeln kann. Die oben erwähnten Algorithmen zeigen, dass Satisfiability-Testen von
unären Prädikaten in FoLPs in nichtdeterministische einfach exponentieller Zeit entschieden
werden kann. Aufgrund der Tatsache, dass FoLPs Reasoning in der Description Logic SHOQ
simulieren können, wissen wir, dass Reasoning in FolPs EXPTIME hart ist.

Auf der Suche nach worst-case optimalen Algorithmen untersuchen wir die Determinisie-
rung der oben erwähnten Algorithmen mit Hilfe von AND/OR Datenstrukturen. Wir erhalten
zwei worst-case optimale Algorithmen für das Reasoning mit Fragmenten von CoLPs und ein-
fachen FoLPs.

Contents

Contents ix

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Main Results . 5
1.3 Structure of the Thesis . 7
1.4 Publications . 8

2 Preliminaries 9
2.1 Trees, Forests, Graphs . 9
2.2 Answer Set Programming . 14

2.2.1 Syntax . 16
2.2.2 Semantics . 17

2.3 Open Answer Set Programming . 18
2.4 Conceptual and Extended/Local Forest Logic Programs 20

2.4.1 CoLPs and FoLPs . 20
2.4.2 Local and Acyclic FoLPs . 24
2.4.3 Tree and Forest Model Property . 26

3 Tableau Algorithm for Reasoning with Forest Logic Programs 29
3.1 Completion Structures . 30
3.2 Expansion Rules . 31

3.2.1 Expanding a Unary Positive Predicate 32
3.2.2 Choosing a Unary Predicate . 33
3.2.3 Expanding a Unary Negative Predicate 34
3.2.4 Expanding a Binary Positive Predicate 36
3.2.5 Expanding a Binary Negative Predicate 36
3.2.6 Choosing a Binary Predicate . 36

3.3 Applicability Rules . 37
3.3.1 Saturation . 37
3.3.2 Blocking . 38
3.3.3 Redundancy . 39
3.3.4 Contradictory Completion Structures 40

ix

3.3.5 Circular Completion Structures . 40
3.4 Overview of A1 . 41
3.5 Termination, Soundness, and Completeness 42

3.5.1 Termination of A1 . 42
3.5.2 Soundness of A1 . 44
3.5.3 Completeness of A1 . 50
3.5.4 Complexity Analysis . 63
3.5.5 FoLPs Have the Bounded Finite Model Property 64
3.5.6 Reduction to Answer Set Programming Using the Bounded Finite Model

Property . 64
3.6 Illustration of the Algorithm . 65
3.7 Discussion and Related Work . 71

3.7.1 Connection with DL Tableau Algorithms 71
3.7.2 Reflection on Using Standard ASP Reasoning vs. the Tableau Method . 73
3.7.3 Connection with ASP Reasoning Procedures 73

4 Knowledge Compilation Technique for Reasoning with FoLPs 79
4.1 Unit Completion Structures . 80
4.2 Computing the Set of Unit Completion Structures: Complexity Considerations . 83
4.3 Redundant Unit Completion Structures . 86
4.4 Reasoning with FoLPs Using Unit Completion Structures 88
4.5 Discussion and Related Work . 92

4.5.1 Related Work . 92

5 Optimized Tableau Algorithm for Reasoning with Forest Logic Programs 97
5.1 New Blocking Rule . 98
5.2 Revisiting Redundancy . 99
5.3 Caching . 103
5.4 Overview of A3 . 106
5.5 Termination and Complexity . 108
5.6 Soundness . 110
5.7 Completeness . 123
5.8 Simple Reasoning with FoLPs: The Case of Simple Forest Logic Programs . . 126

5.8.1 Simple FoLPs: Definitions . 126
5.8.2 Reasoning with Simple FoLPs . 127

5.9 Discussion and Related Work . 130

6 Worst-Case Optimal Reasoning with Conceptual Logic Programs and Simple
Forest Logic Programs 133
6.1 AND/OR Completion Structures . 134
6.2 Worst-Case Optimal Reasoning with Conceptual Logic Programs 138

6.2.1 Evolving an AND/OR Completion Structure for a COLP 139
6.2.2 Termination Conditions: Blocking, Caching, and Redundancy 140

6.2.2.1 Deterministic Blocking Rule 141

x

6.2.2.2 Deterministic Redundancy Rule 142
6.2.2.3 Deterministic Caching Rule 143
6.2.2.4 Complete AND/OR Completion Structures 144

6.2.3 Evaluation of an AND/OR Completion Structure 144
6.2.4 Termination and Complexity . 148

6.2.4.1 Computation of Complete AND/OR Completion Structures . 148
6.2.4.2 Complexity Analysis for the Evaluation Procedure 151

6.2.5 Soundness and Completeness . 152
6.2.5.1 Soundness . 163
6.2.5.2 Completeness . 163

6.3 Worst-Case Optimal Reasoning with Simple Forest Logic Programs 166
6.3.1 Evolving AND/OR Completion Structure for Simple FoLPs 166
6.3.2 Anywhere Blocking for Deterministic Reasoning with Simple FoLPs . 168
6.3.3 Evaluating AND/OR Completion Structures for Simple FoLPs 169
6.3.4 Termination and Complexity . 172

6.4 Discussion and Related Work . 173

7 Summary and Future Work 177
7.1 Further Related Work . 177

7.1.1 Loosely-coupled Approaches . 178
7.1.2 Tightly-coupled Approaches . 178
7.1.3 Integrating Approaches . 180

7.2 Summary . 181
7.3 Future Work . 182

Bibliography 183

xi

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

The Semantic Web envisions to increase automation of knowledge-related tasks on the Web by
making knowledge more formal [Berners-Lee et al., 2001]. Motivated by this vision there has
been a lot of interest in logic-based languages which have a clear well-understood semantics and
desirable representational properties. Two main classes of languages that have been identified as
suitable for this purpose are the so-called ontological languages, which are logically grounded
in the family of Description Logics [Baader et al., 2003a], and the rule-based languages, which
are logically grounded in the Logic Programming paradigm [Lloyd, 1987, Baral and Gelfond,
1994].

Description Logics (DLs) are decidable subsets of First Order Logic (FOL) which originated
from frame-based systems [Minsky, 1985]. They are the basis of the Semantic Web standards
Web Ontology Language (OWL) [Dean and Schreiber, 2004], OWL 2 [OWL 2, 2009] and the
OWL 2 profiles languages [Motik et al., 2009a]. The main modelling entities in DLs are concepts
and roles; different sets of constructors allow the description of complex concepts and roles. Due
to their ability to capture domain language at a sufficient level of detail for practical purposes,
DL knowledge bases are commonly referred to as ontologies.

On the other hand, rule-based languages have a very simple if-then syntax: a rule consists
in a head and a body, where the body is usually a conjunction of literals seen as the premise
of the rule, and the head is usually a disjunction of literals seen as the consequence of the rule.
Unlike ontological languages which are rooted in DLs, and hence in FOL, rule-based languages
typically adopt a closed-world assumption: everything which is not known to be true is false.
The treatment of negation under this assumption is commonly referred to as negation-as-failure.
The two most prominent semantics for rules with a negation-as-failure operator are the stable
model semantics [Gelfond and Lifschitz, 1988] and the well-founded semantics [Gelder et al.,
1991]. The World Wide Web Consortium (W3C) developed the Rule Interchange Format (RIF)
standard [Kifer and Boley, 2010] as an inter-lingua to facilitate exchange between different rule-
based languages [Kifer, 2008].

1

The complementary features of the two classes of languages, ontological and rule-based,
led to various attempts to integrate them. One scenario featuring the need for integration of
both types of knowledge is business rule specification and execution: typically, business specific
knowledge is represented in the form of rules which use concepts that belong to a separate do-
main ontology. Making use of the operational knowledge requires a combined execution engine
for both rules and ontologies [Berrueta et al., 2011]. Among the approaches which combine
rule-based knowledge and ontological knowledge we mention: the Semantic Web Rule Lan-
guage [Horrocks and Patel-Schneider, 2004], Description Logic Programs [Grosof et al., 2003],
DL-safe rules [Motik et al., 2005], DL+log [Rosati, 2006], dl-programs [Eiter et al., 2008], De-
scription Logic Rules [Krötzsch et al., 2008a], and continuing with more recent approaches like
Datalog± [Calì et al., 2009], MKNF+ knowledge bases [Motik and Rosati, 2010], Description
Graph Logic Programs [Magka et al., 2012] and Nonmonotonic Existential Rules [Magka et al.,
2013].

Open Answer Set Programming (OASP) [Heymans et al., 2008] is a rule-based formalism
which at the same time has an ontological flavour: it is an extension of Answer Set Programming
(ASP) [Gelfond and Lifschitz, 1988] with an open domain semantics. ASP is simply the incar-
nation of Logic Programming under the stable model semantics. The stable model semantics
distinguishes between alternative models when the knowledge base contains a certain amount of
non-determinism and as such ASP is a suitable language to describe and reason about combina-
torial search problems. Returning to OASP, its syntax is identical to the ASP syntax, while its
semantics is a generalization of the stable model semantics. Like in the case of ASP, the negation
operator is interpreted as negation-as-failure under the stable model semantics; however, unlike
there, OASP programs are grounded with respect to open domains, i.e., non-empty arbitrary do-
mains which extend the Herbrand universe. As such, in the context of OASP, one speaks about
open interpretations – these are interpretations in which the domain of interpretation is an open
domain which occurs as an explicit parameter. The open domain semantics makes it possible to
state generic knowledge using OASP without the need to mention actual constants.

In the general case, OASP is undecidable. With the purpose of achieving decidability, several
fragments of OASP have been defined by syntactically restricting the language in a similar vein
as decidable fragments of First Order Logic have been defined in the past [Grädel, 2003]. These
fragments are:

• Conceptual Logic Programs (CoLPs) under the Inverted World Assumption (IWA) [Hey-
mans et al., 2006], a fragment which allows only for unary and binary predicate symbols
and which disallows the presence of constants in programs. The Inverted World Assump-
tion refers to the fact that special binary predicate symbols of the form f i are allowed to
occur in CoLPs and they are to be interpreted as the inverse of their counterpart predicate
symbol f , that is, f i(x, y) amounts to f(y, x).

CoLPs also impose some constraints on the shape of rules. One type of rules which can
occur in CoLPs are tree-shaped rules: every such rule has one distinguished variable
(‘root’ variable) which is connected to the other variables (‘successor’ variables) via a
positive body literal (atom). For example,

a(X)← f (X ,Y), b(Y), g(X ,Z),not c(Z)

2

is a tree-shaped CoLP rule in which X is a root variable, while Y and Z are successor
variables. The other type of rules which can occur in a CoLP are so-called free rules of
type:

a(X) ∨ not a(X)←

or

f (X ,Y) ∨ not f (X ,Y)←

These are unsafe rules, i.e. rules which contain variables that do not occur in atoms in
the body of the rule, in this case the bodies of the rules being empty. This property in
conjunction with the open domain semantics enables the free inclusion in the model of
atoms having as arguments anonymous individuals.

The syntactical restrictions lend to CoLPs the tree model property: if a unary predicate
is satisfiable with respect to a CoLP, then it is satisfied by a tree-shaped model of the
program. A tree-shaped model is a model which can be represented as a labeled tree,
where nodes are labeled with sets of unary predicates and arcs are labeled with sets of
binary predicates. The domain of the model is exactly the set of nodes of the tree, while
the set of unary and binary atoms which make part of the model can be reconstructed from
the labels of nodes and arcs of the tree and the nodes and the arcs themselves, respectively.

CoLPs under the IWA can simulate reasoning in the expressive Description Logic SHIQ.
They were proved to be decidable; more precisely, deciding satisfiability of unary pred-
icates with respect to a CoLP has been reduced to non-emptiness checking of two-way
alternating tree automata with a parity condition [Vardi, 1998]. When the IWA is dropped,
CoLPs can simulate reasoning in the DL SHQ.

• Forest Logic Programs (FoLPs) [Heymans et al., 2007], a fragment which has the forest
model property. FoLPs generalize CoLPs in the sense that they allow also for the presence
of constants. In all other respects, the syntactical restrictions on rules are similar to the
ones for CoLPs. The fragment has the forest model property: if a unary predicate is
satisfiable then it is satisfied by a forest-shaped model. The forest in such a model contains
a tree for each constant in the program having as root the respective constant, and possibly
an additional tree having as root an anonymous individual.

While believed to be decidable, decidability had been previously shown only for the so-
called acyclic and local FoLPs in which the usage of recursion is restricted. Both frag-
ments are quite inexpressive compared to the whole FoLP fragment. For example, local
FoLPs disallow the presence of unary atoms containing a successor variable in tree-shaped
rules. The two restricted fragments have the finite bounded model property, i.e. if a unary
predicate is satisfiable than it is satisfied by a model with a universe size bounded by a
double exponential in the size of the program, and as such reasoning can be reduced to the
classical ASP case.

• (Loosely) Guarded Programs [Heymans et al., 2008] are, as their name suggests, a guarded
fragment which can be translated to the decidable fragment of (loosely) guarded Fixed
Point Logic [Grädel and Walukiewicz, 1999].

3

As the summary above attests, the reasoning support for these fragments is quite limited:
with the exception of local and acyclic FoLPs, decidability had been shown via reductions to
automata or to other logics. While automata are a useful tool to prove decidability and to obtain
worst-case upper bounds for various logics, they are not a practical approach for actual reason-
ing. They are general purpose devices, in which the structure of the problem is lost, and as such
they are not amenable to optimizations related to the structure of the problem at hand [Eiter
et al., 2012]. Also, their best case running time is in the same complexity class as their worst-
case running time [Baader et al., 2003b]. Finally, the reductions to ASP provided for reasoning
with local and acyclic FoLPs are computationally expensive: the worst-case runtime complexity
of both ASP-based algorithms is 2EXPTIMEΣP

2 . As such, in the case of OASP, there was a need
for more practical algorithms to reason with these fragments.

The forest model property of FoLPs (and CoLPs) recommends them as good candidates for
being tackled by means of tableau algorithms. The latter [Baader et al., 2003a] are goal-oriented
procedures which construct models with predefined structures, e.g. tree-shaped models or forest-
shaped models, in a step-by-step fashion. They start with a skeleton model and an initial set of
constraints (the goal), e.g. a concept/predicate checked to be satisfiable, and they extend the
model to satisfy the existing constraints. The model extension leads to new constraints which
have to be satisfied and so on. Termination is usually achieved by employing so-called blocking
techniques which check for repetitions in the constructed structures, e.g. whether two nodes on
a branch of a tree/forest have identical labels. Unlike reductions to automata, tableau algorithms
are usually not worst-case optimal, but are amenable to optimizations and they behave well in
practice.

In this thesis we investigate the application of tableau-based techniques to reason with
FoLPs. We devise several such tableau-based algorithms for reasoning with FoLPs and, in some
cases, some of its fragments. The tableau algorithms we provide establish among others the
decidability of FoLPs. A main difficulty which we had to overcome when designing such al-
gorithms was the combination of the open domain assumption and the stable model semantics.
The stable model semantics requires that every atom in an open answer set is well-supported,
i.e. there has to be a reason for the presence of the atom in the model and this reason should
not be circular or infinite. On the other hand, the open domain semantics imposes the need for
some termination mechanism. Standard blocking techniques employed by tableau algorithms
based on comparison of node labels are no longer enough to guarantee termination when en-
hanced with well-supportedness checks. As such, our algorithms rely heavily on techniques to
achieve the finite model property for FoLPs which are then transposed in runtime termination
conditions. Besides successful termination by means of enhanced blocking we also introduce
rules for unsuccessful termination, due not to some inconsistency in the constructed model, but
due to some redundancy: if there is a model, there must be a model with a simpler structure than
the one in construction.

We choose to focus on FoLPs as they are quite an expressive fragment which also subsumes
the fragment of CoLPs. In [Heymans, 2006] it had been shown how satisfiability checking
in the DL ALCHOQ can be reduced to reasoning with acyclic FoLPs. It is well known that
reasoning1 with SHOQKBs can be reduced to reasoning withALCHOQKBs via a transitivity

1We refer here to satisfiability checking and related tasks, not to conjunctive query answering.

4

elimination transformation [Kazakov, 2008]. Thus, it is actually possible to simulate reasoning
with SHOQ KBs within the fragment of acyclic FoLPs.

Furthermore, in [Feier and Heymans, 2013] we showed how reasoning with SHOQ KBs
can be directly simulated within the fragment of FoLPs. This simulation made it possible to
combine SHOQ KBs and FoLPs into a hybrid formalism called f-hybrid KBs. An f-hybrid KB
is a pair of a SHOQ KB and a FoLP: the interaction between the two components is captured
via shared interpretations, which means the formalism falls in the category of so-called tightly-
coupled approaches for combining rules and ontologies [de Bruijn, 2009]. The f-hybrid KBs
distinguish themselves among other tightly-coupled approaches by the fact that they impose no
restrictions on the interaction between the signatures of the two components; other approaches
typically restrict the occurrence of DL predicates, i.e. predicates which occur in the ontological
component, in the rule-based component. Such restrictions prevent the need for reasoning with
unknown individuals in the rule component. As the underlying technical foundation of f-hybrid
KBs is the simulation of SHOQ KBs within FoLPs, no such restriction is needed. While the
formal treatment of f-hybrid KBs is not part of the objective of this thesis, we note that any
algorithm developed for reasoning with FoLPs can be used to reason with f-hybrid KBs as well.

Conceptual modeling using FoLPs is not restricted to simulating reasoning with SHOQ
KBs: it is also possible to translate object-role modeling (ORM) models as sets of FoLP rules.
In [Heymans, 2006] a translation of a particular ORM model to a CoLP (thus, also a FoLP) is
provided. While a formal translation from ORM models to CoLPs/FoLPs is not provided there,
the example translation shows how CoLP satisfiability checking can be used to verify that the
various ORM object types can be populated, that some derived properties do (not) hold, etc.

1.2 Main Results

As mentioned in Section 1.1, the main objective of this thesis was developing tableau algorithms
for reasoning with FoLPs and/or sub-fragments thereof. One of the main challenges in designing
such algorithms has been ensuring that the constructed models are minimal. In chronological
order of their development, the results are as follows:

• A tableau algorithm for satisfiability checking of unary predicates with respect to
FoLPs which runs in the worst-case in non-deterministic double exponential time.
The algorithm exploits the forest model property of the fragment: it tries to construct a
model by evolving a forest-shaped data structure called “completion structure” using so-
called expansion rules. The algorithm – which we will refer to as A1– was the first to
deal with the whole fragment of FoLPs and as such established the decidability of the
language.

For termination, A1 employs a rather unusual blocking condition which besides being
subset-based [Baader et al., 2003a], it also checks that the model obtained by unravelling
the completion is minimal, i.e. there are no cyclic dependencies between atoms in the
model. To this purpose, the algorithm maintains a dependency graph of the atoms in
the constructed model. For termination a new rule called redundancy rule is introduced

5

which sets a threshold on the depth of explored paths in a completion structure which is
exponential in the size of the input program.

The algorithm is sound and complete, and as such it also establishes the fact that FoLPs
have the finite bounded model property: if a unary predicate is satisfiable, it has to be sat-
isfied by a model with finite bounded size. This opens the way for standard ASP reasoning
with FoLPs.

• A knowledge compilation technique for reasoning with FoLPs. The technique con-
sists in pre-computing all possible building blocks of forest models in the form of trees of
depth one. Such trees are called unit completion structures (UCSs) and they can be com-
puted using the expansion rules of A1. A new algorithm, called A2, is provided which
tries to construct a forest model by a simple match-and-append process of UCSs using the
original termination conditions of A1. We also define a notion of redundant UCSs which
describes structures that are strictly more constraining than others, i.e. they are harder to
be matched against, when constructing a model as opposed to other UCSs. When con-
structing a model, these redundant UCSs can be disregarded without losing completeness.

Algorithm A2 has the same worst-case runtime complexity as A1, i.e. non-deterministic
double exponential in the size of the original program. For both algorithms, the runtime
complexity is determined by the maximal number of nodes that have to be expanded in
order to ensure completeness; as both A1 and A2 employ a form of ancestor blocking,
i.e. a node can be blocked only by one of its ancestors, and as the length of a branch in a
completion structure can be exponential in the size of the program, this number is double
exponential in the size of the input program.

• An optimized algorithm for reasoning with FoLPs which runs in the worst-case in
non-deterministic exponential time. The algorithm, referred to asA3, reuses the knowl-
edge compilation technique A2, but it employs different termination conditions. In par-
ticular, it uses a mechanism for reusing computation across branches which leads to a
decrease in the worst-case running time complexity by one exponential level. Usually, in
tableau parlance, such reuse of computation across branches is referred to as ‘anywhere
blocking’; this is due to the fact that the conditions for (ancestor) blocking and anywhere
blocking are very similar. However, in our case the two sets of conditions are rather asym-
metric; as such we will refer to this mechanism with the more general term of caching.

Algorithm A3 uses also a much more efficient redundancy rule to curtail the expansion of
paths in the cases where blocking does not suffice. The improvements of A3 over A1 and
A2 are made possible by a new strategy to reduce a (potentially infinite) model to a finite
bounded size one which is part of the completeness proof of the algorithm.

• A new fragment of FoLPs, simple FoLPs, together with a reasoning procedure. The
termination rules employed by A3 require extensive bookkeeping regarding dependen-
cies between atoms in the constructed model and checking complex conditions over such
dependencies. We define a new fragment of Forest Logic Programs, called simple For-
est Logic Programs, for which the blocking and caching conditions of A3 collapse into

6

a simple subset-based anywhere blocking condition. The fragment generalizes acyclic
FoLPs. The algorithm for reasoning with simple FoLPs can be seen as a simplified variant
of A3 and is denoted as As3.

• Worst-case optimal procedures for reasoning with CoLPs and simple FoLPs. The
procedures, referred to as Adet

3,c and Adet
3,s , respectively, can be seen as deterministic ver-

sions ofA3 andAs3, respectively. They construct AND/OR completion structures in which
all possible choices for a particular successor of a node are recorded: as such, AND/OR
completion structures capture the space of all tree/forest models of certain size.

In order not to incur an exponential blow-up when all choices regarding the size of the
AND/OR completion structures are made explicit, we employ similar termination mecha-
nisms as in the non-deterministic case; however, here reuse of computation across branches
of an AND/OR structure implies reuse of computation across models.

In this new scenario a tableau algorithm has two phases: a construction phase, in which an
AND/OR completion structure is constructed by matching and appending UCSs; and an
evaluation phase, in which by means of a complex truth value propagation procedure, it is
decided whether the constructed AND/OR completion structure embeds an actual model.
Unfortunately the technique does not generalize to the case of full FoLPs.

As the next chapters will show, constructing tableau algorithms for reasoning with FoLPs is a
highly non-trivial task. Furthermore, improving complexity bounds for our algorithms comes at
the price of either maintaining ever-increasing complex data structures or reducing the language
to a fragment in which recursion is restricted. From a theoretical point of view, the results
are interesting as they shed light on the interaction between the stable model semantics and
the open world assumption. However, due to the complex blocking conditions and extensive
bookkeeping they require, it is not clear how well the algorithms would behave in practice; it is
subject to future work to establish this.

1.3 Structure of the Thesis

The thesis is organised as follows:

• Chapter 2 describes some preliminaries. Section 2.1 introduces notations concerning data
structures like trees, forests and graphs. ASP is introduced in Section 2.2, followed by
OASP in Section 2.3, and CoLPs and FoLPs in Section 2.4.

• Chapter 3 introduces A1, the non-deterministic double exponential algorithm for reason-
ing with FoLPs. An extended example which traces the running of A1 on a particular
FoLP is provided in Section 3.6. Section 3.7 discusses the relation between the new algo-
rithm and tableau procedures in the DL realm, on the one hand, and ASP solvers – tableau
or non-tableau based –, on the other hand.

• The knowledge compilation technique for reasoning with FoLPs is described in Chapter
4. In particular, Section 4.3 formalizes the notion of redundant UCSs, while Section 4.4

7

describes the actual algorithm which uses for the construction of a model only the set of
non-redundant UCSs. Finally, Section 4.5 discusses the pros and cons of the technique
and some related work.

• Algorithm A3, the optimized tableau algorithm for reasoning with FoLPs, is described in
Chapter 5. In the same chapter, in Section 5.8 we introduce the fragment of simple FoLPs
and describe the simplified algorithm As3.

• The worst-case optimal algorithms for reasoning with CoLPs and simple FoLPs are de-
scribed in Chapter 6 in Section 6.2 and Section 6.3, respectively. Section 6.4 discusses
why the deterministic approach does not scale in the case of (full) FoLPs and presents
some related work.

• Some further related work is discussed in Section 7.1. This is followed by a summary of
the thesis in Section 7.2 and a discussion concerning future work in Section 7.3.

1.4 Publications

Some parts of this thesis have been published in a preliminary form in articles occurring in
journals, conferences and workshops.

The first algorithm to deal with FoLPs, A1, has been first described in [Feier and Heymans,
2009]. This has been extended to a journal publication containing full proofs and further details
in [Feier and Heymans, 2013].

The knowledge compilation technique which underliesA2 has been first introduced in [Feier
and Heymans, 2010] only for the case of CoLPs.

A fragment similar to simple FoLPs, named simple CoLPs has been described in [Feier and
Heymans, 2008] and in [Heymans et al., 2009]. Simple CoLPs is a fragment of FoLPs which al-
lows to simulate reasoning in the DLALCH. The fragment of simple FoLPs has been described
in [Feier and Heymans, 2013], albeit with a different treatment as concerns reasoning – instead
of using the knowledge compilation technique introduced in Chapter 4, there, a simplified ver-
sion of A1 has been employed to reason with the fragment. Finally, the results concerning A3

are described in [Feier, 2012].

8

CHAPTER 2
Preliminaries

2.1 Trees, Forests, Graphs

This section introduces some notations for trees which extend those in [Vardi, 1998] and their
generalizations to forests introduced in [Heymans et al., 2007].

Let · be a concatenation operator between sequences of constants or natural numbers. A tree
T with root c, also denoted as Tc, where c is a specially designated constant, is a set of nodes,
where each node is a sequence of the form c · s, where s is a (possibly empty) sequence of
positive integers formed with the help of the concatenation operator and which has the property
that for every x · d ∈ Tc, d ∈ N>0, where N>0 is the set of positive integers, it must be the
case that x ∈ Tc. When the root of the tree is irrelevant, we will simply refer to the tree as
T . For every such sequence of concatenated positive integers s, we denote with ||s|| its length,
i.e. the number of positive integers which are concatenated: thus, for a node x in a tree T , ||x||
represents the depth at which x occurs in T . The set of all such sequences of natural numbers
formed using the concatenation operator is denoted by 〈N>0〉.

Tc : c

c1 c2 c3

c12c11

Figure 2.1: A simple tree

9

Example 1. A tree with root c, where c has three direct successors and the first of these succes-
sors has in turn two direct successors, will be denoted by Tc = {c, c ·1, c ·2, c ·3, c ·1 ·1, c ·1 ·2}
or Tc = {c, c1, c2, c3, c11, c12} 1. Figure 2.1 depicts such a tree.

The set of arcs of a tree T , AT , is defined as follows: AT = {(x, y) | x, y ∈ T, ∃n ∈
N>0.y = x · n}. For x, y ∈ T , one says that x 6T y (x >T y) if x is a prefix (suffix) of y (with
the relations being strict when x 6= y). The successors of a node x in a tree T , succT (x), is the
set of nodes defined as follows: succT (x) = {y ∈ T | y = x · i, i ∈ N>0}. The predecessor of
a node x in a tree T is denoted by precT (x) and it is the node y such that there exists i ∈ N>0

such that x = y · i.
The lowest common ancestor of two nodes x and y in a tree T , denoted by lcaT (x, y), is the

node z such that z <T x, z <T y, and for every node z′ ∈ T such that z′ <T x, and z′ <T y,
it is the case that z′ 6T z. A node x ∈ T is said to be to the right of a node y ∈ T and is
denoted by rightT (x, y) if there exists a node z ∈ T , i, j ∈ N>0, and s1, s2 ∈ 〈N>0〉, such that
x = z · i · s1, y = z · j · s2, and i > j.

The subtree of T at y, denoted by T [y], is the set {x | x ∈ T, x = y ·s, s ∈ 〈N>0〉}. A path in
a tree T from x to y is denoted by pathT (x, y) and is defined as pathT (x, y) = {z | x 6 z 6 y}.
By frontier of a tree T , fr(T), we understand the set of nodes in T which have no successors:
fr(T) = {x ∈ T | succT (x) = ∅}.

Example 2. Consider the tree Tc in Figure 2.1. The lowest common ancestor of c11 and c2 in
Tc, lcaTc(c11, c2), is c, and it is also the case that: rightTc(c3, c2) and rightTc(c2, c12). The
frontier of Tc is the set {c11, c12, c2, c3}.

An extended tree ET is a tuple (T,ES), where T is a tree, and ES ⊆ T × T – thus, it is
technically a graph overlaid on the skeleton of a given tree. The set of nodes of ET , NET , is
exactly T , while the set of its arcs, AET , is defined as follows: AET = AT ∪ ES . The set of
extra arcs, ES , extends the successor relation between nodes in T :

succET (x) = succT (x) ∪ {y | (x, y) ∈ ES}.

A forest F is a set of trees {Tc | c ∈ C}, where C is a finite set of arbitrary constants. The
set of nodes, NF , and the set of arcs, AF , of a forest F are defined as follows: NF = ∪T∈FT ,
and AF = ∪T∈FAT , respectively. For a node x ∈ NF , let succF (x) = succT (x), where x ∈ T
and T ∈ F , be the set of successors of x in F . Also, similarly to trees, a strict partial order
relationship <F on the set of nodes NF of a forest F is defined, where x <F y if x <T y for
some tree T in F .

An extended forest EF is a tuple (F,ES), where F = {Tc | c ∈ C} is a forest and ES ⊆
NF×NF . The sets of nodesNEF and arcsAEF of an extended forest EF are defined as follows:
NEF = NF , and AEF = AF ∪ ES , respectively. As in the case of extended trees, an extended
forest is basically a graph overlaid on a forest structure: ES relates arbitrary pairs of nodes in
the forest and extends the successor relation between nodes as follows:

succEF (x) = succF (x) ∪ {y | (x, y) ∈ ES}.
1By abuse of notation, it is assumed that there are at most 9 successors for every node, so a ·b will be abbreviated

with ab

10

EF : a

a1

a12a11

b

b1 b2 b3

b21

Figure 2.2: An extended/interconnected forest

When an extended forest EF = (F,ES) is such that ES ⊆ NF × C, in other words ES
relates arbitrary nodes in the forest to roots of trees in the forest, then EF is said to be an
interconnected forest.

Example 3. Figure 2.2 depicts an extended forestEF which is an interconnected forest. The un-
derlying forest is composed of two trees, Ta = {a, a1, a11, a12} and Tb = {b, b1, b2, b3, b21},
and the set of extra arcs ES is {(a12, b), (b2, a), (b, a)}.

When an interconnected forest EF = (F,ES) is such that F is a set of trees {Tc | c ∈ C},
where C is a finite set of arbitrary constants, and there exists d ∈ C such that Tc = {c}, for
every c ∈ C\{d}, and ES ⊆ Td × C, we call the forest an interconnected tree with root d with
respect to C: all trees but one (Td) are single-node trees. The depth of an interconnected tree is
the depth of its distinguished tree Td.

In general, for an interconnected forest EF = (F,ES), the trees in the underlying forest F
together with the additional arcs in ES give rise to interconnected trees in EF , where such a
tree is one of Tc ∈ F , extended with the arcs {(x, y) | (x, y) ∈ ES , x ∈ Tc} and with the nodes
{y | (x, y) ∈ ES , x ∈ Tc}. The interconnected tree obtained as an extension of Tc in EF is
denoted by TEF

c .

Example 4. The interconnected tree TEF
a induced by Ta in EF in Example 3 is the extension

of Ta with the extra arc (a12, b), and the interconnected tree TEF
b induced by Tb in EF in the

same example is the extension of Tb with the extra arcs (b, a) and (b2, a).

A labelled (extended/interconnected) forest/tree is a tuple (FT, ft) where FT is an (ex-
tended/interconnected) forest/tree and ft : NFT → Σ is a labelling function, with Σ being a set
of arbitrary symbols; sometimes we will refer to such an object as ft.

Example 5. Figure 2.3 depicts an extended labelled forest (a labeled version of the extended
forest from Figure 2.2).

As was the case for (simple) interconnected forests, a labeled interconnected forest (EF, ef),
with EF = (F,ES) and F = {Tc | c ∈ C}, induces a set of labeled interconnected trees

11

f :

ta : a x

a1 y

a12 za11 x

tb : b z

b1 z b2 x b3 x

b21 z

Figure 2.3: An Extended Labeled Forest

{(T ef
c , tefc) | c ∈ C}, with tefc : N

T ef
c
→ Σ defined as follows: tefc (x) = ef(x), for any

x ∈ T ef
c . The definition of interconnected subtree generalizes straightforwardly also to the one

of labeled interconnected subtree.
We introduce the operation of replacing in a labeled interconnected forest ef a labeled inter-

connected subtree tef [x] with another labeled interconnected subtree tef [y], where both x and y
are from NEF , and denote this operation with replaceef (x, y).

Example 6. Figure 2.4 describes the result of applying the replace operation on the extended
forest from Figure 2.3 with two different sets of arguments. In the first case, tefb [b2] is replaced
with tefa [a1], while in the second case tefa [a1] is replaced with tefa [a12].

Note that the names of nodes in the replaced subtree are not substituted with names of the
nodes from the replacing subtree, but new names are generated for the new nodes in concordance
with the naming scheme for nodes of that tree. As a result of applying the first replacement
operation, one of the extra arcs of tb, (b2, a), is dropped (it was part of the replaced extended
subtree) and a new extra arc is introduced, (b22, b), which mirrors the arc (a12, b) from the
replacing extending subtree. Similarly, as a result of the second transformation, (a12, b) is
dropped and (a1, b) is introduced.

Finally, a directed graphG is defined as usual by its sets of nodes V and arcsA. We introduce
some graph-related notations: pathsG denotes the set of finite paths in G, where each path is
represented as a tuple of nodes from V :

pathsG = {(x1, . . . , xn) | ((xi, xi+1) ∈ A)16i<n}.

The set of finite paths in G from x to y is denoted by pathsG(x, y):

pathsG(x, y) = {(x1, . . . , xn) ∈ pathsG | x1 = x, xn = y},

12

replaceef (b2, a1) :

f :

ta : a x

a1 y

a12 za11 x

tb : b z

b1 z b2 y b3 x

b21 x b22 z

replaceef (a1, a12) :

f :

ta : a x

a1 z

tb : b z

b1 z b2 x b3 x

b21 z

Figure 2.4: Two applications of the replace operator on ef

while connG denotes the set of pairs of connected nodes from V :

connG = {(x1, xn) | (x1, . . . , xn) ∈ pathsG}.

Cycles and elementary cycles in directed graphs are defined as usually.
In order to operate with paths in directed graphs we also introduce some tuple operators: the

concatenation of two tuples T1 = (x1, . . . , xn), and T2 = (y1, . . . , ym), denoted by T1^T2, is
the tuple (x1, . . . , xn, y1, . . . , ym). A tuple T1 is part of another tuple T2: T1 ⊆ T2, if there exist
two (possibly empty) tuples T3 and T4 such that T2 = T3^T1^T4.

As extended/interconnected trees/forests are particular types of directed graphs, all graph
related notations introduced in this section apply to these entities.

13

2.2 Answer Set Programming

Answer Set Programming [Lifschitz, 2008] is a declarative programming language which has a
rule-based syntax and adopts a Closed World Assumption [Reiter, 1978]: the intended meaning
of its programs is captured by the stable model semantics [Gelfond and Lifschitz, 1988, Marek
and Truszczynski, 1989,Marek, 1999]. Every rule has a body, which represents a conjunction of
possibly negated atoms (literals), and a head which represents a disjunction of possibly negated
atoms (literals). Intuitively, at least one literal in the head of such a rule should be true when all
literals in the body of the rule are true as well. Rules which have empty bodies and whose heads
contain a single atom are called facts.

Example 7. Consider the following rules:

r1 : hiking ∨ tennis ← sunny
r2 : hiking ∨ tennis ← not raining
r3 : sunny ←

Note that rule r3 is a fact. When considering rule r1 and the fact r3, it must the case that
either hiking is true, tennis is true or both activities are true at the same time (as we will see,
the semantics for ASP disallows the last possibility). According to rule r2, same conclusions
should be drawn if it is not raining. Then, when considering both r2 and the fact r3 can one
infer that either hiking or tennis is true? Or in other words, when is it not raining? Should
that piece of information be explicitly listed in our knowledge base or simply its omission from
the knowledge base is enough? This particular example, but also the way humans tend to make
decisions based only on available information, suggest the latter: it is enough not to know (to be
able to derive) that it rains.

As the example suggests, new atoms should be derivable also based on absence of infor-
mation. This is exactly what the closed world assumption is about: every atom which is not
explicitly true or derivable by means of rules is assumed to be false. As such, the form of nega-
tion which occurs in answer set programs is commonly denominated as negation-as-failure: an
atom is not true if its derivation fails. While it is obvious that by allowing more than one literal
in the heads of rules, some non-determinism is introduced with respect to the intended meaning
of a program, non-determinism is present as well even when rules have just one literal in their
head. This is due to the interaction between negation as failure and circular derivation paths via
negative literals.

Example 8. Consider the following rules:

r1 : p ← not q
r2 : q ← not p

When considering only r1, it seems that p should be derived based on the absence of q.
When considering only r2, it seems that q should be derived based on the absence of p. What
happens when both rules are considered at the same time? It is clear that p and q cannot hold at

14

the same time, as then, they cannot be derived from the corresponding rules and only facts that
are either derivable or explicitly true in the program hold.

The answer to the question in Example 8 is that the program composed of both r1 and r2

has two meanings: one in which p and only p holds, the other in which q and only q holds.
Technically, this is enforced via a minimal model semantics. First, a guess is made regarding an
intended meaning of the program – a candidate model, and the rules of the program are simplified
using the hypothetical model such that all sources of non-determinism are removed: all literals
in the heads of rules which are not satisfied by the candidate model are removed, all negative
literals in the bodies of rules which are not satisfied by the candidate model are removed, and
finally all rules whose bodies or heads are obviously unsatisfiable are removed as well. Then,
it is checked whether the candidate model is the minimal model of the reduced program. If
that is the case, the candidate model is a stable model of the original program, also called an
answer set. The semantics is called the stable model semantics and the simplification step is
commonly known as the Gelfond-Lifschitz reduct [Gelfond and Lifschitz, 1988]. An alternative
simplification procedure is the so-called FLP reduct [Faber et al., 2004]. For the rest of this work,
we will consider always only the first type of reduct. Initially [Gelfond and Lifschitz, 1988], the
stable model semantics has been defined only for normal logic programs, i.e. programs without
disjunction in the head, but subsequently it has been extended to disjunctive logic programming
[Przymusinski, 1991, Gelfond and Lifschitz, 1991, Lifschitz and Woo, 1992].

Example 9. Let P be the following answer set program:

r1 : p ← not q , r
r2 : q ← not p, s
r3 : p ←

Also, let {p, r} be a candidate model for P . To compute the Gelfond-Lifschitz reduct of
P with respect to the candidate model we remove the literal not q from the body of r1 (as the
literal holds with respect to the model) and we also remove rule r2 (as the literal not p in its
body does not hold). The reduct P ′ is the following program:

r ′1 : p ← r
r3 : r ←

It can be seen that {p, r} is indeed the minimal model of P ′ in a classical sense, and thus it
also an answer set of P .

By repeating the procedure with another candidate model {q, s}, the Gelfond-Lifschitz
reduct of P with respect to {q, s}, P ′, is the program:

r ′1 : q ← s
r3 : r ←

In this case, the candidate model is not a minimal model of P ′: neither q, nor s, can be
derived from facts occurring in P ′. Thus, {q, s} is not an answer set of P .

15

Due to its ability to describe multiple intended meanings, ASP is an important device to
represent problems and reason in areas like search [Niemelä, 1999,Marek, 1999], planning [Di-
mopoulos et al., 1997,Subrahmanian and Zaniolo, 1995,Eiter et al., 2004], diagnosis [Nogueira
et al., 2001], product configuration [Tiihonen et al., 2003, Soininen and Niemelä, 1999], etc.

In the following we will proceed to the formal treatment of the language.

2.2.1 Syntax

We assume the presence of countable infinite sets of constants a, b, c, . . ., variables X,Y, . . .,
and predicates q, p, . . ., which do not overlap. Every predicate p has associated a certain arity
n ∈ N: when p has arity n, we say that p is n-ary. A term is a constant or a variable. A literal is
an atom L or a negated atom not L.

When a predicate p occurs either as it is or negated (not p) in some context, but it is not
known a priori which is the case, we will refer to it as ±p; it is assumed that its form does not
change throughout the context, thus ±p will refer to the same entity in the given context.

For a literal L, pred(L), and args(L) denote the (possibly negated) predicate, and the (tuple
of) arguments of L, respectively.2 By argi(L) we denote the i-th argument of L. For a set S of
literals or (possibly negated) predicates, S+ = {a | a ∈ S} and S− = {a | not a ∈ S}. For a
set S of atoms, not S = {not a | a ∈ S}.

An answer set program is a countable set of rules α ← β, with α and β being finite sets of
literals. The set α is the head and represents a disjunction, while β is the body and represents
a conjunction. Rules can also be named, as in r : α ← β, where r is the name of the rule. If
α = ∅, the rule is called a constraint.

Atoms, literals, rules, and programs that do not contain variables are ground. For a rule or a
program R, let cts(R) be the constants in R, vars(R) its variables, and preds(R) its predicates.
For P and U an answer set program and a set of constants, respectively, we denote with PU the
ground program obtained from P by substituting every variable in P by every element in U . The
set of atoms (literals) that can be formed from a ground program P using preds(P) as predicate
symbols and cts(P) as terms, is denoted by BP (LP).

For a term t, the exact replacement of ground term x with ground term y in t, denoted by
tx|y, is defined as follows:

tx|y =

{
y, if t = x;

t, otherwise.

The notation is extended to tuples of terms, literals, rules, and programs. For a tuple of terms
T = (t1, . . . , tn), Tx|y = ((t1)x|y, . . . , (tn)x|y). For a regular literal L = (not)p(t1, . . . , tn),
Lx|y = (not) p((t1)x|y, . . . , (tn)x|y). For a set of literals S, Sx|y = {Lx|y | L ∈ S}. For a
named rule r : α ← β, its image under the exact replacement of x with y is rx |y : αx |y ← βx |y
(where rx|y is the new name of the rule, and does not involve any term replacement). For a
ground program P , its image under the exact replacement of x with y is Px|y = {rx|y | r ∈ P}.

Example 10. The exact replacement of c with b in x, xc|b, is x, while the exact replacement of
c with b in c, cc|b, is b. Consequently, (p(x, c))c|b = p(x, b).

2If the literal L has just one argument, args(L) will return the argument itself.

16

2.2.2 Semantics

As mentioned already, the semantics of Answer Set Programming is the so-called stable model
semantics. An interpretation I of a ground answer set program P is a subset of BP . We say that
I satisfies a ground atom p(t1, . . . , tn) and write I |= p(t1, . . . , tn) if p(t1, . . . , tn) ∈ I . Also,
I |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn). For a set of ground literals L, I |= L if I |= l for
every l ∈ L. A ground rule r : α← β is satisfied with respect to I , denoted by I |= r, if I |= l
for some l ∈ α whenever I |= β.

For a positive ground program P , i.e. a program without not , an interpretation I of P is a
model of P , if I satisfies every rule in P ; it is an answer set of P , if it is a subset-minimal model
of P . For ground programs P containing not , the GL-reduct [Gelfond and Lifschitz, 1988] with
respect to I is denoted by P I , and it contains all rules of the type α+ ← β+, where there exists
a rule α← β in P such that:

• I |= not β−, and

• I |= α−.

For examples of the application of the GL-reduct see Example 9.
An interpretation I is an answer set of a ground answer set program P if I is an answer set

of the reduct P I .
Some typical reasoning tasks in ASP are:

• Consistency checking: an answer set program P is said to be consistent if it admits at least
one answer set.

• Brave entailment: a program P bravely entails a ground atom a if there exists an answer
set I of P such that I |= a.

This reasoning task can be reduced to consistency checking: P bravely entails a if P ∪
{a ← } is consistent.

• Skeptical entailment: a program P skeptically entails a ground atom a if for every answer
set I of P , it is the case that I |= a.

Like its brave counterpart, this reasoning task can be reduced to consistency checking: P
skeptically entails a if P ∪ { ← a} is not consistent.

Note that some treatments of ASP [Gelfond and Lifschitz, 1991] also include a form of
classical negation, called strong negation. Typically, this construct is denoted by one of the
symbols neg or ¬. Its intended meaning is that a strongly negated fact holds only when it occurs
in a negated form explicitly in the program or its negation can be derived from the program. We
will omit this type of negation throughout this dissertation as it can be seen as ‘syntactic sugar’
[Gelfond and Lifschitz, 1991]: any program which contains strong negation can be rewritten
into a program without strong negation which is equivalent to the original program with respect
to all major reasoning tasks.

17

2.3 Open Answer Set Programming

Open Answer Set Programming (OASP) [Heymans et al., 2008] extends Answer Set Program-
ming (ASP) by opening up the domain of interpretation for rules under the stable model seman-
tics: the semantics is still defined in a declarative fashion using the Gelfond-Lifschitz reduct,
but the grounding of the programs is done with respect to arbitrary universes which are non-
empty supersets of the set of constants which occur in the program. As such, the language has a
first-order flavour while at the same time preserves the minimal model semantics of ASP.

Syntactically, OASP rules are very similar to ASP ones. The only difference is that we allow
for equality and inequality literals of the form s = t and s 6= t, respectively, where s and t
are terms. A literal that is not an inequality literal will be called a regular literal. Again, when
dealing with OASP we do not consider strong negation explicitly as it can be seen as syntactic
sugar on top of the basic language.

Semantically, interpretations are parametric with respect to so-called universes where:

Definition 1 (after [Heymans, 2006]). A universe U for a program P is a non-empty countable
superset of the constants in P : cts(P) ⊆ U . We call PU the ground program obtained from P
by substituting every variable in P by every possible element from U .

A program is assumed to be a finite set of rules; infinite programs only appear as by-products
of grounding with an infinite universe.

Definition 2 (after [Heymans, 2006]). An open interpretation of an open answer set program P
is a pair (U,M), where U is a universe for P and M is an interpretation of PU .

Definition 3 (after [Heymans, 2006]). An open answer set of P is an open interpretation (U,M)
such that M is an answer set of PU .

Example 11. Consider the following open answer set program P :

p(X) ← not q(X), r(X)
q(a) ←

r(X) ∨ not r(X) ←
q(X) ← q(Y),Y 6= a

Note that the program contains a single constant a. Under regular ASP semantics, it has two
answer sets: {q(a)} and {q(a), r(a)}. They correspond to the open answer sets ({a}, {q(a)})
and ({a}, {q(a), r(a)}). Note that under the regular answer set semantics the predicate p is not
satisfiable.

Next, we consider a universe {a, x}: that is, besides the constants which appear in the
program, the universe contains an anonymous individual x. This gives rise to the following
ground program P{a,x}:

18

p(a) ← not q(a), r(a)
q(a) ←

r(a) ∨ not r(a) ←
q(a) ← q(a), a 6= a
q(x) ← q(a), a 6= a
p(x) ← not q(x), r(x)

r(x) ∨ not r(x) ←
q(a) ← q(x), x 6= a
q(x) ← q(x), x 6= a

Its answer sets are:

• M1 = {q(a)},

• M2 = {q(a), r(a)},

• M3 = {q(a), r(x), p(x)}, and

• M4 = {q(a), r(a), r(x), p(x)}.

Each of these answer sets induces an open answer set: OAi = ({a, x},Mi), where 1 6 i 6
4. Note that the predicate p is satisfiable in this setting: p(x) occurs in both M3 and M4. Thus,
the introduction of new domain elements in the universe, gave rise to new open answer sets in
which some previously unsatisfiable predicates become satisfiable.

Rules like r(X) ∨ not r(X)← in P present a particular interest: they justify the presence
or absence from the model of the atom r(x), for every element x in the universe. As we will see
in Section 2.4, such rules will have a special status and will be called free rules.

It is worthy to mention that in a regular ASP setting, the open answer sets OAi, for 1 6
i 6 4, could be retrieved by means of a domain predicate which introduces x as a new available
constant. However, in the general case it is hard to know a priori how many such fresh constants
need to be introduced to render a predicate satisfiable.

The reasoning tasks we are interested in when dealing with OASP programs are firstly the
same ones we described for ASP: brave and skeptical entailment of ground atoms and consis-
tency checking. Their definition is similar to the ASP case, except that here, answer sets are
replaced with open answer sets.

Additionally, we consider a reasoning task which caters more to the open flavoured seman-
tics of OASP. The new task is:

• satisfiability checking of a predicate p with respect to an OASP P : if p has arity n, we say
that p is satisfiable with respect to P if there exist an open answer set (U,M) of P and
some terms t1, . . . , tn ∈ U such that p(t1, . . . , tn) ∈M .

Consistency checking of open answer set programs, and hence also checking of brave and
skeptical entailment of ground atoms, can be reduced to satisfiability checking:

19

Theorem 1 (after [Heymans, 2006]). Let P be an OASP. P is consistent iff p is satisfiable with
respect to P ∪ {p(X) ∨ not p(X)←}, where p is a unary predicate not appearing in P .

In [Heymans, 2006], it has been shown that, in its unrestricted form, OASP is undecidable,
by means of a reduction from the origin constrained domino problem [Wang, 1961].

2.4 Conceptual and Extended/Local Forest Logic Programs

As already anticipated in the Introduction, Conceptual Logic Programs (CoLPs) and Forest
Logic Programs (FoLPs) are two fragments of OASP which have the tree model property and
the forest model property, respectively. They were introduced in [Heymans, 2006].

2.4.1 CoLPs and FoLPs

CoLPs disallow the presence of constants in programs. They also impose some constraints on
the shape of rules: unary and binary rules are tree-shaped rules which have as head a single unary
atom and binary atom, respectively. The tree-like structure of rules refers to the chaining pattern
of rule variables: one variable can be seen as the root of a tree and the others as successors of
the root such that for every arc in the tree there is a positive binary literal in the body which
connects the two corresponding variables. Inequalities between ‘successor’ variables can also
appear in the body of such a rule; we will refer to the set of literals in the body of a rule formed
only with the help of the ‘root’ variable as the ‘local part’ of the rule and to the remaining part
of the rule body as the ‘successor part’ of the rule. Constraints, i.e. rules with empty head, are
also allowed, but their body also has to be tree-shaped, so that they can be simulated via unary
rules. Another type of rules which can appear in CoLPs are so-called free rules which have one
of the following shapes: a(X) ∨ not a(X) ← or f (X ,Y) ∨ not f (X ,Y) ← , where a is a
unary predicate and f is a binary predicate.

FoLPs allow the same type of rules as CoLPs, with the addition that they also allow the pres-
ence of constants in the programs. An exception is made also in what concerns tree-shaped rules
in which constants occur in the successor part of the rule: the ‘root’ term does not necessarily
have to be linked to such a constant via a binary atom.

Formally:

Definition 4. A forest logic program (FoLP) is an open answer set program with only unary and
binary predicates, and such that a rule is either:

• a free rule:
a(s) ∨ not a(s)← , (2.1)

or
f (s, t) ∨ not f (s, t)← (2.2)

• a unary rule:
a(s)← β(s), (γm(s, tm), δm(tm))16m6k , ψ (2.3)

with ψ ⊆
⋃

16i 6=j6k{ti 6= tj} and k ∈ N,

20

• a binary rule:
f (s, t)← β(s), γ(s, t), δ(t), (2.4)

• or a constraint:
← a(s) or ← f (s, t), (2.5)

where in each rule above:

– a is a unary predicate,

– f is a binary predicate,

– s, t, and (tm)16m6k are distinct terms,

– β, δ, and (δm)16m6k are sets of (possibly negated) unary predicates, and

– γ, and (γm)16m6k are sets of (possibly negated) binary predicates,

and

– equality and inequality do not appear in any γ:

∗ {=, 6=} ∩ γm = ∅, for 1 6 m 6 k, and
∗ {=, 6=} ∩ γ = ∅;

– there is a positive atom that connects the head term s with any successor term which
is a variable:

∗ γ+
m 6= ∅, if tm is a variable, for 1 6 m 6 k, and

∗ γ+ 6= ∅, if t is a variable.

Conceptual Logic Programs result from FoLPs by disallowing the occurrence of constants
in such programs:

Definition 5. A conceptual logic program (CoLP) is a forest logic program in which all terms
are variables.

A predicate q in a FoLP/CoLP P is said to be free if it occurs in a free rule in P .

Example 12. The following program P is a FoLP which describes the fact that somebody is
happy if he meets a friend who is happy or an enemy who is unhappy, and somebody is unhappy
if he meets an enemy who is happy or a friend who is not happy. This is expressed by means of
four unary rules (rules r1-r4). Each of these unary rules have X as the root variable and Y as a
successor variable for X .

Furthermore, somebody is happy if he has at least two friends: this is captured by another
unary rule, r5, which has X as the root variable and Y and Z as distinct successor variables
(expressed by the inequality in the body of the rule).

The binary predicates sees, friend, and enemy are free predicates, i.e. they are defined
only via free rules (rules r6-r8). Some constraints enforce that somebody cannot be at the same
time both friends and enemies with the same person (rule r9), and that somebody cannot be at
the same time both happy and unhappy (rule r10) .

21

Additionally, there is an individual j who is unhappy when he is hungry (rule r11) and who
is indeed hungry (fact r12).

r1 : happy(X) ← sees(X ,Y), friend(X ,Y), happy(Y)
r2 : happy(X) ← sees(X ,Y), enemy(X ,Y), unhappy(Y)
r3 : unhappy(X) ← sees(X ,Y), friend(X ,Y),not happy(Y)
r4 : unhappy(X) ← sees(X ,Y), enemy(X ,Y), happy(Y)
r5 : happy(X) ← friend(X ,Y), friend(X ,Z),Y 6= Z
r6 : sees(X ,Y) ∨ not sees(X ,Y) ←
r7 : friend(X ,Y) ∨ not friend(X ,Y) ←
r8 : enemy(X ,Y) ∨ not enemy(X ,Y) ←
r9 : ← happy(X), unhappy(X)
r10 : ← friend(X ,Y), enemy(X ,Y)
r11 : unhappy(j) ← hungry(j)
r12 : hungry(j) ←

The program obtained by deleting the last two rules from the FoLP P described above is a
CoLP: it contains no longer any reference to the only constant occurring in P , j.

In the following, for a FoLP/CoLP P , we will denote with upreds(P) and bpreds(P) the
sets of unary and binary predicates, respectively, which occur in P . For S being a set of (possibly
negated) unary predicates and t being a term, let S(t) = {p(t) | p ∈ S}. When S is a set of
(possibly negated) binary predicates and t and v are terms: S(t, v) = {f(t, v) | f ∈ S}. Also,
for every non-free predicate q and FoLP/CoLP P , let Pq be the set of rules of P that have q as a
head predicate.

For a unary rule r of type (2.3), the degree of r, denoted by degree(r), is the number (k)
of successor variables which appear in the rule. Intuitively, the degree of a rule indicates the
maximum number of successor individuals needed to make the body of the rule true. The degree
of a free rule is 0. Also the degree of a constraint is 0.3

For a unary predicate p:

degree(p) = max{degree(r) | p ∈ head(r)}.

Finally, the degree of a CoLP/FoLP P is defined as:

degree(P) =
∑

p∈upreds(P)

degree(p).

The degree of a CoLP/FoLP P is an over-approximation of the maximum number of succes-
sor individuals needed to satisfy all atoms of the form p(x), where p ∈ upreds(P), for a given
individual x.

3Intuitively, a violated constraint can never be ‘made safe’ by introducing more constraints, in particular new
successor individuals.

22

As anticipated, constraints can be left out of both fragments without losing expressivity.
Indeed, a constraint:

← body

can be replaced by a rule of the form

constr(x)← not constr(x), body ,

where constr is a new predicate. As the elimination of constraints in this manner potentially
changes the rank of the CoLP/FoLP under consideration, whenever we refer to the rank of a
CoLP/FoLP we consider the rank of the program before constraint elimination.

Example 13. Consider again rule r5 of the FoLP described in Example 12:

r5 : happy(X)← friend(X ,Y), friend(X ,Z),Y 6= Z

The rule is a unary rule with head term X , and k = 2, i.e., there are two successor terms,
variables Y and Z. In this case β = ∅, γ1 = γ2 = {friend}, δ1 = δ2 = ∅, and ψ = {Y 6= Z}.
There is an atom which links X with each of the successor terms Y and Z: friend(X,Y) and
friend(X,Z), respectively.

The degree of rule r5 is 2. Besides r5, the predicate happy occurs also in the head of rules
r1 and r2. However, as r1 and r2 contain each just one successor variable, the degree of happy
is the same as the degree of r5: 2. The only other predicate with degree different from 0 is
unhappy: degree(unhappy) = 1. As such, the rank of P is 3.

The main reasoning task which will be investigated in this thesis is:

• Satisfiability checking of unary predicates with respect to a FoLP/CoLP: as men-
tioned in Section 2.3 this enables us to check consistency, brave entailment and skeptical
entailment of ground atoms as well. It is also trivial to see that satisfiability checking
of a binary predicate f with respect to a CoLP/FoLP P can be reduced to satisfiability
checking of a unary predicate p with respect to the program:

P ∪ {p(X)← f(X,Y)},

where p does not occur in P .

In [Heymans et al., 2007] satisfiability checking of unary predicates with respect to CoLPs
under the IWA (a form of CoLPs augmented with so-called inverted predicates) has been reduced
to checking emptiness of two-way alternating tree automata with a parity condition. Also there,
it has been shown that satisfiability checking with respect to SHIQ KBs can be reduced to
reasoning with CoLPs and as such that reasoning with CoLPs under the IWA is an EXPTIME-
complete problem. It is easy to see how in the absence of inverse predicates the reduction
holds for the DL SHQ for which satisfiability checking is also an EXPTIME-complete problem
[Schild, 1991]. Thus:

Proposition 1. Satisfiability checking of unary predicates with respect to CoLPs is EXPTIME-
complete.

23

2.4.2 Local and Acyclic FoLPs

When this work started, the decidability status of satisfiability checking of unary predicates with
respect to full FoLPs was not known. Decidability had been shown only in the case of the
restricted fragments: local FoLPs and acyclic FoLPs. These fragments are formally defined as
follows:

Definition 6 (after [Heymans, 2006]). A FoLP is local if:

• for every rule of type 2.3 as in Definition 4, the set δ+
m(tm) is empty whenever tm is not a

constant, and

• for every rule of type 2.4 as in Definition 4 such that t is not a constant, the set δ+ is
empty.

Example 14. The FoLP introduced in Example 12 can be ‘adapted’ into a local FoLP as follows:

r1 : happy(X) ← sees(X ,Y), friend(X ,Y),
not unhappy(Y)

r2 : happy(X) ← sees(X ,Y), enemy(X ,Y),
not happy(Y)

r3 : unhappy(X) ← sees(X ,Y), friend(X ,Y),
not happy(Y)

r4 : unhappy(X) ← sees(X ,Y), enemy(X ,Y),
not unhappy(Y)

r5 : happy(X) ← friend(X ,Y), friend(X ,Z),
Y 6= Z

r6 : sees(X ,Y) ∨ not sees(X ,Y) ←
r7 : friend(X ,Y) ∨ not friend(X ,Y) ←
r8 : enemy(X ,Y) ∨ not enemy(X ,Y) ←
r9 : ← happy(X), unhappy(X)
r10 : ← friend(X ,Y), enemy(X ,Y)
r11 : unhappy(j) ← hungry(j)
r12 : hungry(j) ←

Some atoms in the successor part of rules r1, r2, and r4 have been replaced with negated
literals, e.g. atom happy(Y) has been replaced with literal not unhappy(Y). Note that the two
programs, the original FoLP and the local FoLP, are not equivalent: for example, the infinite uni-
verse {x1, x2, x3, . . .} and the infinite interpretation {happy(x1), friend(x1, x2), sees(x1, x2),
happy(x2), friend(x2, x3), sees(x2, x3), . . .} form an open answer set of the local FoLP, but
they do not form an open answer set of the FoLP in Example 12.

In order to introduce the fragment of acyclic FoLPs we introduce first the notion of positive
predicate dependency graph of an OASP P :

24

happy unhappy

sees friend enemy

Figure 2.5: The positive dependency graph

Definition 7. Let P be an OASP. Its positive predicate dependency graph PDG(P) = (V,A)
is the following graph:

• V = preds(P),

• (p, q) ∈ A if there exists a rule α← β ∈ P and some atoms a1 ∈ α and a2 ∈ β such that
pred(a1) = p and pred(a2) = q.

Definition 8 (after [Heymans, 2006]). A FoLP is acyclic if its positive predicate dependency
graph PDG(P) is acyclic.

Example 15. The program P ′ obtained by dropping rules r1 and r4 from the FoLP P introduced
in Example 12 is acyclic. Its positive predicate dependency graph is depicted in Figure 2.5: the
solid lines in the figure represent the arcs of this graph.

However, by adding either rule r1 or r4 to P ′ (see the dotted lines in Figure 2.5), the positive
predicate dependency graph of P ′ is no longer acyclic, and as such P ′ is no longer acyclic either.

In [Heymans, 2006] it has been shown that acyclic FoLPs can be rewritten into programs
which do not contain any positive unary atoms in the bodies of rules, thus into local FoLPs.
Also there, it has been shown that satisfiability checking of concepts in the DL ALCHOQ can
be reduced to satisfiability checking of unary predicates in an acyclic FoLPs. A corollary of this
is that:

Proposition 2. Satisfiability checking of unary predicates with respect to acyclic/local FoLPs is
EXPTIME-hard.

As concerns upper bounds for reasoning with acyclic/local FoLPs, the following has been
established in [Heymans, 2006]:

Proposition 3. Satisfiability checking of unary predicates with respect to acyclic/local FoLPs is
in 2EXPTIMEΣP

2 .

25

2.4.3 Tree and Forest Model Property

For an open answer set program, the tree model property is as follows: if a unary predicate p is
satisfiable, then there exists a model which satisfies p that can be seen as a labelled tree which
contains p in the label of the root of the tree. Formally:

Definition 9. Let P be an open answer set program. A predicate p ∈ upreds(P) is tree satisfi-
able with respect to P if there exist an open answer set (U,M) of P ; a tree Tε, with ε being an
anonymous individual; and a labelling function L : Tε ∪ATε → 2preds(P) such that:

• p ∈ L(ε),

• U = Tε, and

• L(x) ∈ 2upreds(P), when x ∈ Tε,

• L(x) ∈ 2bpreds(P), when x ∈ ATε ,

• M = {p(x) | x ∈ Tε, p ∈ L(x)} ∪ {f(x, y) | (x, y) ∈ ATε , f ∈ L(x, y)}, and

• for every (z, z · i) ∈ ATε : L(z, z · i) 6= ∅.

We call such a (U,M) a tree model

Definition 10. An OASP P has the tree model property if the following property holds:

• if a unary predicate p is satisfiable with respect to P , then p is tree satisfiable with respect
to P .

Proposition 4 ([Heymans et al., 2007]). CoLPs have the tree model property.

Example 16. Let P ′ be the CoLP obtained from the FoLP P introduced in Example 12 by
deletion of the last two rules, r11 and r12. Then the interpretation (U,M) with:

U = {ε, ε1, ε11, ε12}, and

M = {unhappy(ε), sees(ε, ε1), enemy(ε, ε1), happy(ε1), friend(ε1, ε11), friend(ε1, ε11)}

is a tree-shaped open answer set for P ′. Figure 2.6 depicts (U,M) as a labelled tree: note that
the tree has no arcs with empty labels, i.e. every root term is connected to a successor term via
a binary atom.

As it can be seen from the figure, the unary predicate unhappy is satisfied by (U,M), as it
occurs in the label of ε and as such it is tree-satisfiable.

For an open answer set program, the forest model property is as follows: if a unary predicate
p is satisfiable, then there exists a model which satisfies p that can be seen as an interconnected
forest. The forest contains for each constant in the program a tree having the constant as root,
and possibly an additional tree with an anonymous root. The predicate checked to be satisfiable,
p, belongs to the label of one of the root nodes. Besides the trees corresponding to constants
which occur in the program, an anonymous root tree is also introduced, as p might be satisfied
only in conjunction with an anonymous individual, and not a constant.

26

ε unhappy

ε1 happy

ε11 ε12

friendfriend

sees
enemy

Figure 2.6: A tree model

Example 17. Consider the FoLP P which consists in the following two rules:

q(a) ← p(a),not q(a)
p(X) ∨ not p(X) ←

While p is satisfiable with respect to P , p(a) does not appear in any open answer set of P .

Formally, the notion of forest satisfiability is defined as follows:

Definition 11. Let P be a program. A predicate p ∈ upreds(P) is forest satisfiable with respect
to P if there exist an open answer set (U,M) of P ; an interconnected forest EF ≡ ({Tε}∪{Ta |
a ∈ cts(P)},ES), where ε is a constant, possibly one of the constants occurring in P ; and a
labelling function L : {Tε} ∪ {Ta | a ∈ cts(P)} ∪AEF → 2preds(P) such that:

• p ∈ L(ε),

• U = NEF ,

• L(x) ∈ 2upreds(P), when x ∈ Tε ∪ {Ta | a ∈ cts(P)},

• L(x) ∈ 2bpreds(P), when x ∈ ATε ,

• M = {L(x)(x) | x ∈ NEF} ∪ {L(x, y)(x, y) | (x, y) ∈ AEF}, and

• for every (z, z · i) ∈ AEF : L(z, z · i) 6= ∅.

We call such a (U,M) a forest model and a program P has the forest model property if the
following property holds:

If a unary predicate p is satisfiable with respect to P then p is forest satisfiable with respect
to P .

Proposition 5 ([Heymans et al., 2007]). FoLPs have the forest model property.

27

ε happy

ε1 happy

j
unhappy
hungry

sees sees
enemy friend

Figure 2.7: A forest model

Example 18. Let P be the FoLP introduced in Example 12. The interpretation (U,M), with:
U = {j, ε, ε1} and M = {unhappy(j), hungry(j), happy(ε), sees(ε, ε1), friend(ε, ε1),
happy(ε1), enemy(ε1, j), sees(ε1, j)}, is an open answer set for P which satisfies the unary
predicate happy: happy ∈ L(x). Furthermore, as it can be seen in Figure 2.7, (U,M) is a forest
model of P : the figure depicts an interconnected labelled forest EF composed of two trees, one
with root j, the constant appearing in the program, and the other one with root ε, where ε is an
anonymous individual:

EF = ({Tε, Tj}, {(ε1, j)}).

The set of nodes of the forest coincides with U and every predicate symbol corresponding
to some atom in M is in the label of the argument of the atom, e.g. unhappy ∈ L(j). The con-
verse also holds: every node/arc of the interconnected forest in conjunction with every predicate
symbol in its label forms an atom which is part of the interpretation.

In the following chapters, many times terms which occur in tree/forest models of CoLPs/FoLPs
are nodes in some interconnected/extended forest, and as such they are sequences formed with
the · operator. Taking into account the structure of such terms, a finer grained (ground) term
replacement operator is introduced which replaces the prefix of a term with another term. The
replacement of x with y in t, denoted by tx||y, is defined as:

tx||y =

{
y · z, if t = x · z;
t, otherwise

.

Similarly to the exact replacement operator introduced in Section 2.2, the current notion of
replacement is extended to (sets of) literals, tuples, rules, and programs.

Example 19. The replacement of a ·1 with b in a ·1 ·2, denoted by (a ·1 ·2)a·1||b is the term b ·2.
The replacement of a · 1 with b in a · 2, denoted by (a · 2)a·1||b is the term a · 2. Consequently,
the replacement of a · 1 with b in p(a · 1 · 2, a · 2) is p(b · 2, a · 2).

28

CHAPTER 3
Tableau Algorithm for Reasoning with

Forest Logic Programs

In this chapter we describe a sound, complete, and terminating tableau algorithm for satisfia-
bility checking with respect to FoLPs. While not worst-case optimal, the algorithm was the
first to deal with the whole fragment of FoLPs, and, as such, established the decidability of the
fragment: as mentioned in the introduction, decidability had been previously shown only for
restricted fragments of FoLPs [Heymans et al., 2007]. It also serves as the basis for a knowledge
compilation technique which will be described in next chapter. Throughout this section, and
also in the rest of this work, we will refer to the algorithm as A1.

The algorithm exploits the forest model property of Forest Logic Programs: given a FoLP P
and a unary predicate p, it tries to construct a forest model of P which satisfies p.

Section 3.1 introduces the data structure underlying the algorithm, called A1-completion
structure, and describes how such a structure is initialized when checking satisfiability of a
distinguished unary predicate p with respect to a FoLP P .

Section 3.2 describes how the structure is evolved by means of so-called expansion rules
which justify the presence or absence of certain atoms in the model by asserting the presence or
absence of other atoms in the model, as well.

Some other rules are employed to specify an expansion strategy: such rules prescribe which
atoms should be considered first when applying the expansion rules; when a node on a branch
is terminal, i.e. the unary literals having as argument the node should no longer be expanded;
or when the expansion of the completion structure should be aborted due to an encountered
inconsistency. These rules are called applicability rules and are described in Section 3.3.

Section 3.4 describes when the expansion is complete and successful, i.e. the completion
structure can be unravelled to an actual open answer set.

The proofs for termination, soundness, and completeness of A1 are provided in Section 3.5.
In the same section we also provide a complexity analysis for the worst-case running time of
the algorithm and show as a corollary of the results obtained in this chapter that Forest Logic
Programs have the finite bounded model property.

29

An extended example which shows how the algorithm works is provided in Section 3.6.
Finally, Section 3.7 discusses the results obtained in this chapter and relates them to existing

work in the areas of tableau algorithms for Description Logics and proof systems for Answer
Set Programming.

3.1 Completion Structures

The basic data structure used by the algorithm A1 is a so-called A1-completion structure. An
A1-completion structure describes a forest model in construction. As such, the main components
of the structure are an interconnected forestEF , whose set of nodes constitutes the forest-shaped
universe of the open answer set in construction, and a labeling function ct, which assigns to
every node, resp. arc of EF , a set of possibly negated unary, resp. binary predicates, called the
content of the given node/arc.

The presence of a predicate symbol/negated predicate symbol in the content of some node or
arc indicates the presence/absence in the forest model in construction of the atom formed using
that predicate and having the current node or arc as argument. Note that unlike the labeling
function L in Definition 11, which describes which atoms are in the forest model, the labeling
function ct keeps track also of which atoms are not in the forest model. This is needed as the
forest model is updated by justifying the presence or absence of each atom in the Herbrand base
of the program in the open answer set.

The presence (absence) of an atom in a forest model in construction is justified by imposing
that the body of at least one ground rule which has the respective atom in the head is satisfied
(no body of a rule which has the respective atom in the head is satisfied). In order to keep track
which (possibly negated) predicate symbols in the content of some node or arc have already
been justified, a so-called status function is introduced. The status function st assigns the
value unexp to pairs of nodes/arcs and possibly negated unary/binary predicates which have not
yet been ‘expanded’, i.e. justified, and the value exp to such pairs which have already been
considered.

Furthermore, in order to ensure that no atom in the model is circularly justified (does not
depend on itself) or infinitely justified (does not depend on an infinite chain of other atoms), a
graph G which keeps track of dependencies between atoms in the model is maintained.

Definition 12. An A1-completion structure for a FoLP P is a tuple 〈EF , ct, st, G〉 where:

• EF = 〈F,ES 〉 is an interconnected forest, its set of nodes being the universe of the forest
model in construction,

• ct : NEF ∪AEF → 2preds(P)∪not (preds(P)) is the ‘content’ function which maps a node
of the interconnected forest to a set of (possibly negated) unary predicates and an arc of
the interconnected forest to a set of (possibly negated) binary predicates such that:

– ct(x) ⊆ upreds(P) ∪ not(upreds(P)) if x ∈ NEF , and

– ct(x) ⊆ bpreds(P) ∪ not(bpreds(P)) if x ∈ AEF ,

30

• st : {(x,±q) | ±q ∈ ct(x), x ∈ NEF ∪ AEF} → {exp, unexp} is the ‘status’ function
which indicates which predicates in the content of some node/arc are already justified, and
which are not,

• G = (V,A) is a directed graph with:

– V ⊆ atoms(PNEF
), and

– A ⊆ atoms(PNEF
)× atoms(PNEF

),

For checking satisfiability of a unary predicate p with respect to a FoLP P , a skeleton of
an A1-completion structure called A1-initial completion structure is created as follows: the
interconnected forest EF is initialized with the set of single-node trees having as root a constant
appearing in P and possibly a new single-node tree with an anonymous root.

The root ε of one of the single-node trees in EF is (non-deterministically) set to be dis-
tinguished and its content is initialized with {p}, the predicate checked to be satisfiable. The
contents of the other nodes (roots) are initialized with ∅. G is initialized to the graph with a
single node p(ε).

Definition 13. AnA1-initial completion structure for checking satisfiability of a unary predicate
p with respect to a FoLP P is an A1-completion structure 〈EF , ct, st, G〉 where:

• EF = 〈F,ES 〉,

• F = {Tε} ∪ {Ta | a ∈ cts(P)}, where:

– ε is a constant, possibly in cts(P),

– Tx = {x}, for every x ∈ cts(P) ∪ {ε},
– ES = ∅,

• G = 〈V,A〉, V = {p(ε)}, A = ∅,

• ct(ε) = {p}, and

• st(ε, p) = unexp.

3.2 Expansion Rules

Expansion rules update a completion structure by making explicit constraints which are neces-
sary to hold for a certain literal to be part of a forest model.

Every atom which is part of an open answer set has to be ‘supported’, i.e. there must be
a ground rule which has the atom in the head, and whose body is satisfied by the model. The
Expand-Unary/Binary-Positive rules enforce this condition for every positive unary/binary atom
in the label of a node/arc of the constructed model. In the process, the (i) Expand-Unary-Positive
rule might introduce new domain elements as successors of the current node and both rules assert
new constraints in the model which are needed to satisfy the bodies of the corresponding ground
rules by means of updating the contents of existing and/or newly created nodes and arcs.

31

Conversely, for an atom not to be part of an open answer set, it must be the case that the
bodies of all ground rules which have as head the atom are not satisfied by the model. The ex-
pansion rules which check/enforce this condition are the Expand-Unary/Binary-Negative rules.
Note that in the case of unary atoms, the condition can be fully checked only when all possible
successors of the argument of the considered atom are known. As long as new successors are
introduced new groundings can be obtained which might lead to a ground rule whose body is
satisfied and whose head is the given atom. As such, there is an interaction between the (iii)
Expand-Unary-Negative rule and other expansion rules and an explicit order of the application
of these rules must be enforced.

Newly introduced domain elements might lead to ground rules whose head and body literals
are unrelated to the constraints in the partially constructed model, but which nonetheless might
render the program inconsistent. In order to be sure that the partially constructed model can be
extended to an actual model, every ground atom which can be formed with the given domain
elements and unary/binary predicates in the given program has to either be part or not to be part
of the forest model. If a ground atom is not constrained in this respect, a random choice is made.
The expansion rules which make such choices are the Choose-Unary/Binary rules.

Before formally introducing the expansion rules, we introduce a sequence of operations
which all rules will make extensive use of. This refers to the operations needed to enforce the
presence of a literal ±p(z) in the open answer set in construction (where z is a term in case
p ∈ upreds(P), and a pair of terms in case p ∈ bpreds(P)) as part of supporting the presence
of another literal l. Informally, these consist in (1) inserting ±p in the content of z and mark it
as unexpanded, in case the predicate symbol is not already there, (2) in case ±p(z) is an atom,
ensuring that it is a node in G, and (3) if l is also an atom, creating a new arc from l to ±p(z) to
capture the dependencies between the two elements of the forest model. Formally:

1. let ct(z) := ct(z) ∪ {±p} and st(z,±p) := unexp,

2. if ±p = p, then let V := V ∪ {p(z)},

3. if l ∈ atoms(PNEF
) and ±p = p, then let A := A ∪ {(l, p(z))}.

As a shorthand, we denote this sequence of operations as update(l,±p, z); more general,
update(l, β, z) for a set of (possibly negated) predicates β, denotes the set of operations1:
{update(l,±a, z) | ±a ∈ β}.

In the following, for anA1-completion structure 〈EF , ct, st, G〉, let x ∈ NEF and (x, y) ∈
AEF be the node, respectively arc, under consideration.

3.2.1 Expanding a Unary Positive Predicate

This rule is employed to support the presence of a unary atom p(x) in the tentative open answer
set, or in other words, of the predicate symbol p in the content of node x.

Rule. (i) Expand-Unary-Positive. Let p ∈ ct(x) be a unary positive predicate such that
st(x, p) = unexp. If p is not a free predicate symbol:

1In any future context, the order of application of the operations in the set is irrelevant.

32

• non-deterministically choose a rule r ∈ Pp of the form (2.3) such that s matches x and do
all of the following:

• update(p(x), β, x),

• for every 1 6 m 6 k, non-deterministically choose or introduce a successor ym for x
such that:

– for every 1 6 (i, j) 6 k such that ti 6= tj ∈ ψ, it holds that yi 6= yj

and for every 1 6 m 6 k one of the following holds:

– ym ∈ succEF (x), or

– ym is defined as a new successor of x in the tree Tc, where x ∈ Tc: ym := x · n,
where n ∈ N>0 such that x · n /∈ succEF (x), and Tc := Tc ∪ {ym}, or

– ym is defined as a new successor of x in EF in the form of a constant: ym := a,
where a is a constant from cts(P) such that a /∈ succEF (x). In this case also add
(x, a) to ES : ES := ES ∪ {(x, a)},

• for every successor ym introduced at the previous step do all of the following:

– update(p(x), γm, (x, ym)), and

– update(p(x), δm, ym).

Set st(x, p) := exp.

If p is free, its status in the content of x is simply marked as expanded, as the presence of
p(x) in the forest model in construction is trivially justified by the free rule which defines p
grounded with x.

3.2.2 Choosing a Unary Predicate

This rule makes a choice for a unary predicate symbol p, whether it appears in positive form (p)
or in negated form (not p) in the content of node x.

Rule. (ii) Choose-Unary. If there exists a unary predicate p ∈ upreds(P) such that:

• p /∈ ct(x),

• not p /∈ ct(x),

• for every (positive) unary predicate q ∈ ct(x): st(x, q) = exp, and

• for every arc (x, y) ∈ AEF and for every (possibly negated) binary predicate ±f ∈
ct(x, y) (both positive and negative predicates): st((x, y),±f) = exp,

then do one of the following:

33

• let ct(x) := ct(x) ∪ {p} and st(x, p) := unexp, or

• let ct(x) := ct(x) ∪ {not p} and st(x,not p) = unexp.

In other words, if there are still unary predicates which do not appear in ct(x) (either in a
positive or a negated form), and all positive predicates in the content of x have been justified, as
well as all positive or negative predicates in the content of one of the arcs starting in x have been
justified, one has to non-deterministically choose such a unary predicate symbol p and inject
either p or not p in ct(x).

As mentioned in the introduction to this section, this rule is needed in order to ensure that
the partially constructed forest model is part of an actual model: as a result of introducing
new domain elements in the process of constructing a forest model, there might be ground rules
whose heads are not relevant per se for the satisfiability task at hand, but which are not satisfiable
in any total extension of the partial forest model.

We try to effectively construct such an extension of the partial model by making a random
choice for unconstrained ground atoms regarding their membership to model.

Example 20. Let P be the following FoLP:

a(X) ∨ not a(X) ←
b(X) ← not b(X).

Suppose we want to check whether a is satisfiable: an initial completion structure will be
created with only one tree with anonymous root ε. While it is trivial to see that a(ε) is justified
by the first rule of P , the program has no open answer sets due to the inconsistency introduced
by the second rule. This will be tracked down by the algorithm by trying to prove successively
both b(ε) and not b(ε) (after each of them is inserted in the content of ε as a result of applying
the ii) Choose-Unary rule, and failing in each case.

For reasons described in the next subsection, this rule has priority over the rule which de-
scribes the expansion of unary negative predicates.

3.2.3 Expanding a Unary Negative Predicate

In general, for justifying that a negative unary literal not p belongs to the content of a node x (or
in other words, the absence of p(x) in the constructed forest model), one has to refute the body
of every ground (non-free) rule with head atom p(x). Let r ∈ Pp and

r′ : p(x)← β(x),(γm(x, ym), δm(ym))16m6k, ψ, with

ψ ⊆
⋃

16i 6=j6k{yi 6= yj}, and k ∈ N, be a ground version of r. The body of r′ can be either:

• (i) ‘locally’ refuted: by refutation of a literal from β(x). For this, one has to enforce that
there is a ±q ∈ β which does not appear in ct(x), or in other words: ∓q ∈ ct(x); note
that this refutes all ground versions of r where the head variable is substituted with x.

34

• (ii) refuted in the ‘successor’ part of the rule: by refutation of a literal from one of
(γm(x, ym))16m6k or (δm(ym)))16m6k, or by impossibility to satisfy ψ.

In a forest model, all groundings of r, in which one of the successor terms has been
substituted with y, where y is a node in the forest which is not a direct successor of x, are
refuted: there is no arc which links x to y, and as such there are no literals of the form
f(x, y) with f ∈ bpreds(P) in the constructed open answer set.

Thus, one has to consider only groundings in which (ym)16m6k are successors of x in
EF : (ym = x · zm)16m6k, and which satisfy ψ. For such ground rules, their body can be
refuted by enforcing that there exists a (negated) predicate symbol ±f ∈ δm which does
not appear in ct(x, x · zm) (this is the same as ∓f ∈ ct(x, x · zm)) or that there exists
a (negated) predicate symbol ±q ∈ γm which does not appear in ct(x · zm) (this is the
same as ∓q ∈ ct(x · zm)), for some 1 6 m 6 k.

As we want to refute the bodies of all ground versions of r, we either apply (i) once, or apply
(ii) for every assignment of successor terms in r with successors of x in EF which satisfies ψ.
As ψ imposes a minimum bound on the number of distinct successor terms, if the number of
successors of x in EF is smaller than this bound, there is no such assignment which satisfies ψ.
In this case, all bodies of ground versions of r are refuted.

Formally:

Rule. (iii) Expand-Unary-Negative. Let not p ∈ ct(x) be a unary negative predicate for which
st(x,not p) = unexp and let y1, . . . , yn be the successors of x in EF . If:

• for all p ∈ upreds(P), p ∈ ct(x) or not p ∈ ct(x), and

• for all p ∈ ct(x), st(p, x) := exp,

then for every rule r ∈ Pp of the form (2.3) such that x matches s, do one of the following:

• non-deterministically choose ±q ∈ β and update(not p(x),∓q, x), or

• for all yi1 , . . . , yik s. t. (1 6 ij 6 n)16j6k: if for all 1 6 j, l 6 k, tj 6= tl ∈ ψ ⇒ yij 6=
yil , do one of the following:

– for some m, 1 6 m 6 k, non-deterministically choose ±f ∈ δm and
update(not p(x),∓f, (x, yim)), or

– for some m, 1 6 m 6 k, non-deterministically choose ±q ∈ γm and
update(not p(x),∓q, yim).

Set st(x,not p) := exp.

Note that the introduction of new successors of x gives rise to new ground unary rules with
head p(x). Such successors are introduced in the process of expanding positive unary predicates.
In order to ensure that p(x) is indeed refuted, this rule should be applied only when all successors
of x have been introduced, i.e., when there is no possibility to further introduce and expand a
positive unary predicate. Hence, the precondition of the rule which checks that neither the (i)
Expand-Unary-Positive rule nor the (ii) Choose-Unary rule can be further applied with respect
to a certain node x.

35

3.2.4 Expanding a Binary Positive Predicate

Similarly to the case of unary positive predicates in the content of nodes, the presence of binary
positive predicates in the content of arcs has to be justified by means of binary rules having the
respective predicates as head predicates. Formally:

Rule. (iv) Expand-Binary-Positive. Let f be a binary positive predicate symbol such that
st((x, y), f) = unexp. If f is not free, non-deterministically choose a rule r ∈ Pf of the
form (2.4) such that x matches s and y matches t and update the completion as follows:

• update(p(x, y), β, x),

• update(p(x, y), γ, (x, y)), and

• and update(p(x, y), δ, y).

Set st((x, y), f) := exp (also in case f is free).

3.2.5 Expanding a Binary Negative Predicate

Again, the intuition for this expansion rule is similar to the intuition for the (iii) Expand-Unary-
Negative rule described in Section 3.2.3. However, unlike its unary counterpart, when refuting
all ground versions of rules which have the given predicate in the head, when constructing such
groundings, the new rule for expanding binary negative predicates does not have to consider
all successors of x, just y, the successor of x in the given arc. As such, there are no complex
interactions between this rule and the (iv) Expand-Binary-Positive one.

Rule. (v) Expand-Binary-Negative. Let not f ∈ ct(x, y) be a binary negative predicate sym-
bol such that st((x, y),not f) = unexp. Then, for every rule r ∈ Pf of the form (2.4) such
that x matches s and y matches t do one of the following:

• non-deterministically choose a ±p from β and update(not f(x, y),∓p, x), or

• non-deterministically choose a ±g from γ and update(not f(x, y),∓g, (x, y)), or

• non-deterministically choose a ±q from δ and update(not f(x, y),∓q, y)).

Set st((x, y),not f) := exp.

3.2.6 Choosing a Binary Predicate

Binary rules might introduce inconsistencies in a FoLP in a similar manner as the unary rule in
Example 20. As such, for each binary atom it has to be decided, too, whether the atom is part or
not of the open answer set in construction.

Rule. (vi) Choose-Binary. If there exists a binary predicate f ∈ bpreds(P) such that:

• f /∈ ct(x, y),

36

• not f /∈ ct(x, y),

• for every (possibly negated) unary predicate ±a ∈ ct(x), ±a cannot be expanded ac-
cording to expansion rules (i) and (iii), and

• for every arc (x, y) ∈ AEF , and (possibly negated) binary predicate ±f ∈ ct(x, y), ±f
cannot be expanded according to rules (iv) and (v),

then do one of the following:

• add f to ct(x, y) and let st((x, y), p) := unexp, or

• add not f to ct(x, y) and let st((x, y),not p) := unexp.

3.3 Applicability Rules

While expansion rules ensure that an atom is part of the constructed model iff there exists a
ground rule whose body is satisfied as well in the model, a second set of rules called applicability
rules governs the expansion of a completion structure by specifying the circumstances in which
these rules are actually applicable. In particular, they ensure the (successful or unsuccessful)
termination of the algorithm.

3.3.1 Saturation

This rule imposes an order on the expansion of unary/binary predicates in the contents of
nodes/arcs of the interconnected forest. An expansion rule should be applied with respect to
a (negated) unary/binary predicate symbol in the content of a node/arc iff all possible expan-
sion rules have been applied with respect to (negated) unary/binary predicates in the contents
of all nodes/arcs which are ‘above’ the current node/arc in the structure. A node is said to be
‘saturated’ if this is the case for the node itself and all of its outgoing arcs:

Definition 14. A node x ∈ NEF is saturated iff:

• for all p ∈ upreds(P), it is the case that p ∈ ct(x) or not p ∈ ct(x),

• for all ±p ∈ ct(x), st(x, p) = exp,

• for all (x, y) ∈ ATc , where Tc is a tree in EF , and f ∈ bpreds(P), it is the case that either
f ∈ ct(x, y) or not f ∈ ct(x, y), and

• for all ±f ∈ ct(x, y), st((x, y), p) = exp.

Rule. (vii) Saturation. An expansion rule is applicable with respect to a given node/arc x ∈
NEF /(x, y) ∈ AEF , and (possibly negated) unary/binary predicate symbol p/f ∈ ct(x)/ct(x, y),
only if for every y <F x, y is saturated.

37

x

y

x1 . . . xi . . . xn

y1 . . . yi . . . yn

. . .

c

x

y

x1 . . . xi . . . xn

c

a) by replication b) by successor reusal

Figure 3.1: Justifying the content of a blocked node y in a similar manner to the content of its
corresponding blocking node x

3.3.2 Blocking

As forest models can potentially have infinite sizes, as usually with tableau algorithms, a mech-
anism to identify repetitions in the model is employed.

Definition 15. A node x ∈ NEF is blocked iff there exists an ancestor y of x in F , y <F x,
y 6∈ cts(P), such that:

• ct(x) ⊆ ct(y), and

• the set connprG(y, x) = {(p, q) | (p(y), q(x)) ∈ connG ∧ q is not free} is empty.

We say that (y, x) is a blocking pair and y is a blocking node.

A blocked node is no longer expanded (it is expanded ‘by default’ due to its status):

Rule. (viii) Blocking. Let x be a blocked node. Then, set st(x) := exp.

The blocking mechanism which we employ uses subset blocking: if there exists an ancestor
y of x which is not a constant, whose content includes the content of x, it is possible to extend
the partial interpretation such that the contents of x and its outgoing arcs are identical to the
contents of y and its outgoing arcs. The newly introduced atoms which have x as an argument
will be justified in a similar way as their counterpart atoms which have y as an argument. This
can be done by either:

38

1. reusing the successors of y as successors of x: this consists in the introduction of ‘back-
ward’ arcs in the interconnected forest from the leaf node x to the said successors. The
contents of these backward arcs will replicate the content of their counterpart arcs from y
to its successors. The interpretation thus obtained is no longer a forest shaped one. This
is the approach we consider for proving the soundness of the algorithm, it is depicted in
Figure 3.1 a), and further exemplified in Section 3.5.2.

2. or introducing new successors for x which are similar to the successors of y and which
at their turn will be justified similarly to the successors of y, and so on. In this case, one
obtains an infinite forest interpretation. This approach is depicted in Figure 3.1 b) and
further exemplified in Section 3.6.

However, in order for the interpretation constructed in one of the above ways to be a forest
model, the subset blocking condition is not sufficient: if some atom formed with the blocked
node depends on an atom formed with the blocking node (according to the dependency graph
G), by applying one of the techniques described above, G might contain either a cycle or a path
of infinite length, in which case the constructed model is not minimal, and thus not an open
answer set. As such, the blocking condition is enhanced with a check on dependencies between
such atoms: there should be no path in G between any p(y) and any q(x).

3.3.3 Redundancy

The condition in the blocking rule might never be fulfilled during the expansion of a completion
structure, even in the cases where an infinite structure is constructed as a result of applying the
expansion rules. As such, some other mechanism is needed to ensure termination. This comes
in the form of a rule which basically stops the expansion of a certain structure when a certain
number of nodes with identical content, all in the same branch, has been encountered.

Definition 16. A node x ∈ NEF is redundant iff:

• it is saturated;

• it is not blocked;

• there exist k ancestors of x in F : yi <F x, for 1 6 i 6 k, where k = 2n(2n
2 − 1) + 2,

and n = |upreds(P)|, such that ct(x) = ct(yi).

Rule. (ix) Redundancy. A redundant node is no longer expanded.

In other words, a node is redundant if there are other k nodes on the same branch with the
current node which all have content equal to the content of the current node. The presence of a
redundant node stops the expansion process.

The completeness proof in Section 3.5.3 shows that any forest model of a FoLP P which
satisfies p can be reduced to another forest model which satisfies p and has at most k + 1 nodes
with equal content in any branch of a tree from the forest model, and furthermore the (k + 1)-st
node, in case it exists, is blocked. Thus, it is possible to search for forest models only of the

39

latter type. This rule exploits that result: a redundant node signals that the limit for the model
size has been reached, and thus the current model can be discarded.

Note that the number of nodes with distinct contents in a completion structure (and thus, on
a branch of a completion structure) is finite and bounded: there are at most 2n such nodes, with
n = |upreds(P)|. Thus, we can rephrase the rule by imposing that the expansion is aborted
when a certain depth nk + 1 (number of nodes, not necessarily with identical content) has been
reached while expanding a certain branch. While this condition is more transparent, it would
obviously lead to a less efficient algorithm than the original condition in the redundancy rule.

3.3.4 Contradictory Completion Structures

During the expansion process it is possible to introduce contradictions, in the form of pairs of
unary/binary predicates and their negation in the contents of nodes/arcs. The contradiction rule
takes care of this possibility.

Definition 17. An A1-completion structure is said to be contradictory iff one of the following
holds:

• there exists a node x ∈ NEF and a unary predicate a ∈ upreds(P) such that: {a,not a} ⊆
ct(x), or

• there exists an arc (x, y) ∈ AEF and a binary predicate f ∈ bpreds(P) such that:
{f,not f} ⊆ ct(x, y).

Rule. (x) Contradiction. An A1-contradictory completion structure is no longer expanded.

3.3.5 Circular Completion Structures

While the blocking condition ensures that no infinite paths/cycles in G are introduced as a result
of applying the blocking technique, cycles in G might still occur during the expansion process
between atoms which have as their first argument the same node x (so-called ‘local cycles’) or
between atoms from different trees in the forest (so-called ‘constant cycles’).

Example 21. Consider a simple program P1 containing only the rule p(X)← p(X). It is easy
to see that when constructing anA1-completion structure to check satisfiability of p with respect
to P1, a cycle in G will be created between p(ε) and p(ε), where ε is the (anonymous) root of
the only tree in the completion structure (in this case as there are no constants in the program
and the program has only one rule, the construction will be deterministic).

Further on, let P2 be the following FoLP:

r1 :p(b)←f (b,X), q(X)
r2 :q(c)←f (c,X), p(X)

Figure 3.2 depicts an A1-completion structure for P2 for which the interconnected forest
contains two trees, with roots b and c, respectively. These are also the only nodes of the comple-
tion: from the figure it can be seen that p(b) and q(c) hold in the tentative model depicted by the

40

b cp q

f

f

Figure 3.2: A circular completion structure for P2

completion. We assume this is the case as the presence of the two atoms has been justified using
the expand unary positive rule w.r.t. rules r1 and r2, where the successor variable was instanti-
ated with c and b, respectively. Thus, in order for p(b) to be satisfied it is necessary that q(c) is
satisfied. At the same time, in order for q(c) to be satisfied it is necessary that p(b) is satisfied.
In other words, there is a cyclic dependency between p(b) and q(c): the dependency graph as-
sociated with the completion structure will contain both arcs (p(b), q(c)) and (q(c), p(b)), thus
it contains a cycle. As the cycle contains arcs between atoms having as arguments nodes from
different trees (and thus mandatory, constants) we call such a cycle a constant cycle.

Definition 18. An A1-completion structure is said to be circular iff G contains a cycle.

As previously explained such cycles are undesirable and for this reason:

Rule. (xi) Circularity. A circular A1-completion structure is no longer expanded.

3.4 Overview of A1

First we describe when the expansion process of an A1-completion structure is complete, and
furthermore when it is successful, i.e. it can be unravelled to an actual model.

Definition 19. A complete A1-completion structure for a FoLP P and a p ∈ upreds(P) is an
A1-completion structure that results from the application of the expansion rules (i-vi) to an A1-
initial completion structure for p and P , taking into account the applicability rules (vii-xi), such
that no expansion rule can be further applied.

As usually for tableau algorithms, conditions which clearly violate the successful construc-
tion of a completion are referred to as clashes. The following definition captures the cases in
which such clashes do not occur:

Definition 20. An A1-completion structure CS = 〈EF , ct, st, G〉 is clash-free iff:

1. for every unary/binary (possibly negated) predicate±p in the content of some node/arc x:
st(p, x) = exp,

2. CS is neither contradictory, nor circular,

41

3. EF does not contain redundant nodes.

An overview of the algorithmA1 which tries to construct a clash-free completeA1-completion
structure is given by Algorithm 3.1. Note that the algorithm is non-deterministic, thus the failure
of a particular run does not mean that there exists no such structure. However, a successful run
means that a clash-free complete A1-completion structure has been constructed.

Next section will show that a predicate p is satisfiable with respect to a FoLP P iff there
exists a clash-free complete A1-completion structure for p with respect to P .

3.5 Termination, Soundness, and Completeness

This section shows that:

1. an initial A1-completion structure for a unary predicate p and a FoLP P can always be
expanded to a complete A1-completion structure – termination (Section 3.5.1),

2. whenever there exists a clash-free complete A1-completion structure for p with respect to
P , p is satisfiable with respect to P – soundness (Section 3.5.2),

3. if p is satisfiable with respect to P , there exists a clash-free complete A1-completion
structure – completeness (Section 3.5.3),

4. the algorithm runs in the worst case in non-deterministic double exponential time (Section
3.5.4), and that

5. Forest Logic Programs have the finite bounded model property (Section 3.5.5).

3.5.1 Termination of A1

Proposition 6. Let P be a FoLP, p be a unary predicate in P , and IC be an initialA1-completion
structure for p with respect to P . Then the algorithm A1 terminates: any application of the
expansion rules (i)-(vi) taking into account the applicability (vii)-(xi) rules to IC is finite.

Proof. Assume that there exists an infinite sequence of expansion rules and applicability rules
that can be applied to IC. Every expansion rule can be applied at most once with respect to
a unary/binary predicated symbol and a node/arc and each applicability rule can be applied at
most once after every expansion rule.

Thus, every infinite sequence of expansion/applicability rules would lead to an infinite size
A1-completion structure. Clearly, if one has a finite A1-completion structure that is not com-
plete, a finite application of expansion rules would complete it, unless new successors are intro-
duced. However, it is not possible to introduce infinitely many successors: every infinite path
in the interconnected forest will eventually contain |k + 1| saturated nodes with equal content,
where k is as defined in (ix) Redundancy, and thus either a blocked or a redundant node, which
is not further expanded.

42

Algorithm 3.1: Overview of A1

input : FoLP P , unary predicate p;
output: checks satisfiability of p with respect toP ;

Construct an initial A1-completion structure CS for p with respect to P as in Definition
13;
S = NEF ;

repeat
Pick up a node x ∈ S such that x ∈ cts(P) ∪ ε or its ancestor y in EF is saturated,
and there exists p ∈ ct(x) such that st(p, x) = unexp;
S = S − {x};

if there is an ancestor y of x: y <F x, y 6∈ cts(P), s. t.:
ct(x) ⊆ ct(y), and
connprG(y, x) = {(p, q) | (p(y), q(x)) ∈ pathsG ∧ q is not free} is empty

then
x is blocked;

else
Non-deterministically apply the expansion rules (i)-(iii) with respect to x
and the expansion rules (iv)-(vi) with respect to arcs (x, y), where
y ∈ succEF (x), taking into account the applicability rules (x)
Contradiction and (xi) Circularity, until no expansion rule can be further
applied.

Check for clashes:

i) if x is not saturated then
return false;

end
ii) if CS is circular or contradictory then

return false;
end
iii) if there are k ancestors yi of x in F , where k is as defined in the
(ix) Redundancy rule, 1 6 i 6 k, yi 6∈ cts(P), s. t.: ct(x) = ct(yi),
for every 1 6 i 6 k then

x is redundant: return false;
end

end
until S = ∅;
return true;

43

Furthermore, the arity of the trees in the A1-completion structure is bounded by the number
of successor variables in unary rules, more precisely by rank(P), where P is the FoLP under
consideration. �

3.5.2 Soundness of A1

Proposition 7. Let P be a FoLP and p ∈ upreds(P). If there exists a complete clash-free
A1-completion structure for p with respect to P , then p is satisfiable with respect to P .

Proof. Let CS = 〈EF , ct, st, G〉 be a clash-free complete A1-completion structure for
P with respect to P , where EF = 〈F,ES 〉 is the corresponding interconnected forest, and
G = (V,A) is the corresponding dependency graph, and let bl be the set of blocking pairs2

corresponding to the completion.
The proof is structured as follows: first, we construct an open interpretation (U,M) from

CS (step (1) below) and then we show that this interpretation is indeed an open answer set of
P that satisfies p in two steps: we show that M is a model of PU (step (2) below) and we show
that M is minimal (step (3) below).

1. Construction of open interpretation.

As discussed in Section 3.3.2, one way to construct such an open interpretation, is by
unraveling the A1-completion structure to an infinite structure corresponding to a forest-
shaped open answer set with an infinite universe and an infinite interpretation. For simplic-
ity, in this proof we choose the alternative approach: from a forest-shapedA1-completion
structure, a finite size graph-shaped open answer set is generated by extending the content
of blocked nodes such that they are identical to the content of the corresponding blocking
nodes and by introducing additional arcs from blocked nodes to successors of blocking
nodes which mirror the arcs from the blocking nodes themselves to their successors (thus,
also inheriting their content).

Intuitively, the atoms having as arguments non-blocked nodes are justified by the way the
completion structure was constructed, while atoms having a blocked node as one of the
arguments are justified in a similar way to their counterparts, where the counterpart atom
of an atom p(x)/f(x, y), where x is a blocked node, is the atom p(z)/f(z, y), where
(z, x) ∈ bl.
The universe of the open interpretation is the set of nodes of the new graph (identical to
the set of nodes of the interconnected forest), while the interpretation is the set of atoms
having as arguments nodes/arcs of the graph and as predicate symbols predicates in the
content of these nodes/arcs.

Formally, let Gext = (Vext , Aext) be the graph obtained by extending G in the following
way: first, let Vext = V and Aext = A, and then for every pair (x, y) ∈ bl do the
following:

2A blocking pair is a pair of nodes (x, y), x, y ∈ NEF , where y is a blocked node and x is its corresponding
blocking node.

44

a) for every p such that p(x) ∈ V : Vext = Vext ∪ {p(y)};
b) for every f and z such that f(x, z) ∈ V : Vext = Vext ∪ {f(y, z)};
c) for every p, q such that (p(x), q(x)) ∈ Aext : Aext = Aext ∪ {(p(y), q(y))};
d) for every p, q, z such that (p(x), q(z)) ∈ Aext , and z 6= x: Aext = Aext∪{(p(y), q(z))};
e) for every p, f , z such that (p(x), f(x, z)) ∈ Aext : Aext = Aext ∪ {(p(y), f(y, z))};
f) for every f , q, z such that (f(x, z), q(x)) ∈ Aext : Aext = Aext ∪ {(f(y, z), q(y))};
g) for every f , q, z such that (f(x, z), q(z)) ∈ Aext : Aext = Aext ∪ {(f(y, z), q(z))};
h) for every f , g, z such that (f(x, z), g(x, z)) ∈ Aext : Aext = Aext∪{(f(y, z), g(y, z))};

Also, let (U,M) be the following open interpretation:

• U = NEF , i.e., the universe is the set of nodes in the interconnected forest, and

• M = Vext , i.e., the interpretation corresponds to the set of nodes in the extended
graph.

2. M is a model of PMU . We show that each type of ground rule in PMU is satisfied.

All free rules are trivially satisfied.

Take a ground unary rule from PMU :

r′ : a(x)← β+(x), (γ+
m(x , ym), δ+

m(ym))16m6k ,

originating from:

r : a(s)← β(s), (γm(s, tm), δm(tm))16m6k, ψ,

with:

• β−(x) *M ,

• γm−(x, ym) *M and δm−(ym) *M , for all 1 6 m 6 k, and

• yi 6= yj , for all ti 6= tj ∈ ψ.

Assume that: M |= β+(x) ∪
⋃

16m6k γ
+
m(x, ym) ∪

⋃
16m6k δ

+
m(ym). Together with the

assumptions about the negative part of the rule, this amounts to:

M |= β(x) ∪
⋃

16m<6k

γm(x, ym) ∪
⋃

16m6k

δm(ym) ∪ ψ and a(x) /∈M,

or in other words rule r′ is not satisfied.

We show that this leads to a contradiction. Depending on x there are two cases:

• x is not a blocked node. Then not a ∈ ct(x), x is saturated, and no expansion
rules can be further applied to not a. This means that for every ground rule derived
from a rule r ∈ Pa with head a(x), the (iii) Expand-Unary-Negative rule has been
applied. Such a rule is r′. The application of the (iii) Expand-Unary-Negative rule
to not a ∈ ct(x) and r′ leads to one of the following situations:

45

– there exists a unary predicate symbol ±q ∈ β, such that ∓q ∈ ct(x) (the
result of update(not a(x),∓q, x)), or in other words, ∓q(x) ∈ M . This is in
contradiction with M |= β(x).

– there are two successors of x, yi and yj , such that yi = yj and ti 6= tj ∈ ψ.
This contradicts the assumption that for all ti 6= tj ∈ ψ: yi 6= yj .

– for some 1 6 m 6 k, there exists a binary predicate symbol ±f ∈ γm such
that ∓f ∈ ct(x, ym) (as a result of applying update(not a(x),∓f, (x, ym))).
In other words, ∓f(x, ym) ∈M . This contradicts with M |= γm(x, ym).

– for some 1 6 m 6 k, there exists a unary predicate symbol ±q ∈ δm such that
∓q ∈ ct(ym) (as a result of applying the operation update(not a(x),∓q, ym)).
In other words, ∓q(ym) ∈M . This contradicts with M |= δm(ym).

• x is a blocked node. Let y be such that (y, x) ∈ bl : by replacing x with y in r′,
one obtains a ground rule r′′ which again should not be satisfied because due to the
construction of M :

M |= β(x) ∪
⋃

16m<6k

γm(x, ym) ∪
⋃

16m6k

δm(ym) ∪ ψ implies

M |= β(y) ∪
⋃

16m<6k

γm(y, ym) ∪
⋃

16m6k

δm(ym) ∪ ψ and

a(x) /∈M implies a(y) /∈M.

Thus, this case is reduced to the previous one.

Both cases lead to a contradiction, thus the original assumption that rule r′ is not satisfied
by M was false. Thus, every unary rule is satisfied by M .

The proof for the satisfiability of binary rules is similar.

3. M is a minimal model of PMU .

Before proceeding with the actual proof we introduce a notation and some lemmas which
will prove useful in the following.

Let EF ext = (F,ESext) be the extended forest obtained from EF as follows:

ESext = ES ∪ {(y, z) | ∃x.(x, y) ∈ bl ∧ z ∈ succEF (x)}.

The new extended forest captures in a more accurate way the structure of M : blocked
nodes are connected to successors of the corresponding blocking nodes, as their contents
is justified similarly to the content of blocking nodes.

Lemma 1. For every x, y ∈ NEF , if there exists a path

Pt1 = (p(x), . . . , l1) ∈ pathsG/pathsGext ,

46

with l1 = q(y) for some q ∈ upreds(P) or l1 = g(y, z) for some g ∈ bpreds(P), and
x 6= y, then there exists a path

Pt2 = (x, . . . , y) ∈ pathsEF/pathsEFext

such that for every t ∈ Pt2 there exists a unary atom l2 ∈ Pt1 with args(l2) = t.

Proof.

Let S = (x1 = x, x2, . . . , xn) be a tuple of nodes from EF/EF ext constructed as follows:
consider each element l of Pt1 at a time: if args(l) = y and y is not already part of
the tuple, add y to the end of the tuple. We show that S ∈ pathsEF/pathsEFext and
furthermore that xn = y.

For every two consecutive elements of S, xi and xi+1, with 1 6 i < n, there must exist
two unary atoms l′ and l′′ in Pt, with args(l′) = xi and args(l′′) = xi+1, respectively,
such that there exists no other unary atom l in the sub-path of Pt1: (l′, . . . , l′′). It is easy
to see that such a sub-path has the form:

(l′ = r(xi), f1(xi, xi+1), . . . , fm(xi, xi+1), l′′ = s(xi+1)),

with r, s ∈ upreds(P), and f1, . . . fm ∈ bpreds(P), and thus (xi, xi+1) ∈ A/A′ for every
1 6 i < n: (x1, . . . , xn) is a path in EF/EF ext.

To see that xn = y, consider the opposite: xn 6= y. Then, there exists a unary atom
l = r(xn) in Pt1 with args(l) = xn, such that there exists no other unary atom in the
sub-path of Pt1: (r(xn), . . . , g(y, z)). Then, the sub-path has the form:

(r(xn), f1(xn, t), . . . , fm(xn, t), g(y, z)),

where t is some successor of xn in EF/EF ext: (xn, t) ∈ A/A
′
. But there exists no arc

of the form (fm(xn, t), g(y, z)) in A/A
′

with xn 6= y, so we obtain a contradiction. �

Lemma 2. Let C = (l1, l2, . . . , ln = l1) be a cycle in Gext . If one of the following holds:

• (i) there exists no unary atom in C and for every li = fi(xi, yi), 1 6 i 6 n, xi is not
blocked, or

• (ii) there exists at least one unary atom in C and for every unary atom lj = aj(xj)
in C, xj is not a blocked node in CS.

then C is a cycle in G.

Proof. From the construction of Gext it can be seen that any arc which is added to G
is of the form (p(x), l) or (f(x, y), l), where p is some unary predicate, f is some binary
predicate, and x is a blocked node. It is clear that when condition (i) or condition (ii)
holds there exists no arc of the first form in C. As concerns arcs of the latter type, it is
again obvious that there exist no such arcs if condition (i) is fulfilled. In case condition

47

(ii) holds, assume there exists an arc (f(x, y), l) where x is a blocked node. We know that
there must be at least one unary atom in the cycle. Let p(z) be such a unary atom. In this
case there exists a path in G (and also in Gext) from p(z) to f(x, y), and z is different
from x by virtue of (ii). According to Lemma 1 the path must contain a unary atom with
argument x (as any path in EF from z to x contains x). However this is in contradiction
with condition (ii) which says that there exist no such atom in C. �

Lemma 3. Let C = (l1, l2, . . . , ln = l1) be a cycle in Gext . If one of the following holds:

• (i) there exists no unary atom in C and for some li = fi(xi, yi), 1 6 i 6 n, xi is
blocked, or

• (ii) there exists at least one unary atom in C and all unary atoms have the same
argument y and y is blocked,

then G contains a cycle.

Proof. We will treat the two cases separately:

(i) First, notice that in this case (when there exists no unary atom in the cycle),

args(l1) = args(l2) = . . . = args(ln) = (x, y),

as there exists no arc in Aext from a binary atom f(x, y) to another binary atom g(z, t),
with x 6= z or y 6= t (by construction of Gext). So the cycle C has the following form:

C = (f1(x, y), f2(x, y), . . . , fn(x, y) = f1(x, y)),

where fi ∈ bpreds(P), for every 1 6 i 6 n. Let z be the blocking node corresponding
to x: (z, x) ∈ bl . As (fi(x, y), fi+1(x, y)) ∈ Aext , for every 1 6 i < n, it follows that
(fi(z, y), fi+1(z, y)) ∈ A, for every 1 6 i < n, so the following path in G:

C ′ = (f1(z, y), f2(z, y), . . . , fn(z, y) = f1(z, y))

is actually a cycle in G.

(ii) Let p1(y), p2(y), . . . , pn(y) be the unary atoms in C with y being a blocked node.
Without loss of generality we consider pn = p1. Then the cycle C has the following form:

(p1(y), f11(y, z1), . . . , f1m1(y, z1), p2(y), f21(y, z2), . . . , f2m2(y, z2)), . . . pn(y) = p1(y)),

where fij ∈ bpreds(P), for every 1 6 i < n, and 1 6 j 6 mi, and (y, zi) ∈ A
′
, for every

1 6 i < n (as the only binary atoms reachable from p(y) are of the form f(y, z), where
(y, z) ∈ A′). Similarly to the previous case it can be shown that the following path in G:

(p1(x), f11(x, z1), . . . , f1m1(x, z1), p2(x), f21(x, z2), . . . , f2m2(x, z2)), . . . pn(x) = p1(x)),

where x is the corresponding blocking node for y: (x, y) ∈ bl is actually a cycle in G. �

48

Lemma 4. Let C = (l1, l2, . . . , ln = l1) be a cycle in Gext . If there exist 1 6 i, j 6 n
such that pred(li), pred(lj) ∈ upreds(P), args(li) 6= args(lj), and args(li) is a blocked
node, then there exists 1 6 k 6 n such that (args(lk), args(li)) ∈ bl and (lk, li) ∈
pathsG.

Proof.

Let 1 6 i, j 6 n be some indices as in the premise of the lemma. From Lemma 1 it
follows that: (args(li), args(lj)) ∈ pathsEFext and (args(lj), args(li)) ∈ pathsEFext .
Thus, args(li) and args(lj) are part of a cycle in EF ext.

Let y = args(li). From the construction of EF ext it follows that any cycle in EF ext

which involves y ∈ Tc contains pathTc(z, y), where z ∈ succTc(x) and z ∈ pathTc(x, y),
where x is the corresponding blocking node for y: (x, y) ∈ bl . There are two kinds of
cycles in EF ext:

• cycles which contain x, z, and y (these cycles will contain also elements from other
trees than Tc): in this case there exists a unary atom lk with argument x in C - thus
the claim in the lemma is satisfied;

• cycles which contain z, and y, but do not contain x (actually, there exists a unique
such cycle which has all elements from pathTc(z, y)): in this case, there exists 1 6
t 6 n such that args(lt) = z, such that the path induced by C in Gext from li to
lt has the form: li, f1(y, z), . . . , fn(y, z), lt. Due to the construction of Gext , this
implies that there is a path ((li)y|x, f1(x, z), . . . , fn(x, z), lt) in G. At the same
time note that there exists a path in G from lt to li. So, ((li)y|x, lt) ∈ pathsG and
(lt, li) ∈ pathsG, thus ((li)y|x, li) ∈ pathsG. �

Now we can proceed to the actual proof of the minimality ofM . We start by noticing that:

• premise (i) from Lemma 2 and premise (i) from Lemma 3 cover all potential cycles
in Gext which contain only binary atoms,

• premise (ii) from Lemma 2 covers the case where a potential cycle in Gext contains
no unary atoms with blocked arguments,

• premise (ii) from Lemma 3 covers the case where there might be unary atoms in the
cycle with blocked arguments, but all such arguments have to be identical, and

• the premise of Lemma 4 covers the case where a cycle in Gext contains at least two
unary atoms with distinct arguments, at least one of which is blocked.

Thus, altogether the premises of Lemma 2, Lemma 3, and Lemma 2 cover all possible
types of cycles C in Gext . The conclusions of the lemmas, that:

• there exists a cycle in G, in the case of Lemma 2 and Lemma 3, and

• that connprG(x, y) 6= ∅ for some pair (x, y) ∈ bl , in the case of Lemma 2

49

are in contradiction with the fact that 〈EF , ct, st, G, bl〉 is a complete clash-free com-
pletion structure. Thus, a corollary of the three lemmas is that:

Corollary 1. Gext is acyclic.

Assume now that there exists a model M ′ ⊂ M of Q = PMU . Then, there must be
an atom l1 ∈ M such that l1 /∈ M ′. Consider a rule r1 ∈ Q of the form l1 ← β1
such that M |= β1; note that such a rule always exists by construction of M and the (i)
Expand-Unary-Positive rule. If M ′ |= β1, then M ′ |= l1 (as M ′ is a model), which is a
contradiction. Thus, M ′ 6|= β1, and then there must be the case that some l2 ∈ β1 exists
such that l2 /∈M ′.

Continuing with the same line of reasoning, one obtains an infinite sequence l1, l2, . . .with
(li ∈ M)16i and (li /∈ M ′)16i. M is finite (the complete clash-free completion structure
has been constructed in a finite number of steps, and when constructing M (Vext) we
added only a finite number of atoms to the ones already existing in V), thus there exists a
pair of indices 1 6 (i, j), i 6= j, such that li = lj .

We observe that (li, li+1)16i ∈ Eext by construction of Eext and the (i) Expand-Unary-
Positive rule, so our assumption leads to the existence of a cycle in Gext . But this is in
contradiction with Corollary 1. Thus, our initial assumption was false and there exists no
model M ′ of Q = PMU such that M ′ ⊂M ; M is minimal.

3.5.3 Completeness of A1

In this section we prove that A1 is complete:

Proposition 8. Let P be a FoLP and p ∈ upreds(P). If p is satisfiable with respect to P , then
there exists a clash-free complete A1-completion structure for p with respect to P .

Proof. If p is satisfiable with respect to P then p is forest-satisfiable with respect to P (Propo-
sition 5). We construct a clash-free complete A1-completion structure for p with respect to P ,
by guiding the non-deterministic application of the expansion rules with the help of a forest
model of P which satisfies p and by taking the constraints imposed by the saturation, blocking,
and redundancy rules into account. The proof is inspired by completeness proofs in DL for
tableaux procedures, for example in [Horrocks et al., 1999], but requires additional mechanisms
to eliminate redundant parts from Open Answer Sets.

There are two main stages in the proof:

1. In the first stage, a so-called complete clash-free relaxed A1-completion structure is con-
structed with the help of a forest model of P which satisfies p. Such a structure is de-
fined/constructed similarly as a classical A1-completion structure apart from the fact that
the redundancy rule is not employed. Accordingly, for a relaxed A1-completion structure
to be clash-free, the condition regarding the absence of redundant nodes is not relevant.

50

2. The second stage consists in transforming such a complete clash-free relaxedA1-completion
structure into a complete clash-freeA1-completion structure. The transformation consists
in several successive steps, each step ‘shrinking’ the structure, in such a way that the new
structure is still a complete clash-free relaxed completion structure. It is shown that the
result of this transformation is a structure in which every branch has at most k nodes
with equal content, with k as defined in the redundancy rule, and thus, it is a complete
clash-free completion structure.

We introduce the notion of relaxed A1-completion structure which is a tuple 〈EF , ct, st,
G, bl〉, where EF is an interconnected forest, and G, ct, and st represent the same kind of
entities as the respective components of a regular completion structure. We will keep track
explicitly also of the blocking pairs in such a structure: bl is the set of all such pairs. An initial
relaxed A1-completion structure for checking satisfiability of a unary predicate p with respect
to a FoLP P is defined similarly to an initial A1-completion structure for checking satisfiability
of p with respect to P .

A relaxed A1-completion structure is evolved using the expansion rules (i)-(vi) and the ap-
plicability rules (vii)-(viii) and (x)-(xi). Note that the redundancy rule is left out. A complete
A1-relaxed completion structure is a relaxed A1-completion structure evolved from an initial
relaxed completion structure to which none of the expansion rules (i)-(vi) can be further applied.

A clash-free relaxed A1-completion structure is a relaxed A1-completion structure evolved
from an initial relaxed A1-completion structure for p and P , such that: the structure is neither
contradictory nor circular, and for which every node in the structure is marked as expanded.

First, we construct a complete clash-free relaxedA1-completion structure starting from a for-
est model of a FoLP P which satisfies p. Note that in the general case, constructing a complete
clash-free relaxed A1-completion structure might be a non-terminating process (the termination
for the construction of complete clash-free A1-completion structures was based on the appli-
cation of the redundancy rule), but as we will see in the following, the process does terminate
when a forest model is used as a guidance.

Let (U,M) be a forest model of a FoLP P which satisfies p. Then, there exist:

• an interconnected forest EF = 〈{Tε} ∪ {Ta | a ∈ cts(P)},ES 〉, where ε is a constant,
possibly one of the constants appearing in P , and

• a labeling function L : {Tε} ∪ {Ta | a ∈ cts(P)} ∪AEF → 2preds(P),

which fulfil the conditions from Definition 11.
We define an initial relaxed A1-completion structure CS 0 = 〈EF ′, ct, st, G, bl〉 for p and

P such that:

• EF ′ = 〈F ′,ES ′〉,

• F ′ = {T ′ε} ∪ {T ′a | a ∈ cts(P)}, where:

– ε is the same ε used to define EF ,

– Tx = {x}, for every x ∈ cts(P) ∪ {ε},

51

– ES ′ = ∅,

• G = 〈V,A〉, V = {p(ε)}, A = ∅,

• ct(ε) = {p},

• st(ε, p) = unexp,

• bl = ∅.

We evolve CS0 using the expansion rules (i)-(vi) and the applicability rules (vii)-(viii) and
(x)-(xi). Whenever a non-deterministic choice has to be made, we will use (U,M) as a guidance.
In fact, we will show that under these circumstances the applicability rules (x)-(xi) are never ap-
plicable, thus the evolved relaxedA1-completion structure is always clash-free. To this purpose,
we define inductively a function π : NEF ′ ∪AEF ′ → U ∪ (U ×U) that relates nodes/arcs in the
relaxed A1-completion structure to nodes/arcs in the forest model such that at any point during
the expansion process the following holds:

(‡) for every z ∈ NEF ′ ∪AEF ′ ,

{
{q | q ∈ ct(z)} ⊆ L(π(z))

{q | not q ∈ ct(z)} ∩ L(π(z)) = ∅

Intuitively, the positive content of a node/arc in the A1-completion structure is contained in
the label of the corresponding forest model node/arc, and the negative content of a node/arc in the
A1-completion structure cannot occur in the label of the corresponding forest model node/arc.

We start by setting π(x) = x, for every x ∈ cts(P) ∪ {ε} (the roots of the trees in the
relaxed A1-completion structure correspond to the roots of the trees in the forest model). It is
clear that (‡) is satisfied for CS 0. By induction, let CS be a relaxed A1-completion structure
derived from CS 0 and π a function that satisfies (‡) with respect to the nodes in CS . We show
how CS can be expanded such that (‡) is still satisfied: We consider the expansion rules (i)-(vi)
and the applicability rules (vii)-(viii) and (x)-(xi):

1. (i) Expand-Unary-Positive. Assume x is a node inCS and q ∈ ct(x) such that st(q, x) =
unexp. We have, by the induction hypothesis, that q ∈ L(π(x)). Since M is a minimal
model, there exists a rule r ∈ Pq of the form (2.3) and a ground version of r:

r′ : q(π(x))← β+(π(x)), (γ+
m(π(x), zm))16m6k, (δ

+
m(zm))16m6k ∈ (Pq)

M
U

such that:

M |= β+(π(x)) ∪ (γ+
m(π(x), zm))16m6k ∪ (δ+

m(zm))16m6k.

First apply update(q(x), β, x), and then, for each 1 6 m 6 k:

• if zm = π(z) for some z already in EF ′:

– let ym = z;
– if z ∈ cts(P) and (x, z) /∈ ES′ then ES′ = ES′ ∪ {(x, z)}.

52

• if zm = π(x) · s and zm is not yet the image of π of some node in EF ′, then:

– add x · s as a new successor of x in F ′: T ′c = T ′c ∪ {x · s}, where x ∈ T ′c,
– set π(x · s) = π(x) · s, and
– set π(x, x · s) = (π(x), π(x) · s).

• update(q(x), γm, (x, ym)),

• update(q(x), δm, ym).

In other words we removed the non-determinism from the (i) Expand-Unary-Positive rule,
by choosing the rule r and the successors corresponding to the open answer set (U,M).
It can be verified that (‡) still holds for π.

2. The expansion rules (ii)-(vi) can be dealt with in a similar way, making the non-deterministic
choices in accordance with (U,M).

3. (vii) Saturation. No expansion rule can be applied on a node from EF ′ which is not a
constant until its predecessor is saturated. This rule is independent of the particular open
answer set which guides the construction, so it is applied as usual.

4. (viii) Blocking. Consider a node x ∈ NEF ′ which is selected for expansion. If there
exists a saturated node y ∈ NEF ′ which is not a constant, y <Tc x, where Tc ∈ F ′,
ct(x) ⊆ ct(y), and connprG(y, x) = ∅, mark x as a blocked node in CS and y as its
blocking counterpart: bl = bl ∪ {(x, y)}.
Furthermore, we impose that if there are more nodes y which satisfy the condition we
will consider as the blocking node for x the one which is closest to the root of the tree
Tc (the tree to which x belongs), so the node y for which there exists no node z such that
z <Tc y, ct(x) ⊆ ct(z), and connprG(z, y) = ∅. This choice over possible blocking
nodes is relevant for the next stage of the proof, where a complete clash-free relaxed A1-
completion structure is transformed into a complete clash-free completion structure. The
condition (‡) still holds for π as we have not modified the content of nodes or arcs, but
just removed some unexpanded nodes.

5. (x) Contradiction. Assume that for some unary/binary predicate symbol p and node/arc x
in EF ′ it is the case that not p, p ∈ ct(x). Then, from the induction hypothesis it follows
that p ∈ L(π(x)) and p 6∈ L(π(x)), or in other words, p(x) is at the same time in and out
of the open answer set (U,M) – contradiction. Thus, this rule is never applicable when
using (U,M) as a guidance.

6. (xi) Circularity. Assume that there exists a cycle in G. Then, due to the fact that CS has
been evolved using (U,M) as a guidance and from the induction hypothesis, it follows
that there exists a cyclic dependency between atoms in M . Thus, M is not minimal –
contradiction with the fact that (U,M) is an open answer set. Thus, this rule is never
applicable when using (U,M) as a guidance.

We show that when evolving CS0 in the manner described above:

53

1. the process terminates: assume the process does not terminate. Then, for every x, y ∈
NEF ′ such that x <F ′ y and ct(x) = ct(y), the blocking rule cannot be applied, so
there exists a path from a p(x) to some q(y). This suggests the existence of an infinite
path in G (as on any infinite branch in a tree from F ′ there would be an infinite number
of nodes with equal content - there is a finite amount of values for the content of a node),
which contradicts with the fact that any atom in an open answer set is justified in a finite
number of steps [Heymans et al., 2006, Theorem 2].

2. the resulted complete relaxedA1-completion structure is clash-free: follows directly from
the fact that the evolved structure is neither contradictory nor circular (as the correspond-
ing applicability rules are not applicable) and from the fact that every (possibly negated)
predicate symbol ±p in the content of some node/arc x of the structure in construction
such that st(±p, x) = unexp, can be expanded eventually using one of the expansion
rules (i), (iii), (iv) or (v).

At this point we have constructed a complete clash-free relaxedA1-completion structureCS
for p w.r.t P starting from a forest open answer set for P which satisfies p.

The preference relation over different blocking nodes choices in the construction above has
several consequences described by the following results:

Lemma 5. Let CS = 〈EF , ct, st, G bl〉 be a complete clash-free relaxed A1-completion
structure constructed in the manner described above, with (EF = 〈F ,ES 〉). Then, for every
node x ∈ NEF such that there exists a node y ∈ NEF , with (x, y) ∈ bl (x is a blocking node in
CS), there exists no node z <Tc x, Tc ∈ F such that ct(z) = ct(x).

Proof. Assume by contradiction that x is a blocking node in CS, i.e. there exists a node y
such that (x, y) ∈ bl , and that there exists also z <Tc x, Tc ∈ F such that ct(z) = ct(x).
Observe that: (p(z), q(y)) ∈ connG(z, y) implies that there exists a unary predicate r ∈ ct(x)
such that (p(z), r(x)) ∈ connG(z, x) and (r(x), q(y)) ∈ connG(x, y) (according to Lemma 1
the existence of a path from a p(z) to a q(y) in G implies the existence of a path from z to y in
EF ; all paths from z to y in EF include the path from z to y in Tc and consequently, x; then,
according to the same lemma there must be an atom in the initial path in G with argument x:
r(x) in this case).

But connprG(x, y) = ∅ as (x, y) ∈ bl , so connprG(z, y) = ∅. Additionally, ct(z) =
ct(x) ⊇ ct(y), so the existence of z is in contradiction with the preference condition over
potential blocking nodes. �

Corollary 2. Let CS = 〈EF , ct, st, G, bl〉 be a complete clash-free relaxed A1-completion
structure constructed in the manner described above (EF = 〈E,ES 〉) and B a branch of a tree
Tc from F . Then, there are at most 2p distinct blocking nodes in B where p = |upreds(P)|.

Proof. The result follows from the fact that there cannot be two blocking nodes with equal
content on the same path in a tree according to the previous lemma and the finite number of
values for the content of a node which is given by the cardinality of the power set of upreds(P).
�

54

The next step is to transform a relaxed clash-free complete A1-completion structure CS =
〈EF , ct, st, G, bl〉, where EF = 〈F ,ES 〉, into a complete clash-freeA1-completion structure,
that is, a complete clash-free relaxed A1-completion structure which has no redundant nodes.
This is done by applying a series of successive transformations on the relaxed A1-completion
structure. Each transformation “shrinks” theA1-completion structure in the sense that the trans-
formed relaxedA1-completion structure has a smaller number of nodes than the original one and
is still complete and clash-free. The result of applying the transformation is a relaxed clash-free
A1-complete completion structure which has a bound on the number of nodes on any branch
which matches the bound k from the redundancy condition, which is thus a complete clash-free
A1-completion structure.

A way to shrink a (relaxed) A1-completion structure is that whenever two distinct nodes u
and v in a tree Tc from F are on the same path (u <Tc v), and they have equal content (ct(u) =
ct(v)), then the subtree Tc[u] is replaced with the subtree Tc[v]. We call such a transformation
collapseCS(u, v); its result is a new relaxed A1-completion structure CS′ = 〈EF ′, ct′, st′,
G′, bl ′〉, whose elements are defined as follows:

• let ef : NEF → C be a labeled interconnected forest which associates to every node of
EF a label from a set of distinguished constants C such that ef (x) 6= ef (y) for every
x and y in NEF such that x 6= y. Then, let ef ′ = replaceef (u, v) be a new labeled
interconnected forest and EF ′ be its corresponding unlabeled interconnected forest.

For every x ∈ EF ′ let x be the counterpart of x in EF in the sense that: ef ′(x) = ef (x).
Note that for every x ∈ EF ′ there is a unique such counterpart in EF . For simplicity
we also introduce the notation S to refer to the counterpart tuple (the tuple of counterpart
nodes) corresponding to the tuple of nodes from S from T ′ . Formally, (x1, . . . , xn) =
(x1, . . . , xn). With the help of this notion of counterpart nodes we will also define the
other components of the resulting completion structure.

• G′ = (V ′, A′). The set of nodes V ′ of the new graph G′ contains all atoms l for which
there is an atom in V formed with the same predicate symbol as l and having as arguments
the counterpart of the arguments of l. Additionally, V ′ contains binary atoms which con-
nect the predecessor of u (it is the same both in EF and EF ′) with the new node u which
were also present in V - this is necessarily as u = v, so otherwise these connections would
be lost:

V ′ ={l1 | ∃l2 ∈ V.pred(l1) = pred(l2) ∧ args(l1) = args(l2)}∪
{f(z, u) | z ∈ T ′ ∧ f(z, u) ∈ V }.

The set of arcs A′ of the new graph G′ contains all pair of atoms (l1, l2) for which there
is a corresponding pair in A, (l3, l4), such that l3 and l4 have the same predicate symbols
as l1 and l2, respectively, and their argument tuples are the counterpart of the argument
tuples of l1, and l2, respectively. Additionally, A′ contains arcs from A which connect
atoms whose arguments include the predecessor of u (it is the same both in T and T ′)
with atoms whose arguments include the new node u - this is necessary as u = v, so

55

otherwise these connections would be lost:

A′ ={(l1, l2) | ∃(l3, l4) ∈ A.pred(l1) = pred(l3) ∧ pred(l2) = pred(l4)

∧ args(l1) = args(l3) ∧ args(l2) = args(l4)}∪
{(l1, l2) | (l1, l2) ∈ E ∧ u ∈ arg(l2) ∧ z ∈ arg(l1) ∧ z < u}.

• ct′(x) = ct(x), for every x ∈ NEF ′ ∪AEF ′ ;

• st′(x, p) = st(x, p), for every x ∈ NEF ′ ∪AEF ′ and ±p ∈ ct(x);

• bl ′ = {(x, y) | (x, y) ∈ bl ∧ connprG′(x, y) = ∅}. We maintain those blocking pairs
whose counterparts in EF formed a blocking pair, and which furthermore still fulfill the
blocking condition.

Note that the result of applying the transformation on a complete clash-free relaxed A1-
completion structure might be an incomplete clash-free relaxed A1-completion structure. If
completeness of the original structure was achieved by applying among others the blocking rule,
the transformation might leave some branches “unfinished”. This is the case when the blocking
node is eliminated or when two nodes who formed a blocking pair are still found in the new
structure, but do no longer fulfil the blocking condition.

We introduce two lemmas which describe cases in which the transformation can be applied
without losing the completeness of the resulted structure. Before that, however, we need to state
a general result which will prove useful in the demonstration of the two lemmas. The result
states that if as a result of applying the collapse transformation on a complete clash-free relaxed
A1-completion structure one obtains an A1-completion structure in which the path between a
blocking pair of nodes remains untouched (every node in the original path is the counterpart of
some node in the new structure), then the nodes which have as counterparts the nodes of the
blocking pair form a blocking pair in the new completion structure.

Lemma 6. Let CS = 〈EF , ct, st, G, bl〉, with EF = 〈F ,ES 〉, be a complete clash-free
relaxed A1-completion structure, and let u, v ∈ Tc, where Tc ∈ EF , such that: ct(u) =
ct(v) and u <Tc v. Furthermore, let CS′ = 〈EF ′, ct′, st′, G′, bl ′〉 be the result returned by
collapseCS(u,v). Then, for every (x, y) ∈ bl, with x, y ∈ Tc:

• if for every z ∈ pathTc(x, y), there exists some z′ ∈ EF ′ such that z′ = z, then (x′, y′) ∈
bl′, where x′, y′ ∈ EF ′, x′ = x and y′ = y.

Proof. Let EF , EF ′, x, y, x′, and y′ be as above. The conditions for the two nodes x′ and y′

from EF ′ to form a blocking pair: (x′, y′) ∈ bl ′, are that (x, y) ∈ bl and connprG′(x′, y′) = ∅.
The first condition is part of the prerequisites of the lemma, so it remains to be proved that
connprG′(x

′, y′) = ∅.
Assume by contradiction that there exists a path in G′ from a p(x′) to a q(y′). Then, accord-

ing to Lemma 1, there exists a path Pt in EF ′ from x′ to y′ such that for every z ∈ P there
exists a unary atom with argument z in the path in G′ from p(x′) to q(y′). Any path in EF ′ from
x′ to y′ includes the path in T ′c (the tree to which both x′ to y′ belong) from x′ to y′.

56

Assume pathT ′c(x
′, y′) = (x′1 = x′, x′2, . . . , x

′
n = y′): then Pt contains the unary atoms

l′1, l
′
2, . . . , l

′
n with args(l′i) = x′i, for 1 6 i 6 n such that (l′i, l

′
i+1) ∈ connprG′ , for every

1 6 i < n. Let x′i = xi. As every node on the path pathTc(x, y) is the counterpart of some node
in pathT ′c(x

′, y′) and every node in pathT ′c(x
′, y′) has the some counterpart in pathTc(x, y), we

can conclude that pathTc(x, y) = (x1, x2, . . . , xn). Also, from the definition of collapse it can
be seen that the presence of unary atoms l′i with args(l′i) = x′i in Pt/G′ implies the presence
of atoms li with args(li) = xi and pred(li) = pred(l′i) inG, for every 1 6 i 6 n. Furthermore,
(l′i, l

′
i+1) ∈ connprG′ implies (li, li+1) ∈ connprG, for every 1 6 i < n. The latter implies

that: (l1, ln) ∈ connprG with args(l1) = x1 = x′1 = x and args(ln) = xn = x′n = y,
or in other words to (pred(l1), pred(ln)) ∈ connprG(x, y). This contradicts with the fact that
(x, y) ∈ bl , and thus connprG(x, y) = ∅. �

Finally, the first transformation which preserves the completeness of the structure is as fol-
lows:

Lemma 7. Let CS = 〈EF , ct, st, G, bl〉 be a complete clash-free relaxed A1-completion
structure and let u and v be two nodes in a tree Tc in F such that:

• u <Tc v,

• ct(u) = ct(v), and

• there is no blocking node x′ such that: x′ <Tc v.

Then, collapseCS(u, v) returns a complete clash-free relaxed A1-completion structure.

Proof. We have to show that CS′ = collapseCS(u, v) is complete, that is, no expansion rule
further applies to this completion structure. We will consider every leaf node x of EF ′ and show
that no rule can be applied to further expand such a node. There are three possible cases as
concerns the counterpart x of x in EF , (which in turn is a leaf node in EF):

• x is a blocked node in CS, and it does not belong to the tree Tc to which u and v belong.
Assume x ∈ Td (with d 6= c): then there is a node y′ ∈ Td such that (y′, x) ∈ bl . No node
was eliminated from Td as a result of the transformation so for every z ∈ pathTc(x, y′),
there exists z′ ∈ NEF ′ such that z′ = z. Thus Lemma 6 can be applied and we conclude
(x, y) ∈ bl′, where y is the node in EF ′ for which y = y′. So x is a blocked node in CS.

• x is a blocked node in CS which belongs to the same tree Tc to which u and v belong:
then, there is a node y′ ∈ Tc such that (y′, x) ∈ bl . Depending on the location of y′ in Tc
we distinguish between the following situations:

– y′ 6>Tc u (Figure 3.3 a)): in this case y′ is on a branch which does not contain u and v
(as it is also the case that y′ 6< u due to the fact that there is no blocking node x′ such
that ε 6 x′ < v) and it is not eliminated as a result of applying the transformation,
so the path from x to y′ in Tc is preserved as a result of the transformation. Lemma 6
can be applied with the result that (y, x) ∈ bl where y is the node in EF ′ for which
y = y′.

57

a) b) c)

Figure 3.3: Shrinking a completion structure by eliminating a subtree with a root above any
blocking node (the eliminated part is highlighted with continuous line; the part highlighted with
dashed line is still kept in)

– y′ >Tc u and y′ 6> v (Figure 3.3 b)): in this case y′ is eliminated as a result of
applying the transformation, but x is also eliminated which contradicts the existence
of x in CS′. To see why x is also eliminated notice that y′ 66 v (as again this would
contradict with the fact that there is no blocking node x′ such that ε 6 x′ < v) and
x > y′. This implies that x > u and x 66 v, and thus x is one of the eliminated
nodes, too.

– y′ > v (Figure 3.3 c)): in this case y′ is not eliminated as a result of applying
the transformation, so the path from x to y′ in Tc is preserved as a result of the
transformation. Lemma 6 can be applied with the result that (x, y) ∈ bl where y is
the node in EF ′ for which y = y′.

So the conclusion of the analysis above is the existence of a node y ∈ T ′ such that (y, x) ∈
bl . As connprG(y, x) = ∅, connprG′(y, x) = ∅ as the subtree T [y] can be found in T ′

intact in the form of the subtree T ′[y]: the eliminated nodes were not part of this subtree
as, again, there is no blocking node x′ in T , such that ε 6 x′ < v.

• x is not a blocked node in CS; as CS is complete, no expansion rule can be applied to
x in CS and, by transfer neither to x in CS′ (as they are two nodes which have equal
contents which are justified in a similar way).

The second transformation which preserves the completeness of the structure is as follows:

58

Lemma 8. Let CS = 〈EF, ct, st, G, bl〉 be a complete clash-free relaxed A1-completion
structure and let u and v be two nodes in some tree Tc in EF such that:

• u <Tc v,

• ct(u) = ct(v), and

• there exists a node z <Tc u such that:

– there is no blocking node x′ such that z <Tc x
′ <Tc v, and

– connprG(z, u) ⊆ connprG(z, v).

Then, collapseCS(u, v) returns a complete clash-free relaxed A1-completion structure.

Proof. Similarly to the proof for Lemma 7, we show that any leaf node in the completion
structure CS′ = collapseCS(u, v) (or more precisely in the corresponding tree T ′c) cannot be
further expanded. Let x be such a leaf node. We distinguish between three cases as concerns the
counterpart of x in Tc, x:

• x is a blocked node in CS, which belongs to the same tree Tc to which u and v belong.
This case can be treated similarly to the first case in Lemma 7.

• x is a blocked node in CS which makes part from the same tree Tc from which u and v
make part: then there is a node y′ ∈ Tc such that (y′, x) ∈ bl . Using a similar argument as
for the previous lemma one concludes that there is a node y ∈ T ′ such that y′ = y, or in
other words y′ has not been eliminated as a result of applying the transformation. In the
following we will show that (y, x) ∈ bl′ and x is not further expanded. We will do this
on a case-by-case basis considering different locations of y and x in Tc with respect to the
nodes z, u, an v (we consider only those cases in which after the transformation both y
and x are maintained in the structure):

– y 6Tc z and there is a node z′ such that z′ <Tc u, z′ >Tc y, and x >Tc z
′ (Figure

3.4 a)): in this case the transformation does not remove any node from pathTc(y, x)
so Lemma 6 can be applied: then, (y, x) ∈ bl ′.

– y >Tc v (Figure 3.4 b)): in this case no nodes from the subtree Tc[y] are removed
during the transformation, so using the same argument as above we obtain that
(y, x) ∈ bl ′.

– y 6>Tc z and y 66Tc z (Figure 3.4 c)): in this case y is not on the same path as z, u,
and v and again the subtree Tc[y] is copied intact into T ′c, so (y, x) ∈ bl ′.

– y 6Tc z and x >Tc v (Figure 3.4 d)):: in this case y, z, u, v and x are all on the
same path in Tc. Assume by contradiction that connprG′(y, x) 6= ∅, or in other
words there is a path in G′ from a p(y) to some q(x). From Lemma 1 it follows
that there must be a path Pt ∈ pathsPEF ′(y, x): note that every such path contains
pathT ′c(y, x). From the same lemma and the previous observation it follows that
there must be a set of unary atoms l1, l2, . . . , ln in G′ with arguments x1, x2, . . . xn,

59

such that pathT ′c(y, x) = (x1 = y, x2, . . . xn = x), where (li, li+1) ∈ connprG′ ,
for every 1 6 i < n. Note that (li, li+1) ∈ connprG′ , for 1 6 i < n implies that
(li, lj) ∈ connprG′ , for every pair 1 6 i < j 6 n.
In this case the counterpart of z from Tc in T ′c is still z, and the counterpart of v from
Tc in T ′c is u, or in other words z = z and u = v. Thus:

∗ z, u ∈ pathT ′c(y, x), and
∗ there exist 1 6 j < k 6 n such that xj = z and xk = u.

As (l1, lj), (lj , lk), (lk, ln) ∈ connprG′ , it follows that:

∗ (pred(l1), pred(lj)) ∈ connprG′(y, z),
∗ (pred(lj), pred(lk)) ∈ connprG′(z, u), and
∗ (pred(lk), pred(ln)) ∈ connprG′(u, x).

We know from the definition of collapse that:

∗ connprG′(y, z) = connprG(y, z),
∗ connprG′(z, u) = connprG(z, u) , and
∗ connprG′(u, x) = connprG(v, x).

Thus, it is the case that:

∗ (pred(l1), pred(lj)) ∈ connprG(y, z) (1),
∗ (pred(lj), pred(lk)) ∈ connprG(z, u), and
∗ (pred(lk), pred(ln)) ∈ connprG(v, x) (2).

One of the premises of the current lemma is that: connprG(z, u) ⊆ connprG(z, v),
thus: (pred(lj), pred(lk)) ∈ connprG(z, v). Finally, from (pred(l1), pred(lj)) ∈
connprG(y, z), (pred(lj), pred(lk)) ∈ connprG(z, v), and (pred(lk), pred(ln)) ∈
connprG(v, x), it follows that: (pred(l1), pred(ln)) ∈ connprG(y, x), which is in
contradiction with the fact that connprG(y, x) = ∅ as (y, x) ∈ bl . Thus, the initial
assumption was false: connprG′(y, x) = ∅, and (y, x) ∈ bl′.

• x is not a blocked node in CS (Figure 3.4 d)); using a similar argument as for the previous
lemma, it can be shown that no expansion rule applies to x in CS′.

The transformations described in Lemma 7 and Lemma 8 can be applied to successively
shrink a relaxed clash-free complete A1-completion structure. For such a structure CS, we will
denote with shrunk(CS) the result of applying the transformations described in Lemma 7 and
Lemma 8 until it is no longer possible to apply any further transformation (the order in which
the transformations are applied is irrelevant). A direct corollary of Lemma 7 and Lemma 8 is
the following:

Corollary 3. Let CS be a relaxed clash-free complete A1-completion structure. Then, it is the
case that shrunk(CS) is a relaxed clash-free complete A1-completion structure, as well.

60

a) b) c) d)

Figure 3.4: Shrinking an A1-completion structure by eliminating a subtree with a root below a
blocking node (the eliminated part is highlighted)

It still remains to be shown that shrunk(CS) is a regular A1-completion structure, i.e. it
contains no redundant nodes. We will do this by showing that every branch of CS has at most
k = 2p(2p

2 − 1) + 3 nodes with p = |upreds(P)|.
We start with a lemma which counts the number of nodes with given content on different

portions of a generic branch in the structure.

Lemma 9. Let CS be a relaxed clash-free complete A1-completion structure. Furthermore, let
shrunk(CS) = 〈EF , ct, st, G〉 and let B be a branch in a tree Tc in EF which contains n
blocking nodes x1, x2, . . . xn and for which the terminal node is denoted with end (Figure 3.5).
Then, for any set S ∈ 2upreds(P), it holds that:

• for every 1 6 i < n, there are at most 2p
2

nodes in pathTc(xi, xi+1) with content equal
to S, in case there is no node x ∈ Tc such that c <Tc x 6Tc xi and ct(x) = S,

• for every 1 6 i < n, there are at most 2p
2 − 1 nodes in pathTc(xi, xi+1) with content

equal to S, except for xi, in case there is a node x ∈ Tc such that c <Tc x 6Tc xi and
ct(x) = S,

• there are at most 2p
2

nodes in pathTc(xn, end) with content equal to S, except for xn.

Proof.
We prove that for every 1 6 i < n, there are at most 2p

2
nodes in pathTc(xi, xi+1)

with content equal to S in case there is no node x ∈ Tc such that c <Tc x 6Tc xi and

61

c x1 x2 . . . xn end

Figure 3.5: A random branch B in a complete clash-free relaxed completion structure: x1, . . . ,
xn are blocking nodes

ct(x) = S. Assume by contradiction, that there are at least 2p
2

+ 1 nodes in pathTc(xi, xi+1)
with content equal to S. Let these nodes be y1, y2, . . . , ym, where m > 2p

2
. It is neces-

sary that connprG(y1, yi) ⊃ connprG(y1, yi+1) for every 1 < i < m, otherwise a trans-
formation as described in Lemma 8 could be further applied to CS. As connprG(x, y) ⊆
upreds(P) × upreds(P) and |2upreds(P)×upreds(P)| = 2p

2
, and there at least 2p

2
distinct values

for connprG(y1, yi), when 1 < i < m, there must be an 1 < i < m such that connprG(y1, yi) =
∅. But in this case (y1, yi) ∈ bl (as the two nodes also have equal content) which contradicts
with the fact that yi 6= end. The other cases are proved similarly. �

We proceed next to the actual counting of the number of nodes in an arbitrary branchB with
given content s ∈ 2upreds(P).

Lemma 10. Let CS be a relaxed clash-free complete A1-completion structure. Furthermore,
let shrunk(CS) = 〈EF , ct, st, G〉 and let B be a branch in a tree Tc in EF . Then, for every
set S ∈ 2upreds(P), B contains at most k = 2p(2p

2−1)+3 nodes x such that ct(x) = S, where
p = |upreds(P)|.

Proof.
Without loss of generality, assume B has the form depicted in Figure 3.5. When counting

the maximum number of nodes with content S in B, we distinguish between the following three
different cases as regards S:

• there is no node x ∈ Tc with c <Tc x <Tc x1 such that ct(x) = S, and there is no
1 6 i 6 n such that ct(xi) = S. In this case there is at most one node with content equal
to S in pathTc(c, x1) (the root), there are at most 2p

2
nodes in each pathTc(xi, xi + 1)

and at most 2p
2

nodes in pathTc(xn, end) (according to Lemma 9); for the last path there
cannot be 2p

2
+ 1 nodes as that would mean that end is a blocked node with content equal

to S, so there would be a blocking node with content equal to S, which contradicts with
the hypothesis that there is no blocking node with content equal to S. Also there are at
most 2p − 1 blocking nodes: if there would be 2p such nodes, (the maximum number by
Corollary 2) there would remain no valid value for S. Summing all up, in this case there
are at most 2p

2
(2p − 1) + 1 nodes with content equal to S.

• there is no node x such that c <Tc x <Tc x1 such that ct(x) = S but there is a node xi,
1 6 i 6 n such that ct(xi) = S. In this case, there is no node x such that c <Tc x <Tc xi
which has content equal to S (Lemma 5), and thus pathTc(c, x1) has at most 1 node
with content equal to S (the root). pathTc(xi, xi+1) has at most 2p

2
nodes, every path

62

(xj , xj+1), where i < j < n, has at most 2p
2 − 1 nodes, and the path (xn, end) has

at most 2p
2

nodes (according to lemma 9). Summing all up, in this case there are at
most (2p

2 − 1)(n − i + 1) + 3 nodes with content equal to S, where n is the number of
blocking nodes. There are at most 2p blocking nodes (corollary 2), and the maximum of
the expression is met when i = 1 and n = 2p, and is 2p(2p

2 − 1) + 3.

• there is a node x such that c <Tc x <Tc x1 and ct(x) = S. In this case, ct(xi) 6= S,
for every 1 6 i 6 n (lemma 5). The counting is as follows: pathTc(c, x1) has at most
one node with content equal to S (x), otherwise a transformation as described in Lemma
8 could be applied, pathTc(xi, xi+1) has maximum 2p

2−1 nodes, 1 6 i < n and the path
(xn, end) has at most 2p

2
nodes (according to Lemma 9). Also, there are at most 2p − 1

blocking nodes (if there would be 2p such nodes, the maximum indicated by corollary 2
there would remain no valid value for S). Summing all up, in this case there are at most
(2p

2 − 1)(2p − 1) + 1 nodes with content equal to S.

From the three cases the maximum of number of nodes with content equal to a given set S
in any branch B of a tree Tc ∈ F is bounded by 2p(2p

2 − 1) + 3, which is exactly k from the
applicability rule (ix) Redundancy. �

A direct corollary of Lemma 10 and the applicability rule (ix) Redundancy is:

Corollary 4. LetCS be a relaxed clash-free completeA1-completion structure. Then, shrunk(CS)
is a complete clash-free A1-completion structure for p with respect to P .

3.5.4 Complexity Analysis

Proposition 9. A1 runs in the worst case in non-deterministic double exponential time in the
size of the program.

Proof.
We bound the number of steps needed to expand an initial completion structure for checking

satisfiability of a unary predicate p with respect to a FoLP P to a complete completion structure
for p with respect to P . We split this task in two orthogonal tasks:

1. Counting the maximum number of nodes in a completion structure: an interconnected
forest in a completion structure has in the worst case a double exponential number of
nodes in the size of the program:

• there are at most k + 1 nodes with equal content on any branch of a tree in the
completion, where k = 2n(2n

2 − 1) + 2, and n = |upreds(P)|,
• there are 2n different possible configurations for the content of a unary node,

• the number of trees in the interconnected forest is bounded by |cts(P)|+ 1, and

• the arity of any such tree is bounded by r = rank(P).

63

Thus, the bound on the number of nodes is b = (|cts(P)|+ 1)r22n+n2−22n+2n+1
, which is

double exponential in the size of P .

2. Counting the maximum number of steps needed to saturate the content of a given node:
first of all, we notice that it takes polynomial time to justify the presence of a unary pred-
icate in the content of a node and the presence of a (possibly negated) binary predicate in
the content of an arc. Justifying the presence of a negated unary predicate in the content of
a node takes exponential time (all groundings of certain unary rules have to be considered,
and, in general, there is an exponential number of such groundings). As such, justifying
the content of a node takes exponential time, while justifying the content of an arc takes
polynomial time, and saturating a node takes exponential time.

By combining 1) and 2) above, we obtain that a complete completion structure for p with
respect to P will be evolved in at most double exponential number of steps in the size of P ,
and as the algorithm is non-deterministic, it runs in the worst case in non-deterministic double
exponential time.

3.5.5 FoLPs Have the Bounded Finite Model Property

Proposition 10. FoLPs have the bounded finite model property: if for a certain FoLP P and
unary predicate p, p is satisfiable with respect to P , then there exists an open answer set of P
which satisfies p with a finite bounded size: the size of its universe is at most double exponential
in the size of the program P .

Proof. The property follows as a corollary of the forest model property, the soundness and
the completeness results: Proposition 5 shows that if p is satisfiable with respect to P , then it
is satisfied by a forest-shaped open answer set of P . The proof of Proposition 8 (Complete-
ness) shows that from an arbitrary forest-shaped open answer set of a FoLP P which satisfies
a unary predicate p, it is possible to construct a clash-free complete completion structure for
p with respect to P with at most b nodes, where b is defined as in the proof of Proposition 9
(Complexity).

At the same time, the construction of the open interpretation in the proof of Proposition 7
(Soundness) shows that from any clash-free complete structure for p with respect to P , it is
possible to construct an open answer set of P which satisfies p and whose universe is exactly the
set of nodes of the completion.

Thus, if p is satisfiable, it is satisfied by an open answer set of P with size bounded by b,
which is double exponential in the size of P . �

3.5.6 Reduction to Answer Set Programming Using the Bounded Finite Model
Property

In this section we show how the result obtained in the previous section opens the way for standard
Answer Set Programming with FoLP.

64

Let P be a FoLP and p ∈ upreds(P). We define the program Pk to be a new program
obtained from P by addition of a constraint

← not p(x1), . . . ,not p(xk),not p(c1), . . . ,not p(cm) ,

where k is a natural number, 1 6 k 6 b − |cts(P)|, with b being the bound on the size of
the universe established in Section 3.5.5, x1, . . ., xk are some newly introduced individuals,
and cts(P) = {c1, . . . , cm}. To check whether p is satisfiable with respect to P , we can simply
check answer set existence for the programs P , P1, . . . , Pb−|cts(P)|. Once an answer set is found
for any of these programs it can be concluded that p is satisfiable and the procedure is curtailed.
From the bounded finite model property, we know that if p is satisfiable, it is satisfied by a model
with maximal size b. Thus, if none of the programs Pk is consistent, p is not satisfiable.

As b is double exponential in the size of P , b− |cts(P)| is also double exponential in the
size of P . It follows that constructing the programs P1, . . . , Pb−|cts(P)| starting from P takes
also time double exponential in the size of P (one has to add to P in each case a new rule with
1, 2, . . ., b− |cts(P)| atoms). Each Pi, for 1 6 i 6 b− |cts(P)|, is a non-ground program with
bounded predicate arities, so according to [Eiter et al., 2007], checking its answer set existence
is in NPNP(= Σp

2). As the maximum size of each Pi is double exponential in the size of P , the
algorithm runs in the worst case in non-deterministic double exponential time with an oracle in
NP, which is thought to be worse than non-deterministic double exponential time, the running
time of our algorithm.

3.6 Illustration of the Algorithm

Consider a slightly modified version of the FoLP program described in Example 12, in which
the constraints have been replaced by unary rules as described in Section 2.4, and the last rule
has been removed. We will refer to this program as P .

r1 : happy(X) ← sees(X ,Y), friend(X ,Y), happy(Y)
r2 : happy(X) ← sees(X ,Y), enemy(X ,Y), unhappy(Y)
r3 : unhappy(X) ← sees(X ,Y), friend(X ,Y),not happy(Y)
r4 : unhappy(X) ← sees(X ,Y), enemy(X ,Y), happy(Y)
r5 : happy(X) ← friend(X ,Y), friend(X ,Z),Y 6= Z
r6 : sees(X ,Y) ∨ not sees(X ,Y) ←
r7 : friend(X ,Y) ∨ not friend(X ,Y) ←
r8 : enemy(X ,Y) ∨ not enemy(X ,Y) ←
r9 : c(X) ← not c(X), happy(X), unhappy(X)
r10 : d(X ,Y) ← not d(X ,Y), friend(X ,Y), enemy(X ,Y)
r11 : unhappy(j) ← hungry(j)

We want to check the satisfiability of the predicate happy w.r.t. P . For this purpose, we first
define an initial completion structure for happy w.r.t. P : 〈EF, ct, st, G〉. There is one constant
in P , j, so there will be a tree with root j, Tj , in EF ; further on, we choose not to include a tree

65

with anonymous root in EF , and thus the only choice for placing the initial constraint happy
is in the content of node j. The initial status of happy in this node is unexpanded, so the status
function is updated accordingly. The graph G = (V,A) which keeps track of dependencies
between atoms in the model in construction is initialized such that V = {happy(j)}, andA = ∅.
The picture below depicts the initial completion structure for happy w.r.t. P . Note that the fact
that the status of happy is unexpanded is marked by appending the superscript u to happy.

j happyu

According to the (i) Expand-Unary-Positive rule, the presence of the unexpanded predicate
happy in the content of a node j, or in other words of happy(j) in the corresponding tentative
open answer set, has to be justified by means of a unary rule with head predicate happy and
head term which matches j. We apply (i) Expand-Unary-Positive by choosing the unary rule r1

to justify happy(j):

r1 : happy(X)← sees(X ,Y), friend(X ,Y), happy(Y).

A new successor j1 is created for j in Tj and the predicates sees and friend are inserted in
the content of the arc (j, j1), and the predicate happy is inserted in the content of j1. G is also
updated as follows:

V = V ∪ {happy(j1), sees(j, j1), friend(j, j1)},

A = A ∪ {(happy(j), sees(j, j1)), (happy(j), friend(j, j1)), (happy(j), happy(j1))}.

In other words, happy(j) is in the model in construction if there is an individual j1 such that
sees(j, j1), friend(j, j1), and happy(j1) are all present in the open answer set in construction.
Next figure depicts the situation after the application of this expansion operation for happy(j).
The predicate happy in the content of j1 is marked as unexpanded. The other predicates are
either expanded (happy in the content of j) or free predicates (sees and friend in the content
of (j, j1)), and as such they are not superscripted.

j

j1

sees, friend

happy

happyu

Once again, the only unexpanded predicate is happy, only this time the occurrence in the
content of j1. However, we cannot proceed to its expansion since j is not saturated: there are
predicates which do not appear either in a positive or a negative form in the contents of j and its
outgoing arcs. Remember that according to applicability rule (vii) Saturation no expansions can
be performed on a node which is not a constant until its predecessor is saturated.

We pick the predicate hungry and apply the (ii) Choose-Unary rule by inserting not hungry
in the content of j. It is not possible to apply the (iii) Expand-Unary-Negative rule with respect

66

to not hungry in the content of j, as one can still apply the (ii) Choose-Unary rule: for example,
neither c nor not c occur in the content of j. We apply the (ii) Choose-Unary rule to c and choose
to insert not c in the content of j. Once again, j is not saturated and the (ii) Choose-Unary rule
can be applied with respect to unhappy; we choose to insert unhappy in the content of j:

j

j1

sees, friend

happy,not hungryu,not cu, unhappyu

happyu

Note that c (which is used to simulate a constraint) does not appear in the head of any rule
other than r9 and, thus, is never satisfiable. As c does not appear in the body of any other rule
other than r9, the (ii) Choose-Unary rule has to be applied with respect to c and every node in
the model in construction in order to saturate the content of the respective node. To simplify the
exposition, in the following we will always choose to insert not c in the content of every node (it
is easy to see that any other choice would lead to a contradiction). The same reasoning applies
to d: for every arc, there has to be an application of the (vi) Choose-Binary rule with respect to
d and the respective arc and the choice in each case will be to insert not d in the content of the
arc.

Moving forward, among the unexpanded predicates in the content of j, we pick unhappy
as the next candidate for expansion, as the (i) Expand-Unary-Positive rule has priority over the
(iii) Expand-Unary-Negative rule. Among the rules with head predicate unhappy and head term
which matches j, we pick the following for justifying the presence of unhappy(j) in the model
in construction:

r3 : unhappy(X)← sees(X ,Y), friend(X ,Y),not happy(Y).

Either the successor of j, j1, is reused or a new one is introduced to satisfy the non-local
part of the rule. Suppose we pick up the already existing successor, j1. In this case, sees and
friend are inserted into the content of the arc (j, j1) (they are already there), while not happy
is inserted into the content of j1: this leads to a contradiction as now both not happy and happy
are in the content of j1.

j

j1

sees, friend

happy,not hungryu,not cu, unhappyu

happyu,not happyu

The algorithm backtracks and introduces a new successor for j, j2: sees and friend are
inserted into the content of the arc (j, j2), and not happy is inserted in the content of the node
j2. Now the predicate unhappy in the content of node j can be marked as expanded, and we

67

proceed further with the expansion process. Suppose we pick not c for expansion. There is a
single ground rule which defines c(j):

c(j)← not c(j), happy(j), unhappy(j).

According to the (iii) Expand-Unary-Negative rule, the body of this ground rule has to be
refuted. There are three possible choices for doing this: inserting c, not happy, or not unhappy
into the content of j. Each of the three choices leads to a contradiction. The figure below depicts
the case when not unhappy was chosen to refute the body of the rule.

j

j1

sees, friend

j2

sees, friend

happy,not hungryu, unhappy,not c,not unhappyu

happyu not happyu

The algorithm backtracks to the previous choice, which was the choice of the unary rule to
justify unhappy in the content of j. There are still two more unary rules in P whose head atoms
match unhappy(j): these are r4 and r11. However, from the previous developments, one can
see that even if unhappy is satisfied in some other way, one will eventually reach a contradiction
due to the presence of happy, unhappy, and not c in the content of j. As such, we skip the
remaining two choices as concerns rules to justify unhappy(j). Backtracking further, one has
to retract unhappy from the content of j, and insert not unhappy instead, and mark it as
unexpanded.

In the next step, not unhappy is selected for expansion. According to the (iii) Expand-
Unary-Negative rule, every ground rule which defines unhappy(j) has to be considered and its
body has to be refuted. There is one instantiation for each rule whose head matches unhappy(j):

• r3: unhappy(j) ← sees(j , j1), friend(j , j1),not happy(j1). The body of this rule has
to be refuted: the atoms sees(j, j1) and friend(j, j1) are already part of the tentative
open answer set so they cannot be refuted. The only remaining choice is to refute the
literal not happy(j1), thus to insert the predicate happy into the content of node j1.

• r4: unhappy(j) ← sees(j , j1), enemy(j , j1), happy(j1). Here the only choice which
does not lead to contradiction is inserting the negated predicate symbol not enemy into
the content of j1. The predicate enemy is a free predicate, defined only by a free rule, so
it is trivially expanded.

• r11: unhappy(j) ← hungry(j). The body of this rule is already refuted by the presence
of not hungry into the content of node j.

Finally, in order to saturate j, the (vi) Choose-Binary rule is applied and not d is inserted
into the content of arc (j, j1). Then, not d is expanded using the (v) Expand-Binary-Negative
rule. It can be observed that the body of the only ground rule derived from r10:

68

d(j , j1)← not d(j , j1), friend(j , j1), enemy(j , j1)

is already refuted by the presence of not enemy in the content of (j, j1):

j

j1

sees, friend,not enemy,not d

happy,not hungry,not unhappy,not c

happyu

At this moment, j is saturated and by means of applicability rule (vii) Saturation it is possible
to proceed with the expansion of its successor j1. One can see that the content of j1 is included
in the content of j, so according to rule (viii) Blocking, (j, j1) is a candidate blocking pair.
However G contains the arc (happy(j), happy(j1)), so connprG(j, j1) 6= ∅, and the second
condition of the blocking rule is not fulfilled. Intuitively, if one would justify the content of j1
in a similar manner as the content of j, an infinite chain of the type happy(j), happy(j1), . . .
would be present in the model in construction, each atom in the set being supported by the next
one in the set, thus there would be atoms in the model which are not finitely supported.

Thus, j1 cannot be blocked, and its content has to be expanded. In order to justify the
presence of happy(j1) in the tentative open answer set, rule r5 is picked up. To satisfy the
body of some ground version of the rule, two distinct successors of j1, j11 and j12, are created
leading to the ground rule:

happy(j)← friend(j , j1), friend(j , j2), j1 6= j2 .

The (i) Expand-Unary-Positive rule is applied and friend is asserted to the content of both
(j1, j11) and (j1, j12). Arcs (happy(j1), friend(j1, j11)), and (happy(j1), friend(j1, j12))
are added toA inG to capture the new dependencies between atoms in the tentative open answer
set.

j

j1

j11

friendu

j12

friendu

seesu, friendu,not enemy,not d

happy,not hungry,not unhappy,not c

happy

Now we proceed to saturate node j1 by choosing to add not c, not hungry, and not unhappy
to the content of j1 by repeated applications of the (iii) Expand-Unary-Negative rule. The first

69

two additions are expanded in a similar manner as their counterparts in the content of j. As
concerns not unhappy, all possible groundings of the three rules which define the predicate
unhappy have to be considered again. The justification with respect to rule r11 is similar as in
the case of node j, as the rule is a local rule. There are two successors of j1, j11 and j12, so
there are two ground versions of r3:

unhappy(j1)← sees(j1 , j11), friend(j1 , j11),not happy(j11), and

unhappy(j1)← sees(j1 , j12), friend(j1 , j12),not happy(j12),

and two ground versions of rule r4:

unhappy(j1)← sees(j1, j11), enemy(j1, j11), happy(j11), and

unhappy(j1)← sees(j1, j12), enemy(j1, j12), happy(j12).

The bodies of all these four ground rules have to be refuted. In order to do this, happy
is added to the content of node j11, not sees is added to the content of arc (j1, j12), and
not enemy is added to both the contents of arc (j1, j11) and arc (j1, j12). Finally, we saturate
node j1 by completing the contents of the arcs (j1, j11) and (j1, j12) in a similar manner as
we did for the arc (j, j1).

j

j1

j11

friend,not sees,not enemy,not d

j12

friend, sees,not enemy,not d

sees, friend,not enemy,not d

happy,not hungry,not unhappy,not c

happy,not unhappy,not hungry,not c

happyu

At this moment, j1 is also saturated and we observe that the contents of both its successors
are included in its own content. Unlike the case where ct(j1) ⊂ ct(j), but connprG(j, j1) 6=
∅, both connprG(j1, j11) = ∅, and connprG(j1, j12) = ∅, thus both (j1, j11) and (j1, j12)
are blocking pairs. Thus, the completion structure depicted in the figure above is a complete
clash-free completion structure and p is satisfiable with respect to P .

As anticipated already in the applicability rule (vii) Blocking in Section 3.3, a complete
clash-free completion structure can be unravelled to a forest-shaped open answer set. In the
current case, this would be achieved by making the contents of j11 and j12 to be identical to the
content of j1 and also justifying them similarly to the content of j1. This will give rise to two
new successors for both j11 and j12, which again will be justified in the same manner, etc. The
obtained forest model is depicted in Figure 3.6.

The corresponding forest-shaped open answer set which satisfies happy is (U,M), with:

70

j

j1

j11

. . .

friend

. . .

friend, sees

friend

j12

. . .

friend

. . .

friend, sees

friend, sees

friend, sees

happy

happy

happyhappy

Figure 3.6: Unravelling the clash-free completion structure to a tree-shaped model

U = {j, j1, j11, j12, j111, j112, . . .}

M = {happy(j)} ∪ {happy(js) | s = 1, 11, 12, 111, 112, . . .}
∪ {friend(js, js1) | s = 1, 11, 12, 111, 112, . . .}
∪ {friend(js, js2) | s = 1, 11, 12, 111, 112, . . .}
∪ {sees(js, js1) | s = 1, 11, 12, 111, 112, . . .}

Alternatively, the clash-free complete completion structure can be unravelled to a graph-
shaped open answer set as described in the soundness proof in Section 3.5. The model is depicted
by Figure 3.7.

In this case, the model (U,M) is finite. More precisely:

U = {j, j1, j11, j12}, and

M = {happy(j), friend(j, j1), sees(j, j1), happy(j1), friend(j1, j11), . . . , }.

3.7 Discussion and Related Work

3.7.1 Connection with DL Tableau Algorithms

This chapter introduced A1, a tableau algorithm for satisfiability checking of unary predicates
with respect to FoLPs which runs in the worst-case in non-deterministic double exponential
time in the size of the program. Note that such a high complexity is typical when dealing with

71

j happy

j1 happy

j11happy j12 happy

friend, sees

friend, sees friend

friend, sees friend

friend

friend, sees

Figure 3.7: Unravelling the clash-free completion structure to a graph-shaped model

tableau-like algorithms. For example in Description Logics, although satisfiability checking in
SHIQ or SHOQ is EXPTIME-complete, practical algorithms run in non-deterministic double
exponential time [Horrocks and Sattler, 2001, Tobies, 2001, Horrocks et al., 2000]. Even in
the case of the optimized hyper-tableau reasoner for SHOIQ+ HermiT [Motik et al., 2009b],
which uses a form of anywhere blocking, the worst-case running time behaviour remains non-
deterministic double exponential.

As we will see in Chapter 5, the introduction of a form of caching/anywhere blocking will
greatly improve our algorithm, leading to a NEXPTIME procedure. However, these improve-
ments come at the price of a much more complicated underlying data structure and block-
ing/redundancy conditions.

It is worthy to note that A1 uses a form of single subset blocking, similar to the one used in
the case of the tableau algorithm for SHOQ [Horrocks and Sattler, 2001]. This is not surpris-
ing, as, as mentioned in the Introduction, reasoning with SHOQ KBs (consistency checking,
concept satisfiability, etc.) can be reduced to reasoning with FoLPs. However, unlike the typical
case for tableau algorithms for DLs [Baader et al., 2003a], label comparison, i.e. subset blocking
in this case, is not enough for pruning the expansion of a branch in a completion forest. As we
explained throughout this chapter, relying just on that condition could potentially lead to circular
motivations of atoms in the model, which is not allowed in a non-monotonic setting.

There are several extensions of DL which adopt a minimal-style semantics like autoepis-
temic [Donini et al., 2002], default [Baader and Hollunder, 1995] and circumscriptive DL [Bon-
atti et al., 2006,Grimm and Hitzler, 2008,Grimm and Hitzler, 2009]. The first two are restricted
to reasoning with explicitly named individuals, while [Grimm and Hitzler, 2008, Grimm and
Hitzler, 2009] allow for defeats to be based on the existence of unknown individuals. A tableau-
based method for reasoning with the DLALCO in the circumscriptive case has been introduced

72

in [Grimm and Hitzler, 2007]. A special preference clash condition is introduced there to distin-
guish between minimal and non-minimal models which is based on constructing a new classical
DL knowledge base and checking its satisfiability.

As a further analogy to the DL world, we mention the connection between the Choose-
Unary/Binary rules introduced in this chapter and the so-called ‘internalization’ of TBox per-
formed by DL tableau algorithms when checking concept satisfiability [Horrocks et al., 1999].
Internalization consists in reducing reasoning with respect to the TBox to satisfiability checking
of a new concept which is constructed by taking into account all axioms in the TBox and not
only those on which the initial concept checked to be satisfiable depends on. The effect of our
Choose-Unary/Binary rules is similar: as every possible atom is asserted as either being part or
not being part of the constructed model; every rule in the program grounded with the universe
of the model in construction is satisfiable in the respective model.

3.7.2 Reflection on Using Standard ASP Reasoning vs. the Tableau Method

In Section 3.5.6 we showed how the bounded finite model property established in this chapter
opens the way also for standard Answer Set Programming reasoning with FoLPs. This provides
an algorithm which runs in the worst case in non-deterministic double exponential time with an
oracle in NP, which is thought to be worse than non-deterministic double exponential time, the
running time of our algorithm.

Aside from worst-case running time complexity considerations, one advantage of the tableau
method presented in this chapter compared to the standard ASP based approach, is that it offers
more guidance concerning the size of the universe needed to make a predicate p satisfiable. At
any step of the algorithm, we might find out that, in order to motivate the presence of a predicate
in the open answer set, the current node has to have a minimum number of successors which can
be greater than one (due to successor variables inequalities in unary rule bodies). While in the
tableau approach we simply introduce the desired number of successors, in the standard ASP
based approach, one has to check also programs with intermediary sized universes which do not
satisfy p.

It is also worthy to mention that the algorithm we described in this chapter was actually
the device that allowed us to establish a maximal bound on the universe size needed to make a
predicate satisfiable.

3.7.3 Connection with ASP Reasoning Procedures

While being a tableau-based algorithm, A1 is connected to other procedures used to construct
models for formalisms with open domains, at the same time it is tightly connected to procedures
for reasoning about the stable model semantics.

Supported, Well-supported Models, and Clark’s Completion

An alternative characterization for the stable model semantics was provided in [Fages, 1991].
There, answer sets for normal logic programs are equated to so-called well-supported interpre-
tations. An interpretation is well-supported iff (1) every atom in the interpretation is supported,
i.e. there exists a rule whose body is satisfied in the interpretation, and (2) every such atom

73

is well-supported, i.e. if one considers the dependency graph capturing the relations between
atoms in the interpretation induced by the supportedness relation, the graph contains no infinite
path or cycle. It is easy to see that such a characterization holds also for our setting where dis-
junction is used sparingly, only in free rules. In fact, if one considers the expansion rules used
by A1, it is obvious that:

• the (i) Expand-Unary-Positive and the (iv) Expand-Binary-Positive rules ensure that every
atom which is part of the constructed model is supported,

• the (iii) Expand-Unary-Negative and the (v) Expand-Binary-Negative rules ensure that
every atom which is not part of the constructed model is not supported, and

• the check on the dependency graph G which is part of the blocking condition, ensures
that every support is finite, i.e. every atom in the constructed model depends on a finite
number of atoms in the model.

In [Fages, 1994] it has been also shown that for a given logic program, its supported models
coincide with the (Herbrand) models of its Clark’s completion. For a ground logic program P ,
Clark’s completion [Clark, 1978] is a propositional theory obtained from P as follows: for every
atom p and rules of the type p ← βi in P , for 1 6 i 6 n, the completion contains the following
equivalence: p ≡

∨
16i6n βi. The notion can be extended straightforwardly to the case of non-

ground programs. Thus, by dropping the checks on the dependency graph G which are part of
the blocking condition, our algorithm would check set satisfiability with respect to supported
models, i.e. models of the program’s Clark completion (with respect to a given universe). Note
that in this case the blocking condition becomes effectively a subset-blocking condition and as
such it is enough to achieve termination: there is no need to further employ the redundancy rule.

The connection between the stable model semantics and Clark’s completion has been ex-
ploited also in [Lin and Zhao, 2002] and [Lin and Zhao, 2004]: there, it is shown how normal
logic programs under the stable model semantics can be translated into propositional theories.
The translation consists in the addition to the Clark’s completion for the given program of a set
of so-called ‘loop formulas’. The role of these formulas is to filter from the set of models of
Clark’s completion, i.e. the set of supported models, those which are not well-supported.

A loop is a cycle in the atom dependency graph of a given program. In order to be well-
supported, any atom which is part of a loop cannot use as its support a rule whose body contains
an atom which is also part of the loop. The work lies at the basis of the answer set solver ASSAT
and has been extended to the case of disjunctive logic programs in [Lee and Lifschitz, 2003]. In
view of this, the checks on the dependency graph G performed by our tableau algorithm have
as purpose the elimination of models which are not well-supported, i.e. models which contain
loops and/or infinite length dependency paths.

Goal Rewriting System for Brave Reasoning with ASP

In the area of proof systems for Answer Set Programming, [Lin and You, 2002] describes a
goal rewrite system for brave reasoning under the stable model semantics which is sound and
complete only for partial stable models. If the program has no odd loops (cycles via negation in

74

the predicate dependency graph of the program), its partial stable models and its stable models
coincide. Note that such programs cannot express constraints as these are just syntactic sugar
for rules in which a predicate depends negatively on itself. The problem with constraints is that
they can render the program inconsistent, and thus, the rewriting, even if it is successful, is no
longer valid.

FoLPs allow for odd loops and A1 deals with such loops by exploring/asserting new con-
straints to the model beyond the dependencies generated by the predicate checked to be satisfi-
able: a complete answer set is constructed by taking care that the content of every node in the
completion structure is saturated. As already explained in Section 3.2.2 and in Section 3.2.6,
this is taken care of by the (ii) Choose-Unary and the (vi) Choose-Binary rules.

As concerns termination, [Lin and You, 2002] distinguishes between positive, negative, odd,
and even loops in the predicate dependency graph and deals with them accordingly. However,
there is no blocking mechanism and, as such, also no check for infinite length dependency
chains: for achieving termination, [Lin and You, 2002] considers only “domain restricted pro-
grams”, which can be instantiated only on domain predicates over variables which do not appear
in the head. Note that FoLPs do not have such a restriction: there are FoLPs (actually, even
CoLPs) in which no constant occurs and which still have infinite groundings. As such, we need
the rather complicated blocking mechanism for ensuring that there are no atoms with infinite
justifications in the open answer set.

Transition-Based Framework For Computing Supported and Stable Models of Ground Logical
Programs

An extension of an abstract framework for executing DPLL [Nieuwenhuis et al., 2006] which
computes supported models and stable models of a ground logical program is described in [Lier-
ler, 2008]. The framework employs a graph structure for encoding different computation paths.
Models are constructed in a bottom-up fashion: transition rules prescribe how new atoms are
derived. The following transition rules are employed to derive supported models:

• Unit Propagation: a supported atom, i.e. an atom for which there exists a body which is
satisfied in the partial model, becomes part of the model - this rule is similar to our (i)
Expand-Unary-Positive and (iv) Expand-Binary-Positive rules, but it acts in the reverse
direction.

• Decide: a literal is inserted as part of the model and is marked as a decision literal. The
rule is similar to our (ii) Choose-Unary and (vi) Choose-Binary expansion rules. However,
unlike in our case, here there is no check whether the counterpart atom is already part of
the model in construction.

• Fail: when the constructed model is inconsistent and it contains no decision literals, i.e.
there is no possibility to backtrack to a choice point, the derivation fails.

• Backtrack: when the constructed model is inconsistent and it contains some decision lit-
eral, the system backtracks to a choice point, where a literal has been introduced using
the Decide rule and the literal is flipped. In our algorithm, being non-deterministic, the
backtracking mechanism is implicit.

75

For simulating the behaviour of the answer set solver SMODELS [Simons et al., 2002], [Lier-
ler, 2008] introduces an extra derivation rule whose role is to filter models which are not well-
supported. The rule is called Unfounded and it prescribes that every atom which is part of some
unfounded set with respect to the partial constructed model is false, i.e. it is not part of the
model. An unfounded set S with respect to a set of literals M is a counterpart of the notion
of loop: it consists of atoms which are potentially supported (with respect to M) only by rules
whose bodies contain at least one atom from the set S itself. By prescribing that this derivation
rule is applicable only when the model in construction is a total model (every atom is either part
or not part of the model), the authors describe the behaviour of another solver called SUP. This
solver computes first a supported model and then, in a last stage, applies the Unfounded rule
which triggers an inconsistency in the model in case the model is not well-supported.

Tableau Calculi For Answer Set Programming

In an effort to systematize different approaches taken by ASP reasoners, [Gebser and Schaub,
2006] introduces a family of tableau calculi for answer set programming. Like in the case
of [Lierler, 2008], computations of answer sets are seen as derivations in an inference system.
However, here the objects which make up a computation state are signed (true or false) atoms
and rule bodies (this is different from [Lierler, 2008], where such a state was a set of signed
atoms, i.e. literals). An exhaustive set of derivation rules is provided which describe both
bottom-up and top-down computation and as well mechanisms to ensure well-supportedness via
both unfounded sets and loop formulas. As such, they allow the simulation of the behaviour of
different answer set solvers like ASSAT [Lin and Zhao, 2004], cmodels [Giunchiglia et al.,
2006], DLV [Leone et al., 2006], nomore++ [Anger et al., 2005], and smodels [Simons et al.,
2002]. From the set of derivation rules, we mention those which are closer to our expansion
rules:

• Backward True Atom: if an atom is true and the bodies of all rules which have the atom in
the head but one are false, the body of the respective rule is true;

• Backward True Body: if the body of a rule is true, all the literals in the body of the rule
are true as well. This rule together with the previous rule is similar to our (iii) Expand-
Unary-Positive and (v) Expand-Binary-Positive rules.

• Backward False Atom: if an atom is false, the body of any rule which has the atom in the
head is false;

• Backward False Body: if the body of a rule is false and all literals in the body but one are
true, the remaining literal is false. This rule together with the previous rule is similar to
our (iii) Expand-Unary-Negative and (v) (iii) Expand-Binary-Negative rules.

• Cut: the rule prescribes a choice point between an atom and its negation. This rule is
obviously related to our (ii) Choose-Unary and (vi) Choose-Binary rules.

The derivation rules described above are finer-grained than our expansion rules, as they take
into account also signed bodies of rules in the program. Except for the cut rule, they are also
deterministic. This is possible due to the propositional setting for such tableau algorithms.

76

In the case of FoLPs we do not know a priori the size of the universe needed to satisfy a
certain unary predicate symbol and as such, we cannot perform an initial grounding (unless we
take the incremental approach described in Section 3.5.6, where any of the above mentioned
strategies for computing answer sets can be employed). The (i) Expand-Unary-Positive rule,
besides offering support for a unary atom, expands also the domain of the interpretation, by
introducing a certain number of successors. This latter task is inherently non-deterministic.

However, expansion rules could be possibly improved to make them less non-deterministic.
Actually, an optimized version of the (iii) Expand-Unary-Negative rule is provided in the next
chapter. Furthermore, in the same chapter, we provide a knowledge compilation method which
pre-computes all building blocks of a model, in the form of interconnected trees of depth 1,
which are essentially the parts of the model where all computation related to constructing sup-
ported models takes place. As concerns well-supportedness, we cannot check global properties
like unfounded sets or loops. In the presence of an ever-expanding universe, we have to use
blocking to ensure that the algorithm terminates.

Resolution Calculus for ASP Extended with Function Symbols

A resolution-based calculus for credulous reasoning in ASP extended with function symbols is
introduced in [Bonatti et al., 2008]. The calculus is sound for ground order-consistent programs,
i.e. programs which do not allow for any cycles in their atom dependency graph (where both
positive and negative dependencies are considered, i.e. a ← not b induces a negative depen-
dency between a and b), and complete for ground finite recursive programs, i.e. programs for
which every ground atom depends only on a finite number of other ground atoms.

The calculus is extended to the non-ground case, where it is proved to be sound for programs
whose ground versions are order consistent, and complete for finitely recursive, odd-cycle free
programs. In particular, the calculus is neither sound nor complete for programs which have
odd cycles, which are needed for simulating constraints. As already mentioned, FoLPs allow the
presence of constraints and/or can simulate such constraints. The calculus is also not complete
for programs which are not finitely recursive. On the other hand, there are FoLPs which are not
finitely recursive: consider a FoLP which contains the rule a(X)← f (X ,Y), a(Y); grounding
the program with an infinite universe leads to an infinite path in its atom dependency graph of
the form a(x1), a(x2),

77

CHAPTER 4
Knowledge Compilation Technique for

Reasoning with FoLPs

This chapter describes a knowledge compilation technique for reasoning with FoLPs which
builds on the algorithm presented in Chapter 3. The main idea is to capture all possible local
computations, which are typically performed over and over again in the process of saturating the
content of a node of a completion structure, by pre-computing all possible completion structures
of depth one. Every such pre-computed structure will contain a node with saturated content (ei-
ther corresponding to a constant or to an anonymous individual), and some successor nodes for
this node which contain the constraints necessary to hold in order for the content of the saturated
node to hold (which were introduced in the process of expanding the saturated node).

Such structures will be called unit completion structures and the node which is saturated
will be referred to as the root node of the structure. Unit completion structures (UCSs) are
defined constructively, as the result of applying the expansion rules from algorithm A1 intro-
duced in Chapter 3, governed by a certain strategy that enforces that only structures containing
interconnected trees up to depth one are constructed.

As the expansion rules of A1 are non-deterministic, it can be shown that constructing a
single UCS using that algorithm takes in worst-case non-deterministic exponential time. An
attempt to determinize the algorithm leads to an exponential blow-up. As such we provide an
alternative constructive characterization of UCSs which allows us to compute the set of all UCSs
in worst-case deterministic exponential time. Section 4.1 formally introduces the notion of unit
completion structure, while Section 4.2 describes how the set of all UCSs can be computed in
the worst case in deterministic exponential time.

Once the set of UCSs has been computed, they can be used to reason with Forest Logic
Programs in a tableau-like manner similar to the tableau algorithm described in Chapter 3: a
completion structure is constructed following the usual applicability rules. However, justifying
the content of a node/arc (expanding the corresponding negated predicates in the content of some
node/arc) can be done now by simply picking up a unit completion structure whose content of
the root node can be matched against the content of the node in question, and by replacing the

79

unsaturated node with the unit completion structure. By matching contents we understand that
every unexpanded predicate symbol in the content of the unsaturated node occurs in the same
form (negated or positive) in the content of the root of the UCS.

When a unit completion structure is used to construct a forest model by appending it to
the completion structure in construction, its (successor) nodes have unexpanded content, which
in turn will have to be saturated at some point in time during the expansion process. These
unexpanded predicate symbols can be seen as constraints which will have to be further satisfied
by appending other UCSs. Thus, unit completion structures with identical roots can impose
different constraints on the model in construction. Besides the constraints which we already
mentioned regarding the contents of successor (non-blocked) nodes, another type of constraints
which a UCS poses on a model are the paths from an atom formed with the root node of the
UCS to an atom formed with a successor node in the UCS – the more such paths there are, the
harder blocking becomes when using the UCS in question.

We define a notion of redundant unit completion structure which captures the idea of a struc-
ture which is comparable and strictly more constraining than another unit completion structure.
Once the set of all such structures is identified, they can be discarded as they can be seen as re-
dundant building blocks of a model. Section 4.3 formalizes the notion of redundant UCS, while
Section 4.4 describes the actual algorithm which uses for the construction of a model only the
set of non-redundant UCSs. Finally, Section 4.5 discusses the pros and cons of the technique
and some related work.

4.1 Unit Completion Structures

As mentioned in the introduction of this chapter, the intention is to obtain all completion struc-
tures whose interconnected forests consist in interconnected trees with maximal depth one that
can be used as building blocks in our algorithm. We call such structures unit completion struc-
tures. In order to construct a unit completion structure one starts with a skeleton, an initial unit
completion structure which is similar to an A1-initial completion structure for checking the sat-
isfiability of a unary predicate p with respect to a FoLP P . An initial unit completion structure
has the same interconnected forest skeleton as anA1-initial completion structure, but it does not
impose any constraints regarding membership of predicates to nodes/arcs. This is because UCSs
have to be more generic if they are to be reused as building blocks of the model. So, an initial
unit completion structure is actually an A1-completion structure.

Definition 21. An initial unit completion structure with root ε for a FoLP P is anA1-completion
structure 〈EF , ct, st, G〉 where:

• EF = (F,ES), F = {Tε}∪{Ta | a ∈ cts(P)}, where ε is a constant, possibly in cts(P),
and ES = ∅;

• Tx = {x}, for every x ∈ {ε} ∪ cts(P);

• ct(x) = ∅, for every x ∈ {ε} ∪ cts(P); and

• G = 〈V,A〉, V = ∅, A = ∅.

80

Next we specify when a unit completion structure is ‘fully’ expanded. As previously men-
tioned, the root node is saturated, while every predicate which appears in the content of a suc-
cessor node is unexpanded. Furthermore, we also impose that a constant node in a UCS has
non-empty content only when it is the root node itself or it is a successor node, i.e. it is linked
via an arc to the root of the structure. Finally, only the root node can have successors: this
ensures that the interconnected forest is indeed an interconnected tree of depth 1.

Definition 22. A unit completion structure 〈EF , ct, st, G〉 with root ε for a FoLP P , with
EF = (F,ES), is an A1-completion structure derived from an initialA1-unit completion struc-
ture with root ε for P by application of the expansion rules (i)-(vi) from Section 3.2, taking into
account the applicability rules (vii)-(xi) from Section 3.3, which has the following properties:

• for all p ∈ upreds(P), either:

– p ∈ ct(ε) and st(p, ε) = exp, or

– not p ∈ ct(ε) and st(not p, ε) = exp;

• for all v1, v2 such that (v1, v2) ∈ AEF :

– v1 = ε,

– for all f ∈ bpreds(P), either:

∗ f ∈ ct(v1, v2) and st(p, (v1, v2)) = exp, or
∗ not f ∈ ct(v1, v2) and st(not p, (v1, v2)) = exp;

– for all ±p ∈ ct(v2), st(±p, v2) = unexp;

• for all c ∈ cts(P) such that ct(c) 6= ∅: c = ε or there exists an arc (ε, c) ∈ ES,

• the structure is neither contradictory, nor circular.

As the status function is relevant only in the definition/construction of a unit completion
structure, but not in the context of using such structures, in the rest of this thesis we will refer to
a unit completion structure as a triple 〈EF , ct, G〉.

Example 22. Consider the following CoLP P :

r1 : p(X) ← not p(X)
r2 : p(X) ← f (X ,Y),not q(Y)
r3 : p(X) ← f (X ,Y), p(Y)
r4 : p(X) ← f (X ,Y),not q(Y), p(Y)
r5 : q(X) ← f (X ,Y),not p(Y)
r6 : f (X ,Y) ∨ not f (X ,Y) ←

Figure 4.1 depicts three unit completion structures for P : as P is a CoLP, and thus it contains
no constants, the UCSs are all trees of depth 1. They all have the same content for the root node:
{p,not q}, but they differ in the way the atom p(ε) has been justified. The presence of p in the

81

UC1 : UC2 : UC3 :

ε

ε1

f

p,not q

p,not q

ε

ε1

f

p,not q

p

ε

ε1

f

p,not q

p,not q

G1 = (V1, A1) G2 = (V2, A2) G3 = (V3, A3)

V1 : {p(ε), p(ε1), f(ε, ε1)} V2 : {p(ε), p(ε1), f(ε, ε1)} V3 : {p(ε), p(ε1), f(ε, ε1)}

A1 :
{p(ε)→ f(ε, ε1),

A2 :
{p(ε)→ f(ε, ε1),

A3 : {p(ε)→ f(ε, ε1)}
p(ε)→ p(ε1)} p(ε)→ p(ε1)}

Figure 4.1: Three unit completion structures for Pr: UC1, UC2, and UC3.

content of the root node has been justified in the first structure by means of rule r4, in the second
structure by means of rule r3, and in the third structure by means of rule r2. The different ways
to justify p lead to different sets of arcs in the dependency graphs belonging to each structure.

Note that r1 is not even considered for justifying the presence of p in the root node as it acts
as a constraint – it enforces that if there exists an open answer set (U,M), M should contain an
atom p(x), for every x ∈ U , but does not support the presence of such an atom.

On the other hand, to motivate that not q is in the content of the root node, in each case it
was shown that the body of r5 grounded such that X is instantiated as the root node and Y as
the successor node, is not satisfied, or more concretely the presence of p in the content of the
successor node was enforced in each case (not f could not be used to invalidate the triggering
of the rule as f was already present in the content of the arc from the root node to the successor
node in each case).

Definition 23. A unit completion structure is final iff all its successor nodes are blocked, or they
have empty contents.

For CoLPs (but not for FoLPs) it is the case that:

Proposition 11. A final unit completion structure for a CoLP P is a complete clash-free A1-
completion structure for P .

82

Obviously, one can use such final unit completion structures to derive information about the
satisfiability of various unary predicates in a given CoLP: all unary predicates appearing in some
node of a final UCS of a CoLP are satisfiable.

Example 23. Consider again the three unit completion structures depicted in Figure 4.1. One
can notice that while the content of the successor node is included in the content of the root node
in each of the cases, only for UC3, the two nodes form a blocking pair as pathsG3(c, c1) = ∅.

As the program P from Example 22 is a CoLP, UC3 is a final unit completion structure for
P , and thus, it is also a complete clash-free A1-completion structure. Thus, the unary predicate
p is satisfiable with respect to P .

4.2 Computing the Set of Unit Completion Structures: Complexity
Considerations

Note that the notion of UCS is defined constructively using the non-deterministic expansion
rules (i)-(vi) of A1. This gives us a direct algorithm to compute a UCS which runs in the worst
case in non-deterministic exponential time as an exponential number of ground rules have to be
refuted to justify the presence of a negative predicate symbol in the content of the root node.
In order to compute the set of all unit completion structures for a certain FoLP P , a brute force
determinisation of this algorithm can be employed where instead of making a non-deterministic
choice one iterates over all possible choices. As the following analysis shows, such a procedure
runs in double exponential time:

1. there are at most 2p different values for the content of a saturated node, in this case for the
content of the root of a unit completion structure, where p = |upreds(P)|;

2. for every positive predicate symbol p in the content of some node, there is an exponential
number of ways to justify it by applying the (i) Expand-Unary-Positive rule (an exponen-
tial number of possible groundings for every rule), and the actual expansion can be done
in polynomial time;

3. when justifying the presence of a negated predicate symbol not p in the content of a node
using the (iii) Expand-Unary-Negative rule, one has to consider all ground rules which
have p(x) in the head, where x is the node under consideration. The number of such rules
is exponential in the size of the program. For each such rule, exactly one literal in its
body has to be refuted. Thus, the number of possible choices to refute all ground rules
is double exponential in the size of the program. Once such a choice has been made, the
actual refutation can be done in deterministic exponential time;

4. there are at most degree(P) outgoing arcs from the root node of a UCS and at most 2f

different values for the content of an arc, where f = |bpreds(P)|;

5. for every positive predicate symbol f in the content of some node, there is an exponential
number of ways to justify it by applying the (i) Expand-Binary-Positive rule (an exponen-

83

tial number of possible groundings for every rule), and the actual expansion can be done
in polynomial time;

6. for every negated predicate symbol not f in the content of some arc, the bodies of all
ground rules with f(x, y) in the head, where (x, y) is the arc under consideration have to
be refuted. There is a linear number of such ground rules, one for each (non-ground) rule
r ∈ Pf . Thus, there is an exponential number of choices to perform this task, and for each
choice the actual refutation can be done in linear time.

From the analysis above, one can observe that justifying the presence of a negated predicate
symbol in the content of the root node using the original (iii) Expand-Unary-Negative rule in-
troduced in Section 3.2 takes in the worst-case double exponential time (when one considers all
possible options). However, there is only an exponential number of choices for the contents of
the successor nodes in a unit completion structure. This suggests that one can devise a proce-
dure for constructing the set of unit completion structures which runs in the worst case in single
deterministic exponential time.

In the following we introduce an alternative notion of UCS, defined again constructively,
but this time using a different rule to expand negative predicates in the content of the root node
of the UCS: the new expansion rule replaces the (iii) Expand unary negative rule and while it
has the same effect, i.e. its application in conjunction with the other original expansion rules
will produce alternative UCSs which can be mapped one-to-one to the original UCSs, it is more
efficient. The new rule keeps track which segments in a ground unary rule have been refuted.
Such a segment is either the local part of the rule or is characterized by a successor variable in
the original (unground) unary rule and by the successor individual in the UCS in construction
with which the variable has been replaced in the ground rule. Note that such segments will occur
in different groundings of the same unary rule, so once such a segment is refuted all ground rules
which contain it will be refuted as well.

In order to implement this idea, the notion of completion structure is extended with a partial
function that marks every segment in a ground rule which has been refuted. Formally:

Definition 24. AnA′1-completion structure for a FoLP P is a tuple 〈EF , ct, st, ref, G〉where
EF , ct, st, and G are as in Definition 12, and

• ref : P × {0, 1, . . . , k} × NEF → {yes} is a partial refutation function which marks
which segments in ground unary rules where the root variable is instantiated with the root
node in the completion and the successor variables are instantiated with successor nodes
in the completion are already refuted. The first argument is the (non-ground) unary rule
from which the ground rule has been derived, the second argument denotes the segment
which is refuted, where k = maxr∈Pp,p∈upreds(P)(degree(r)), while the third argument
is the node in the UCS in construction used for grounding that particular segment: for
k = 0 the node is the root node of the UCS, while for k > 1 the node is one of the
successor nodes in the UCS.

AnA′1-completion structure for a FoLP P is defined similarly to anA1-completion structure
for a FoLP P : the function ref is simply undefined for any input.

84

The new expansion rule which replaces the (iii) Expand-Unary-Negative rule introduced in
Section 3.2 and which works on A′1-completion structures is defined as follows:

Rule. (iii′) Expand-Unary-Negative. Let not p ∈ ct(x) be a unary negative predicate for
which st(x,not p) = unexp and let y1, . . . , yn be the successors of x in EF . If:

• for all p ∈ upreds(P), p ∈ ct(x) or not p ∈ ct(x), and

• for all p ∈ ct(x), st(p, x) := exp,

then for every rule r ∈ Pp of the form (2.3) such that x matches s (s is the term from the head
of the rule), if ref(r, 0, x) is undefined do one of the following:

1. refute the rule ‘locally’:

• non-deterministically choose ±q ∈ β,

• update(not p(x),∓q, x), and

• set ref(r, 0, x) = yes ,

or

2. refute all ground versions of the rule in their non-local part:

for all yi1 , . . . , yik s. t. (1 6 ij 6 n)16j6k, if:

• for all 1 6 j, l 6 k, tj 6= tl ∈ ψ ⇒ yij 6= yil , and

• ref(r, l, yil) is undefined for every l with 0 < l 6 k,

then:

• choose a segment 1 6 m 6 k,

• non-deterministically choose±f ∈ δm/γm and update(not p(x),∓f, (x, yim)/yim),
and

• set ref(r,m, yim) = yes .

Set st(not p, x) := exp.

Given the new expansion rule, we can define constructively the new notion of UCS:

Definition 25. An alternative unit completion structure 〈EF , ct, st, ref, G〉 with root ε for
a FoLP P , with EF = (F,ES), is an A′1-completion structure derived from an initial A′1-unit
completion structure with root ε for P by application of the expansion rules (i)-(ii) and (iv)-(vi)
from Section 3.2 and of expansion rule (iii′) introduced in this section, taking into account the
applicability rules (vii)-(xi) from Section 3.3, which has the following properties:

• for all p ∈ upreds(P), either:

– p ∈ ct(ε) and st(p, ε) = exp, or

85

– not p ∈ ct(ε) and st(not p, ε) = exp;

• for all v1, v2 such that (v1, v2) ∈ AEF :

– v1 = ε,

– for all f ∈ bpreds(P), either:

∗ f ∈ ct(v1, v2) and st(p, (v1, v2)) = exp, or
∗ not f ∈ ct(v1, v2) and st(not p, (v1, v2)) = exp;

– for all ±p ∈ ct(v2), st(±p, v2) = unexp;

• for all c ∈ cts(P) such that ct(c) 6= ∅: c = ε or there exists an arc (ε, c) ∈ ES,

• the structure is neither contradictory, nor circular.

Likewise we did for regular UCSs, we will drop the status and the refutation functions when
referring to alternative unit completion structures as these are relevant only in the definition
phase of such a structure. As such, we will refer to an alternative unit completion structure as a
triple 〈EF , ct, G〉.

As anticipated, it is the case that:

Proposition 12. Let P be a FoLP. Then there exists a UCS with root ε: 〈EF , ct, G〉 for P iff
there exists an alternative UCS with root ε: 〈EF , ct, G〉 for P (where ε,EF , ct, and G denote
the same entities for both structures).

Thus, instead of constructing the set of UCSs for P one can construct the set of alternative
UCSs for P . An analysis of the expansion rule (iii′) introduced in this section reveals that a
determinization of this rule will lead in the worst case to deterministic exponential time behavior:
this is due to the fact that there exists a polynomial number of segments (s, y) to be refuted with
respect to any unary rule. For each such segment there exists a polynomial number of choices
for the actual refutation. Thus:

Proposition 13. The set of all alternative unit completion structures for a FoLP P can be com-
puted in the worst-case scenario in exponential time in the size of P .

A corollary of Proposition 12 and of Proposition 13 is that:

Corollary 5. The set of all unit completion structures for a FoLP P can be computed in the
worst-case scenario in exponential time in the size of P .

4.3 Redundant Unit Completion Structures

As seen in Example 22, there exist unit completion structures with roots which have equal con-
tent, but possibly different topologies, different contents of the successor nodes and/or possibly
different dependency graphs. As discussed in the introduction to this chapter, it is worthwhile to
identify structures which are strictly more constraining than others, in the sense that while they

86

have identical roots, they impose more constraints on the content of the successor nodes of the
structure and introduce more paths in the dependency graph than other structures. As for such
structures, there always exists a more general structure which can be used as a building block
of a model, they can be discarded. In other words, they are redundant structures. The following
definition formalizes this notion of redundant unit completion structure.

Definition 26. Let UCSP be the set of all unit completion structures of a FoLP P . A unit
completion structure for UC1 ∈ UCSP , with root ε1, where UC1 = 〈EF 1, ct1, G1〉, is said
to be redundant iff there exists another unit completion structure UC2 ∈ UCSP for P with root
roo2, where UC2 = 〈EF 2, ct2, G2〉, such that:

• if ε2 ∈ cts(P), then ε2 = ε1;

• ct(ε1) = ct(ε2);

• if ε2 · s1, . . . , ε2 · sl are the non-blocked successors of ε2, there exist l distinct successors
ε1 · t1, . . . , ε1 · tl of ε1 such that:

– ct(ε2 · si) ⊆ ct(ε1 · ti), for every 1 6 i 6 l, and

– connprG2(ε2, ε2 · si) ⊆ connprG1(ε1, ε1 · ti), for every 1 6 i 6 l,

with at least one inclusion being strict.

The intuition is that the content of the successor nodes of a simpler structure can always be
expanded in a similar way to the content of the corresponding successor nodes of the more com-
plex structure, while the fact that there are fewer paths between atoms formed with the root node
and atoms formed with successor nodes guarantees that no blocking conditions are violated, and
even more, blocking might occur earlier than when using the more complex structure.

When comparing two structures, one supposedly redundant and the other supposedly a re-
dundancy witness, we ignore the blocked successor nodes of the redundancy witness. For such
blocked nodes, even if there exist counterpart nodes in the ‘redundant’ structure which are less
constrained, by definition of UCSs and blocking, those counterpart nodes will be blocked as
well. In practical terms, comparing blocked nodes does not make a difference as such nodes do
not have to be further expanded.

Example 24. Consider the three UCS-s introduced in Example 22 and depicted in Figure 4.1.
They are all comparable: one can see that UC1 is strictly more constraining than both UC2 UC3,
and UC2 is strictly more constraining than UC3. Thus, UC1 and UC2 are redundant structures
and the only UCS which is non-redundant is UC3.

Note that, as previously discussed, UC3 is a final, thus complete clash-free completion struc-
ture: its only successor node is a blocked node. Thus, the condition regarding successor nodes
from Definition 26 is trivially fulfilled.

Intuitively, the redundancy of UC1 and UC2 does not come as a surprise, as when one looks
at the rules which used to support p in the the two UCSs, there is a certain degree of redundancy
in these rules themselves: the body of r4, the rule used to support p in the case of UC1 is strictly
less general/more constraining than the body of r4, the rule used to support p in the case of UC3.

87

At the same time rule r3, which is used to support P in UC2 is redundant in itself, in the sense
that it merely prescribes that p(x) is satisfiable if there exists an f -successor of x, where p is
again satisfiable and so on.

Proposition 14. Computing the set of non-redundant unit completion structures for a FoLP P
can be performed in the worst case in exponential time in the size of P .

Proof. From Proposition 5 it follows that there exist at most an exponential number of unit
completion structures, or in other words |UCSP | is exponential in the size of P .

Comparing whether any two given UCSs are such that one is redundant and the other is its
redundancy witness can be done in non-deterministic polynomial time (by guessing which one
is redundant and then guessing the counterpart successor nodes to every non-blocked successor
node in the supposedly redundant structure). Thus, to filter out the redundant UCSs, one needs at
most |UCSP |(|UCSP | − 1)/2 comparisons, where each can be performed in non-deterministic
polynomial time. �

4.4 Reasoning with FoLPs Using Unit Completion Structures

This section describes a new algorithm which uses the set of pre-computed (non-redundant)
completion structures. We call this algorithm A2.

As was the case with the previous algorithm, A2 starts with an initial A2-completion struc-
ture for checking satisfiability of a unary predicate p with respect to a FoLP P and expands this
to a so-called A2-completion structure.

An A2-completion structure 〈EF , ct, st, G〉 is defined similarly as an A1-completion
structure, but the status function has a different domain, namely the set of nodes of the forest:

st : NEF → {exp, unexp}.

An initial A2-completion structure for a unary predicate p and FoLP P is defined similarly
as an initial A1-completion structure for p and P , the only difference being that every node in
the extended forest is marked as unexpanded: st(x) = unexp, for every x ∈ NEF .

The difference in the definition of anA2-completion structure compared to itsA1 homonym
is that in this scenario nodes and not predicates are expanded; this is done by matching their
contents with existing unit completion structures. We make the notion of matching the content
of a node with a unit completion structure for a FoLP P explicit by introducing a notion of local
satisfiability:

Definition 27. A (non-redundant) unit completion structure UC = 〈EF , ct, G〉, with EF =
(F,ES), locally satisfies a (possibly negated) unary predicate ±p iff ±p ∈ ct(ε). Similarly,
UC locally satisfies a set S of (possibly) negated unary predicates iff S ⊆ ct(ε).

Example 25. All three unit completions in Figure 4.1 locally satisfy the set {p,not q}.

88

It is easy to observe that if a unary predicate p is not locally satisfied by any unit completion
structure UC for a FoLP P (or equivalently not p is locally satisfied by every unit completion
structure), then p is not satisfiable with respect to P .

However, local satisfiability of a unary predicate p in every unit completion structure for a
FoLP P does not guarantee ‘global’ satisfiability of p with respect to P .

Example 26. Consider the program P ′ containing only rule r3 from the CoLP P introduced in
Example 22. The only completion structure for P ′ is the UCS UC2 from Figure 4.1. While UC2

locally satisfies p, it is clear that p is not satisfiable.

In the process of building for a FoLP P an A2-completion structure CS = 〈EF , ct, st,
G〉, with G = (V,A), by using unit completion structures as building blocks an operation
commonly appears: the expansion of a node x ∈ NEF by addition of a unit completion structure
UC = 〈EF ′ , ct′ , G′〉, with EF

′
= (F ′, ES

′
) and G

′
= (V

′
, A
′
), which locally satisfies

ct(x) at x, given that its root matches with x. Note that an anonymous individual behaves
like a variable: it matches with any term, while a constant matches only with itself. Thus, unit
completion structures with roots constants can only be used as initial building blocks for the trees
with non-anonymous roots in the structure. We denote this operation as: expandCS(x, UC).
Formally, its application updates CS as follows:

• st(x) = exp,

• NEF = NEF ∪ {x · s | ε · s ∈ NEF ′},

• AEF = AEF ∪ {(x, x · s) | (ε, ε · s) ∈ AEF
′},

• ct(x) = ct(ε),

• for all s such that ε · s ∈ NEF ′ , ct(x · s) = ct(ε · s),

• V = V ∪ {p(x) | p ∈ ct(ε)} ∪ {p(x · s) | p ∈ ct(ε · s)},

• A = A ∪ {(p(z), q(y)) | (p(z), q(y)) ∈ A′}, where ε = x, and ε · s = x · s.

The new algorithm A2 has a new rule compared with the original algorithm A1 which we
call Match:

Rule. (xii) Match. For a node x ∈ NEF : if st(x) = unexp, non-deterministically choose a
non-redundant unit completion structure UC with root matching x which satisfies ct(x) and
perform expandCS(x, UC).

The Match rule replaces the expansion rules (i)-(vi) and the applicability rules (vii) Satu-
ration and (x) Contradiction from the original algorithm. In this variant of the algorithm we
still employ the applicability rules (viii) Blocking and (ix) Redundancy introduced in Section
3.3. Note that the local clash conditions regarding contradictory structures or structures which
have local cycles in the dependency graph G are no longer relevant and as such the applicability

89

Algorithm 4.1: Overview of A2.

input : FoLP P , unary predicate p;
output: checks satisfiability of p with respect toP ;

1) Construct the set of non-redundant Unit Completion Structures (UCSs) for P (if not
available already);

2) Construct an A2-initial completion structure CS for p with respect to P as in
Definition 21;

3) S = NEF ;

repeat
Pick up a node x ∈ S such that st(x) = unexp;
S = S − {x};

a) if there is an ancestor y of x: y <F x, y 6∈ cts(P), s. t.:
ct(x) ⊆ ct(y), and
connprG(y, x) = {(p, q) | (p(y), q(x)) ∈ pathsG ∧ q is not free} is empty

then
x is blocked;
st(x) = exp;

end

b) if st(x) = unexp then
non-deterministically choose a unit completion structure UC which
matches x and perform expandCS(x, UC);

i) if st(x) = unexp then
return false;

end

ii) if G contains cycles then
return false;

end

iii) if st(x) = exp and there are k ancestors yi of x in F , 1 6 i 6 k,
y 6∈ cts(P), such that: ct(x) = ct(y), for every 1 6 i 6 k then

x is redundant: return false;
end

end
until S = ∅;
return true;

90

rule (x) Contradiction is dropped. The same for the applicability rule (vii) Saturation. However,
non-local, i.e. constant cycles in G are still relevant, thus rule (xi) Circularity is still employed.

Algorithm 4.1 provides an overview of A2.
In the following we make precise what is the result returned by A2, i.e. when an A2-

completion structure is complete.

Definition 28. A complete A2-completion structure for a unary predicate p with respect to a
FoLP P , is an A2-completion structure that results from applying the rule (xii) Match to an
initial A2-completion structure for p with respect to P , taking into account the applicability
rules (viii)-(ix) and (xi), such that no other rules can be further applied.

The termination ofA2 follows immediately from the usage of the blocking and of the redun-
dancy rule:

Proposition 15. An initial A2-completion structure for a unary predicate p and a FoLP P will
be expanded to a complete A2-completion structure by a finite number of applications of the
rule Match, taking into account the applicability rules (viii)-(ix) and (xi).

The following definition singles out the cases where the algorithms stops unsuccessfully, i.e.
when a clash occurs:

Definition 29. An A2-completion structure for a unary predicate p with respect to a FoLP P ,
CS = 〈EF , ct, st, G〉, is clash-free iff:

1. there is no node x ∈ NEF such that st(x) = unexp,

2. CS is not circular, and

3. EF does not contain redundant nodes.

The algorithm A2 is sound and complete:

Proposition 16. A unary predicate p is satisfiable with respect to a FoLP P iff there is a complete
clash-free A2-completion structure for p with respect to P .

Proof. The soundness of A2 follows from the soundness of A1: any completion structure
computed using A2 could have actually been computed using A1 by replacing every usage of
the Match rule with the corresponding rule application sequence used by A1 to derive the unit
completion structure which is currently appended to the structure.

The completeness ofA2 follows again from the completeness ofA1: any clash-free complete
A1-completion structure can actually be seen as a complete clash-free A2-completion structure.
It is essential here that the discarded unit completion structures were strictly more constraining
than some other (preserved) unit completion structures. Whenever the expansion of a node in the
complete clash-freeA1-completion structure has been performed by a sequence of rules captured
by a redundant unit completion structure, it is possible to construct a complete clash-free A2-
completion structure by using the simpler non-redundant unit completion structure instead. �

91

As we still employ the redundancy rule in this version of the algorithm, a complete A2-
completion structure has in the worst case a double exponential number of nodes in the size of
the program. Consequently:

Proposition 17. A2 runs in the worst-case in non-deterministic double exponential time.

4.5 Discussion and Related Work

A2, the algorithm we described in this chapter, has the same worst-case running time complexity
asA1. The high complexity does not come as a surprise as the scope of the knowledge compila-
tion technique, is saving time by avoiding redundant local computations. The worst-case running
complexity of the algorithm depends on the depth of the trees which have to be explored in order
to ensure completeness of the algorithm: as neither of the two algorithms, A1 or A2, employs
anywhere blocking, the size of the completion is exponential in the maximal depth of the trees
which compose it.

However, it is reasonable to expect A2 will perform considerably better than the original
algorithm in returning positive answers to satisfiability checking queries, while it might still
take considerable time in the cases where a predicate is not satisfiable.

Especially problematic are cases where there exists a unit completion structure which locally
satisfies the predicate checked to be satisfiable, but the predicate is actually unsatisfiable. One
can deal with such situations by employing heuristics like establishing a limit on the depth of
the explored structures: in practice it is highly improbable that if there exists a solution, it can
be found only in an open answer set of a considerable size: actually, it is quite hard to come up
with examples of such situations.

In the next chapter we will describe an algorithm for reasoning with FoLPs which together
with a new redundancy condition, employs also a form of caching across branches, i.e. a node
may reuse the computation performed to justify the content of a node on a different branch,
which will lead to a decrease in the worst-case running complexity of one exponential level. Note
that the form of caching employed there is not anywhere blocking, as the conditions for blocking
and caching are different. The algorithm still uses the technique introduced in this chapter. The
same chapter will describe also an algorithm for reasoning with a restricted fragment of Forest
Logic Programs, called simple Forest Logic Programs, which again will use the knowledge
compilation technique.

4.5.1 Related Work

FDNC Programs

A formalism related to FoLPs is FDNC [Šimkus and Eiter, 2007]. FDNC is an extension of a
fragment of ASP with function symbols, which as FoLPs has the forest model property. FDNC
rules are required to be safe unlike FoLP ones: every variable which occurs in the head of a rule
must occur in a positive literal in the body as well. The complexity for standard reasoning tasks
for FDNC is EXPTIME-complete.

92

The reasoning technique for FDNC programs introduced in [Šimkus and Eiter, 2007] is
similar to the knowledge compilation technique we described in this chapter, in the sense that
it uses blocks in the form of trees of depth 1 called knots to build models. While knots are
structurally similar to unit completion structures, they have different semantic properties.

The content of the root node of a knot serves as a justification for the contents of the suc-
cessor nodes in the knot; in a unit completion structure, the contents of successor nodes are
constraints which have to be fulfilled in order for the content of the root node to hold. As such,
in the case of FDNC, any chaining of knots which contains a knot for every constant in the
program is well-founded. The main property which makes FDNC programs amenable to such a
bottom-up reasoning technique is safeness.

In an alternative work [Bonatti, 2011], the decidability of consistency checking for FDNC
programs has been reformulated in terms of regular splitting sequences [Baral, 2002, Lifschitz
and Turner, 1994] on finitely recursive programs. As mentioned in the related work section
of Chapter 3, FoLPs are not finitely recursive, thus their expressiveness lies outside that of
FDNC programs. In particular, the top-down nature of FoLP rules makes them a suitable device
for reasoning about the past, while the bottom-up structure of FDNC programs makes them a
suitable device for reasoning about the future.

To overcome this limitation of FDNC – that new atoms cannot be derived from structurally
more complex ones, and thus it is not possible to reason about the past, the fragment has been
extended to the case of bidirectional ASP programs with function symbols (BD-programs) [Eiter
and Šimkus, 2009]. BD-programs allow one to talk both about the past and about the future.
The algorithms for reasoning with BD-programs are automata-based and as such their best-case
behaviour coincides with their worst-case behaviour. In terms of complexity, reasoning with
BD-programs is quite hard: already brave reasoning in the case where disjunction is disallowed
is 2EXPTIME-hard.

Knowledge Compilation Technique for ALC KBs

A knowledge compilation technique for reasoning with the Description LogicALC is described
in [Furbach et al., 2009]. The pre-compilation technique consists of two steps. In the first
step, all possible sub-concepts of a concept which are conjunctions of simple concepts and role
restrictions are computed. These sub-concepts are captured by so-called paths which are sets of
simple concepts and role restrictions. Paths which contain contradictory concepts are removed
(these are called links), as well as paths which are super-sets of other paths. Note that this step
is similar to our knowledge compilation method as concerns removing local contradictions and
redundancy. However our way of removing redundancy is much more sophisticated as we also
consider redundancies in the set of dependencies between atoms in the model.

In the second step, role restrictions are considered: all links for ‘potentially reachable’ con-
cepts from the original concept are removed and a so-called linkless graph is obtained. The
method explores the linkless graph for checking concept consistency and answering subsump-
tion queries. Reachability is defined as the transitive closure of the relation between a concept
and each of its role restriction fillers. Unlike there, our knowledge compilation method only
constructs structures of depth one – we consider that pre-computing structures with higher depth
would be an overkill.

93

Pre-processing for DL Tableau Algorithms

In the area of tableau algorithms for DL, several pre-processing techniques were employed suc-
cessfully so far, like normalization and absorption [Horrocks, 2003]. Our method is closest
to normalization, which seeks to eliminate local contradictions and tautologies, and as well to
simplify some concepts.

Abstract Tableau Systems and Their Connection to Automata-Based Procedures

Baader et al. [2003b] investigated the relationship between automata and tableau-based in-
ference procedures for description logics. An abstract notion of tableau system is introduced
together with algorithms which convert such a system in automata-based algorithms.

Tableau systems are schematic tableau algorithms in which termination is abstracted away.
They prescribe how to construct (possibly infinite) models. Such a system manipulates tree-
shaped structures called patterns which can be transformed into other patterns by means of
completion rules. Patterns are also used to capture clash conditions and they may contain beside
a labelled tree some additional information called global memory elements. The depth of trees
in patterns is bounded by a parameter of the tableau system, called pattern depth.

The notion of unit completion structure which we introduced in this chapter is similar to the
notion of a pattern of depth 1, where the dependency graph associated to each such structure
is the global memory stored in the pattern. However, in our case clashes cannot be captured
by patterns of depth 1. One type of clash is the presence of redundant nodes which can be
placed at arbitrary distances from each other along a branch in a completion structure. If we
want to capture clashes by means of tree structures, we have to consider unary trees (paths) of
exponential depth.

Baader et al. [2003b] also defined a notion of pattern inclusion: a pattern is a sub-pattern
of another pattern iff it can be homomorphically embedded in the latter and its global memory
elements are a subset of the global memory elements of the latter. Maintaining the comparison
with our notion of unit completion structures, a UCS is redundant iff the associated pattern is a
super-pattern of a pattern corresponding to another UCS.

In an effort to identify tableau systems for which the underlying reasoning task can be re-
duced to checking emptiness of looping tree automata, the class of EXPTIME admissible tableau
systems is defined. A tableau system is EXPTIME- admissible iff certain assumptions hold re-
garding the time it takes to compute various parts of a tableau system, like labels of nodes and
arcs, global memory elements, whether a pattern is equivalent to another pattern or whether a
pattern constitutes a clash. For tableau systems which fall into this category, the translation to
looping tree automata provides automatically an EXPTIME upper bound for reasoning within
the DL for which the tableau system was designed. Note that an underlying assumption of the
method is that patterns have finite bounded depth. While our tableau algorithm would fulfil all
the conditions for EXPTIME-admissibility, it does not fulfil this underlying assumption – we
need patterns of arbitrary depth to capture clashes. Thus, the automata method does not work
for our algorithm.

Finally, some sufficient conditions are provided for tableau systems to be translatable into ac-
tual tableau algorithms which use blocking as a termination mechanism: in this case the tableau
elements mentioned above have to be only effectively computable. The blocking mechanism

94

is based on pattern-matching: two nodes on the same branch are in a blocking relationship iff
the pattern having as root the descendant node is a sub-pattern of the pattern having as root the
ancestor node. Again, one underlying assumption is the possibility to capture clashes by means
of patterns – thus, unsurprisingly this particular blocking mechanism is not applicable to our al-
gorithm. The abstract framework does however provide an insight into our blocking condition:
the check on the dependency graph G can be seen as a check to exclude clashes which occur in
arbitrarily sized patterns.

95

CHAPTER 5
Optimized Tableau Algorithm for

Reasoning with Forest Logic Programs

This chapter describes A3, an optimized tableau algorithm for reasoning with FoLPs, which
runs in the worst-case in non-deterministic exponential time, one exponential level lower than
its predecessors A1 and A2. Like in the case of A2, a completion structure is constructed by
matching and appending UCSs, but a different strategy is employed for termination.

In particular, the algorithm redefines the notion of redundant nodes: in A3 redundant nodes
are typically identified much earlier than their counterparts in A1. There is no exponential
threshold regarding the depth at which such nodes can occur on a path. The new algorithm
identifies as well when some computation on a branch can be reused during the expansion of
another branch: if a node which is currently selected for expansion is similar to a non-ancestor
node which has been already expanded, the justification of the latter is reused when dealing with
the original node. The new rule which deals with this is called caching. A3 improves also on
the condition used for blocking by A1 and A2, by requiring less bookkeeping than the previous
blocking rule.

In keeping in line with the previous chapters, we call the structure which is evolved by
the algorithm an A3-completion structure. The data structures which are part of such an A3-
completion structure are the same as the ones employed by an A2-completion structure, and as
such we will not provide formal definitions for the notions of (initial) A3-completion structure.
The difference between A3-completion structures and A2-completion structures lies in their
construction: they are evolved using different applicability rules.

Section 5.1 describes the new blocking condition together with some notation which will be
needed for the subsequent rules. The new notion of redundant nodes is introduced in Section
5.2, while the new caching rule is described in Section 5.3.

Section 5.4 describes when an A3-completion structure is complete and clash-free, and it
provides an overview of the algorithm. Section 5.5 shows that A3 terminates by computing an
upper bound on the size of an A3-completion structure: any such structure has a number of
nodes which is at most exponential in the size of the input program. This leads to a worst-case

97

running time behaviour of the algorithm which is non-deterministic exponential in the size of
the input program.

The usage of the caching rule has improved the worst case running time of the algorithm by
one exponential. The new applicability rules are at a first glance not that different from previous
applicability rules. However they rely on different proof strategies, especially on a different
strategy to reduce a (potentially infinite) model to one of a finite bounded size. As was the case
with A1 and A2, such a reduction is part of the completeness proof. The soundness proof and
the completeness proof of A3 are provided in Sections 5.6 and Section 5.7, respectively.

A cursory look at the applicability rules shows that they require extensive bookkeeping and
checking complex conditions regarding dependencies of atoms in the atom dependency graph.
Section 5.8 introduces a restricted fragment of FoLPs, called simple FoLPs, which generalizes
the fragment of acyclic FoLPs, for which the blocking and caching conditions collapse into a
simple subset anywhere blocking condition.

Finally, in Section 5.9 we discuss the results obtained in this chapter and relate them to
existing work.

5.1 New Blocking Rule

The intuition for blocking is as in the case of A1 and A2, to identify pairs of nodes on the same
branch of a completion structure which have similar content, and between which there are no
dependencies according to the dependency graph G. We observe that when checking for such
dependencies between atoms formed with nodes which are in a potential blocking relationship,
it is enough to check just a certain part of the dependency graph G, namely its projection over
the current tree T ; that is, a graph whose nodes have arguments only from T .

Formally, for a given A3-completion structure CS = 〈EF,ct, st, G〉 with EF = (F,ES)
and G = (V,A), for every tree T ∈ F , we define GT to be the graph (VT , AT), where:

• VT = {v ∈ V | arg1(v) ∈ T}, and

• AT = A ∩ (VT × VT).

The new definition for blocked/blocking nodes becomes:

Definition 30. A node x ∈ NEF is blocked iff there is an ancestor y of x in some tree T in F ,
y <T x, y 6∈ cts(P), such that:

• ct(x) ⊆ ct(y), and

• the set connprGT
(y, x) = {(p, q) | (p(y), q(x)) ∈ pathsGT

∧ q is not free} is empty.

We call (y, x) a blocking pair and y is said to be a blocking node.

The blocking rule remains unchanged: a blocked node is marked as being expanded and no
expansions can be performed on such a node.

Intuitively, the new weaker blocking condition is sufficient as every path in G from some
p(y) to some q(x) has to contain a path in GT from some r(y) to q(x): for example, the path

98

c

y

x

p r

q

ds

Figure 5.1: Any path from p(x) to q(y) in G contains a path from r(x) to q(y) in GT

from p(y) to q(x) in Figure 5.1, via s(d) (the dashed path), contains the path from r(y) to q(x)
(the dashed bold path), which is a local path, a path with nodes only from Tc.

5.2 Revisiting Redundancy

As discussed in Section 3.3.3, due to its complexity, the blocking condition might never be
fulfilled while exploring a finite number of nodes on any given branch. A1 and A2 use as an
extra condition to ensure termination a redundancy rule that consist in aborting the expansion
of a branch once a certain number of nodes with equal content has been encountered on the
branch. In this section we introduce a more refined strategy for aborting the expansion of a
branch which requires some extra bookkeeping regarding the dependencies between atoms in
the partially constructed model.

In particular, for each unary atom we keep track of the set of oldest paths in the dependency
graph G in which the atom occurs, where by ‘oldest’ path we understand a path containing a
unary atom whose argument has the smallest depth in the tree/interconnected forest among all
the unary atoms occurring in such paths. By intersection of a set of paths with a node x, we
understand the maximal set of unary predicate symbols S such that for every unary predicate
p ∈ S, it is the case that p ∈ ct(x) and p(x) occurs in one of the paths in the set.

The general idea is that, at any point during the construction of a forest model, the intersec-
tion of the set of oldest paths running along a branch of the forest with subsequent nodes on the
branch with equal content should be minimized. Whenever two nodes x and y, x < y, on the
same branch of an A3-completion structure, have equal content, and the intersection of the set
of oldest paths with x (the node ‘above’) is included in the intersection of the set of oldest paths
with y (the node ‘below’), y said to be redundant and the computation is aborted, i.e. the pres-
ence of such a node constitutes a clash. Nodes with identical content are allowed on the same
branch, only if every subsequent occurrence of such a node shrinks the set of oldest paths. While

99

before failure was detected only when reaching a node of exponential depth, the new strategy
potentially identifies failure much earlier.

In order to implement the new strategy we introduce some notations: by rank of a unary
atom a = p(x) whose argument x belongs to a tree T we understand the minimum between the
depth of x in T and the smallest depth of a node y ∈ T such that there exists a unary predicate
q with (q(y), p(x)) ∈ connGT

, where GT is as defined in Section 5.1. Formally:

rank(p(x)) = min({||x||} ∪ {rank(a) | (a, p(x)) ∈ connGT
})

The notation is extended to nodes: the rank of a node x is the minimum among the ranks of
the unary atoms formed with predicates in the label of the node and the node itself:

rank(x) = min
p∈ct(x)

rank(p(x))

We also denote with isp(k, x) the set of intersections of paths which start at level k with the
content of a node x (presuming ||x|| > k):

isp(k, x) = {p | rank(p, x) = k, p ∈ ct(x)}.

Example 27. Let P be the following FoLP:

r1 : smember(X) ← supportedBy(X ,Y), smember(Y)
r2 : smember(X) ← supportedBy(X ,Y), rmember(Y),

supportedBy(X,Z), rmember(Z),
Y 6= Z

r3 : supportedBy(X ,Y) ∨ not supportedBy(X ,Y) ←
r4 : ← smember(X), rmember(X)
r5 : rmember(X) ← involvedIn(X ,Y), project(Y)
r6 : involvedIn(X ,Y) ∨ not involvedIn(X ,Y) ←
r7 : project(j) ←

According to P , an individual is a special member of an organization (smember) if he has
the support of another special member (rule r1), or if he has the support of two regular members
of the organization (rmember) (rule r2). The binary predicate supportedBy which describes the
‘has support’ relationship is free (rule r3). No individual can be at the same time both a special
member and a regular member (constraint r4). Somebody is a regular member if he is involved
in some project (rule r5). The binary predicate involvedIn which describes the ‘involved in a
project’ relationship is free (rule r6). Finally, there is a project j (fact r7).

Figure 5.2 depicts a complete clash-freeA2-completion structure for smember with respect
to P from which a forest model can been derived. For clarity, negative predicate symbols which
occur in the content of nodes/arcs are not explicitly listed in the figure - however, it is assumed
that every unary/binary predicate symbol which does not appear explicitly in its positive form in
the content of some node/arc, is part of the respective content in its negated form. The solid arcs
between positive predicate symbols represent the arcs in the dependency graph associated with
the structure.

100

x smember

y smember

z rmember t rmember

j project

supportedBy

supportedBysupportedBy

involvedIn

involvedIn

Figure 5.2: Complete clash-free A2-completion structure with explicit dependency arcs

From Figure 5.2, it can be seen that every unary atom in the model induced by the structure
can be reached by a path starting with smember(x) or project(j). As x and j are roots of
trees in the forest model, smember(x) and project(j) have rank 1. Thus, all unary atoms
in the model have rank 1. It is also the case that isp(1, x) = isp(1, y) = {smember} and
isp(2, t) = ∅.

Given the new notations, the notion of redundant node becomes:

Definition 31. A node x ∈ NEF is redundant iff st(x) = exp and there is an ancestor y of x in
F , y <F x, y 6∈ cts(P), such that:

• ct(x) = ct(y),

• rank(x) = rank(y) = r, and

• isp(r, x) ⊇ isp(r, y).

We call (y, x) a redundancy pair and say that y is the redundancy witness for x.

The redundancy rule remains unchanged: the presence of a redundant node constitutes a
clash and as such the expansion process is stopped when such a node is identified.

Example 28. Consider the A2-completion structure depicted in Figure 5.2. The structure is not
an A3-completion structure as y is a redundant node. The redundancy witness is node x:

101

x (a, 1), (b, 1) (c, 2)

y (a, 1), (b, 1), (c, 1)

Figure 5.3: Redundancy: y is redundant ct(x) = ct(y) and isp(x, 1) ⊆ isp(y, 1)

• ct(x) = ct(y) = {smember,not rmember,not project},

• rank(smember(x)) = rank(smember(y)) = 1, and

• isp(1, x) = isp(1, y) = {smember}.

Example 29. Consider also a generic example: Figure 5.3 shows an extract from an A3-
completion structure in which every unary predicate p in the content of a node x is augmented
with the rank of p(x). The arcs between predicates in the content of some nodes are arcs in
the dependency graph: thus, G contains arcs from b(x) to a(y), b(y), and c(y), respectively.
As rank(b(x)) = 1, we also have that: rank(a(y)) = rank(b(y)) = rank(c(y)) = 1. As a
consequence: isp(1, x) = {a, b}, isp(2, x) = {c}, and isp(1, y) = {a, b, c}.

Clearly ct(y) = ct(x) = {a, b, c} and rank(x) = rank(y) = 1. Furthermore, the set of
oldest paths inGwhich traverse both x and y is expanding from x to y, i.e. isp(1, y) ⊇ isp(1, x).
Thus, y is redundant.

Intuition: Both strategies for identifying redundant nodes, i.e. the one used in the case of
A1/A2 and the one used by A3, are related to techniques for reducing an infinite forest model
to a finite one that are used in the completeness proofs of the algorithms. The general principle
behind such a reduction is to consider nodes in the infinite model which are on the same infinite
length branch and have equal content, and to collapse the two nodes by deleting the path between
them (together with all the paths which start at nodes on this path). However, nodes with equal
content cannot be indiscriminately collapsed: some extra conditions have to be met in order for
the remaining structure to be a minimal model.

In the case of A1/A2, the technique used for reducing a model was to first identify for each
infinite branch blocking pairs (nodes with equal content with no dependencies via paths in the
dependency graph) and then collapse nodes with equal content found on the same branch, if the
set of dependency paths in between a ‘reference’ node and the first node is included into the set
of dependency paths between the reference node and the second node. Some extra conditions
had to be met for collapsing the two nodes, like that there was no blocking node between them.
By using this technique for reducing models, it is possible to obtain a bound on the branch size
in forest models. However, the specific conditions necessary for safely collapsing nodes can
only be checked at ‘proof time’, but not at ‘construction time’, as the set of blocking pairs has

102

to be known a priori. For this reason at construction time it was possible to only use the bound
established by this technique, but not the technique itself.

The new technique for reducing models does not use any fixed reference point when com-
paring nodes with equal content. Furthermore, except for checking subset inclusion of the in-
tersections with the set of oldest paths which traverse the two nodes, no extra condition has to
be met before collapsing the nodes. The information about rank and isp is known at construc-
tion time, thus the technique can be replicated during the algorithm, too. Unlike the previous
technique for establishing the finite bounded model property, the current one, while scanning a
branch of a model, does not look for a blocking pair from the outset: it identifies and collapses
redundant nodes, until eventually the branch ends a blocking pair is found. Intuitively, this is
possible as for infinite branches, by always chasing the set of oldest paths in the dependency
graph running along the branch (and exhausting them in a finite number of steps), we reach a
point where there are no running paths between two nodes of the branch (within finite distance
of each other). Due to fact that the branch is infinite we eventually reach two nodes with equal
content having this property which are then naturally in a blocking relation. More details are
provided in the completeness proof in Section 5.7.

5.3 Caching

Blocking can be generalized to a form of anywhere blocking which we call here caching, where a
node reuses the justification/expansion of another node which is not on the same branch. Again,
the typical condition regarding subset inclusion of the contents of the nodes has to be fulfilled.
In addition, a condition regarding the intersections of different sets of paths in the dependency
graph which start at some common ancestor of the two nodes with the nodes themselves has to
be fulfilled. Formally:

Definition 32. A node y ∈ Tc is said to be cached iff there is a node x ∈ Tc, x /∈ cts(P) such
that:

• ct(y) ⊆ ct(x),

• isp(r, y) ⊆ isp(r, x), for every 1 6 r 6 ||z||, where z is the lowest common ancestor of
x and y: z = lcaTc(x, y);

• if rank(y) = 1, then: connprGTc
(c, y) ⊆ connprGTc

(c, x), and

• rightTc(y, x).

We call (x, y) a caching pair and x a caching node.

A cached node is no longer expanded (it is expanded ‘by default’ due to its status):

Rule. (xiii) Caching. Let x be a cached node. Then, set: st(x) = exp.

Intuition. As was the case with blocking, a cached node will be expanded in a similar way
to its corresponding caching node, or in other words reuses the justification of the caching node.

103

u

z

x y

x · 1 . . . x · i . . . x · n y · 1 . . . y · i . . . y · n

v v′

c

Figure 5.4: Justifying a cached node y by replicating the justification of its corresponding
caching node x

One prerequisite for this is that the content of the cached node is a subset of the content of the
caching node.

Like in the case of blocking, the content of a cached node y in a caching pair (x, y) can be
justified in two different ways: either by copying the subtree Tx at y or by reusing the successors
of x as successors of y. In the first case (depicted in Figure 5.4), it has to hold that (1) if (u, v) is
a blocking pair, with v being a leaf node in Tx, and v >T z, where z = lcaT (x, y), then (u, v′)
is still a blocking pair, where v′ is the copy of v in the new subtree Ty. In the second case, the
obtained model is no longer forest-shaped and one has to check that (2) no cycles are introduced
in G: this is the approach taken in the Soundness proof and it is described in Section 5.6. The
second condition in Definition 32 ensures that (1) and (2) hold.

Furthermore, in case x and y have rank 1, i.e. there are paths inGTc from unary atoms having
as argument the root c of the tree Tc to which x and y belong, to atoms having as arguments the
two nodes in question, the condition regarding the intersection of the sets of these paths with the
two nodes has to be stronger: it is no longer enough that isp(1, y) ⊆ isp(1, x), but for every
path from some p(c) to some q(y) in GTc there must be a path from p(c) to q(x) in GTc . This
is needed in order to prevent the formation of cycles in G when connecting nodes from different
trees in EF , including Tc, which contain cached nodes.

Example 30. Figure 5.5 depicts such a situation: x and y are nodes in a tree Tc and there is a
path from p(c) to r(x), as well as from q(c) to r(y). Thus, isp(1, y) = isp(1, x). However, x
and y do not form a caching pair: by reusing the justification of the content of x when expanding
the content of y a cycle would be created in the dependency graph. This is due to the existence of
a path from p(c) to q(c) via an atom having as argument an external node d: this would translate
into a path from q(c) to q(c) (a cycle) when replicating the justification of y for x. The extra

104

c p q

x r y r

ds

Figure 5.5: While isp(1, y) ⊆ isp(1, x), if x and y form a blocking pair and y reuses the
justification of x, a cycle is formed in G

caching condition takes care of this possibility: x and y can be cached iff connpr(c, y)GTc
⊆

connprGTc
(c, x), in this case iff {(q, r)} ⊆ {(p, r)}, which is not the case.

Finally, the last condition in Definition 32 is imposed in order not to have nodes which
mutually reuse each other’s justification, where each node caches some ancestor of the other
node. In conjunction with this condition, in order to ensure an exhaustive application of the
caching rule (a node can be cached only when it is unexpanded), we also impose the following
strategy for the expansion of a completion structure: “a node x ∈ T ∈ F can be expanded iff
every node y such that rightT (y, x) holds is expanded”. In other words, the completion should
be expanded in a depth-first, left-to-right fashion. The Match rule is modified to reflect this new
expansion strategy:

Rule. (xii′) Match. For a node x ∈ NEF : if st(x) = unexp and for every node y such that
rightT (y, x) holds, st(y) = exp, non-deterministically choose a unit completion structure UC
which matches x and perform expandCS(x, UC).

Example 31. Figure 5.6 depicts an A3-completion structure for smember with respect to the
FoLP P introduced in Example 27 in which every node except t is expanded: note that the
completion structure contains no redundancy pair.

We have that:

• y = lcaT (z, t),

• ct(t) ⊂ ct(z), and

• connprGTy
(y, z) = connprGTy

(y, t) = {(smember, rmember)}.

Thus, z and t form a caching pair: t will be expanded similarly to z either by reusing the
successors of z or by replicating the expansion of z. In this case, no matter which type of
justification is used for the content of the caching node, the same result is obtained: the only
successor of z is the constant j; thus, even if we choose to replicate the expansion of z, no new
successor is introduced, but j is reused instead.

105

y
smember
not rmember
not project

z

rmember
not smember
not project

t rmember

j
project

not smember
not rmember

supportedBy,
not involvedIn

supportedBy,
not involvedIninvolvedIn,

not supportedBy

Figure 5.6: An A3-completion structure in which (z, t) is a caching pair

5.4 Overview of A3

We start as usually with the definitions of complete A3-completion structure and clash-free A3-
completion structure:

Definition 33. An A3-completion structure for a unary predicate p with respect to a FoLP
P , is complete if it results from the repeated application of rule (xii′) Match to an initial A3-
completion structure for p with respect to P , taking into account the applicability rules (viii)
Blocking, (ix) Redundancy, (xi) Circularity, and (xiii) Caching such that no rules can be further
applied.

Note that in the definition above it is assumed that the blocking rule and the redundancy
rule used the new definitions for blocked nodes and redundant nodes, respectively, that were
introduced in this chapter.

As regards clash conditions, similarly to the previous version of the algorithm, the presence
of redundant nodes and of cycles in G constitutes a clash. Also, every terminal node should be
expanded (possibly by virtue of being a blocked or a cached node).

Definition 34. An A3-completion structure CS = 〈EF , ct, st, G〉 is clash-free iff:

• it is not circular,

• it contains no redundant node, and

• for every x ∈ NEF : st(x) = exp.

An overview of the algorithm A3 for checking satisfiability of p with respect to a FoLP P is
provided by Algorithm 5.1.

The algorithm receives as input besides p, the predicate checked to be satisfiable, and P , the
FoLP under consideration, also the set UCS(P) of pre-computed non-redundant unit completion

106

Algorithm 5.1: Overview of A3, an optimized non-deterministic algorithm to check sat-
isfiability of unary predicates with respect to FoLPs.

input : a FoLP P , a unary predicate p, the set UCS(P) of non-redundant UCSs for P ;
output: yes, if p is satisfiable with respect to P ; false, otherwise;

1) Let CS = 〈EF , ct, st, G〉 be an initial A3-completion structure for p w.r.t. P ;
2) S := NEF ;
repeat

Pick up a node x ∈ S such that st(x) = unexp;
S := S − {x};
Apply one or several of the followings rules (in decreasing order of priority):

a) if there is an ancestor y of x: y <F x, y 6∈ cts(P), such that
ct(x) ⊆ ct(y) and connprGTc

(y, x) = ∅, where x ∈ Tc then
x is blocked;
st(x) := exp;

end
b) if there is a node y ∈ Tc − cts(P) such that st(y) = unexp,
rightTc(x, y), ct(x) ⊆ ct(y), and for all 1 6 r 6 ||z||:
isp(x, r) ⊆ isp(y, r), where z = lcaTc(x, y), and if rank(y) = 1:
connprGTc

(c, y) ⊆ connprGTc
(c, x) then

x is cached;
st(x) = exp;

end
c) if st(x) = unexp and for every y ∈ Tc such that rightTc(y, x):
st(y) = exp then

non-deterministically choose a unit completion structure UC which
matches x and perform expandCS(x, UC);
i) if st(x) = unexp then

return false;
end
ii) if G contains cycles then

return false;
end
iii) if st(x) = exp and there is a node y <F x, y 6∈ cts(P), s. t.:
ct(x) ⊆ ct(y),
rank(x) = rank(y) = r, and
isp(r, x) ⊇ isp(r, y)

then
x is redundant: return false;

end
end

until S = ∅;
return true;

107

structures for P . Then, one by one, the nodes of the completion in construction are selected for
expansion. As the blocking and caching conditions can be checked before a node is actually
expanded and in case they are fulfilled the respective node should not be expanded, the blocking
rule (step a)) and caching rule (step b)) have higher priority than the matching rule (step c)),
which takes care of the expansion.

If a node is still unexpanded even after applying the matching rule (step c) i)), there is a
clash, and thus the procedure returns without success (as the algorithm is non-deterministic it
does not mean that the predicate checked to be satisfiable is actually not satisfiable, but rather
that the current attempt to witness its satisfiability failed).

The subsequent steps of the algorithm check the remaining clash conditions: at step c) ii)
it is checked whether the graph G is still acyclic (no cycles have been introduced during the
expansion of the current node). Then, step c) iii) checks whether the newly expanded node is a
redundant node using the conditions from the new redundancy rule.

Finally, if every node has been considered and it is either expanded, blocked, or cached, the
algorithm is successful, i.e. the predicate checked to be satisfiable is indeed satisfiable.

5.5 Termination and Complexity

In this section we show thatA3 terminates and that in the worst case it runs in non-deterministic
exponential time: first, a bound is computed on the path length in any A3-completion structure,
and then, using this result, on the total number of nodes in any A3-completion structure. Both
bounds are exponential in the size of the input FoLP P . A necessary condition to obtain the
latter result is the usage of the caching rule.

Proposition 18. Every branch in anA3-completion structure for a unary predicate p and a FoLP
P has at most an exponential number of nodes in the size of P .

Proof. We show that any branch has at most

(n2n − 1)(2n − 1) + n2n = n22n − 2n + 1 nodes,

where n = |upreds(P)|. Assume the opposite. Then, there exists a branch in a tree T with at
least:

(n2n − 1)(2n − 1) + n2n + 1 nodes.

There is a finite number of nodes with different contents, viz. 2n many, on any branch in
the completion structure and in the completion structure itself. As such, there must be a set
S ∈ 2upreds(P), and a sequence of non-terminal nodes (xi)16i6n2n belonging to the branch such
that: ct(xi) = S, for every 1 6 i 6 n2n.

We use the following lemma:

Lemma 11. Let x1, . . . , xn2n be a sequence of nodes as defined above. Then xn2n is either a
redundant or a blocked node.

Proof. Let r1, . . . , rn be the ordered sequence of ranks of unary predicates in ct(x1) such
that:

108

•
⋃

16j6n{rj} = {k | p ∈ ct(x1) ∧ rank(p(x1)) = k};

• rj > rj+1, for every 1 6 j < n;

• if l = |{k | p ∈ ct(x1) ∧ rank(p(x1)) = k}| < n, then ri = max{k | p ∈ ct(x1) ∧
rank(p(x1)) = k}, for every i > l.

We show by induction that in case xn2n is not redundant, for every 1 6 j 6 n: rank(xj2n) >
rj . Intuitively, this captures the fact that there is no path in GT from an atom with rank less or
equal to rj to an atom having as argument xj2n .

Base case: j = 1. If (x1, x2n) is a blocking pair the claim is obvious. We now prove that
rank(x2n) > r1 in the case where (x1, x2n) is not a blocking pair. We have that rank(xi) >
rank(x1) = r1, for 1 6 i 6 2n, and (xi, xk) is neither a blocking nor a redundancy pair, for
any 1 6 i < k 6 2n. Assume that rank(x2n) = r1. Then rank(xi) = r1, for 1 6 i 6 2n, and
isp(xi, r1) 6⊆ isp(xk, r1), for any 1 6 i < k 6 2n (otherwise (xk, xi) would be a redundancy
pair). But |{S | S = isp(x, r), for some x ∈ NEF and r ∈ N}| = 2n, which contradicts the
previous statement. Thus, the original assumption was false and rank(x2n) > r1.

Induction case: if rank(xj2n) > rj , for a certain 1 6 j < n, we show that rank(x(j+1)2n) >
rj+1. Again, we assume the opposite. Then, rank(xj2n+k) = rj+1, for every 1 6 k 6 2n. Us-
ing a similar argument to the one from the base case, we obtain a contradiction.

Thus, rank(xj2n) > rj , for every 1 6 j 6 n, and in particular, rank(xn2n) > rn. As
rank(p, x1) 6 rn, for every p ∈ ct(x1), it follows that rank(p, x1) < rank(xn2n), for every
p ∈ ct(x1). This translates into the fact that the set of oldest paths in GT traversing xn2n

started at a node below x1, and thus there are no paths in GT running between x1 and xn2n . As
ct(x1) = ct(xn2n), this implies that (x1, xn2n) is a blocking pair and thus xn2n is a blocked
node. This proves the lemma. �

Every redundant or blocked node is a leaf node, thus Lemma 11 implies that xn2n has to be a
leaf node as well. But this is a contradiction as every node xi, for 1 6 i 6 n2n, is non-terminal.
Thus, the original assumption was false: a branch has at most n22n − 2n + 1 nodes, where
n = |upreds(P)|. �

Furthermore, it is possible to show that a complete A3-completion structure has at most an
exponential number of nodes. Note that a complete A2-completion structure had in the worst
case a double exponential number of nodes in the size of the program. The exponential drop in
the bound on the number of nodes is due to the interplay between the caching and the redundancy
rule:

Proposition 19. A complete A3-completion structure for a unary predicate p and a FoLP P has
at most an exponential number of nodes in the size of P .

Proof.
We associate with every node in a complete A3-completion structure x ∈ Tc, Tc ∈ F , a

function:
fx : upreds(P)→ 2upreds(P) × {r | 0 6 r 6 n22n − 2n + 1},

where n = |upreds(P)|. The function is defined as follows:

109

fx(p) =


(∅, 0), if p 6∈ ct(x);

(∅, rank(p(x)), if rank(p(x)) > 1;

({q | (q, p) ∈ connprGTc
(c, x)}, 1), if rank(p(x)) = 1

The number of such functions is:

F = |2upreds(P) × {r | 0 6 r 6 n22n − 2n + 1}||upreds(P)| = (2n(n22n − 2n + 1))n,

which is exponential in n.
In the following we show that every two nodes which are in the same tree Tc in CS, but on

different branches in Tc, and which have associated identical functions form a caching pair. Let
x and y be such that rightTc(y, x) and fx and fy agree for every input value. Then:

• for every p ∈ upreds(P): p /∈ ct(x) iff p /∈ ct(y), or in other words ct(x) = ct(y);

• for every p ∈ ct(x)/ct(y): rank(p(x)) = rank(p(y)). Thus, isp(r, x) = isp(r, y) for
every 1 6 r 6 n22n − 2n + 1;

• connprGTc
(c, x) = connprGTc

(c, y), if rank(x) = rank(y) = 1.

It is clear then that (x, y) is a caching pair.
For every tree T ∈ F consider now the tree T ′ obtained by removing all cached nodes from

T together with all redundant nodes and their successors. Due to the construction of EF we
have that at any time there is at most a redundant node in the completion structure. As such,
|T ′| > |T | − |fr(T)| − 1, where fr(T) is the frontier of T (we remove at most |fr(T)| + 1
nodes from T , as cached nodes and successors of redundant nodes are nodes in fr(T)). We have
that |fr(T ′)| 6 F , otherwise there would be two nodes x, y ∈ fr(T ′) such that fx = fy, and
thus x and y form a caching pair - this is in contradiction with the fact that T ′ does not contain
any cached node.

Thus, |fr(T ′)| is exponential in n, the depth of T ′ is also at most n22n−2n, and the number
of nodes in T ′ is exponential in n. As the maximum degree of T is bounded by degree(P), it
follows that |fr(T)| is bounded again by an exponential in the size of P . Hence, |T | is bounded
by an exponential in the size of P . As the number of trees in a completion structure is at most
cts(P) + 1, it follows that there are at most an exponential number of nodes in the size of P in
any complete A3-completion structure. �

The following complexity result is an immediate consequence of Proposition 19:

Corollary 6. A3 runs in the worst case in non-deterministic exponential time.

5.6 Soundness

In this section we prove that algorithm A3 is sound. Note that the proof is quite involved and as
such it will use a number of lemmas.

110

Proposition 20 (Soundness of A3). Let P be a FoLP and let p ∈ upreds(P). If there exists a
complete clash-free A3-completion structure for p with respect to P , then p is satisfiable with
respect to P .

Proof. From a clash-free complete completion structure for p with respect to P , we construct
an open interpretation, and show that this interpretation is an open answer set of P that satisfies
p. Let 〈EF , ct, st, G〉 be such a clash-free complete completion structure with EF = 〈F,ES 〉
the interconnected forest andG = (V,A) the corresponding dependency graph, and let bl and ch
be the sets of blocking pairs and caching pairs corresponding to the completion. Let blocked =
{y | (x, y) ∈ bl} and cached = {y | (x, y) ∈ ch} be the sets of blocked and cached nodes,
respectively.

1. Construction of the open interpretation.

We construct a new graph Gext = (Vext , Aext) by extending G in the following way:
for every blocking pair and caching pair, the content of the blocking/caching node is
copied into the content of the blocked/cached node, and all connections from the block-
ing/caching node to its successors or within itself are replicated by connections from the
blocked/cached node to the successors of the blocking/caching node or within itself (or,
in other words, the content of the blocked/cached node is identical to the content of the
blocking/caching node and it is motivated in a similar way):

• Vext = V ∪ {ax|y | a ∈ V ∧ arg1(a) = x ∧ (x, y) ∈ bl ∪ ch};
• Aext = A ∪ {(ax|y, bx|y) | (a, b) ∈ A ∧ arg1(a) = x ∧ (x, y) ∈ bl ∪ ch};

Then, let (U,M) be the following open interpretation:

• U = NEF , i.e., the universe is the set of nodes in the interconnected forest, and

• M = Vext , i.e., the interpretation corresponds to the set of nodes in the extended
graph.

Before showing that (U,M) is an open answer set, i.e. thatM is a minimal model of PMU ,
we also extend the interconnected forestEF with arcs from every blocked/cached node to
all successors of the corresponding blocking/caching node. This gives rise to an extended
forest EF ext = (F,ESext), where:

ESext = ES ∪ {(y, z) | (x, y) ∈ bl ∪ ch ∧ (x, z) ∈ AEF}.

For every c ∈ cts(P) ∪ {ε}, we denote with T extc the extended tree induced by EF ext.
The extended forest captures in a more accurate way the structure of M : blocked/cached
nodes are connected to successors of the corresponding blocking/caching nodes, as their
contents are justified similarly to the content of the blocking/caching nodes. Figure 5.7
depicts how an interconnected forest is extended in the case where it contains a caching
pair (x, y).

111

z

x y

x · 1 . . . x · i . . . x · n

c

Figure 5.7: Justifying a cached node y by reusing the successors of its corresponding caching
node x

2. M is a model of PMU . We observe that M |= PMU if M |= PU . In the following we will
show that M |= PU . We start with some helping lemmas.

Lemma 12. Let (x, y) ∈ bl ∪ ch and Gext = (Vext , Aext) be constructed as described
above. Then, for any ground rule r ∈ PNEF

: Vext |= r iff Vext |= rx||y iff Vext |= ry||x.

Proof. By construction of Vext . �

Lemma 13. Let UC = 〈EF,ct, G〉 be a unit completion structure for a FoLP P with
root ε, where EF = (F,ES), and G = (V,A). Then, the following holds:

V |=
⋃

r∈PNEF

r(arg1(head(r)))||ε.

Proof. By construction of a unit completion structure: the root node of UC, ε, is
saturated. Hence, every rule which might deduce something about atoms having ε as the
first argument is satisfied by V . �

Returning to the actual proof ofM being a model of PU , we first observe that the following
identity holds as regards PU :

PU =
⋃
x∈U

⋃
r∈PU

rarg1(head(r)))||x.

112

Consequently, in the following we will show that for every node x ∈ U :

M |=
⋃
r∈PU

rarg1(head(r))||x (5.1)

That is, all rules in PU which might deduce atoms having as first argument a certain
individual x, are satisfied by M .

We distinguish between:

• (i) x 6∈ blocked∪ cached. Then, at some point during the construction of CS, x has
been expanded by replacing it with a unit completion structureUC = 〈EF ′,ct′, G′〉,
where G′ = (V ′, A′). According to Lemma 13: V ′ |=

⋃
r∈PNEF ′

rarg1(head(r))||ε.

Then (V ′)ε||x |=
⋃
r∈PNEF ′

rarg1(head(r))||x. We have that (V ′)ε||x ⊆M , and thus:

M |=
⋃

r∈PNEF ′

rarg1(head(r))||x (5.2)

We next observe that for every rule r ∈ PU such that:

rarg1(head(r))||x /∈
⋃

r∈PNEF ′

rarg1(head(r))||x,

it is the case that:

M 6|= rarg1(head(r))||x (5.3)

Intuitively, the body of rarg1(head(r))||x must contain a successor ground term t
which is not a successor of x in EF and an atom of the form f(x, t); otherwise,
rarg1(head(r))||ε ∈

⋃
r∈PNEF ′

rarg1(head(r))||ε, and consequently rarg1(head(r))||x /∈⋃
r∈PNEF ′

rarg1(head(r))||x. But, by construction of the open interpretation (U,M),

for every atom atom of the form f(x, y) ∈ M , where x is neither blocked, nor
cached, y ∈ succEF (x). Thus f(x, t) is not satisfied by M and rarg1(head(r))||x is
not satisfied by M , either.
From (5.3) and (5.2), (5.1) follows.

• (ii) suppose x ∈ blocked∪cached. Then, according to Lemma 12, for every r ∈ PU :
M |= rarg1(head(r))||x iffM |= (rarg1(head(r))||x)y||x iffM |= rarg1(head(r))||y, where
y is the corresponding blocking or caching node. ThatM |= rarg1(head(r))||y follows
from case (i).

3. M is a minimal model of PMU . Before proceeding with the actual proof we introduce a
notation and a lemma which will prove useful in the following. By ‘local’ cycles in G
we denote cycles in which all unary atoms have identical arguments or there are no unary
atoms. All other cycles in G are said to be ‘non-local’.

113

The following lemma associates paths in the dependency graphs G/Gext to paths in the
underlying interconnected/extended forest: EF/EF ext. It basically says that by project-
ing a path in the dependency graph on the arguments of every atom in the path and elim-
inating all binary arguments and redundant unary arguments, one obtains a path in the
extended forest.

Lemma 14. Let Pt = (a1, . . . , an) ∈ pathsG/pathsGext , with pred(a1) ∈ upreds(P),
and pt = (b1, . . . , bp) be a tuple obtained by considering the arguments of unary atoms
in Pt in the order in which these atoms appear in Pt, and by eliminating successively
occurring duplicates. Formally, bi = arg1(aki), for every 1 6 i 6 p, where (k1, . . . , kp)
is a sequence of indices, 1 6 ki 6 n, which satisfies the following conditions:

• ki < kj , for every 1 6 i < j 6 n;

• for every 1 6 i 6 n, there exists 1 6 j 6 p such that kj = i iff all of the following
hold:

– pred(ai) ∈ upreds(P);
– i = 1 or pred(ai−1) ∈ bpreds(P) or pred(ai−1) is different from pred(ai).

Then, pt ∈ pathsEF/pathsEFext . We will also call pt, the argument path of Pt and
denote it as argpath(Pt).

Furthermore, if Pt is a non-local cycle in G/Gext , than pt is a cycle in EF/EF ext.

Example 32. Let

Pt1 = (a(x), f(x, y), d(y), g(y, z), b(z), c(z))

be a path in G, and

Pt2 = (a(x), b(x), f(x, y), c(x), d(y), f(y, x), a(x))

be a path in Gext.

The projection of Pt1 on the arguments of unary atoms is (x, y, z, z). By eliminating
successive duplicates we obtain that: argpath(Pt1) = (x, y, z), which is a path in EF .
In the case of Pt2, its projection on the arguments of unary atoms is (x, x, x, y, x). Again,
by eliminating successive duplicates we obtain thatargpath(Pt2) = (x, y, x), which is a
path in EF ext. Further on, argpath(Pt2) is a cycle in EF ext; this is due to the fact that
Pt2 is a cycle in Gext.

Proof. [Lemma 14] We construct a sequence of pairs of indexes ((k1, q1), . . . , (kp−1,
qp−1)) such that ki is the greatest index for which args(aki) = bi and qi is the smallest
index for which args(aqi) = bi+1, for every 1 6 i < p.

Then, we consider subpaths of Pt of the form (aki , . . . , aqi), for 1 6 i < p. Every
such subpath has the form: (p(bi), f1(bi, bi+1), . . . , fs(bi, bi+1), q(bi+1)), with p, q ∈

114

upreds(P), f1, . . . , fs ∈ bpreds(P), and s > 0 (if s = 0 there is no binary atom in the
subpath). Thus, (bi, bi+1) ∈ A/A′ for every 1 6 i < p and pt is a path in EF/EF ext.

If Pt is a cycle, then a1 = an and args(an) = args(aqp−1) = bp. Then, args(a1) =
b1 = bp, and thus, pt is a cycle as well. �

Now we can proceed to the actual proof of minimality of M . Assume there is a model
M ′ ⊂ M of Q = PMU . Then there exists some l1 ∈ M such that l1 /∈ M ′. Take a
rule r1 ∈ Q of the form l1 ← β1 with M |= β1; note that such a rule always exists
by construction of M and expansion rule (i). If M ′ |= β1, then M ′ |= l1 (as M ′ is a
model), a contradiction. Thus, M ′ 6|= β1, and there must be the case that there exists some
l2 ∈ β1 such that l2 /∈ M ′. Continuing with the same line of reasoning, one obtains an
infinite sequence {l1, l2, . . .} with (li ∈ M)16i and (li /∈ M ′)16i. However, M is finite
(the complete clash-free completion structure has been constructed in a finite number of
steps, and when constructing M (Vext) we added only a finite number of atoms to the
ones already existing in V). Hence, there exist 1 6 i, j, i 6= j, such that li = lj . We
observe that (li, li+1)16i ∈ Aext by construction of Aext and by the definition of the (i)
Expansion-Unary-Positive rule, so our assumption leads to the existence of a cycle in
Gext .

Assume Gext has a cycle C = (a1, . . . , an = a1). As G does not have any cycle (by
construction), every cycle in Gext is a result of introducing new nodes/arcs in G: conse-
quently, every cycle must contain at least one atom having as an argument a blocked or a
cached node.

The potential cycles in Gext fall in one of the following categories:

• ‘local’ cycles: as previously introduced, cycles in which all unary atoms have iden-
tical arguments or there are no unary atoms.

• ‘caching’ cycles: non-local cycles in which some atoms have as arguments cached
nodes, but there is no atom which has as one of its arguments a blocked node;

• ‘blocking’ cycles: non-local cycles in which some atoms have as arguments blocked
nodes.

We show by reductio ad absurdum that each of these types of cycles cannot appear in
Gext .

Lemma 15. There are no local cycles in Gext .

Proof. Assume C = (a1, . . . , an = a1) is a local cycle in Gext . Then C contains only
atoms of the form p(x), and f(x, y), for p ∈ upreds(P), f ∈ bpreds(P), and x, y ∈ NEF .
Assume x ∈ blocked/cached. Then let z ∈ NEF be such that (z, x) ∈ bl/ch. Then
Cx|z = ((a1)x|z, . . . , (an)x|z = (a1)x|z) is a cycle in G. Contradiction with the fact that
there are no cycles in G. �

In the following we will denote as:

115

c d

x

z

y

c

x

z

y

x · i

a) the caching arc goes outside the original tree b) the caching arc stays within the original tree

Figure 5.8: The argument path of a caching cycle

• ‘blocking arc’: an arc of the form (y, x · i), where (x, y) is a blocking pair in a tree
T and x · i is a successor of x in T ;

• ‘caching arc’: an arc of the form (y, x · i), where (x, y) is a caching pair in a tree T
and x · i is a successor of x in T ;

• ‘blocking path’: a path in a tree T : pathT (x, y), where (x, y) is a blocking pair.

Lemma 16. There are no caching cycles in Gext .

Proof. Assume C is a caching cycle in Gext : then, as C is non-local, it must contain
at least two unary atoms with distinct arguments, one of these arguments being a cached
node. In other words, argpath(C) contains at least two nodes, one of them being a
cached node. Let Tc be a tree in which such a cached node appears, and y be the right-
most cached node in argpath(C) with respect to its position in Tc, i.e. there is no cached
node z ∈ argpath(C) such that rightTc(z, y). Also, let x be its corresponding caching
node: (x, y) ∈ ch.

Claim: pathTc(c, y) ⊂ argpath(C).

Proof : There has to be an outgoing arc from y which is part of argpath(C). As y is a
cached node, such an arc can be only a caching arc, and thus, has one of the following
forms:

• (y, d), where d ∈ cts(P)∪{ε}, and (x, d) ∈ ES (Figure 5.8 a)): then, argpath(C)
spans across several trees. As argpath(C) is a cycle, in order to reach y from a tree
other than Tc, it is necessary to pass through c: that is, there is a path in T extc from

116

c p

x q y q

t r

Figure 5.9: A caching cycle

c to y: but the only such path is pathTc(c, y) (once one exits pathTc(c, y) it is not
possible to re-enter it as y is the right-most cached node in argpath(C); also it is
not possible to return to a node already visited on the path as the cycle contains no
blocked nodes).

• (y, x · i), where x · i ∈ Tc (Figure 5.8 a)): then, there should be a path from x · i to y
in EF ext. There is no such path in T extc as from x · i one can only reach successors
or nodes which are at the left of x · i, and implicitly of y. Thus, the only possibility
is that such a path includes nodes outside Tc. In this case, the reasoning is similar to
the previous case.

Thus, the claim is true. We now show how to reduce a caching cycle with n cached nodes
among the arguments of the atoms in the cycle to a caching cycle with n−1 cached nodes
among the arguments of the atoms in the cycle.

Let (x, y) be a caching pair as above, z = lcaTc(x, y), and let t be a successor of x in EF
such that (y, t) ⊂ argpath(C). From the claim and the construction of argpath(C) we
have that:

• C = Pt1^Pt2^Pt3, where Pt1 ∈ pathsGTc
(p(c), q(y)), Pt2 ∈ pathsGTc

(q(y),
r(t)), and Pt3 ∈ pathsGext (r(t), p(c)), for some p, q, r ∈ upreds(P) (not neces-
sarily distinct) (Figure 5.9).

• argpath(C) = pathTc(c, y)^(y, t)^pt, where pt ∈ pathsEF ext(t, c) and pt con-
tains n− 1 cached nodes (the n-th node in argpath(C) is y).

From the caching condition, as rank(y) = 1, we know that:

connprTc(c, y) ⊆ connprTc(c, x).

Then, there must be a path Pt4 ∈ pathsGTc
(p(c), q(x)). Also, let Pt5 = (Pt2)y|x. As

(x, y) ∈ ch, it follows that Pt5 ∈ pathsGTc
(q(x), r(t)). By replacing Pt1 with Pt4 and

117

u u

u x y

z

v

u u

u x

y

v

a) rightT (y, x) b) y <Tc x

Figure 5.10: Reaching a node y from x where y is either to the right or above x in the tree

Pt2 with Pt5 in C one obtains a cycle C ′ with argpath(C ′) = pathTc(c, x)^(x, t)^pt.
As x is a cached node, pathTc(c, x) contains no cached node, and thus argpath(C ′)
contains n− 1 cached nodes.

Thus, it is always possible to transform a caching cycle to a cycle with less cached nodes,
and eventually to a cycle which contains no cached nodes. As we started with cycles with
no blocked nodes, and no blocked nodes are introduced in the construction, the end cycle
contains no blocked nodes either. As such, it is a cycle in G - this is in contradiction with
the fact that there are no cycles in G. Thus, the original assumption was false: there are
no caching cycles in Gext .

We will show next that there are no blocking cycles.

Lemma 17. There is no path Pt in Gext such that its argument path contains a blocking
path: for every (x, y) ∈ bl such that x, y ∈ T and Pt ∈ PathsGext , pathT (x, y) 6⊆
argpath(Pt).

Proof. Assume pathT (x, y) ⊆ argpath(Pt). Then, there are two nodes a1, a2 ∈ G,
with args(a1) = x, and args(a2) = y and a path Pt′ ∈ pathsG(a1, a2) such that
Pt′ ⊆ PtC. But this contradicts with the fact that connprG(x, y) = ∅. Thus, the initial
assumption was false. �

Lemma 18. Let Pt ∈ pathsT ext(x, y), for some tree T ∈ F such that rightT (y, x) or
y <T x. Then, there must be a blocking pair (v, u) such that u ∈ Pt and v <T z (if
rightT (y, x)) or v <T y (if y <T x), where z = lcaT (x, y).

118

x

t

z

yn

y

t · i

t

t · i

z

yn

y

a) t >Tc x b) = precTc(x)

Figure 5.11: If z is a blocked node and (t, z) ∈ bl , then there is a path in G with argument path
PathT (t, z)

Proof.

From x one can reach successors of one of its ancestors via blocking arcs, nodes to the left
of x in T via caching arcs, or situated below x in T via arcs in the tree. As y is to the right
of x in T or above x in T , it cannot be reached via caching arcs unless one first reaches
some node which is an ancestor of y or to the right of y. Intuitively, this can only be done
when linking from a successor of x via a blocking arc to the successor of a node on the
common path between x and y. Figure 3 a) describes the situation where rightT (y, x),
while Figure 3 b) describes the situation where y <T x.

Lemma 19. LetPt be a path inGext from p(x) to some q(y): Pt ∈ pathsGext (p(x), q(y))
such that x is an ancestor of y in some tree Tc: x <Tc y, and for every z ∈ argpath(Pt),
it holds that z ∈ Tx. Then, there is a path in GTc from some r(x) to q(y).

Proof. Similarly to Lemma 16 we first show how to reduce a path in Gext containing
n cached nodes to another path in Gext containing n − 1 cached nodes. Assume the first
cached node which appears in argpath(Pt) is yn and its corresponding caching node
is xn. Then there must be an arc (yn, tn) ⊆ argpath(Pt) such that (xn, tn) ∈ ATc .
Thus, argpath(Pt) = pt1^(yn, tn)^pt2, with pt1 ∈ pathsEFext(x, yn), and pt2 ∈
pathsEFext(tn, y). We show how to construct fromPt a pathPt1 ∈ pathsGext (r(x), q(y)),
for some r ∈ upreds(P) such that argpath(Pt1) = pathTc(x, tn)^pt2. Thus, all poten-
tial blocked nodes between x and tn are eliminated and the cached node yn is eliminated
as well. Obviously, argpath(Pt1) has n− 1 cached nodes.

119

First, we show that pt1 = pathTc(x, yn). Assume the opposite. Then, pt1 must contain at
least a blocked node. Let z be the closest such node to x: as pt1 contains no cached nodes,
that is equivalent to saying that pathTc(x, z) ⊆ pt1. There must also be a node t <Tc z
such that: (t, z) ∈ bl and (z, t · i) ⊆ pt1, for some i ∈ N>0. As t · i ∈ Tx, it follows that
either t ∈ Tx or t = precTc(x).

In the first case (t ∈ Tx) (Figure 5.11 a)) we have that (t, z) ⊆ pathTc(x, z) ⊆ pt1 and
thus, there exists a path in G from some p(t) to some q(z), where (t, z) is a blocking pair.
This is in contradiction with Lemma 17.

In the second case (Figure 5.11 b)), t · i = x, and thus (z, x) ⊆ pt1. Thus, there exist paths
T1 ∈ pathsG(p(z), q(x)) and T2 ∈ pathsG(q(x), r(z)), for some p, q, r ∈ upreds(P).
Then (T1)z|t ∈ pathsG(p(t), q(x)) and (T1)z|t^T2 ∈ pathsG(p(t), r(z)). Again, this is
in contradiction with Lemma 17.

Thus, pt1 = pathTc(x, yn) and argpath(Pt) = pathTc(x, yn)^(yn, tn)^pt2. Then, there
must be paths T1 ∈ pathsGTc

(p(x), s(yn)), T2 ∈ pathsGext (s(yn), w(tn)), and T3 ∈
pathsGext (w(tn), q(y)) such that Pt = T1^T2^T3. We distinguish between:

• tn = x. Then Pt1 = T3. It is simple to verify that it satisfies the properties men-
tioned above.

• tn > x. Then xn ∈ Tx and zn = lcaTc(xn, yn) ∈ Tx. Let rn = rank(s(yn)). From
the existence of T1 we know that rn 6 ||x|| 6 ||z||. Obviously, s ∈ isp(rn, yn).
Then, from the fact that (xn, yn) is a caching pair we have that isp(rn, xn) ⊇
isp(rn, yn). Thus, s ∈ isp(rn, xn): there must a path in GTc from a node above
x to s(xn). Let l be the intersection of this path with x (this is guaranteed to exist as
xn ∈ Tx).
Thus, there exists a path T4 ∈ pathsGTc

(l(x), s(xn)). As (xn, yn) ∈ ch, it follows
that there exists also a path (T2)yn|xn ∈ pathsGTc

(s(xn), w(tn)) (see Figure 5.12).
Then: T5 = T4^(T2)yn|xn ∈ pathsGTc

(l(x), w(tn)). Let Pt1 = T5^T3. Again, Pt1
fulfills the conditions required in the construction.

By successive applications of the transformation previously described, we obtain a se-
quence of paths Pt1, . . . , P tn ∈ pathsGext , which all have q(y) as their final element,
and where argpath(Pti) contains n− i cached nodes, for every 1 6 i 6 n. In particular
argpath(Ptn) contains no cached node. Following a similar argument to the one used
above to show that pt1 = pathTc(x, yn), one can show that argpath(Ptn) contains no
blocked nodes, either. Thus, argpath(Ptn) is actually a path in Tx: argpath(Ptn) =
pathTc(x, y), and Ptn ∈ pathsGTc

. �

The lemma can be generalized to the case where the argument path contains also nodes
above x.

Lemma 20. LetPt be a path inGext from p(x) to some q(y): Pt ∈ pathsGext (p(x), q(y)),
where p, q ∈ upreds(P) such that x is an ancestor of y in some tree Tc: x <Tc y. Then,
there is a path in GTc from some r(x) to q(y), where r is in upreds(P) as well.

120

depth r

l x p

z

yn sxns

tn

w

y

q

Figure 5.12: Reducing the number of cached nodes in blocking cycles

Proof.

If c ∈ argpath(Pt), let Pt1 be a path such that Pt1 ∈ pathsGext (r(c), q(y)), for
some r ∈ upreds(P), and c occurs only once in argpath(Pt1). Then, for every z ∈
argpath(Pt1) it holds that z ∈ Tc and we can apply Lemma 19 with respect to Pt1:
there has to be a path Pt2 ∈ pathsGTc

(s(c), q(y)), for some s ∈ upreds(P). But,
argpath(Pt2) = pathTc(c, y), and then by construction of argpath (Lemma 14), there
must a path Pt3 ∈ pathsGTc

(v(x), q(y)), for some v ∈ upreds(P).

If c 6∈ argpath(Pt), then for every z ∈ argpath(Pt), we have z ∈ Tc. Let z ∈
pathTc(c, y) be such that:

• z is a blocking node in CS,

• there exists a node t ∈ Tc such that (z, t) ∈ bl, and t ∈ argpath(Pt),

• there exists i ∈ N>0 such that z · i ∈ argpath(Pt) and (t, z · i) ⊆ argpath(Pt).

In other words, z is the first blocking node on the path pathTc which corresponds to some
blocked node on the path Pt. In the following we will distinguish between:

• z 6Tc x. As (t, z · i) ⊆ argpath(Pt), and Pt ∈ pathsGext (p(x), q(y)), there
must be some paths Pt1 ∈ pathsGext (p(x), r(t)), Pt2 ∈ pathsGext (r(t), s(z · i),
Pt3 ∈ pathsGext (s(z · i), q(y)) such that Pt = Pt1^Pt2^Pt3.
As (t, z) ∈ bl , there must be some path (Pt2)t|z ∈ pathsGext (r(z), s(z · i).
Let Pt4 = (Pt2)t|z^Pt3. Then Pt4 ∈ pathsGext (r(z), q(y)).

121

c t

x

y

x

x · i

y

p r

q

p

a) t is a constant b) t = x · i

Figure 5.13: Unfolding a blocking cycle

We show next that every node v ∈ argpath(Pt4) is within Tz . Assume the opposite.
Then there is a node u ∈ Tc such that u ∈ argpath(Pt4) and either rightTc(u, z),
u <Tc z, or rightTc(z, u). From the fact that u ∈ argpath(Pt4) it follows that there
exist paths pt1 ∈ pathsT ext(z, u), and pt2 ∈ pathsT ext(u, y).

– If rightTc(u, z) or u <Tc z, given pt2, according to Lemma 18 there must be
a blocking pair (t, v) such that t ∈ pt2 and v <Tc lcaTc(y, u) or v <Tc u.
Clearly, the last condition translates into v <Tc z. This is in contradiction with
the original assumption that z is the highest node with this property.

– If rightTc(z, u), together with the existence of pt1, one can apply again Lemma
18 and obtain a contradiction.

In both cases we obtained a contradiction, thus, for every v ∈ argpath(Pt4):
v ∈ Tz . Together with the existence of Pt4, one can apply Lemma 19 and ob-
tain that there is a path Pt5 ∈ pathsG(s(z), q(y)), for some s ∈ upreds(P). But
as argpath(Pt5) = pathTc(z, y) and x ∈ pathTc(z, y), by construction of the ar-
gument path (Lemma 14), there must be a path Pt6 ∈ pathsGTc

(w(x), q(y)).

• z >Tc x. Again, one can show that every node v ∈ argpath(Pt) is within Tx using
a similar argument as we used above to show that every node v ∈ argpath(Pt4) is
within Tz . Thus, one can apply Lemma 19 with respect to Pt and obtain the desired
result.

Lemma 21. There are no blocking cycles in Gext .

Proof. Assume there is a blocking cycle C in Gext . As C is at the same time a non-
local cycle and a blocking cycle, argpath(C) contains at least two nodes from NEF , one
of which should be a blocked node. Let y ∈ Tc be such a blocked node and let x be

122

such that: (x, y) ∈ bl . Then there exists a node t ∈ NEF such that (x, t) ∈ AEF (t is a
successor of x in EF) and (y, t) ⊆ argpath(C). Depending on the position of t in EF
we distinguish between:

• t ∈ cts(P) (Figure 5.13 a)): then, c ∈ argpath(C) and there must be a path Pt
in Gext such that argpath(Pt) ∈ pathsEF ext(c, y). According to Lemma 20, there
is a path Pt′ ∈ G with argpath(Pt′) = pathTc(c, y). As c <Tc x <Tc y, by
construction of argpath(Pt′) as in Lemma 14, there must be a path Pt′′ ∈ G with
argpath(Pt′′) = pathTc(x, y). But this is in contradiction with Lemma 17.

• t = x · i, for some i ∈ N>0 (Figure 5.13 b)) and C = Pt1^Pt2 with Pt1 ∈
pathsGext (p(y), q(x · i)) and Pt2 ∈ pathsGext (q(x · i), p(y)), for some p, q ∈
upreds(P). As (y, x · i) is a blocking arc, (Pt1)y|x ∈ pathsG(p(x), q(x · i)).
We have that (Pt1)y|x^Pt2 ∈ pathsGext (p(x), p(y)), and according to Lemma 20,
there is a path Pt3 ∈ pathsGT

(r(x), p(y)), for some r ∈ upreds(P), such that:
argpath(Pt3) = pathTc(x, y) . Again, this is in contradiction with Lemma 17.

Thus, in both cases we obtained a contradiction and there cannot be any blocking cycle in
Gext . �

5.7 Completeness

In this section we show that the algorithm A3 is complete.

Proposition 21 (completeness of A3). Let P be a FoLP and p ∈ upreds(P). If p is satisfiable
with respect to P , then there exists a complete clash-free A3 completion structure for p with
respect to P .

Proof.
If p is satisfiable with respect to P then p is forest-satisfiable with respect to P (Proposition

5). We construct a clash-free complete A3-completion structure for p with respect to P , by
guiding the application of the match, blocking, caching, and redundancy rules with the help of
a forest model of P which satisfies p. The proof is similar to the completeness proof for the
algorithm A1 described in Section 3.5, but requires additional mechanisms to deal with the new
redundancy rule and with the new caching rule. Again, we make use of several lemmas.

Lemma 22. Let (U,M) be a forest model for a FoLP P , with:

• EF = 〈{Tε} ∪ {Ta | a ∈ cts(P)},ES 〉, and

• L : {Tε} ∪ {Ta | a ∈ cts(P)} ∪AEF → 2preds(P),

as in Definition 11.
Then, for every node x ∈ U , there is a unit completion structure UC = 〈EF ′,ct, G〉 for

P , with EF ′ = ({Tε′}, ES′) and G = (V,A), which satisfies the following:

123

• y ∈ NEF ′ iff yε′||x ∈ NEF ;

• (ε′, y) ∈ AEF ′ iff (x, yε′||x) ∈ AEF ′ ;

• ct(ε′) = L(x) ∪ not (upreds(P)− L(x));

• ct(y) ⊆ L(yε′||x) ∪ not (upreds(P)− L(yε′||x)), for every y ∈ NEF ′ ;

• ct(ε′, y) = L(x, yε′||x) ∪ not (upreds(P)− L(x, yε′||x)), for every y ∈ NEF ′ .

Proof. Follows from the completeness of algorithm A2.

Now we proceed to the actual construction. Let (U,M) be the forest model which guides
the expansion with EF = 〈{Tε} ∪ {Ta | a ∈ cts(P)},ES 〉, where p ∈ L(ε) and let CS =
〈EF ′,ct, st, G〉 be an initial A3-completion structure for checking satisfiability of p with re-
spect to P with EF ′ = 〈{T ′ε′} ∪ {T ′a | a ∈ cts(P)},ES ′〉, where p ∈ ct(ε′). We will expand
CS in a depth-first fashion (the order of processing trees is not important, just that their contents
are expanded depth-first; the expansions of different trees can also be interleaved). Always a
node with status unexp is selected for expansion.

Let π be a function which relates nodes/arcs from the interconnected forest in the completion
structure in construction to nodes/arcs in the forest model: π : NEF ′ → U . We show that at any
point during the construction, the following property (‡) holds:

(‡)


{q | q ∈ ct(z)} ⊆ L(π(z)), for all z ∈ NEF ′

{q | not q ∈ ct(z)} ∩ L(π(z)) = ∅, for all z ∈ NEF ′

ct(z) = L(π(z)) ∪ not (bpreds(P)− L(π(z))), for all z ∈ AEF ′ .

That is, the positive content of a node in the completion structure is contained in the label of
the corresponding forest model node, the negative content of a node in the completion structure
is disjoint with the label of the corresponding forest model node, and the content of an arc in the
completion structure is identical to the label of the corresponding arc in the forest model.

The property will be proved by induction and it is used at every step of the construction (for
nodes for which it was already proved to hold): as such the induction step coincides with the
construction step.

Base case: We set π(ε′) := ε and π(a) := a, for every a ∈ cts(P). That the induction
hypothesis is fulfilled, follows from the way the initial completion structure for p with respect
to P was defined.

Induction/Construction step: Let x be the node currently selected for expansion in EF ′:
st(x) := unexp. Perform the following operations:

(i) Check whether the blocking or caching conditions are met:

• assume there is a node y ∈ NEF ′ such that (y, x) is a blocking pair. Then mark x as a
blocked node and stop its expansion.

• assume there is a node y ∈ NEF ′ such that (y, x) is a caching pair. Then mark x as a
cached node and stop its expansion.

124

Naturally, in both cases (‡) still holds, as we have not modified the content of nodes and
we also did not add any new nodes. Note that when applying the blocking or caching rule,
we no longer use the guidance of the model (U,M), as it might justify in a different way the
atoms which have x and its successors as one of their arguments; we are interested in finding a
finite representation of a model which satisfies p, not necessarily of the original model which we
used for guidance (actually the soundness proof constructs a non-forest model from a clash-free
complete completion structure).

(ii) If x is neither blocked nor cached, according to the induction hypothesis, there is a node
π(x) ∈ NEF such that ct(x) ⊆ L(π(x)) ∪ not (upreds(P) − L(π(x))). Let UC be a unit
completion structure with root ε′ corresponding to node π(x) as in Lemma 22. UC has the
property that:

ct(ε′) = L(π(x)) ∪ not (upreds(P)− L(π(x))) and

ct(a) ⊆ L(a) ∪ not (upreds(P)− L(a)), for every a ∈ cts(P).

Then, from the induction hypothesis, it follows that x ∈ NEF ′ is matchable with UC. Apply
the Match rule for x and UC.

For every node y added to/updated from EF ′ by addition of UC: y ∈ NEF ′ and (x, y) ∈
AEF ′ , we have that:

ct(y) ⊆ L(yx||π(x)) ∪ not (upreds(P)− L(yx||π(x))) and

ct(x, y) = L(π(x), yx||π(x)) ∪ not (bpreds(P)− L(π(x), yx||π(x))).

We set π(y) = yx||π(x), for every such node, and the induction hypothesis holds.
(iii) Check whether the redundancy rule condition is met: assume there is a node y ∈ NEF ′

such that (y, x) form a redundancy pair. Note that unlike the models constructed by our algo-
rithm, arbitrary forest models might contain ‘redundant’ nodes (or better said they translate to
completion structures which contain such nodes). A redundancy pair (y, x) signals a redundant
computation in the form of a sub-tree in the interconnected forest from y to x. The way to
overcome this is to simply skip the redundancy when constructing a completion structure. As
the redundant part of the model is first incorporated in the completion structure, when encoun-
tering such a redundancy pair we modify the structure by cutting out the redundant part: y is
replaced with x. In order to implement this policy we reuse the collapse operation introduced
in the Completeness proof for A1 in Section 3.5.3 (with the slight adjustments to deal with A3-
completion structures instead of A2-completion structures). Thus, when (y, x) is a redundancy
pair, we simply apply collapseCS(y, x).

As concerns the image of y under π inEF , it is changed to the previous image of x: π(y) :=
π(x). The induction hypothesis still holds. �

From Corollary 6, Proposition 21, and Proposition 20 it follows that:

Corollary 7. Satisfiability checking of unary predicates with respect to FoLPs is in NEXPTIME.

As another corollary of the soundness and completeness results, we obtain a bound on the
size of models needed to satisfy a certain unary predicate pwith respect to a FoLP P . The bound
improves the bound obtained in Section 3.5.5 by one exponential:

125

Proposition 22. FoLPs have the bounded finite model property: for a FoLP P and a unary
predicate p ∈ upreds(P), if p is satisfiable with respect to P , then there exists an open answer
set (U,M) of P , which satisfies P such that the size of U is bounded by an exponential in the
size of P .

Again, this result opens the way for standard ASP reasoning as discussed in Section 3.5.5,
this time being needed to consider programs with only up to exponential-sized universes. All
advantages and disadvantages of the technique, mentioned in Section 3.5.5, hold here as well.

5.8 Simple Reasoning with FoLPs: The Case of Simple Forest
Logic Programs

In this section we introduce a fragment of Forest Logic Programs, called simple Forest Logic
Programs, which are obtained from FoLPs by restricting the usage of predicate recursion in
rules. For this class of programs, A3 can be simplified such that both the blocking and the
caching conditions collapse in a simple subset-based anywhere blocking condition. We will
refer to the new simplified algorithm as As3. The fragment is a superset of the language of
acyclic FoLPs, and as such can simulate reasoning within the DL SHOQ.

5.8.1 Simple FoLPs: Definitions

We start with some preliminary notations.

Definition 35. For a FoLP P , let D(P) = (Vd, Ad) be the following graph:

• Vd = {p ∈ preds(P) | p is not free}: the set of vertices contains all non-free predicates
from P ,

• Ad = {(p, q) | ∃α ← β ∈ rules(P).α = {l1}, l2 ∈ β+, pred(l1) = p, pred(l2) = q}:
the set of arcs is composed of all tuples (p, q) such that there exists either a rule of the
form (2.3) or a rule of the form (2.4) with a head literal l1 and a positive body literal l2
such that pred(l1) = p, and pred(l2) = q.

• an arc (p, q) ∈ Ad is said to be marked, iff there exists a rule r of the form (2.3) or of the
form (2.4) such that α = {p} and q ∈ δm, for some 1 6 m 6 n, if r is of the form (2.3),
and q ∈ δ, if r is of the form (2.4).

We call DP the marked positive predicate dependency graph of P .

Definition 36. Let P be a FoLP. Then P is said to be simple, iff D(P) does not contain any
cycle that has a marked edge.

The restriction on D(P) ensures that there is no path from some atom p(x) to some atom
p(y) in the atom dependency graph of PU which does not contain some atom q(z) such that q is
free, where p ∈ upreds(P), q ∈ preds(P), U is some arbitrary universe, and x, y ∈ U , x 6= y.

126

p q

f g
∗

Figure 5.14: Marked Dependency Graph D(P)

Indeed, observe that any marked cycle in D(P) contains a unary predicate and thus corresponds
to a path from some p(x) to some p(y) in the atom dependency graph of PU , which does not
contain any atom formed with a free predicate. Furthermore, as the cycle is marked, x has to be
different from y, as any marked edge marks a change of argument from X or X,Y in the head
of a rule to some Ym or Y in the body, and thus the cycle is ‘non-local’.

Example 33. Consider the program P :

r1 : p(X) ← q(X), f (X ,Y),not p(Y)
r2 : q(X) ← p(X)
r3 : f (X ,Y) ← g(X ,Y), q(Y)

The marked positive dependency graph is depicted in Figure 5.14, where the arc (f, q) is
marked. While (p, q, p) is an unmarked cycle, (q, p, f, q) is a marked cycle, and thus P is not a
simple FoLP. However, if the last rule is dropped, P becomes a simple FoLP.

As the fragment of acyclic FoLPs disallows any form of recursion it follows that:

Proposition 23. Let P be an acyclic FoLP. Then, P is a simple FoLP.

The converse is not valid: there are simple FoLPs which are not acyclic (cf. Example 33).
A corollary of Proposition 23 and Proposition 2 is the following lower bound for reasoning with
simple FoLPs:

Corollary 8. Satisfiability checking of unary predicates with respect to simple FoLP is EXP-
TIME-hard.

5.8.2 Reasoning with Simple FoLPs

The restriction on simple FoLPs ensures that anywhere subset blocking can be used as a termi-
nation mechanism. As such, the notion of redundant nodes is no longer needed and we do not
need to keep track of dependencies in the constructed model via the dependency graph G. We
proceed with defining As3-completion structures as usual.

An (initial) As3-completion structure is a tuple 〈EF , ct, st〉, with EF , ct, and st being
defined similarly to their counterpart in an A3-completion structure.

127

Note however, that the fragment still allows for local cycles, i.e. cycles induced by rules of
type a(X)← a(X). As such, in the process of constructing the set of non-redundant UCSs, the
dependency graph G is still needed.

An (initial) As3-completion structure is evolved using the rule (xii′) Match introduced in
Section 5.3. As already mentioned, for termination purposes we employ a single applicability
rule, which is defined formally as follows:

Rule. Anywhere Blocking. Let P be a simple FoLP, p ∈ upreds(P), and 〈EF , ct, st〉 be an
As3-completion structure for p with respect to P .

A node x ∈ NEF − cts(P) such that st(x) = unexp is blocked iff there exists a node
y ∈ NEF − cts(P), such that:

• rightTc(x, y),

• st(y) = exp, and

• ct(x) ⊆ ct(y).

In this case (y, x) is said to be a blocking pair. No expansions can be performed on a blocked
node.

In the light of what we said so far, the notions of complete and clash-free completion struc-
tures become:

Definition 37. A complete As3-completion structure for a unary predicate p with respect to a
simple FoLP P , is anAs3-completion structure that results from applying the rule (xii’) Match to
an initial As3-completion structure for p with respect to P , taking into account the applicability
rule Anywhere Blocking, until no further expansions can be applied.

Definition 38. An As3-completion structure for a unary predicate p with respect to a FoLP P ,
CS = 〈EF , ct, st〉, is clash-free iff there is no node x ∈ NEF such that st(x) = unexp.

Algorithm 5.2 provides an overview of the new algorithm As3 for reasoning with simple
FoLPs. The algorithm can be seen as a simplified version of A3.

Termination and worst-case running time complexity of As3 follow immediately from the
usage of the anywhere blocking rule and from the fact that for every node x ∈ NEF , there are
finitely many values which ct(x) may take:

Proposition 24. As3 runs in the worst case in non-deterministic exponential time in the size of
the simple FoLP under consideration.

Proof. First, we show that the maximum number of nodes in a complete As3-completion
structure is exponential in the size of the program. The size of such a completion structure is
bounded by the following factors: if we leave all the leaves of the trees in the completion apart,
there are at most 2p+c nodes, where p = |upreds(P)|, and c = |cts(P)|, as there are at most 2p

different possible configurations for the content of a unary node, and all the nodes which are not
leaves or constants have to have different contents (otherwise they would form blocking pairs

128

Algorithm 5.2: Overview of As3, an algorithm for reasoning with simple FoLPs

input : simple FoLP P , unary predicate p;
output: yes, if p is satisfiable with respect to P ; false, otherwise;

1) Construct the set of non-redundant Unit Completion Structures (UCSs) for P (if not
available already);

2) Construct an As3-initial completion structure CS for p with respect to P ;

3) S = NEF ;
repeat

Pick up a node x ∈ S such that st(x) = unexp;
S = S − {x};

a) if there is a node y ∈ NEF − cts(P) such that st(x) = unexp and
ct(x) ⊆ ct(y) then

x is blocked;
st(x) = exp;

end

b) if st(x) = unexp then
non-deterministically choose a unit completion structure UC which
matches x and perform expandCS(x, UC);
if st(x) = unexp then

return false;
end

end
until S = ∅;
return true;

and at least one of them would be a leaf). The maximum number of leaves is r(2p + c − 1),
where r = rank(P) is the maximum arity of any of the trees in the extended forest. So, the
completion structure has in the worst case a number N of nodes that is exponential in the size
of the program: N 6 (2p + c)(r + 1)− r.

As computing the set of non-redundant UCSs can be done in the worst case in exponential
time, and the algorithm is non-deterministic, it follows that As3 runs in the worst case in non-
deterministic exponential time in the size of the program. �

The algorithm is sound and complete:

Proposition 25. A unary predicate p is satisfiable with respect to a simple FoLP P iff there is a
complete clash-free As3-completion structure for p with respect to P .

Proof. We only sketch the soundness and completness proofs for As3 here as they can be seen
as simplified versions of the respective soundness and completeness proofs for A3.

129

Soundness: From a complete clash-freeAs3-completion structure for pwith respect to P , it is
possible to construct a model by always reusing the successors of y as successors of x whenever
(y, x) is a blocking pair.

As in the case of A3, the challenge is to show that the model constructed in this way is
minimal. This amounts to showing that there are no non-local cycles in the atom dependency
graph of the program P grounded with NEF (the local cycles are taken care of in the phase
of constructing the set of non-redundant UCSs). Assume there exists such a cycle. But then,
one can show that there must be a cycle in DP which contains a marked edge; this raises a
contradiction with the fact that P is simple.

Completeness: If p is satisfiable with respect to P , then p is forest-satisfiable with respect to
P . Again, starting with a forest model of P which satisfies p, we construct a clash-free complete
As3-completion structure for p with respect to P . Whenever a choice has to be made by the (xii′)
Match rule regarding which UCS to use for expanding a certain node, the forest model is used
as a guidance and the Anywhere Blocking rule is used to enforce termination. �

5.9 Discussion and Related Work

Due to the new caching rule which allows nodes to reuse computation across branches of a com-
pletion structure and the new notion of redundant nodes, the worst-case running time complexity
of A3 is one exponential level lower than that of A1 and A2. Furthemore, the new redundancy
rule does no longer take in the best case exponential time to be applicable, as was the case for
its original counterpart.

The main device that made these improvements possible was the new technique to show
the finite bounded model property of FoLPs which is established during the completeness proof
described in Section 5.7. The technique works by reducing possibly infinite forest models to
ones of bounded size by collapsing nodes of the model with identical contents. However, in
order for the collapsed model to still be a minimal model, some complex conditions have to be
met concerning paths in the dependency graph associated to the original model.

The termination conditions forA1 andA2 stem also from such a technique to reduce models
to a finite, bounded size: however, while the technique used by A1 merely achieved a bound of
double exponential size, the current technique improves the bound to single exponential size.
The difference between the two reduction techniques lies also in their impact on the redundancy
rule:

• in the case of A1 and A2, the conditions which two nodes have to fulfil in order to be
collapsed at proof-time, i.e. when a model is reduced, cannot be checked at run-time, i.e.
during the construction of a completion structure: the required information is simply not
available in the absence of an actual model. As such, the conditions do not translate into a
direct condition for identifying redundancy at run-time. Instead the established bound on
the model size has to be employed for termination.

• in the case of A3, a different set of conditions is employed to check that it is safe to
collapse two nodes. These conditions can be checked also at run-time. Hence, the new
notion of redundant nodes we introduced in this chapter.

130

Both techniques to reduce models and the ensuing termination conditions (in particular, the
redundancy rules) are rather unusual: we are not aware of any algorithms which use similar
book-keeping to enforce termination.

While in tableau algorithms, it is common to use some form of blocking across branches, this
comes usually in the form of anywhere blocking, where the conditions that have to be fulfilled
by a pair of nodes to be in a blocking relation are the same, disregarding whether the two nodes
are on the same branch or on different branches. However, in our case, blocking across branches
(which we call caching) has a different flavour compared to blocking within a branch: its role
is actually to preserve blocking within extended branches, i.e. branches which are obtained by
copying the subtree which has as root the caching node where the cached node resides.

As we will see in next chapter, in the case of CoLPs, the determinization of A3, which
among others involves the modification of termination conditions such that both satisfiability and
unsatisfiability are preserved when reusing computation via one of the termination mechanisms,
will lead to very similar conditions for redundancy and caching; however, there will still be a
gap between the blocking and the caching conditions. This was the main reason why we decided
to refer to our new termination condition as caching, and not as anywhere blocking.

In a quest to find classes of logic programs which always have a stable model, [Fages, 1994] in-
troduced the class of positive-order-consistent programs whose stable models coincide with the
models of Clark’s completion: these are programs in which all recursion between positive literals
is restricted (no dependencies are allowed in the positive atom dependency graph). All acyclic
FoLPs are positive-order-consistent. While simple FoLPs are not positive-order-consistent, the
pre-compiling step, in which all local cycles are eliminated makes them behave de facto as
positive-order-consistent programs: no further check on the dependency graph of the model is
needed.

As such, in the case of simple FoLPs, we obtain a very simple blocking condition, subset-
based anywhere blocking, which is similar to the blocking conditions employed by tableau al-
gorithms for logics from the DL realm which do not contain inverses [Baader and Sattler, 2001].

131

CHAPTER 6
Worst-Case Optimal Reasoning with

Conceptual Logic Programs and
Simple Forest Logic Programs

The algorithm A3 described in Chapter 5 reduced the maximal size of completion structures to
an exponential number of nodes in the size of the program. However, being a non-deterministic
algorithm, it still ran in non-deterministic exponential time. This was also the case for As3, the
algorithm for reasoning with simple FoLPs described in Section 5.8. In this chapter, we show
how bothA3 andAs3 can be transformed into deterministic procedures that check satisfiability of
unary predicates with respect to CoLPs and simple FoLPs, respectively, which run in the worst
case in exponential time. Both procedures are worst-case optimal.

The new procedures which we call Adet
3,c and Adet

3,s consist in constructing an AND/OR tree
and an AND/OR forest, respectively, with depth double in the size of the largest depth encoun-
tered when running the non-deterministic algorithm. At odd levels, there are OR nodes with
unexpanded content (they contain just the constraints imposed by their predecessor), while at
even levels, there are AND saturated nodes which are ‘realizations’ of their predecessor, i.e.,
they (together with their outgoing arcs and direct successors) describe a possible way to expand
the predecessor node. Such a structure will be called an AND/OR completion structure and it is
described in Section 6.1.

Each algorithm will evolve such an AND/OR completion structure by matching UCSs against
the contents of OR nodes and creating for each match an AND successor for the corresponding
OR node. The algorithms use similar mechanisms for termination to their non-deterministic
counterparts. While in the case of Adet

3,s , this consists in a simple anywhere blocking condition
similar to the anywhere blocking condition employed by its non-deterministic counterpart A3,
in the case of Adet

3,c , all previous three termination conditions for A3: blocking, caching, and re-
dundancy are refined and employed. Special care has to be taken when using anywhere blocking
and caching, as in order to obtain a worst-case optimal behaviour, these conditions have to be

133

applicable on pair of nodes which might be situated on branches belonging to different models.
In the case of CoLPs, an AND/OR completion structure represents the space of all potential tree
models which satisfy a unary predicate p with respect to a CoLP P and as such the algorithm
does no longer need to backtrack, i.e. there is no non-determinism. In the case of simple FoLPs,
due to the presence of constants, this is no longer the case; each OR node corresponding to
some constant can potentially be expanded in several different ways, but for technical reasons
we have to constrain such OR nodes to have just one successor in any AND/OR completion
structure. This leads to a non-deterministic choice regarding the AND successor for each con-
stant OR node. However, we show that the number of distinct AND/OR completion structure
for a given simple FoLP is exponential in the size of the program and as such this does not harm
the worst-case optimal behaviour of the algorithm.

Every node in an AND/OR completion structure will be assigned eventually a truth value
based on the truth values of its successors or on the fact that there are no such successors. The
answer to a satisfiability checking problem is true when all root nodes in an AND/OR structure
are evaluated to true. As such, both algorithms have now two phases: an expansion phase, where
an AND/OR completion structure is constructed, and an evaluation phase, where truth values are
assigned to nodes and propagated through the structure such that eventually every node in the
structure has assigned a certain truth value.

Section 6.2 describes Adet
3,c , the deterministic worst-case optimal algorithm for reasoning

with CoLPs, while Section 6.3 describes Adet
3,s , the deterministic worst-case optimal algorithm

for reasoning with simple FoLPs. Finally, Section 6.4 discusses why the deterministic approach
does not scale in the case of (full) FoLPs and presents some related work.

6.1 AND/OR Completion Structures

As mentioned in the introduction, an AND/OR completion structure represents more or less
an exhaustive description of the search space that has to be explored when constructing a tree
model/forest model that satisfies a unary predicate p with respect to a certain CoLP/simple FoLP
P . The underlying data structure can be seen as an extension of the data structure underlying
an A3-completion structure. The notion of AND/OR completion structure which we introduce
below is generic and as such contains some fields which will prove to be superfluous in one or
the other case where it is employed, i.e. when constructing a tree model for a CoLP or when
constructing a forest model for a simple FoLP. This will become clear in the definitions of the
respective initial completion structures.

As mentioned in the introduction, an AND/OR completion structure has two types of nodes:
AND nodes, which are saturated, and OR nodes, which are typically unsaturated, as they are
successor nodes in UCSs used to expand the AND nodes. A function type is introduced in the
data structure to pinpoint the type of each node in the structure.

For an AND node to be blocked, cached, or redundant, its corresponding blocking, caching
or redundancy witness node is an AND node which has been expanded using the same UCS as
the original node. Thus, in order to check the blocking, caching, and redundancy conditions,
the UCSs used to construct the AND nodes under comparison have to be known. As such, there
is an extra function which keeps track for each node of the respective UCS. Note that, in this

134

case, the content function stores redundant information. However, for simplicity, we keep this
function as part of the definition of an AND/OR completion structure as well.

As nodes in a blocking, caching, or redundancy pair have been expanded using the same
UCS, the predecessor OR node of a blocked, cached or redundant node could reuse as a succes-
sor node the corresponding blocking, caching or redundant node, instead of the node itself. We
take this approach, since, as we will see later, it will turn out to be useful in the evaluation phase
of the algorithms. Whenever a blocking, caching, or redundancy pair is identified, the blocked,
cached, or redundant node is removed and a link (new arc) is created from its OR predecessor to
the corresponding blocking, caching, or redundancy witness AND node. We want to keep track
of these new arcs and the reason for their creation: as such, a new function is introduced which
assigns to (some) arcs a special value, which indicates whether they link OR nodes to blocking,
caching or redundancy witness nodes, respectively.

Definition 39. An AND/OR completion structure for a CoLP/simple FoLP P is a tuple 〈EF,
ct, st, G, type, ucs, eval, spec, const 〉 where:

• EF is an extended tree/forest;

• ct : NEF ∪AEF → 2preds(P)∪not (preds(P)) is the ‘content’ function;

• st : NEF → {exp, unexp} is the ‘status’ function (note that AND nodes are always
trivially expanded in this setting);

• G = 〈V,A〉 is the dependency graph with V ⊆ BPNEF
;

• type : NEF → {AND ,OR} is a function which keeps track of which nodes are AND
nodes and which nodes are OR nodes;

• ucs : NEF → UCSP is a (partial) function which keeps for each AND node track
of which UCS has been used to expand the node1, where UCSP is the set of all (non-
redundant) UCSs constructed with respect to P ;

• eval : NEF → {true, false, unknown} is a function which assigns one of the truth
values true, false, or unknown, to every node in the AND/OR structure;

• spec : AEF → {bl , re, ca} is a partial function which singles out arcs in EF which have
a special status, like blocking, caching, or redundancy arcs;

• const : NEF → cts(P) is a partial function which assigns to some OR nodes a particular
constant from P .

An AND/OR completion structure is expanded as anticipated by ‘realizing’ OR nodes by
way of matching unit completion structures against their content and creating a successor AND
node for every successful match. Again, we define a general notion of expansion which applies
to the most general notion of AND/OR completion structure as described in Definition 39.

1For OR nodes, the function is simply not defined.

135

The notion of matching a UCS against a node of an AND/OR completion structure is a
straightforward adaptation of the similar notion of matching a UCS against an A2-completion
structure.

Definition 40. Let CS = 〈EF, ct, st, G, type, ucs, eval, spec, const 〉 be an AND/OR-
completion structure. An OR node x ∈ NEF is matchable with a unit completion structure
UC = 〈EF ′,ct′, G′〉 with root ε, where EF ′ = (F ′, ES′), iff:

• st(x) = unexp,

• x = ε, if ε ∈ cts(P),

• UC locally satisfies ct(x), and

• for every arc (x, c) ∈ ES′, and for every ±p ∈ ct′(c): ∓p 6∈ ct(c).

We say that UC matches x.

Next we redefine the operation which expands a completion structure by addition of UCSs
to deal with the case of AND/OR completion structures. In this case (partially expanded) OR
nodes are not replaced with a matchable UCS, but for every possible match, the UCS is added
to the completion structure as a successor to the OR node. Typically, an AND node is created
for the root of the UCS and a sequence of OR nodes for the successor nodes in the UCS. In the
case of newly created successor OR nodes which correspond to constants, the function const
is defined on such nodes and its value is the respective constant. We will sometimes refer to
such nodes as proxy constant nodes. Subsequently, such proxy constant nodes are expanded by
linking to an AND successor of the corresponding constant OR node (if their contents match).
We defer this operation to Section 6.3 as it is specific to the expansion of AND/OR completion
structures for checking satisfiability of simple FoLPs.

Additionally, when keeping track of dependencies between atoms in the prospective models,
some new arcs have to be introduced in G between atoms formed using predicates in the content
of OR nodes and their realizations in the AND nodes (the atoms formed using the same predicate
but having as argument the AND node). Note that in the previous version of the algorithm these
connections were implicit.

Suppose that x ∈ T is an unexpanded OR node in an AND/OR-completion structure AO =
〈EF, ct, st, G, type, ucs, eval, spec, const 〉, with G = (V,A), for which the function
const is undefined (the node is not a proxy constant node). Suppose also that x is matchable
with m unit completion structures UCi, 1 6 i 6 m with root εi, where for every 1 6 i 6 m:
UCi = 〈EF i, cti, Gi〉, with Gi = (Vi, Ai). The operation of expanding x in UC by adding
an AND successor to x corresponding to each matchable UCS UCi, 1 6 i 6 m, denoted by
AOExpandAO(x), is depicted in Figure 6.1, and modifies AO as follows:

• st(x) := exp;

• for every 1 6 i 6 m do the following:

136

. . .

x OR

UCS1 : . . .

. . .

UCSi :

. . .

UCSm : . . .

x · 1 AND

UCS1

x · i AND

x · i · 1 OR x · i · 2 OR . . . x · i · n OR

. . . x ·m AND

UCSm

εi

εi · 1 εi · 2 . . . εi · n

Figure 6.1: The expansion of an OR node in an AND/OR completion structure: the node
matches with m UCSs: UCS1, UCS2, . . . , UCSm.

– T := T ∪ (Tεi)εi||x·i (adds the tree corresponding to the UCS to the AND/OR com-
pletion structure);

– Let Ci := {c1, . . . , ck} be the set of constant nodes which appear in UCi, i.e. the set
{v ∈ cts(P) | (εi, v) ∈ ESi}. Also let l be the number of non-constant successors
of εi in UCi: l = |Tεi | − 1. Then for every 1 6 j 6 k:

∗ create a new successor of x · i in T : T := T ∪ x · i · (l + j);
∗ set the constant value of the newly created node to cj : const(x·i·(l+j)) := cj

(the newly created node is a proxy constant node);

– for every u ∈ NEFi , set ct(uεi||x·i,c1||x·i·(l+1),...,ck||x·i·(l+k)) := ct′(u), where c1,
. . . , ck are as above (sets the content of the newly added nodes to be identical to the
content of the corresponding nodes in the UCS);

– for every u ∈ succEFi(εi), set ct(x·i, uεi||x·i,c1||x·i·(l+1),...,ck||x·i·(l+k)) := ct′(εi, u),
where c1, . . . , ck are as above (sets the content of the newly added arcs to be identical
to the content of the corresponding arcs in the UCS);

137

– type(x · i) := AND (the newly created node corresponding to the root of the UCS
is an AND node);

– type(y) := OR, for every y ∈ Tx·i−{x·i} (the newly created nodes corresponding
to successor nodes in the UCS are OR nodes);

– st(x · i) := exp (the newly created AND node is expanded);

– st(y) := unexp, for every y ∈ Tx·i − {x · i} (the newly created OR nodes are
unexpanded);

– V := V ∪ {aεi||x·i,c1||x·i·(l+1),...,ck||x·i·(l+k) | a ∈ Vi}, where c1, . . . , ck are as above
(adds to the graph G the vertices corresponding to vertices in the graph Gi) ;

– A := A∪{(aεi||x·i,c1||x·i·(l+1),...,ck||x·i·(l+k), bεi||x·i,c1||x·i·(l+1),...,ck||x·i·(l+k)) | (a, b) ∈
Ai}, where c1, . . . , ck are as above (adds to the graph G the vertices corresponding
to vertices in the graph Gi).

– A := A∪{(p(x), p(x · i)) | p ∈ ct(x)} (some additional arcs are added from unary
atoms formed with the original OR node to their realizations in the AND node);

– ucs(x · i) := UCi (records the UCS used for the expansion of the AND node);

– eval(y) := unknown , for every y ∈ Tx·i (in the expansion stage the truth value of
every node is ‘unknown’;

We also overload the AOExpand operator by denoting with AOExpandAO(x, uc) the ex-
pansion of the OR node x in AO with a single AND successor node by using the UCS uc which
matches x. This will be used later in this chapter, in Section 6.2.5.2 and Section 6.3.

6.2 Worst-Case Optimal Reasoning with Conceptual Logic
Programs

In this section we describe Adet
3,c , the deterministic algorithm for checking satisfiability of unary

predicates with respect to CoLPs. As already mentioned, the algorithm works by evolving and
evaluating an AND/OR completion structure. In Section 6.2.1 we introduce the notion of initial
AND/OR completion structure for checking satisfiability of a unary predicate p with respect to
a CoLP P , and describe how such a structure is expanded using the AOExpand operation we
introduced in the previous section.

As mentioned in the introduction, Adet
3,c uses the same termination conditions as its non-

deterministic counterpartA3 which are blocking, caching, and redundancy. The general intuition
for blocking and caching is identifying pairs of (AND) nodes which are structurally similar and
in which one of the nodes can reuse the computation used to justify the content of the other
node. However, in this case, as the AND/OR completion structure represents the space of all
possible computations, both successful, i.e. leading to an open answer set, and unsuccessful, i.e.
leading to a clash, the blocked/cached node not only reuses the justification of the corresponding
blocking/caching node in an open answer set, but also has to be guaranteed not to be satisfiable
when the corresponding blocking/caching node is not satisfiable either.

138

Also, in the case of redundancy, the intuition is slightly changed: a redundancy pair is formed
again from two nodes on the same branch of the structure which have similar content and in
between which the set of oldest paths in the dependency graph G which traverse the two nodes
increases. However, while the occurrence of a redundant node stops the expansion of a branch,
it does not constitute a clash and as such does not trigger the failure of the construction. Similar
to the blocking and caching situation, the redundant node will have the same satisfiability status
(truth value) as the redundancy witness.

In order to enforce these properties, the conditions which have to be fulfilled by pairs of
nodes to form a blocking, caching, or redundancy pair, are stronger than in the non-deterministic
version of the algorithm: in particular, always UCSs associated to specific AND nodes are com-
pared, as opposed to the typical content subset condition we had before. Section 6.2.2 describes
these termination conditions and when an AND/OR completion structure is fully expanded.

From what we said so far, there seems to be no difference between the de facto usage of
blocking and redundancy pairs: they both refer to pairs of nodes on the same branch in the
structure, in which one node caches the truth value/satisfiability status of the other. They are dis-
tinguished only by the conditions the corresponding computation paths between the two nodes
have to fulfil: in the case of blocking, the chains of dependencies in the atom dependency graph
have to dwindle, such that there are no dependencies between atoms formed with the blocking
node and atoms formed with the blocked node, while in the case of redundancy such dependency
chains have to increase.

The difference comes into play when the truth values of the blocking/redundancy witness
nodes are set during the evaluation phase. While the satisfiability of a blocking node can rely on
the satisfiability of its corresponding blocked node (which in its turn relies on the satisfiability
of the blocking node, i.e. truth can be circularly motivated via cycles which involve blocking
pairs), this is not the case for a redundancy witness node: if it is satisfiable, this is due to some
alternative computation path which does not involve the corresponding redundant node. This is
reflected in the evaluation phase which consists in a fix-point procedure. At every iteration, a
set of nodes is assumed to be true: these all have to be blocked OR nodes; initially this is the
set of all blocked OR nodes in the structure. The truth values of the nodes in the hypothesized
set are further propagated through the structure to their parents, ancestors, etc. When the propa-
gation leads to cycles which contain blocking arcs in which every node has truth value true, the
corresponding blocked nodes stays in the hypothesized set. For a given blocked node, if no such
cycle exists the node is removed from the set. Eventually a fixed point is reached – in this case
all nodes assumed to be true are actually set to true. Note that no redundant node is part of such
a hypothesized set. The evaluation strategy is described in Section 6.2.3.

Section 6.2.4 shows that the algorithm terminates and that it runs in the worst case in deter-
ministic exponential time, while Section 6.2.5 shows that the procedure is sound and complete.

6.2.1 Evolving an AND/OR Completion Structure for a COLP

We start by introducing the notion of initial AND/OR-initial completion structure for checking
satisfiability of a unary predicate p with respect to a CoLP P . Such a structure reuses the data
structures which appear in a generic AND/OR completion structure as described in Definition 39

139

except for the last field const. Also, in this case, the extended forest which occurs in a generic
AND/OR completion structure is actually an extended tree as CoLPs do not allow for constants.

Definition 41. An AND/OR-initial completion structure for checking satisfiability of a unary
predicate p with respect to a CoLP P is a completion structure 〈ET, ct, st, G, type, ucs,
eval, spec〉, where:

• ET := (T, ∅) is an extended tree,

• T := {ε}, with ε being an arbitrary constant,

• ct(ε) := {p},

• st(ε) := unexp,

• G := 〈{p(ε)}, ∅〉,

• type(ε) := OR,

• eval(ε) := unknown .

Such an initial AND/OR completion structure will be evolved as usually by applications of
the basic expansion operation, AOExpand, in a certain order, which guarantees that no yo-yo
caching will take place.

Rule. DetMatch. LetAO = 〈ET, ct, st, G, type, ucs, eval, spec 〉, with ET = (T,ES),
be an AND/OR completion structure. If for some node x ∈ T :

• type(x) = OR,

• st(x) = unexp, and

• for every node y such that rightT (y, x): st(y) = exp,

then apply AOExpandAO(x).

6.2.2 Termination Conditions: Blocking, Caching, and Redundancy

This section describes the new blocking, caching, and redundancy rules which are used by Adet
3,c

(Sections 6.2.2.1, 6.2.2.3, and 6.2.2.2, respectively). It also specifies when an AND/OR com-
pletion structure for checking satisfiability of a unary predicate with respect to a CoLP is fully
expanded (Section 6.2.2.4).

140

6.2.2.1 Deterministic Blocking Rule

In this version of blocking, we compare building blocks of the AND/OR completion structure,
in the form of UCSs associated to AND nodes. Again, in order for the AND nodes to form a
blocking pair, there should be no running paths in G between atoms formed with the respective
nodes: to this purpose, it is enough to check for paths in G which have as underlying path
in ET the path in T which links the two nodes, where the argument path of a path Pt in G,
argpath(Pt), is as defined in Section 5.6.

To this purpose, we introduce a new notation which will also prove useful in subsequent
sections: given two nodes x, y ∈ T , by connprG|T (x, y), we understand the set:

{(p, q) | ∃Pt ∈ pathsG(p(x), q(y)).argpath(Pt) = pathT (x, y)}.

As anticipated, in this version of the blocking rule, the blocked node and its successors are
removed from the AND/OR completion structure and an arc is created from its OR predecessor
to the corresponding blocking AND node. The arc is said to be a blocking arc and its spec
value is updated to reflect this. The predecessor OR node which is linked to the blocking node
is called a blocked OR node2.

Rule. DetBlocking. If there exist two AND nodes x, y ∈ T such that:

• y is an ancestor of x in T : y <T x,

• ucs(x) = ucs(y), and

• connprG|T (x, y) = ∅,

then x is blocked and y is its corresponding blocking node. Let:

• u := precT (x),

• ES := ES ∪ {(u, y)},

• spec(u, y) := bl ,

• A := A ∪ {(p(u), p(y)) | p ∈ ct(u)},

• T := T − Tx.

Arc (u, y) is a blocking arc, and u is a blocked OR node.

Note that, due to the construction of an AND/OR completion structure and to the block-
ing conditions, it also holds that there is no path Pt ∈ pathsG such that argpath(Pt) =
pathT (y, z), where (z, y) is blocking arc.

2Note that the OR node might already be a blocked OR node by virtue of one of its other successors.

141

6.2.2.2 Deterministic Redundancy Rule

As for the non-deterministic case, the intention is to limit the expansion of a branch in case
some redundant computation has been performed: however, here, once a redundancy pair has
been identified it does not necessarily mean failure: there might be an open answer set which
contains the UCS used to expand the two nodes, but the current path is not the right path to arrive
to such an open answer set. Due to the exhaustive nature of an AND/OR completion structure,
if there is such an open answer set, the completion will contain an alternative path to justify the
content of the redundancy witness and its successors. Thus, in a sense, a redundant node can
be seen as caching the truth value of its redundancy witness: this is also the case with blocking
pairs; however, unlike in the case of blocking, a redundant node does not serve as a justification
for the truth value of its counterpart node, the redundancy witness. In order for both nodes to be
true, there has to be an alternative way to justify the content of the redundancy node which does
not include the redundancy path.

Technically, to capture this relationship between nodes, similar conditions to the ones in-
troduced in the non-deterministic algorithm are checked on pairs of AND nodes with identical
corresponding UCSs:

Rule. DetRedundancy. If there exist two AND nodes x, y ∈ NET such that:

• y is an ancestor of x in T : y <T x,

• ucs(x) = ucs(y),

• rank(x) = rank(y) = r, and

• isp(k, y) = isp(k, x), for every 1 6 k 6 ||y||,

then x is redundant and y is its corresponding redundancy witness node. Let:

• u := precT (x),

• ES := ES ∪ {(u, y)},

• spec(u, y) := re,

• A := A ∪ {(p(u), p(y)) | p ∈ ct(u)}, and

• T := T − Tx.

Arc (u, y) is a redundancy arc, and u is a redundant OR node.

As was the case with blocking, a redundant node and its successors are removed from the
AND/OR completion structure, and an arc is created from its OR predecessor to the correspond-
ing redundancy witness node. The arc is said to be a redundancy arc and its spec value is
updated to reflect this. The predecessor OR node which is linked to the redundancy witness
node is called a redundant OR node3

3Again, the OR node might already be a redundant OR node by virtue of one of its other successors. Also, the
OR node can be at the same time a blocked, redundant, and, as will be seen in the next expansion rule, a cached OR
node.

142

6.2.2.3 Deterministic Caching Rule

As mentioned in the introduction, caching is about reusing (successful or unsuccessful) com-
putation performed during the expansion of a node found on a different branch than the current
node. When there exists some blocking node which is situated above the lowest common ances-
tor of the cached and caching node and whose corresponding blocked node is a descendant of the
cached node, by reusing the computation of the caching node a new node will be created which
is a copy of the above-mentioned blocked node. We would like for this copy of the blocked node
to be in a blocking relation with the original blocking node. As such, some conditions regarding
sets of paths in the dependency graph between atoms formed with nodes which are ancestors
of both nodes in a caching pair and the nodes in the caching pair themselves were imposed in
the non-deterministic version of the algorithm. Those conditions were enough to warrant that
when the cached node is expanded successfully, by copying its expansion we obtain a successful
expansion for the caching node, too. Here, the conditions are strengthened to enforce that if the
expansion of the cached node fails (the node is evaluated to false), the hypothetical expansion of
the caching node would lead to failure, as well.

A cached node and its successors are removed from the AND/OR completion structure and
an arc is created from its OR predecessor to the corresponding caching node. The arc is said to
be a caching arc and the predecessor OR node is said to be a cached OR node.

Rule. DetCaching. If there exist two AND nodes x, y ∈ T such that:

• ucs(x) = ucs(y),

• isp(r, y) = isp(r, x), for every 1 6 r 6 ||z||, where z is the lowest common ancestor of
x and y: z = lcaT (x, y), and

• rightT (y, x),

then let:

• u := precT (x),

• ES := ES ∪ {(u, y)},

• spec(u, y) := ch,

• A := A ∪ {(p(u), p(y)) | p ∈ ct(u)}, and

• T := T − Tx.

Arc (u, y) is a caching arc, and u is a cached OR node.

Note the similarity between the redundancy conditions and the caching conditions in the
current version of the algorithm. Redundancy can be seen as a limit case of caching in which
the caching node is situated not to the right but above the cached node (it is the lowest common
ancestor of itself and of the cached node). Also, the conditions of the two rules, the deterministic
caching and the deterministic redundancy rule, can be seen as a combination of the conditions for

143

caching and redundancy in the non-deterministic version of the algorithm. This is not surprising,
as, as discussed in Section 6.2.2.2, the redundancy rule has in this case a caching flavour since
the redundancy node caches the truth value of the redundancy witness.

While the two rules could be merged into one, they are kept separate; this is both for con-
sistency reasons – with the previous version of the algorithm, but also to stress the similarities
between the blocking rule and the redundancy rule which work at the branch level, and the
differences between both of these rules and the caching rule which works across branches.

6.2.2.4 Complete AND/OR Completion Structures

Definition 42. An AND/OR-complete completion structure for a CoLP P and a unary predi-
cate p, is an AND/OR-completion structure that results from the repeated application of the rule
DetMatch to an initial AND/OR-completion structure for p and P , taking into account the ap-
plicability rules DetBlocking, DetRedundancy, and DetCaching such that no rules can be further
applied.

Note that in this case we do not deal explicitly with clashes: if a node cannot be expanded it
will be assigned the truth value false in the next section, while redundant nodes as discussed in
Section 6.2.2.2 do not necessarily mean failure.

6.2.3 Evaluation of an AND/OR Completion Structure

After a complete AND/OR completion structure has been constructed, it has to be evaluated:
every node in the completion is assigned eventually one of the truth values true or false . After
the expansion stage, the truth value of every node in the completion is unknown . The intuition
regarding the evaluation of particular nodes, is that a node is assigned the truth value true iff
there is some open answer set where the content of that node is satisfied, and the truth value
false whenever there is no such open answer set.

At the same time, the assignment of truth values has to respect the AND/OR structure of the
completion, that is, an OR node is true iff one of its successors is true, and an AND node is true
iff each of its successors is true. In order to impose this last constraint, every time a set of nodes
is assigned some truth value, the assignment is propagated upwards to the predecessors of the
nodes in the set to as much of an extent as possible. That is, if some OR node has an ancestor
which is true, one can already infer that its truth value is true. The same about an AND node
which has a false successor: its truth value will be false.

Algorithm 6.1 describes a propagation procedure which given a complete AND/OR com-
pletion structure CS and a set S of nodes which have truth value true or false , transforms the
structure such that as many nodes as possible have assigned one of the truth values true or false
(for which the justification of the truth values can be traced back to the initial set S). Note that
this procedure might also change the truth value of some node to true from false or vice versa
(in case one node had a preassigned value which does not agree with the value computed as
a function of the successors which make part from S or whose truth value has been computed
based on the truth values of some nodes from S).

144

Algorithm 6.1: The AND/OR Truth Value Propagation Procedure

input : an AND/OR completion structure AO = 〈EF, ct, st, G, type, ucs, eval,
spec 〉, with EF = (F,ES), and a set of nodes S from NEF with truth value
true or false;

output: an updated AND/OR completion structure

repeat

for every x ∈ NEF do
switch := false;

if ∃y ∈ S such that (x, y) ∈ AEF then

let v:=

{∨
z∈NEF ,(x,z)∈AEF

eval(z), if type(x) = OR;∧
z∈NEF ,(x,z)∈AEF

eval(z), if type(x) = AND;

if v 6= eval(x) then
eval(x) := v;
S := S ∪ {x};
switch := true;

end
end

end
until switch = false;

In the following, we describe informally how every node of a complete AND/OR completion
structure is assigned one of the truth values true or false by making repeated use of the propa-
gation procedure just presented. The main steps of the evaluation procedure are as follows:

• an initialization step: in this step, all AND nodes which have no successors are assigned
the truth value true and all OR nodes which have no successors, are assigned the truth
value false . Further on, these values are propagated using the propagation procedure.

• a fix-point procedure: at each iteration, the procedure hypothesizes a set of nodes as having
truth value true , and checks whether the hypothesis was correct or was an overestimation.
At every subsequent iteration, the hypothesized set is shrunk until an exact match is found.
The original hypothesized set is the set of all blocked OR nodes. Every iteration consists
of two steps:

1. a copy CS′ of the original AND/OR structure CS is created in which all blocked
OR nodes are assigned the truth value true . The newly assigned truth values are
propagated through the new AND/OR completion structure using the propagation
procedure.
The intuition for this step is to obtain an overestimation of the set of true nodes in
the AND/OR completion structure. Besides nodes which are obviously true – the

145

ones set as such during the initialization step, some nodes can be true (their content
is satisfiable) by relying (at least partially) on circular justifications: in other words,
they are part of a cycle in ET such that every node in the cycle is justified using the
next node in the cycle as a successor.
However, every atom in an open answer set has to be well-supported, thus, there can
be no cyclic dependencies between atoms. As such, cycles in ET are ‘good’ as long
as they do not give rise to cycles in G. This brings us to the explanation we provided
in the introduction to this chapter regarding the difference between blocking pairs
and redundancy pairs. Due to the specific conditions of each termination rule, cycles
which involve a blocking arc can be shown not to give rise to any underlying cycle
in G, while all other cycles can be shown to give rise to such cycles (in particular,
these are cycles which contain redundancy arcs, but no blocking arcs).
By assigning true to every blocked OR node (which is always part of a cycle which
contains a blocking arc, and naturally every such cycle contains a blocked OR node)
and propagating these assignments throughout the structure, we obtain an over-
estimation of truth in the AND/OR completion structure as from such nodes one
can reach every node in a good cycle. The resulting truth value assignment might
be an overestimation, as some nodes in good cycles might still turn out to be false.
This is the case, for example, for an AND node which belongs to such a cycle and
has besides its OR successor on the cycle another successor which eventually fails.
Then, the AND node cannot be true either, and neither can it serve as a justification
for nodes which are its predecessors in ET , including the blocking node and the
blocked OR node which are part of the blocking cycle. This leads to the second
iteration step.

2. during this step, it is checked whether the hypotheses hold, i.e. every blocked OR
node assumed to be true is actually true. This is done by elimination: in order for
such a node to stay true at the next iteration, it must be the case that all nodes in one of
the cycles induced by one of its outgoing blocking arcs are true (see the explanation
at the previous step). All nodes for which this is not the case are eliminated from the
set of hypotheses. A new iteration is performed with the new hypotheses set unless
all hypotheses were confirmed at this step. This is needed as the false hypotheses
might have propagated truth in some cycles which are not good and this process has
to be reversed.

• a final assignment step: eventually, during the last iteration of the previous step, all hy-
pothesized truth is confirmed, and, as such, it is transferred to the original structure. All
nodes which still have truth value unknown are set to false .

Thus, eventually, the evaluation procedure assigns to every node of an AND/OR completion
structure for p with respect to a program P one of the truth values true or false . To simplify the
formal exposition of the evaluation procedure, we introduce the following notation:

146

Algorithm 6.2: The Evaluation Procedure for an AND/OR Completion Structure
input : an AND/OR complete completion structure AO = 〈ET, ct, st, G, type, ucs,

eval, spec 〉, with ET = (T, S)
output: AO is updated such that every node has truth value true or false according to the

satisfisfiability of its content
1) Initialization: nodes with no successors
S := ∅;
for every x ∈ T such that x has no successors in ET do

if type(x) = OR then
eval(x) := false;

end
else

eval(x) := true;
end
S := S ∪ {x};

end
Propagate(AO,S);
2) Iterative evaluation procedure
S := {x | spec(x, y) = bl , for some y ∈ T};
switch := false;
repeat

AO′ := AO;

i) Overestimating truth
for x ∈ S (in AO′) do

eval(x) := true;
end
Propagate(AO′, S);

ii) Hypothesis check
for x ∈ S do

if there exists no true cycle cy in ET (in AO′) such that there exists a node
y ∈ NEF with (x, y) ⊆ cy and spec(x, y) = bl then

S := S − {x};
switch := true;

end
end

until switch = false;
3) Transfer of truth to AO; final assignment and propagation
AO := AO′;
for every x ∈ T do

if eval(x) = unknown then
eval(x) := false;

end
end

147

Definition 43. Let AO = 〈ET, ct, st, G, type, ucs, eval, spec 〉, with ET = (T,ES) be
a complete AND/OR completion structure for a CoLP P and C ∈ pathsET be a cycle in ET .
We say that C is a true cycle iff for every x ∈ C: eval(x) = true .

The evaluation procedure is formally described by Algorithm 6.2.
In the following, we will refer to the result of applying the evaluation procedure to a complete

AND/OR completion structure as an evaluated AND/OR completion structure. Given such a
structure, one can decide whether p is satisfiable by looking at the truth value of its root node:

Definition 44. An evaluated AND/OR completion structure for p with respect to a CoLP P is
successful iff the truth value of the root node in the structure is true: eval(ε) = true.

Theorem 2. Given a CoLP P and a predicate p ∈ upreds(P), p is satisfiable with respect to P
iff there exists a successful evaluated AND/OR completion structure for checking satisfiability
of p with respect to P .

The proofs (in both directions) of the above result are provided in Section 6.2.5.

6.2.4 Termination and Complexity

There are two main factors to consider regarding termination and running time of Adet
3,c : first,

the termination and running time of the expansion procedure, and second, the termination and
running time of the evaluation procedure.

6.2.4.1 Computation of Complete AND/OR Completion Structures

Similarly to the non-deterministic case, we show in a first stage that every branch in a complete
AND/OR structure4 has at most an exponential number of nodes in the size of the program, and
in a second stage that the number of nodes in the whole completion has at most an exponential
number of nodes in the size of the program.

Proposition 26. Every branch in a complete AND/OR-completion structure for a unary pred-
icate p with respect to a CoLP P has at most an exponential number of nodes in the size of
P .

Proof. Let u = |UCSP | and n = |upreds(P)|. We show that any branch in T has at most:

2((n2n
2+1 − 1)(u− 1) + n2n

2+1)− 1 nodes.

Assume the opposite: then, there exists a branch with at least:

2((n2n
2+1 − 1)(u− 1) + n2n

2+1) nodes,

4As the completion has now also backward arcs, whenever we refer to a branch of the completion we mean a
branch in the underlying tree of the structure which might have as terminal node some blocked, redundant, or cached
OR node.

148

or in other words, there exists a branch with at least

(n2n
2+1 − 1)(u− 1) + n2n

2+1 AND nodes.

There is a finite number of AND nodes with different values for the ucs field: at most u, on
any branch of the completion structure and in the completion structure itself. As such, there ex-
ists a unit completion structure, uc1, and a sequence of non-terminal AND nodes x1, . . . , xn2n2+1

belonging to the branch such that: ucs(xi) = uc1, for every 1 6 i 6 n2n
2+1. We assume that

xi <T xj , for every 1 6 i < j 6 n2n
2+1.

For every 1 6 i 6 n2n
2+1, let r1

i , . . . , r
n
i be the ordered sequence of ranks of unary predi-

cates in ct(xi) such that:

• {rji | 1 6 j 6 n} = {k | p ∈ ct(x1) ∧ rank(p(xi)) = k};

• rji > r
j+1
i , for every 1 6 j < n;

• if j = |{k | p ∈ ct(xi) ∧ rank(p(xi)) = k}| < n, then rmi := max{k | p ∈
ct(xi) ∧ rank(p(xi)) = k}, for every m > j.

In the following, we will show by induction that:

– for every 1 6 j 6 n: if x
n2n2+1 is not redundant, then rank(x

j2n2+1) > rj1.

Intuitively, this captures the fact that there is no path in G from an atom with rank less or
equal to rj1 to an atom having as argument x

j2n2+1 .
Base case j = 1. If (x1, x2n2+1) is a blocking pair the claim is obvious. We prove now that

rank(x
2n2+1) > r1

1 in the case where (x1, x2n2+1) is not a blocking pair. We have that:

• rank(xi) > rank(x1) = r1
1, for every 1 6 i 6 2n

2+1, and

• (xi, xk) is neither a blocking nor a redundancy pair, for every 1 6 i < k 6 2n
2+1.

Assume that rank(x
2n2+1) = r1

1. Then rank(xi) = r1
1, for every 1 6 i 6 2n

2+1. Let
l1 = 2n

2+1−n. Then, there must be a sequence x1
i , . . . , x

1
l1

of nodes such that:

• for every 1 6 i 6 l1 there exists some 1 6 k 6 2n
2+1 such that x1

i = xk, and

• there exists a set S1 ∈ 2upreds(P) such that S1 6= ∅ and isp(r1
1, x

1
i) = S1, for every

1 6 i 6 l1: (given that |{isp(r, x), | x ∈ T and r ∈ N}| = 2n).

Further on, we distinguish between the following situations:

• r2
l1
> ||x1

1||, or in other words isp(k, x1
l1

) = ∅, for every r1
1 < k 6 ||x1

1||: this means
that there are no paths in the dependency graph running between atoms formed with
the first node in the x1 sequence and the last node in the same sequence, other than
those containing atoms with rank r1

1. As the two nodes have the same rank: r1
1, and

isp(r1
1, x

1
1) = isp(r1

1, x
1
l1

), it follows that x1
1 and x1

l1
are redundant – contradiction with

the fact that x1
l1

is not the last node on the branch.

149

• r2
l1
6 ||x1

1||: this means that r2
l1

= r2
x11

, or there are some paths in the dependency graph

running between atoms formed with the first node in the x1 sequence and the last node
in the same sequence with rank greater than r1

1. Then, similarly to before, we argue that
there exists a sequence of nodes x2

1, . . . x
2
l2

, with l2 = 2n
2+1−2n such that:

– for every 1 6 i 6 l2 there exists some 1 6 k 6 l1 such that x2
i = x1

k, and

– there exists a set S2 ∈ upreds(P) such that S2 6= ∅ and isp(r2
1, x

2
i) = S2, for every

1 6 i 6 l2.

Continuing in the same vein we obtain that either x2
1 and x2

l2
are redundant or there exists

a sequence x3 with similar properties as before, etc. As the number of predicates in
the content of a node is bounded by n, it follows that we can construct at most n such
sequences and for the last one, 1 6 k 6 n, the nodes xk1 and xkl , where lk = 2n

2−kn+1,
form a redundancy pair.

Thus, based on the assumption that rank(x
2n2+1) = r1

1, it follows that there must be some
redundant node in the sequence x1, . . . , x2n2+1 . This is in contradiction with the fact that the
complete AND/OR completion structure contains no redundant AND node (every such node is
removed as part of the redundancy rule). Thus, the assumption was false and rank(x

2n2+1) >
r1

1.
Induction step: This consists in proving that rank(x

(j+1)2n2+1) > rj+1
1 , when it is known

that rank(x
j(2n2+1)

) > rj1, for some 0 < j < n.

Assume that it is not the case that rank(x
(j+1)2n2+1) > rj+1

1 . Then, for every 2n
2+1 < i 6

2n
2+2, it is the case that rank(xi) = r2

1. As previously, it is possible to construct sequences x1,
x2, . . . , and show that eventually some redundancy pair is encountered. But this is in contra-
diction with the fact that there are no redundant AND nodes in the structure. Thus, the original
claim is true: for every 1 6 j 6 n, if x

n2n2+1 is not redundant, then rank(x
j2n2+1) > rj1.

From here on, the proof follows the line of the argument used to show the similar claim for
the non-deterministic case: as rank(x

n2n2+1) > rn1 , it follows that the set of oldest paths in G
traversing x

n2n2+1 started at a node below x1, and thus, there are no paths in G running between
x1 and x

n2n2+1 . As ucs(x1) = ucs(x
n2n2+1), this implies that (x1, xn2n2+1) is a blocking pair

and thus x
n2n2+1 is a blocked OR node. But, again, there are no explicit blocked AND nodes in

a complete AND/OR completion structure. Thus, the original assumption was false, and there
are at most:

2((n2n
2+1 − 1)(u− 1) + n2n

2+1)− 1 nodes

on every branch, where n = |upreds(P)|, and u = |UCSP |. �

Proposition 27. A complete AND/OR-completion structure for a unary predicate p and a CoLP
P has at most an exponential number of nodes in the size of P .

Proof.

150

Similarly to the non-deterministic case, we associate with every AND node in a complete
AND/OR completion structure x ∈ T , a function

fx : upreds(P)→ {r | 0 6 r 6 2((n2n
2+1 − 1)(u− 1) + n2n

2+1)− 1},

where n = |upreds(P)| and u = |UCSP |. The function is defined as follows:

fx(p) =

{
0, if p 6∈ ct(x)

rank(p(x)), if p ∈ ct(x).

The number of such functions is:

F = |2upreds(P) × {r | 0 6 r 6 2((n2n
2+1 − 1)(u− 1) + n2n

2+1)− 1}||upredsP |

= (2n(2((n2n
2+1 − 1)(u− 1) + n2n

2+1)− 1)n,

which is exponential in the size of P . As previously, one can show that every two AND nodes on
different branches in T , that have associated identical functions and which have been expanded
using the same unit completion structure form a caching pair. The reasoning from this point on
follows the same line as the reasoning for the non-deterministic case. �

As computing the set of unit completion structures and finding a match between a unit com-
pletion structure against a node in T can be performed in exponential time (this in turn, has
to be performed at most an exponential number of times - the size of the AND/OR complete
structure), and checking the blocking, redundancy, and caching conditions can be done in time
linear/polynomial in the size of the longest branch of the structure it follows that:

Proposition 28. Given an initial AND/OR-completion structure for a unary predicate p and a
CoLP P AO, a complete AND/OR completion structure can always be evolved from AO in the
worst case in time exponential in the size of P .

6.2.4.2 Complexity Analysis for the Evaluation Procedure

We show that the evaluation procedure for a complete AND/OR completion structure AO =
〈ET, ct, st, G, type, ucs, eval, spec 〉 terminates and runs in the worst-case in exponential
time by looking at the different stages of the procedure:

• Termination and complexity of the initialization step: We show that every node in AO
changes its truth value at most once during this step. Assume the opposite: then there
exists a node x1 ∈ T which changes its truth value at least twice as a result of the call
to the propagation procedure. This can only by virtue of one of its successors changing
values twice as well. Every terminal node changes values at most once from unknown to
true or false . As at this stage there cannot be circular motivations of truth values, such
there should be an infinite chain of distinct nodes in which every node changes its value
twice by virtue of its successor in the chain. This is in contradiction with the fact that T
has a finite number of nodes. Thus, the initial assumption was false: each node changes
its value at most once. From Proposition 19 it follows that this step takes in the worst case
exponential time.

151

• Termination and complexity of an iteration step of the alternating iterative procedure:
during this step nodes can change their truth values only from unknown to true . Nodes
which have truth value false will not change their value as it has been calculated based on
the truth value false of some terminal OR nodes during the initialization step. The value
of these latter nodes is not changed during this step as only some nodes with truth value
unknown are switched to true . Also, once a node becomes true its truth value will not
change: all nodes in S (either added initially or during the propagation procedure) have
truth value true and the only nodes which change their value are doing so based on the
fact that some of their successors belong to S. Thus, again, each node changes its value at
most once.

From Proposition 19 it follows that this step takes in the worst case exponential time.

• Convergence of the alternating iterative procedure: At every subsequent iteration, the
number of nodes in the hypothesized set decreases. Thus, the maximum number of itera-
tions coincides with the maximum number of blocked OR nodes in a complete AND/OR
structure, which is exponential in the size of the program.

• Final assignment: trivial.

As a result of the analysis above one can conclude that:

Proposition 29. The evaluation procedure for a given complete AND/OR completion structure
runs in the worst case in exponential time.

From Proposition 28 and Proposition 29 it follows that:

Proposition 30. Adet
3,c runs in the worst case in deterministic exponential time.

Thus, Adet
3,c provides an effective worst-case optimal procedure for reasoning with CoLPs.

6.2.5 Soundness and Completeness

This section shows that Adet
3,c is sound and complete. We start with some notations and lemmas

which will be useful for showing both results.
First, we introduce the notion of traversal of an AND/OR completion structure which con-

sists in a projection of the structure to another AND/OR structure such that the trees correspond-
ing to the two structures have identical roots, for every OR node in the traversal, exactly one
successor is carried over from the original structure (in case such a successor exists), and for ev-
ery AND node in the traversal, all successors are carried over from the original structure. While
an AND/OR completion structure is an exhaustive representation of all possible models for a
CoLP P which satisfy a certain unary predicate p, a traversal is a representation of a tentative
such model (where at every choice point, exactly one choice is considered).

Definition 45. A traversal of an AND/OR completion structure for a CoLP P , AO = 〈ET, ct,
st, G, type, ucs, eval, spec 〉, with ET = (T,ES) is an AND/OR completion structure
Tr = 〈ET ′, ct′, st′, G′, type′, ucs′, eval′, spec′ 〉 defined as follows:

152

• ET ′ := (T ′, ES′), where T ′ has the same root ε as T ,

• for every x ∈ T ′ it holds that:

– x ∈ T ,

– ct′(x) := ct(x),

– st′(x) := st(x),

– type′(x) := type(x),

– ucs′(x) := ucs(x),

– eval′(x) := eval(x),

– if type′(x) = OR and some y ∈ T exists such that (x, y) ∈ AET , then there exists
a unique z ∈ T ′ such that (x, z) ∈ AET and (x, z) ∈ AET ′ ;

– if type′(x) = AND, then for every y ∈ T such that (x, y) ∈ AET , it is the case
that y ∈ T ′ and (x, y) ∈ AET ′ ;

• for every (x, y) ∈ AET ′ it holds that: spec′(x, y) := spec(x, y);

• G′ := 〈V ′, A′〉 with:

– V ′ := V ∩ BPT
;

– A′ := A ∩ (V ′ × V ′);

The following propositions follow directly from the definitions of an evaluated AND/OR
completion structure and of a traversal.

Proposition 31. An evaluated AND/OR completion structure is successful iff it admits a suc-
cessful traversal.

Proposition 32. A traversal of an evaluated AND/OR completion structure is successful iff all
nodes in the traversal have truth value true .

While the previous proposition characterizes a successful traversal syntactically, we move
next towards a more semantic characterization of such traversals, which as already anticipated,
are meant to be representations of actual models. We first provide a formal definition for the
notion of good cycle, which was mentioned in the informal description of the evaluation proce-
dure.

Definition 46. Let AO = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be an AND/OR comple-
tion structure and let cy ∈ pathsET be a cycle in ET . We say that cy is a good cycle iff there
exists no cycle Cy ∈ pathsG with argpath(Cy) = cy.

Next we introduce the notion of ‘good’ traversal which, as we will see later, is in a one-to-one
correspondence with the notion of a successful traversal.

153

Definition 47. A traversal Tr = 〈ET, ct, st, G, type, ucs, eval, spec 〉 is good iff every
cycle in ET is a good cycle and there exists no node x ∈ T such that type(x) = OR and x has
no successors.

As anticipated in Section 6.2.3, the notion of good cycles is tightly related to the presence of
a blocking arc in such cycles. Depending on the presence of such an arc we distinguish between
blocking and non-blocking cycles:

Definition 48. Let AO = 〈ET, ct, st, G, type, ucs, eval, spec 〉, with ET = (T,ES) be
an AND/OR completion structure and cy ∈ pathsET be a cycle in ET .

We say that cy is a blocking cycle iff there exists a blocking arc (x, y) ∈ ES, spec(x, y) =
bl , which is part of the cycle: (x, y) ⊂ cy.

Otherwise, we say that cy is a non-blocking cycle.

In order to prove the connection between good cycles and blocking cycles, we start with
some helping lemmas:

Lemma 23. Let AO = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be a complete AND/OR-
completion structure, with ET = (T,ES), and let x and y be some nodes in T such that (x, y)
is a redundancy or a caching arc in AO.

Then, for every node t ∈ T such that ||t|| 6T lcaT (x, y) and unary predicate p ∈ upreds(P),
it holds that: there exists a path Pt1 in G from some q(t) to p(y) with argpath(Pt1) =
pathT (t, y) iff there exists a path Pt2 in G from some r(t) to p(y) with argpath(Pt2) =
pathT (t, x)^(x, y).

Proof. From the construction of an AND/OR completion structure. See Section 6.2.2.2 and
Section 6.2.2.3. �

Lemma 24. Let CS = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be an AND/OR-completion
structure, let x <T y be some nodes in ET , and let pt be a path in pathsET (x, y) such that:

• for every z ∈ pt: z ∈ Tx, and

• there exists no blocking arc (z, t) such that (z, t) ⊆ pt.

Then, there exists some path Pt ∈ pathsG(q(x), r(y)) such that argpath(Pt) = pt iff
there exists some path Pt′ ∈ pathsG(s(x), r(y)) with argpath(Pt′) = pathT (x, y), where
q, r, s ∈ upreds(P).

Proof. For the purpose of this lemma let](pt) be the number of special arcs, i.e. redundancy
and caching arcs, in some path pt ∈ pathsEF which does not contain any blocking arc. We will
show that the claim in the lemma holds by induction on](pt).

Induction base:](pt) = 0, that is pt = pathT (x, y). The claim trivially holds.
Induction step: Assume that for all pt ∈ pathsET which contain no blocking arc and for

which](pt) = n, for some n ∈ N>0, the claim holds. Let pt ∈ pathsET be a path which con-
tains no blocking arcs with](pt) = n+ 1. Then there must be some nodes z, t, with (z, t) being
a redundancy or caching arc, and some paths pt1 ∈ pathsT (x, z), and pt2 ∈ pathsET (t, y) (the
paths are depicted in Figure 6.2 using dashed arcs), such that:

154

x
s

u q

y
r

t

p

z

ppathT (x, y)Pt′

Pt3

pt1

Pt1Pt′1

pt2Pt2

Figure 6.2: A path in ET from x to y containing a redundancy or a caching arc (z, t) and
corresponding paths in the dependency graph G

• pt = pt1^(z, t)^pt2, and

•](pt2) = n.

We next show that the claim in the lemma holds for pt, that is, that there is there is some
path Pt ∈ pathsG(q(x), r(y)) such that argpath(Pt) = pt iff there exists some path Pt′ ∈
pathsG(s(x), r(y)) with argpath(Pt′) = pathT (x, y). Figure 6.2 can again be used as a
reference for the proof of the claim in both directions: it depicts paths in the dependency graph
G using dotted arcs.

“⇒”: Assume that there exists a path Pt ∈ pathsG(q(x), r(y)) with argpath(Pt) = pt.
Then there must be some paths Pt1 ∈ pathsG(q(x), p(z)), and Pt2 ∈ pathsG(p(t), r(y)), with
argpath(Pt1) = pt1, argpath(Pt2) = pt2, and some arc (p(z), p(t)) ∈ AG (the only type of
arcs in G between atoms having as arguments z, and t, where (z, t) is a special arc in EF), such
that: Pt = Pt1 ^ (p(z), p(t)) ^Pt2.

We notice that argpath(Pt1^(p(z), p(t))) = pathT (x, z)^(z, t). Then, from Lemma 23
it follows that there must be a path Pt3 ∈ pathsG(u(x), p(t)), with rank(u(x)) = r and
argpath(Pt3) = pathT (x, t). By concatenation of Pt3 with Pt2, one obtains a path Pt4 ∈
pathsG(u(x), r(y)) with argpath(Pt4) = pathT (x, t)^pt2. As](argpath(Pt4)) = n, from
the induction hypothesis it follows that there exists a path Pt′ ∈ pathsG(s(x), r(y)) such that
argpath(Pt′) = pathT (x, y), which is exactly the original claim.

“⇐”: Assume that there exists a path Pt′ ∈ pathsG(s(x), r(y)) with argpath(Pt′) =
pathT (x, y). Let pt4 = pathT (x, t)^pt2. As](pt2) = n, it follows that also](pt4) = n.
Then, from the induction hypothesis for pt4 and from the existence of Pt′, it follows that

155

x

y

t

z

pt1

pt2

Figure 6.3: A path in ET from x to y which contains a blocking arc (z, t)

there must be some path Pt4 ∈ pathsG(u(x), r(y)) such that argpath(Pt4) = pt4. Sub-
sequently, there must be some paths Pt3 ∈ pathsG(u(x), p(t)), Pt2 ∈ pathsG(p(t), r(y))
such that argpath(Pt3) = pathT (x, t) and argpath(Pt2) = pt2. Due to the existence of
Pt3 from Lemma 23 it follows that there must be some path Pt′1 ∈ pathsG(q(x), p(y)) with
argpath(Pt′1) = pathT (x, z)^(z, t). Then, Pt′1^Pt2 ∈ pathsG(u(x), r(t)) and](Pt′1^Pt2) =
n+ 1.

Lemma 25. Let AO = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be an AND/OR-completion
structure, and let (x, y) be a blocking arc in AO. Then, connprG|T (y, x) = ∅.

Proof. From the construction of an AND/OR completion structure. See Section 6.2.2.1. �

Lemma 26. Let CS = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be an AND/OR-completion
structure, let x <T y be some nodes in ET , and let pt be a path in pathsET (x, y) such that:

• for every z ∈ pt: z ∈ Tx, and

• there exists t ∈ T such that spec(z, t) = bl ((z, t) is a blocking arc) and (z, t) ⊆ pt.

Then, there exists no path Pt ∈ pathsG with argpath(Pt) = pt.

Proof. Let pt = pt1^(z, t)^pt2, where (z, t) is the first blocking arc in pt: for every
(u, v) ⊆ pt1: spec(u, v) 6= bl . Then, t <T z, and x <T y, thus t ∈ pathT (x, z) (Figure
6.3). As z is a blocked OR node, from Lemma 25 it follows that connprG|T (t, z) = ∅, thus also
connprG|T (x, z) = ∅. As pt1 contains no blocking arcs, one can apply Lemma 24: there exists
some path Pt1 ∈ pathsG(q(x), r(z)), with q, r ∈ upreds(P) such that argpath(Pt1) = pt1
iff there exists some path Pt2 ∈ pathsG(s(x), r(z)) with argpath(Pt2) = pathT (x, z), with
rank(s(x)) = rank(q(x)). But connprG|T (x, z) = ∅, and thus, there exists no such paths Pt1
or Pt2: thus, there exists also no path Pt ∈ pathsG with argpath(Pt) = pt. �

156

c

x

y

z

z

.

X

c

x

y

t

t

z

X

a) (y, z) is a redundancy or blocking arc b) (y, z) is a caching arc

Figure 6.4: Every cycle has a ‘top’ node x such that every node in the cycle is part of Tx

Lemma 27. Let CS = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be a complete AND/OR-
completion structure, and let cy be a cycle in ET . Then, there exists a node x such that for every
y ∈ cy: y ∈ Tx. We call x the top node of cy and denote it with top(cy).

Proof. Let x ∈ cy be such that there is no node y ∈ cy with y <T x or rightT (y, x) (x is
the top node on the ‘left’-most branch from which there are some nodes which are part of the
cycle). We show inductively that only nodes in Tx can be reached. The induction partial order
is given by the distance dist(x, y) from x to a node y in cy, defined as dist(x, y) = length(pt),
where pt is the path from x to y in cy: pt ∈ pathsEF (x, y) and pt ⊆ cy.

Induction base: Let y ∈ cy be such that dist(x, y) = 1. Then, (x, y) ∈ AET . As there
exists no node z ∈ cy such that z <T x or rightT (z, x), any arc (x, y) with y ∈ cy is a regular
arc: (x, y) ∈ AT , thus y ∈ Tx.

Induction step: Assume all nodes y for which dist(x, y) = n, are in Tx (IH). Let z be such
that dist(x, z) = n+ 1 and y be such that (y, z) ⊂ cy. Then, dist(x, y) = n, and thus y ∈ Tx.
Depending on the type of (y, z) we distinguish between:

• spec(y, z) = bl or spec(y, z) = re: then, z ∈ pathsT (c, y). But y ∈ T , thus x ∈
pathsT (c, y), and there is no t <T x. Then, z >T x: z ∈ Tx (Figure 6.4 a)).

• spec(y, z) = ch: then, rightT (y, z). Let t = lcaT (y, z). If t <T x, it follows that
rightT (x, z) – in contradiction with the original assumptions on x. Thus: t >T x, and
z >T x, or in other words z ∈ Tx (Figure 6.4 b)).

• spec(y, z) is undefined, or in other words (y, z) is a regular arc in T . Then, from the fact
that y ∈ Tx, it follows straightforwardly that z ∈ Tx.

157

y

x

z

AND

OR

AND

rank r

rank r

rank r

X

qp s
P t3

Pt2

Pt1

q

qp

Figure 6.5: If (x, y) is a redundancy arc and p ∈ ct(y) there is a path in G from q(x) to p(y)

Thus, for every node in y ∈ cy, it holds that y ∈ Tx, and x, as chosen above is top(cy). �

Lemma 28. Let AO = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be an AND/OR-completion
structure, and let (x, y) be a redundancy arc in AO. Then, for every unary predicate p ∈ ct(y),
there is some unary predicate q ∈ ct(x) such that (q(x), p(y)) ∈ connG and rank(q(x)) =
rank(p(y)).

Proof. As (x, y) is a redundancy arc in AO, there must have been some AND node z which
was identified as being redundant while constructing AO having y is a redundancy witness
(Figure 6.5). According to the redundancy rule (Section 6.2.2.2) the node was subsequently
deleted and the redundancy arc (x, y) has been created. In the following we consider AO as
if it still contains the redundant node z. From the redundancy rule, it follows that for every
s ∈ ct(y), it is the case that s ∈ ct(z) and rank(s(y)) = rank(s(x)).

Let r = rank(p(y)). Then, there must be some path in G of rank r which contains p(z).
Let s and q be the intersection of this path with y and x, respectively. Also let Pt be the
subpath of this path which ranges from s(y) to p(z). From the definition of the AOExpand
operation and from the definition of the redundancy rule we know that there must be some arcs
(q(x), q(z)) and (q(x), q(y)) inG, respectively. Furthermore, there is no arc of type (q(x), s(z))
where s is different from q. Thus, there must be some paths Pt1 ∈ pathsG(s(y), q(x)), and
Pt2 ∈ pathsG(q(z), p(z)) such that Pt = Pt1^(q(x), q(z))^Pt2.

From the fact that z and y were expanded using the same UCS and the existence of Pt2,
it follows that there must be a path Pt3 ∈ pathsG(q(y), p(y)). Then, by concatenation of arc
(q(x), q(y)) and of path Pt3 we obtain a path Pt4 ∈ pathsG(q(x), p(y)). �

We next show that every non-blocking cycle in ET has an overlying cycle in G and every
blocking cycle in ET has no overlying cycle in G.

158

x

y a1

a2 a′2

a3

a4 a′4

a5

. . .

. . .

pathT (x, y) pt P t1 Pt′1 Pt′′1 Pt2 Pt
′
2 Pt′′2

Figure 6.6: Paths in G in a non-blocking cycle

Lemma 29. Let CS = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be a complete AND/OR-
completion structure, and let cy be a non-blocking cycle in ET . Then, there exists a cycle
Cy ∈ pathsG such that argpath(Cy) = cy.

Proof. As cy is a non-blocking cycle, according to Lemma 27, there exists a node x ∈ cy
such that for every y ∈ cy, y ∈ Tx. Let y be the direct predecessor of x in the cycle: (y, x) ∈ cy
and pt ∈ pathsET (x, y) such that cy = pt^(y, x). Then, as y ∈ Tx and cy contains no blocking
arc, (y, x) is a redundant arc.

Let r1 = rank(x). Then, there must be some path Pt1 ∈ pathsG(a2(x), a1(y)), with
a1, a2 ∈ upreds(P), argpath(Pt1) = pathT (x, y), and rank(a2(x)) = rank(a1(y)) =
r1. One can apply Lemma 24 for Pt1/pathT (x, y) and pt: there must be some path Pt′1 ∈
pathsG(a′2(x), a1(y)) with argpath(Pt′1) = pt and a′2 ∈ upreds(P). Let r2 = rank(a′2(x)).

Then, according to Lemma 28 there exists a predicate a3 ∈ isp(r2, y) and a path Pt′′1 ∈
pathsG(a3(y), a′2(x)). As a3 ∈ isp(r2, y) and r2 6 ||x||, it follows that there must be a path
Pt2 ∈ pathsG(a4(x), a3(y)), with a4 ∈ upreds(P), and argpath(Pt2) = pathT (x, y). Again,
by applying Lemma 24 one obtains, that there must be a path Pt′2 ∈ pathsG(a′4(x), a3(y)) with
argpath(Pt′2) = pt, and a′4 ∈ upreds(P).

Following the same line of reasoning one obtains that there must be a sequence of paths:

Pt′i ∈ pathsG(a′2i(x), a2i−1(y)) with argpath(Pt′i) = pt, for every i > 1 (6.1)

and a sequence of paths:

Pt′′i ∈ pathsG(a2i+1(y), a′2i(x)) with argpath(Pt′′i) = (y, x), for every i > 1 (6.2)

By combining (6.1) and (6.2) (Figure 6.6), we obtain that for every k > 1 and for every
1 6 j < k, there exists a path Ptj,k ∈ pathsG(a2k+1(x), a2j−1(y)) such that:

Ptj,k = Pt′′k^Pt
′
k^ . . .^Pt

′′
j^Pt

′
j .

159

But, as |upreds(P)| is finite, there must be two indices 1 6 j 6 k such that a2j−1 = a2k+1:
then, there exists an arc (a2j−1(y), a2k+1(x)) ∈ AG and a pathCy = Ptj,k^(a2j−1(y), a2k+1(x))
is a cycle in G with argpath(Cy) = pt^(y, x) = cy.

Lemma 30. Let CS = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be a complete AND/OR-
completion structure, and let cy be a blocking cycle in ET . Then, there exists no cycle Cy ∈
pathsG such that argpath(Cy) = cy.

Proof.
Let (z, t) be a blocking arc in cy such that (z, t) ⊆ cy, spec(z, t) = bl and x = top(cy).
Then cy = pt1^pt2, with pt1 ∈ pathsET (x, t) and one can apply Lemma 26 for the path

pt1: there is no path Pt1 ∈ pathsG such that argpath(Pt1) = pt1, thus there is no path
Pt ∈ pathsG such that argpath(Pt) = cy (and subsequently no cycle). �

From Lemma 30, Lemma 29, and Definition 46, it is possible to conclude that:

Proposition 33. Let CS = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be an evaluated
AND/OR-completion structure. Then, a cycle cy in ET is good iff cy is a blocking cycle.

Finally, we state and prove the following result which underpins the evaluation procedure:

Proposition 34. An evaluated AND/OR completion structure AO for a CoLP P and unary
predicate p is successful iff it admits a good traversal.

Proof. Let AO = 〈ET, ct, st, G, type, ucs, eval, spec 〉 be an evaluated AND/OR
completion structure.

“⇒′′: Assume AO is successful. Before proceeding to the construction of a good traversal,
we observe that every traversal Tr = 〈ET ′, ct′, st′, G′, type′, ucs′, eval′, spec′ 〉 of AO
is completely characterized by ET ′ and AO, i.e. it can always be reconstructed from these two
data structures. In the following, we will construct explicitly only the extended tree part, ET ′,
of a good traversal, Tr, of AO. We will also use the function st′ to keep track of nodes which
have been already expanded in the traversal in construction.

The procedure initializes Tr with the root of the tree T of the AND/OR successful com-
pletion structure. Progressively, it considers unexpanded OR nodes in T ′ and, using AO as a
guidance, for every such node picks up an AND successor which is true in ET .

Assume that an unexpanded OR node x ∈ T ′ is going to be expanded by reusing an AND
successor y of x in ET . Then, the operation of updating ET ′ by addition of the new AND node
y as a successor to x is denoted with trExpand(ET ′, x, y) and is formally defined as follows:

• st′(x) = exp;

• AET ′ := AET ′ ∪ {(x, y)};

• if y 6∈ T ′ then:

– T ′ := T ′ ∪ {y};
– for every z such that (y, z) ∈ AET :

160

∗ T ′ := T ′ ∪ {z};
∗ AET ′ := AET ′ ∪ {(y, z)};
∗ st′(z) = unexp;

A strategy is needed for the selection of the one and only successor for each OR node in the
traversal which ensures that no bad cycles are introduced in the construction. To this end, every
true node in AO is annotated with a natural number, signifying the distance from the node to
terminal ‘good’ nodes, i.e. AND nodes with no successors or blocked/proxy constant OR nodes
in true good cycles.

The distance is defined as follows:

d(x) :=


0, if x is a terminal AND node or

a blocked OR node in a true cycle
min{d(y) + 1 | (x, y) ∈ AET and d(y) is defined }, if x is an OR node, other than above
max{d(y) + 1 | (x, y) ∈ AET and d(y) is defined }, if x is an AND node, other than above.

To see that the distance is well-defined, consider the propagation procedure described by
Algorithm 6.1 and the evaluation procedure described by Algorithm 6.2. A node is true either
by virtue of being a terminal AND node, a blocked OR node in a true cycle, or as a result of one
of the calls to Propagate in the initial step of the evaluation procedure and in the last iteration
of the same procedure. Assume that there is a counter c which initially is set to 0 and which
runs through the two propagation calls. Also, let e : T → N be a function such that every time
a new node is assigned the truth value true as a result of one of the two calls, the counter c is
incremented and e(x) := c. Additionally, e(x) = 0, for every node x which is a terminal AND
node or a blocked OR node in a true cycle.

As the two calls to the propagation procedure always terminate, as discussed in Section
6.2.4, it is clear that e(x) is defined and finite, for every node x ∈ T for which eval(x) = true .

We show by induction on e(x) that e is an over-estimation of d: for every node x ∈ T for
which eval(x) = true , d(x) 6 e(x).

Induction base: e(x) = 0. Then, d(x) = 0.
Induction hypothesis: Assume d(x) 6 e(x), for every x such that e(x) 6 k, for a fixed k.

We show that: d(x) 6 e(x), for every x such that e(x) = k + 1.
Let x be such that e(x) = k + 1. We distinguish between:

• x is an OR node: then, there must be a successor y of x in ET such that e(y) 6 k. From
the definition of d: d(x) 6 e(y) + 1 6 k + 1 = e(x).

• x is an AND node: then, for every successor y1, . . . , yn of x in ET : e(yi) 6 k. From the
definition of d: d(x) 6 max16i6n(e(yi)) + 1 6 k + 1 = e(x).

Thus, d, being an under-estimation of e, is also defined and finite, for every node x ∈ T such
that eval(x) = true . In the following we will use d in the construction of the traversal Tr. For
every OR node x ∈ T ′ such that st′(x) = unexp do one of the following:

161

• if x is an OR blocked node in a true good cycle cy in ET (d(x) = 0), for which there
exists a node y ∈ T such that (x, y) ∈ cy and spec(x, y) = bl , make y the successor of
x in ET ′: trExpand(ET ′, x, y).

• if x is an ordinary node (d(x) > 0) pick up a successor node y of x in ET for which
d(y) = d(x)−1 (by construction of d such a successor must exist) and use it as a successor
of x in ET ′: trExpand(ET ′, x, y).

It is clear that the procedure described above terminates and constructs a traversal: for every
OR node for which there exists a successor in ET , there will be exactly one successor in ET ′.
Also, if a node is re-encountered it will not be expanded again. It remains to be shown that the
traversal is a good one, i.e. all (potential) cycles in ET ′ are good ones. Assume the opposite:
that, there exists a cycle cy which is not good. Then, by construction of d, for every two nodes
x, y ∈ T ′, if (x, y) ∈ AET ′ and d(x) 6= 0, d(x) > d(y). It follows that every cycle should
contain a node x such that d(x) = 0. But then, x is a blocked OR node, and its only successor
in ET is the node y ∈ T such that spec(x, y) = bl , and thus cy is a blocked cycle. But then, cy
is good.

“ ⇐′′: Assume that there exists a good traversal GT = 〈ET ′, ct′, st′, G′, type′, ucs′,
eval′, spec′ 〉 of AO. Then, all the cycles in GT are good and there are no terminal OR nodes,
i.e. OR nodes with no successors.

We show that GT is a successful traversal by induction: in particular, we show that the truth
value of every node x in the traversal is true by induction on d(x), which is the distance from
x to some terminal AND node or blocked OR node in T ′ (in the traversal!), formally defined as
follows:

d(x) =


0, if x is a blocked OR node in a good cycle in ET ′

or a terminal AND node in T ′

max{1 + d(y) | (x, y) ∈ AET ′} otherwise.

As for the distance used for the counter-proof, we show first that d(x) is well-defined: in
this case this means showing that d(x) is finite, for every x ∈ T ′. Assume the opposite. Then
there must be an infinite length path in ET ′ which contains x such that for every node y on the
path: d(x) > 0. Such a path can only be a cycle. All cycles in ET ′ are good, thus, according
to Proposition 33 they are also blocking cycles. As such, any such cycle contains a blocked OR
node y such that d(y) = 0 – contradiction.

We next show by induction on d(x), that the truth value of every node x ∈ T ′ is true.
Base case: if d(x) = 0, then we distinguish between:

• x is a terminal AND node in T/T ′ (a node with no successors): then, it is set to true in
the initialization step of the evaluation procedure.

• x is a blocked OR node in a good cycle in ET ′. Then x is set to true in the first iteration
of the evaluation procedure.

162

Induction step: Assume eval(x) = true , for all nodes x ∈ T ′ such that d(x) 6 k, for some
k ∈ N, and let y ∈ T ′ be such that d(y) = k + 1. For every successor x of y it is the case that
d(x) 6 k (from the definition of d), thus every successor of y has truth value true after the first
iteration of the evaluation procedure. Then, eval(y) = true , as well, after the first iteration of
the evaluation procedure.

Given that eval(x) = true , for every x ∈ T ′ after the first iteration of the evaluation
procedure, it means that every blocked node in a good cycle is actually part of a true cycle.
Thus, the said nodes will stay in the hypothesized set also in the second iteration. One can
repeat the reasoning and show that after the second iteration the truth values of all nodes in T ′ is
true, and so on, for every iteration.

Thus, for every x ∈ T ′: eval(x) = true and GT ′ is a successful traversal. According to
Lemma 31, it follows that AO is also successful.

6.2.5.1 Soundness

Proposition 35. The algorithm Adet
3,s is sound: given a CoLP P and a predicate p ∈ upreds(P),

if there exists a successful evaluated AND/OR completion structure for checking satisfiability
of p with respect to P , then p is satisfiable with respect to P .

Proof Sketch. LetAO be a successful evaluated AND/OR completion structure for checking
satisfiability of p with respect to P . Then, according to Proposition 34, there exists a good
traversal GT = 〈ET, ct, st, G, type, ucs, eval, spec 〉 of AO.

We construct an open answer set (U,M) from GT by simply considering GT as a model
representation: for every unary/binary predicate in the label of an AND node/outgoing arc from
an AND node, there must be a unary/binary atom in the model formed with the respective pred-
icate and node/arc:

U =T

M ={p(x) | p ∈ ct(x), x ∈ T, type(x) = AND}∪
{f(x, z) | f ∈ ct(x, y), (x, y), (y, z) ∈ AET , type(x) = AND}

That (U,M) is a model follows directly from the construction of an AND/OR completion struc-
ture (See the soundness proof for the non-deterministic case). To show that (U,M) is a minimal
model one can employ a similar argument as in the Soundness proof for the non-deterministic
case: non-minimality would imply that there must be a cycle in G. But GT is good, thus every
cycle in ET is good as well, and as such G cannot contain any cycle. Thus, (U,M) is minimal.

6.2.5.2 Completeness

Proposition 36. The algorithmAdet
3,s is complete: given a CoLPP and a predicate p ∈ upreds(P),

if p is satisfiable with respect to P , then there exists a successful evaluated AND/OR completion
structure for checking satisfiability of p with respect to P .

Proof. Let CS′ be a complete clash-free A3-completion structure for p with respect to P ,
which has been evolved from an initial A3-completion structure CS0 for p with respect to P .

163

As p is satisfiable, from Proposition 21, such a completion structure must exist. Also, following
the Completeness proof for A3 in Section 5.7, it is easy to see how CS′ can be transformed into
a structure CS = 〈ET, ct, st, G 〉, with ET = (T,ES), which is evolved from CS0 using the
same rules used to evolve anA3-completion structure, with the exception of the caching rule (by
simply appending the justification for caching nodes to the corresponding cached nodes). Then,
CS is clash-free as well, and in particular, G is acyclic.

Let AO1 = 〈ET1, ct1, st1, G1, type1, ucs1, eval1, spec1 〉 be an evaluated AND/OR
completion structure for p with respect to P , with ET1 = (T1, ES1). Using CS as a guidance,
we mark a ‘walk’ in AO which mimics a depth-first exploration of CS, where sometimes we
loop around blocking paths, i.e. when encountering a blocked node we jump to its corresponding
blocking node and continue the exploration. To this purpose, we introduce a partial function
mark : T1 ∪ AET1 → {yes}, which marks arcs and nodes from ET1 which are part of the
constructed walk. We also introduce a function · : T → T1 which relates nodes in CS to OR
nodes in AO and we make use of the function st to keep track of nodes in CS which were
already processed.

We start the traversal of CS and the marking of AO by setting ε = ε, mark(ε) = yes , and
st(ε) = unexp. Then, inductively, we consider nodes x ∈ T such that st(x) = unexp and do
as follows:

1. if x is a blocked OR node in AO with (x, y) being a blocking arc, and there exists a cycle
cy ∈ pathsET1 such that:

• (x, y) ⊆ cy, and

• for every z ∈ cy: mark(z) = yes,

then let st(x) := exp.

2. if x is not blocked in AO or there exists no cycle cy ∈ pathsET1 with the properties
enumerated above, we distinguish between:

• x is a blocked OR node in CS: in this case we loop along a blocking path in CS.
The intention is to loop until a blocking cycle is reached in AO (case 1. above). Let
y be the corresponding blocking node for x in CS, and let uc be the UCS which has
been used to evolve y while constructing CS. Then let:

– st(x) := exp,
– st(y) = unexp, and
– y = x.

• if x is an ordinary node in CS, i.e. a non-blocked node. Let uc be the UCS which
has been used to evolve x while constructing CS. Then there must be some node
y1 ∈ T1 such that:

– ucs′(y′) = uc, and
– (x′, y′) ∈ AET ′ (possibly a blocking, redundancy or caching arc).

Apply the following:

164

– st(x) := exp.
– mark(x, y1) := yes,
– mark(y1) = yes

– for every i such that y1 · i ∈ T1:
∗ mark(y1, y1 · i) = yes,
∗ mark(y1 · i) = yes,
∗ y · i = y1 · i, and
∗ st(y · i) = unexp.

Note that as we loop along blocking paths in CS, there is the potential for non-termination.
To see that this is not the case, consider the opposite. Then, intuitively, we must take an infinite
walk in AO in order to mimic such an infinite loop. As the number of nodes in AO is finite,
such an infinite walk can take place only along some cycle(s). If a blocking cycle is encountered
according to case (1) above, the construction stops. Thus, the walk must take place along a
non-blocking cycle. But this means that there exists some circular dependency between atoms
formed with nodes from the non-blocking cycle. As the walk mimics the walk along the branch
inCS, this translates in the presence of circular dependencies between atoms formed with nodes
from the blocking path – contradiction with the blocking condition. Thus, the process always
terminates when using CS as a guidance.

In the following, we show how to construct a good traversal GT = 〈ET ′′, ct′′, st′′, G′′,
type′′, ucs′′, eval′′, spec′′ 〉 of AO, with ET ′′ = (T ′′, ET ′′), based on the set of nodes and
arcs in ET ′ which are marked. First, from the finiteness of the marking procedure, we observe
that every node x ∈ T ′ which is marked is within finite distance to a marked terminal AND node
or a to a marked blocked OR node which belongs to a marked blocking cycle, i.e. a cycle in
which every node is marked. We introduce a distance d : T ′ → N which reflects this:

d(x) :=


0, if x is a marked terminal AND node or

a blocked OR node in a marked cycle
min{d(y) + 1 | (x, y) ∈ AET and y is marked }, if x is an OR node, other than above
max{d(y) + 1 | (x, y) ∈ AET and y is marked }, if x is an AND node, other than above.

It is clear that d(x) is finite, for every x ∈ T ′ such that mark(x) = yes (†).
Then, GT is evolved inductively, such that it contains only marked nodes:

• initially, T ′′ = {ε}.

• for every non-blocked OR node x ∈ T ′′ which has more than one marked successor in
AO, pick up the successor y with minimal d. Let uc be the UCS which has been used to
expand y. Then, AOExpandGT (x, uc).

• for every blocked OR node x ∈ T ′′, let y be such that spec′(x, y) = bl and (x, y) ⊆ cy
with cy a marked cycle in AO. Then, connect x and y in GT : AET ′′ = AET ′′ ∪ {(x, y)}.

165

That GT is a traversal, follows from the fact that each OR node has one and only one
successor and each AND node preserves all successors fromAO2. To see that it is good, consider
the opposite. Then, there must be some non-blocking cycle cy in GT . As each OR node has
just one successor (the one with minimum d value) and every node has d > 0, it follows that the
value of d for every node in the cycle is infinite – contradiction with (†).

Thus, GT is a good traversal of AO. From Proposition 34, it follows that GT is successful,
while from Proposition 31, it follows that AO is successful as well.

Thus, if p is satisfiable with respect to a CoLP P , there exists a successful AND/OR com-
pletion structure for p with respect to P . �

As satisfiability checking of unary predicates with respect to CoLPs is EXPTIME-hard
(Proposition 1) and Adet

3,c runs in exponential time (Proposition 30), is sound (Proposition 35)
and complete (Proposition 36), it follows that:

Proposition 37. Algorithm Adet
3,c is worst-case optimal.

6.3 Worst-Case Optimal Reasoning with Simple Forest Logic
Programs

In this section we describe Adet
3,s , a deterministic worst-case optimal algorithm for reasoning

with simple Forest Logic Programs, which builds on the non-deterministic algorithm As3 for
reasoning with the same fragment introduced in Section 5.8.2.
Adet

3,s is similar in spirit to Adet
3,c , the deterministic algorithm for reasoning with CoLPs de-

scribed in the previous section. In some respects, it can be seen as a simplified variant of Adet
3,c .

This is due to the fact that predicate recursion in simple FoLPs is restricted such that no infinite
chain of atoms can occur in the atom dependency graph of any model. An exception to this are
the so-called local cycles induced by rules of the form a(X)← a(X), but these are dealt with in
the process of constructing the set of non-redundant UCSs. As such, all cycles which are created
in EF are ‘good cycles’. Also, in line withAs3, a form of anywhere blocking is employed where
the blocking condition does not make any reference to the atom dependency graph.

However, as the algorithm deals in this case with forests instead of trees, there is an addi-
tional complication as regards the expansion of an AND/OR completion structure. This is ex-
plained and dealt with in Section 6.3.1. Section 6.3.2 describes the new blocking condition and
when a completion structure is fully expanded. Section 6.3.3 describes the evaluation procedure
for AND/OR completion structures for simple FoLPs, while Section 6.3.4 discusses termination
and complexity issues.

6.3.1 Evolving AND/OR Completion Structure for Simple FoLPs

As usual, we start by defining the notion of initial AND/OR completion structure for a simple
FoLP P . In this case, the underlying data structure is an extended forest. Also, as explained in
the introduction to this chapter, we make use of a function const which assigns to some OR
nodes in the structure, called proxy OR nodes, a constant from P .

166

Definition 49. An AND/OR initial completion structure for checking satisfiability of a unary
predicate p with respect to a simple FoLP P is an AND/OR completion structure 〈EF, ct, st,
type, ucs, eval, spec, const 〉 for P , where:

• EF = (F, ∅) is an extended forest with:

– F = {Tc | c ∈ cts(P) ∪ {ε}}, with ε being an anonymous individual or one of
cts(P),

– Tx = {x}, for every x ∈ cts(P) ∪ {ε},

• ct(x) = {p}, for some x ∈ cts(P) ∪ {roo},

• type(x) = AND , for every x ∈ cts(P) ∪ {roo}, and

• eval(x) = unknown , for every x ∈ cts(P) ∪ {roo}.

After defining the notion of initial completion structure, the reader would expect to employ
the AOExpand operation introduced in Section 6.1 to expand the structure. However, we can-
not expand the structure straight away. By doing so, every root OR node in the structure could
potentially have more than one AND successor. While an AND/OR completion structure was an
exhaustive representation of the search space in the case of CoLPs, in the case of simple FoLPs
potential interactions between AND nodes corresponding to constants in the structure preclude
this.

As Section 6.3.3 will show, the set of nodes assumed to be true in the first iteration of the
evaluation procedure will include the set of proxy nodes which are part of cycles which contain
constants in the extended forest: this is due to the fact that there are no cycles in the atom
dependency graph of the model(s) in construction which have as argument path such a cycle in
the extended forest. However, care must be taken when propagating the truth values of such
nodes. Distinct proxy nodes corresponding to the same constant could potentially be matched
against different AND successors of the root node corresponding to that constant. Thus, we
could potentially obtain a true traversal which contains more than one UCS having as root some
constant in the program. Obviously, this should be disallowed as it could lead to inconsistencies:
for every constant in the program, every model should contain just one UCS which has as root
the respective constant.

To ensure that a true AND/OR completion structure always admits a true traversal, we intro-
duce an additional notion of AND/OR pre-completion structure which is the result of expanding
an initial AND/OR completion structure such that every constant OR node has exactly one suc-
cessor:

Definition 50. An AND/OR pre-completion structure for checking satisfiability of a unary pred-
icate p with respect to a simple FoLP P is an AND/OR completion structure derived from an ini-
tial AND/OR completion structure for checking satisfiability of p with respect to P : A0 = 〈EF,
ct, st, G, type, ucs, eval, spec, const 〉, by applying the operationAOExpandAO(c, uc)
exactly once for every c ∈ cts(P), where uc is a non-redundant UCS for P with root c.

167

Regular OR nodes in a pre-completion structure can be expanded as usual, by introducing an
AND successor for every matching UCS using the AOExpand operation. What is still missing,
is a rule for expanding proxy OR nodes: these are nodes whose successors are restricted to
be constant OR nodes, that is successors of root OR nodes standing for constants. Due to the
constraint imposed on pre-completion structures, that each such structure contains at most such
an AND node for every constant, it is obvious that every proxy OR node could have at most one
match, the AND node in question. Thus, the expansion operation consists in this case only in
checking that the content of the proxy OR node x is not in contradiction with the content of its
corresponding constant AND node (if that exists); if that condition is fulfilled, the two nodes are
linked via an arc and the proxy node is marked is expanded. We denote this operation again with
AOExpandAO(x), where x is a proxy OR node and formally define it as follows:

• let c := const(x) and let i be such that c · i ∈ NEF ;

• if ct(x) ⊆ ct(c · i), then:

– create an arc from x to c · i and add it to ES: ES := ES ∪ {(x, c · i)},
– A := A ∪ {(p(x), p(c · i)) | p ∈ ct(x)},
– st(x) := exp.

We next define the expansion rule DetSMatch as follows:

Rule. DetSMatch. Let AO = 〈EF, ct, st, type, ucs, eval, spec, const 〉, with ET =
(F,ES), be an AND/OR completion structure . If for some node x ∈ NEF − cts(P):

• type(x) = OR,

• st(x) = unexp, and

• for every node y such that rightT (y, x): st(y) = exp,

then apply AOExpandAO(x).

Note that the notion of pre-completion structure we introduced in this section is defined non-
deterministically. However, it is easy to see how the set of all pre-completion structures can be
computed by iterating through all UCSs which match a certain constant root OR node.

6.3.2 Anywhere Blocking for Deterministic Reasoning with Simple FoLPs

As a termination mechanism, similarly to the non-deterministic case, we employ a form of
anywhere blocking:

Rule. DetABlocking. If there exist two AND nodes x, y ∈ NEF such that:

• x, y 6∈ cts(P),

• y <Tc x or rightTc(x, y), for some c ∈ cts(P) ∪ {ε},

168

• ucs(x) = ucs(y),

then x is a blocked node and y is its corresponding blocking node. Let:

• u = precT (x),

• ES = ES ∪ {(u, y)},

• spec(u, y) = bl ,

• A = A ∪ {(p(u), p(y)) | p ∈ ct(u)},

• Tc = Tc − Tx.

Node u is said to be a blocked OR node, arc (u, x) is a blocking arc.

Finally:

Definition 51. An AND/OR-complete completion structure for a simple FoLP P and p ∈
upreds(P), is an AND/OR-completion structure that results from the repeated application of
the rule DetSMatch to an AND/OR pre-completion structure for p and P , taking into account
the applicability rule DetABlocking such that no rules can be further applied.

6.3.3 Evaluating AND/OR Completion Structures for Simple FoLPs

As was the case for AND/OR completion structures for CoLPs, complete AND/OR completion
structures for simple FoLPs have to be evaluated: every node in such a completion is assigned
eventually one of the truth values true or false . The evaluation procedure consists again of an
initialization step and a fix-point procedure. The initialization step is identical to the initializa-
tion step used by Adet

3,c .
As concerns the fix-point procedure, again a set of nodes is assumed to be true at every

iteration: this time the set consists in the union of the set of blocked OR nodes and the set of
proxy OR nodes which are part of some cycle in EF . The intuition for the presence of the
blocked OR nodes is the same as in the case of CoLPs (with the difference that here anywhere
blocking is applicable). As regards proxy OR nodes, as we explained in Section 6.3.1, the
syntactical restriction on simple FoLPs makes it possible to have arbitrary circular justifications
between nodes of EF as there are no overlying cycles in the atom dependency graph. The
modified evaluation procedure which still uses the Propagation operation and the notion of
‘true cycle’ introduced in Section 6.2.3 is described by Algorithm 6.3.

The result of applying Algorithm 6.3 to a complete AND/OR completion structure for p
with respect to P is said to be an evaluated AND/OR completion structure for p with respect to
a simple FoLP P .

Definition 52. An evaluated AND/OR completion structure is said to be successful iff the truth
value of every root node in the structure is true: eval(x) = true, for every x ∈ cts(P)∪{roo}.

169

Algorithm 6.3: Evaluation of an AND/OR Completion Structure for a simple FoLP
input : an AND/OR complete completion structure AO = 〈EF, ct, st, type, ucs,

eval, spec, const 〉, with EF = (F, S), F = {Tx | x ∈ ctsP ∪ {ε}} for
checking satisfiability of p with respect to a simple FoLP P

output: AO is updated such that every node has truth value true or false according to its
satisfiability status

1) Initialization: nodes with no successors S := ∅;
for every x ∈ NEF such that x has no successors in EF do

if type(x) = OR then
eval(x) := false;

end
else

eval(x) := true;
end
S := S ∪ {x};

end
Propagate(AO,S);

2) Iterative evaluation procedure
S := {x | spec(x, y) = bl , for some y ∈ NEF } ∪ {x | const(x) is defined, x ∈
cy, cy is a cycle in EF};
switch := false;
repeat

AO′ := AO;

i) Overestimating truth for x ∈ S (in AO′) do
eval(x) := true;

end
Propagate(AO′, S);

ii) Hypothesis check for x ∈ S do
if there exists no true cycle cy in EF (in AO′) such that there is some node
y ∈ NEF with (x, y) ⊆ cy and spec(x, y) = bl or const(x) = y then

S := S − {x};
switch := true;

end
end

until switch = false;

3) Transfer of truth to AO; final assignment and propagation
AO := AO′;
for every x ∈ NEF do

if eval(x) = unknown then
eval(x) := false;

end
end

170

Proposition 38. Given a simple FoLP P and a predicate p ∈ upreds(P), p is satisfiable with
respect to P iff there exists a successful evaluated AND/OR completion structure for checking
satisfiability of p with respect to P .

Proof. As we will see the proof for this proposition is strictly related to the soundness and
completeness proofs for As3, the non-deterministic algorithm for reasoning with simple FoLPs.

We first introduce the notion of traversal of an AND/OR completion structure for p with
respect to a simple FoLP P .

Definition 53. A traversal of an AND/OR completion structure AO = 〈EF, ct, st,, type,
ucs, eval, spec, const 〉 for p with respect to a simple FoLP P , with EF = (F,ES), is an
AND/OR completion structure Tr = 〈EF ′, ct′, st′, G′, type′, ucs′, eval′, spec′, const 〉
defined as follows:

• EF ′ = (F ′, ES′), with F ′ = ∪x∈cts(P)∪{ε}T
′
x, where ε is the same as the one used to

define EF ,

• for every x ∈ NEF ′ it holds that:

– x ∈ NEF ,

– ct′(x) = ct(x),

– st′(x) = st(x),

– type′(x) = type(x),

– ucs′(x) = ucs(x),

– eval′(x) = eval(x),

– const′(x) = const(x) (if defined),

– if type′(x) = OR: if there exists y ∈ T such that (x, y) ∈ AET , there exists a
unique z ∈ T ′ such that (x, z) ∈ AET and (x, z) ∈ AET ′ ;

– if type′(x) = AND: for every y ∈ T such that (x, y) ∈ AET , y ∈ T ′ and
(x, y) ∈ AET ′ ;

• for every (x, y) ∈ AET ′ it holds that: spec′(x, y) = spec(x, y);

As before, there is a bidirectional correspondence between successful evaluated AND/OR
completion structures and successful traversals.

Lemma 31. An evaluated AND/OR completion structure for a simple FoLP P and a unary
predicate p is successful iff it admits a successful traversal.

Lemma 32. A traversal of an evaluated AND/OR completion structure for a simple FoLP P and
a unary predicate p is successful iff all nodes in the traversal have truth value true .

Further on, one can relate successful traversals to complete clash-free As3-completion struc-
tures for p with respect to P :

171

Lemma 33. Let P be a simple FoLP and p ∈ upreds(P). Then, there exists a complete clash-
free As3-completion structures for p with respect to P iff there exists a successful traversal of an
AND/OR completion structure for p with respect to P .

Proof. It follows from the definitions of the two entities: it is easy to see that it is possible
to construct a complete clash-free As3-completion structure from a successful traversal and vice
versa. �

Then, from soundness and completeness ofAs3 (Proposition 25), Lemma 31, Lemma 32, and
Lemma 33, it follows that Adet

3,s is sound and complete as well. �

6.3.4 Termination and Complexity

Again, there are two main issues to consider regarding termination and running time of Adet
3,s :

first, the termination and running time of the expansion procedure, and second, the termination
and running time of the evaluation procedure.

• Termination and running time of the expansion procedure:

– there are an exponential number of AND/OR pre-completion structures as the num-
ber of (non-redundant) UCSs is exponential in the size of the program and for every
constant c in the program, we have to make a choice regarding the UCS which is
used to expand it;

– the number of nodes in a complete AND/OR completion structure for a simple FoLP
P is bounded by the number of (non-redundant) UCSs for P , which is exponential
in the size of P ;

– the expansion of an OR node in the structure can be performed in linear time in the
number of UCSs, thus exponential in the size of the program;

– checking the anywhere blocking condition and performing the necessary steps when
the condition is fulfilled can be done in polynomial time in the size of the program.

From the analysis above, it follows that the set of all complete AND/OR completion struc-
ture for a simple FoLP P can be constructed in the worst case in exponential time.

• Termination and running time of the evaluation procedure: following an argument similar
to the one used to show the termination of the evaluation procedure in the case of CoLPs,
we obtain that this step can again be performed in the worst case in exponential time in
the size of the program.

We thus obtain:

Proposition 39. Algorithm Adet
3,s runs in the worst case in deterministic exponential time.

As satisfiability checking of unary predicates with respect to simple FoLPs is EXPTIME-
hard (Corollary 8), from Proposition 38 and Proposition 39, we obtain the following main result:

Theorem 3. Satisfiability checking of unary predicates with respect to simple FoLPs is EXPTIME-
complete. Furthermore, Adet

3,s is a worst-case optimal algorithm for solving this task.

172

a11 OR a12 OR

a1AND

aOR

b11 OR b12 OR

b1 AND

b OR

Figure 6.7: AND/OR completion structure with proxy OR nodes which belong to both good
and bad cycles

6.4 Discussion and Related Work

We presented two deterministic worst-case optimal algorithms for reasoning with CoLPs and
simple FoLPs, both of which are fragments of FoLPs. The natural question is why not having a
single such algorithm which deals with the whole fragment of FoLPs? Unfortunately, the tech-
nique used in this chapter to obtain worst case optimal algorithms, i.e. constructing AND/OR
completion structures and applying termination conditions across branches of such structures,
does not work in the presence of both constants and unrestricted recursion, as is the case for
FoLPs.

Consider the AND/OR completion structure shown in Figure 6.7 which depicts a pattern
that could easily occur when constructing such a structure for a FoLP. There are two OR nodes
corresponding to constants a and b each with just one successor AND node: a1 and b1, respec-
tively. Each of the two AND nodes has in turn two OR successors: a11 and a12 for a1, and b11
and b12 for b1, respectively. There are four elementary cycles in the underlying extended forest
corresponding to this structure:

C1 = (a1, a11, b1, b11, a1)

C2 = (a1, a12, b1, b11, a1)

C3 = (a1, a11, b1, b12, a1)

C4 = (a1, a12, b1, b12, a1)

Now assume that C1 and C4 are good cycles, while C2 and C3 are bad, i.e. non-good, cycles.
Then, each of the proxy OR nodes: a11, a12, b11, and b12, belongs both to a good and to a
bad cycle. The question in this situation is which truth value to assign to these proxy nodes?
Should they be part of the set of nodes initially assumed to be true? If we decide to include also
such nodes in the set, then we obtain that all nodes of the structure in Figure 6.7 have truth value
true . However if one looks at the structure, it can be seen that it is actually a traversal, which
contains bad cycles. Thus, it is not an actual model. If we decide not to include such nodes, we

173

might find other situations in which the structure admits a good traversal although some proxy
OR nodes are in bad cycles, but in which all nodes will be evaluated as false due to our initial
decision regarding proxy OR nodes.

We did not succeed to identify any deterministic strategy to assign truth values to such nodes.
We conjecture that there might not be any such strategy and that, in fact, Forest Logic Programs
are NEXPTIME-complete. It is subject to future work to prove this conjecture.

Related Work

As we mentioned in the introduction to this thesis, while tableau algorithms behave well in
practice, they are usually sub-optimal. In the case of EXPTIME-complete logics, they generate
many times a double exponential number of nodes. The explosion of the universe size might be
alleviated by the use of anywhere blocking, but that does not always help [Motik et al., 2009b].
Another reason why such algorithms are sub-optimal is that they are typically non-deterministic
and as such they run in the worst-case in non-deterministic exponential/double exponential time.

[De Giacomo et al., 1996] sketches one of the first attempts to obtain a worst-case optimal
algorithm for an EXPTIME logic, ALC. The work is extended in [Donini and Massacci, 2000]:
the resulted algorithm constructs a tree-shaped tableau in which every branch stands for a poten-
tial model. Thus, the tableau represents an exhaustive representation of the search space, similar
in this respect to an AND/OR completion structure in the case of Adet

3,c . However the underlying
tree is an OR tree: every branching point is caused by a disjunction. This is unlike the case
of the AND/OR completion structures which we introduced in this chapter and the completion
structures employed byA1,A2, andA3 which are AND structures: every branching point stands
for a conjunction. The algorithm in [De Giacomo et al., 1996] reuses proven inconsistencies by
means of an inconsistency propagation calculus which allows the information about such incon-
sistencies to be propagated also across different branches of the tableau (thus, across different
potential models).

More recently, an EXPTIME tableau for ALC has been described in [Goré and Nguyen,
2013]. The algorithm constructs an AND/OR graph which is similar to the AND/OR completion
structures employed by Adet

3,c (which are extended trees). The graph is initialized with a node
which contains in its label the concept checked to be satisfiable together with the TBox axioms.
However, as the underlying logic is ALC, the construction of such an AND/OR tree uses a
simple anywhere blocking technique: whenever the same label is encountered twice, the node
where the label occurs first is reused.

Like our deterministic algorithms Adet
3,c and Adet

3,s , the algorithm described in [Goré and
Nguyen, 2013] is a two-staged procedure: after the construction of the AND/OR graph, nodes
are evaluated to establish the satisfiability status of their label. Two distinct evaluation proce-
dures are provided, the second one being an optimization of the first. Both procedures assign
to every node which contains an inconsistency the status unsat. The first procedure works by
propagating unsatisfiability in the AND/OR graph in a similar manner we propagate falsehood
in an AND/OR completion structure. However, here everything which is not explicitly unsatis-
fiable after the propagation procedure is satisfiable – this is due to the fact that atoms in anALC
model do not have to be supported. If there is any atom which has no successors, its status is
always sat. Also, any cycles in the AND/OR graph, are good cycles: tautological supports are
not disallowed.

174

The second procedure interleaves the construction of the AND/OR graph with the process
of evaluating the satisfiability status of nodes in the graph. It also uses a so-called “sound global
caching” strategy by which the authors understand caching across models of both satisfiability
and unsatisfiability. In this last respect, it is more similar to our algorithm as we also propagate
in a first stage both truth and falsehood. While our algorithms and also the first procedure
described in [Goré and Nguyen, 2013] have the drawback that their best-case performance is
identical to their worst-case performance – this is due to the fact that they construct in a first
stage an exhaustive representation of the search space for all possible models –, the interleaving
approach has the potential to terminate before actually constructing the whole search space for
models. It is the subject of future work to formalize such an interleaving approach also for the
case of Adet

3,c and Adet
3,s .

The approach described in [Goré and Nguyen, 2013] is generalized in [Goré and Nguyen,
2008] to the case of sound global caching for abstract modal tableaux. It has been also extended
to deal withALCI [Goré and Widmann, 2009], fixpoint logics [Goré, 2009], and SHIQ [Goré
and Nguyen, 2007].

175

CHAPTER 7
Summary and Future Work

7.1 Further Related Work

In this section we discuss some further approaches for combining rules and ontologies which are
related to FoLPs by virtue of their hybrid modeling capacities, but which were not touched upon
as part of one of the related work discussions at the end of each chapter. As explained in Section
1.1, FoLPs are an interesting formalism as they allow to combine features from both the classical
First Order Logic world and the non-monotonic Logic Programming world. In particular, having
the ability to simulate reasoning within the DL SHOQ, they allow the integration of SHOQ
KBs and themselves in the form of f-hybrid KBs. As such here we will discuss formalisms
which are related to f-hybrid KBs as well.

A possible way to look at hybrid formalisms [de Bruijn et al., 2006] is based on the way
the LP and the DL component interact. At one end of the spectrum, the LP component sees the
classical component as a black box which can be accessed via a query entailment interface; ap-
proaches which adopt such a communication mechanism are called loosely-coupled approaches.
At the other end, are the so-called integrating approaches; these are approaches in which one
does not speak about a combination per se, but about a unified formalism which has features
from both knowledge representation paradigms. FoLPs fall into this category. Finally, a third
category of combinations of rules and ontologies is the class of tightly-coupled approaches: in
this case the two components are maintained distinct, but the semantics of the combination is
defined via common interpretations. This is the case for f-hybrid knowledge bases.

In the following, we have a look at different approaches which fall into one or the other of
the above-mentioned categories and their relation to FoLPs/f-hybrid KBs. As we will see, in
most of the cases it is either not possible to reason with unknown individuals within the rule
component or the rule component is syntactically restricted in ways which are orthogonal to the
syntactic restrictions imposed on FoLPs.

177

7.1.1 Loosely-coupled Approaches

The most well-known loosely-coupled approach is dl-programs [Eiter et al., 2008]. The formal-
ism integrates logic programs under the stable model semantics with DL knowledge bases by
allowing the logic program to query the DL knowledge base. At the same time, it is possible to
send (controlled) input from the logic program to the DL knowledge base. Reasoning is done
via a stable model computation of the logic program, interwoven with queries that are oracles
to the DL part. The approach has also been adapted for the case of logic programs under the
well-founded semantics [Eiter et al., 2011].

As both semantics for dl-programs – the stable model semantics and the well-founded se-
mantics –, assume that the dl-program is grounded in a first step using the set of names occurring
in the two components, no reasoning with unnamed individuals takes place at the level of the rule
component. This is unlike the case of FoLPs whose semantics is defined with respect to open
domains, i.e. domains which extend the set of names occurring in the program with unknown
individuals.

7.1.2 Tightly-coupled Approaches

An early attempt to combine rules and ontologies was Semantic Web Rule Language (SWRL)
[Horrocks and Patel-Schneider, 2004]: there, OWL DL KBs, having as underlying logic the
DL SHOIN , were combined with function-free Horn rules. In the general case the formalism
is undecidable. This is due to the interaction between the open domain semantics of OWL
DL and the rule component. Some decidable restrictions were defined in the form of DL-safe
rules [Motik et al., 2005] and Description Logic Rules (DL rules) [Krötzsch et al., 2008a].

DL-safe rules impose a safety-condition on the variables occurring in the rule component
which can be seen as an extrapolation of the classical Datalog safety condition. A variable
occurring in a rule is said to be DL-safe iff it occurs in a non-DL-atom in the body of the rule.
A combined KB is DL-safe iff every variable occurring in the rule component is DL-safe. This
syntactic restriction ensures that all facts which can be inferred using the rule component are
about named individuals which occur in rules.

Description Logic Rules (DL rules) is another family of decidable fragments of SWRL.
All rules are restricted such that they allow only for unary and binary predicates correspond-
ing to concept expressions and role names in a specific DL. Similar to FoLPs, they are tree-
shaped rules. However, while variables in FoLP rules can be seen as nodes in a tree of depth
1, here the chaining of variables can have arbitrary length, i.e. they allow for constructions like
f(X,Y), g(Y,Z), . . . in the body of a rule. Such constructions can also be simulated in FoLPs
by introduction of new unary atoms and new rules. For example, a rule of the form a(X) ←
f (X ,Y), g(Y ,Z), b(Z) can be transformed into two FoLP rules a(X)← f (X ,Y), c(Y) and
c(X) ← g(X ,Y), b(Y), where x is a freshly introduced unary predicate. Although Descrip-
tion Logic Rules have tree-shaped bodies and are from this perspective similar to FoLPs, their
semantics is not a minimal model semantics. Like Description Logics, their semantics is first-
order based.

178

Depending on the underlying DL, [Krötzsch et al., 2008a] distinguishes between SROIQ
rules, EL++ rules, and Description Logic Program rules:

• SROIQ rules are the most expressive fragment by allowing a SROIQ ontology to serve
as the DL component. They do not actually extend the DL SROIQ, as the rules can be
mapped to SROIQ. In order to ensure that such a translation is possible some more
restrictions are imposed on the rule component.

• EL++ rules are combinations of EL++ KBs with DL rules. In this case, the DL rules are
the core expressive mechanism to which the EL++ components are reduced.

• Description Logic Program rules have as an underlying formalism the language Descrip-
tion Logic Programs (DLP) [Grosof et al., 2003]. DLP represents the common subset
of OWL-DL ontologies and Horn logic programs. So-called DL2 KBs are defined as
combinations of DLP rules KBs with DLP KBs, which additionally might contain role
disjunction axioms and/or role asymmetry axioms. Such a KB can be transformed into a
set of function-free first-order Horn rules.

[Krötzsch et al., 2008b] extends DL rules to a new type of rules, called extended DL rules.
Unlike regular DL rules, the extended DL rules allow for ‘role conjunctions’ in rule bodies. A
new decidable fragment has been defined, called ELP rules, which builds on extended EL++

rules and employs at the same time a notion of DL-safety.
As a general observation concerning DL rules, the focus in all of the approaches is on extend-

ing DLs with rule bases which are as expressive as possible while at the same time preserving
the computational properties of the initial DL. This leads sometimes to rather intricate syntactic
characterizations of different fragments. Syntactically, some of these fragments allow for more
complex rule shapes than FoLP rules, but FoLPs distinguish themselves through the fact that
they have a negation as failure operator and adopt a minimal model semantics, thus adding a
different type of expressivity to such combinations of rules and ontologies, which is not specific
to the DL world.

r-hybrid knowledge bases [Rosati, 2008] are another tightly-coupled approach for combin-
ing rules and ontologies. They extend DL+log [Rosati, 2006] with inequalities and negated DL
atoms. Similar to DL-safe rules, they employ a notion of safety for variables in the rule compo-
nent. However, in this case the safety condition is relaxed from the classical one to the so-called
weakly DL-safety: a rule is weakly DL-safe iff every variable in the rule appears in a positive
atom in the body of the rule (Datalog safeness), and every variable either occurs in a positive
non-DL atom in the body of the rule, or it only occurs in positive DL atoms in the body of the
rule.

As in the case of DL-safe rules, reasoning with r-hybrid knowledge bases can be performed
by grounding the rule component with the set of constants appearing explicitly in the knowledge
base. However, here, due to the weaker safety condition, some variables from rule bodies which
occur in DL atoms might remain uninstantiated. The conjunction of all atoms in a rule body
containing such variables is seen as a conjunctive query which is delegated to the DL part of
the knowledge base. Decidability for satisfiability checking of r-hybrid knowledge bases is

179

guaranteed if decidability of the conjunctive query containment/union of conjunctive queries
containment problems is guaranteed for the DL at hand. Note that f-hybrid KBs do not impose
any restriction whatsoever on the interaction between the SHOQ component and the FoLP one.
However, in the case of f-hybrid KBs, the DL is fixed to be SHOQ or one of its fragments. This
is a consequence of the fact that reasoning with f-hybrid KBs relies on a translation of SHOQ
KBs to FoLPs.

MKNF+ knowledge bases [Motik and Rosati, 2010], consist of a DL component and a com-
ponent of so-called MKNF+ rules. The latter allow for modal operators K and not in front of
atoms, but also for non-modal atoms, unlike their predecessor, hybrid MKNF knowledge bases
[Motik and Rosati, 2006, Motik et al., 2006]; non-modal atoms can be eliminated by a transfor-
mation leading to MKNF knowledge bases. Also, unlike the rules in hybrid MKNF knowledge
bases, atoms in MKNF+ rules are ‘generalized’, in the sense that they can be arbitrary first-
order formulae. This allows the approach to capture languages like EQL-Lite(Q) [Calvanese
et al., 2007a], dl-programs by [Eiter et al., 2008] and disjunctive dl-programs by [Lukasiewicz,
2004]. Other approaches to integrating ontologies and rules which are generalized by MKNF+

knowledge bases are: CARIN-style rules [Levy and Rousset, 1996], AL-log [Donini et al.,
1998], DL-safe rules [Motik et al., 2005], the Semantic Web Rule Language (SWRL) [Horrocks
and Patel-Schneider, 2004], and r-hybrid knowledge bases [Rosati, 2008].

MKNF knowledge bases are in the general case undecidable. Again, in order to regain
decidability a DL-safety condition is imposed, together with a notion of admissibility which
concerns decidability for the DL inference. The same considerations hold regarding the relation
with f-hybrid knowledge bases as in the case of r-hybrid knowledge bases.

7.1.3 Integrating Approaches

Datalog± [Gottlob and Lukasiewicz, 2009, Calì et al., 2009] is an extension of Datalog which
allows for a special type of rules with existentially quantified variables in the head, called tuple
generating dependencies (TGDs). The formalism is undecidable in the general case. Like in
the case of OASP, several syntactic restrictions have been imposed on the shape of TGDs in
order to regain decidability. Two such restrictions are: (1) every rule should have a guard, an
atom which contains all variables in the rule body, giving rise to guarded Datalog±, and (2)
every rule should have a singleton body atom, giving rise to linear Datalog±. It is possible to
simulate some DLs from the DL-Lite family [Calvanese et al., 2007b] within these fragments.
The guardedness condition has been relaxed to weakly-guardedness, where the weak guard has
to contain only the variables in the body that appear in so-called affected positions, positions
where newly invented values can appear during reasoning [Calì et al., 2008].

Some further generalizations to the guarded fragment of Datalog± are so-called sticky sets
of TGDs [Calì et al., 2010a], weakly-sticky sets of TGDS, and sticky-join sets of TGDs [Calì
et al., 2010b] which generalize both sticky sets and linear TGDs. All these fragments are de-
fined by imposing restrictions on multiple occurrences of variables in rule bodies. The syntactic
restrictions on rules bodies are orthogonal to the ones imposed on FoLPs: neither Datalog± rules
are enforced to have a tree-shape like FoLPs, nor do variables in FoLP rules have to fulfill the
conditions required for the different sets of TGDs to belong to one of the previously mentioned

180

decidable fragments of Datalog±. Usually, TGDs do not negation. However, so-called stratified
normal TGDs have been introduced [Lukasiewicz et al., 2012], which are TGDs whose body
atoms can appear in a negated form together with a semantics in terms of canonical models.
FoLPs support full negation as failure (under the stable models semantics).

7.2 Summary

The main objective of this thesis was to design algorithms for reasoning with (fragments of)
Forest Logic Programs (FoLPs). FoLPs is a fragment of Open Answer Set Programming that
has the forest model property. We presented the following results:

• Chapter 3 described A1, a tableau-based algorithm for reasoning with FoLPs. The algo-
rithm runs in non-deterministic double exponential time. It was the first algorithm to deal
with the whole language of FoLPs and as such it also established the decidability of the
language. A1 uses a set of expansion rules for evolving a potential forest model for a
FoLP. Due to the non-monotonicity of the language, in order to distinguish between min-
imal and non-minimal models it employs a complex blocking condition which considers
among others dependencies between atoms in the constructed model. In a minimal model,
no atom should depend on itself or on an infinite chain of atoms.

• Using A1 we devised a knowledge compilation technique which pre-computes all poten-
tial building blocks of forest models in the form of trees of depth one. Such a building
block is called unit completion structure (UCS). We also introduced a notion of redundant
UCSs – these are UCSs which can be discarded in the process of constructing a model
without losing completeness. The technique and the new algorithm A2 which builds on
this technique are described in Chapter 4.

• An optimized algorithm for reasoning with FoLPs, A3, was presented in Chapter 5. The
worst-case running time performance of A3 improves the one of of A1 and A2 by one
exponential. The improvement is due to different termination conditions used by the new
algorithm, in particular due to the a rule which allows one to reuse computation across
branches of a model. The new termination conditions are a reflection of a new strategy
to establish the finite bounded model property of the language, which is part of the com-
pleteness proof of A3.

The same chapter introduced a restricted fragment of FoLPs, called simple FoLPs, for
which the termination conditions of A3 collapse into a much simpler subset-based any-
where blocking condition. Simple FoLPs generalize previous fragments of FoLPs known
to be decidable, like local and acyclic FoLPs.

• Chapter 6 described worst-case optimal procedures for dealing with the fragments of
CoLPs – the restriction of FoLPs to a language which does not allow for the occurrence
of constants, and simple FoLPs, the fragment introduced in Chapter 5. The procedures
build exhaustive representations of the search space for tree/forest models in the form of
AND/OR trees/forests. They employ similar termination conditions asA3, but this time it

181

is possible to reuse computation across branches belonging to different models, which in
turn leads to worst-case optimal behaviour.

7.3 Future Work

The main open question is the one raised at the end of Chapter 6: is satisfiability checking for
FoLPs feasible in exponential time or is the problem harder? We have the feeling that the latter
is the case, and that the problem might be NEXPTIME-hard.

In Section 3.7 of Chapter 3 we pinpointed the relation between the expansion rules of our ini-
tial algorithm for reasoning with FoLPs, A1, and different strategies employed by classical ASP
solvers. We think that it would be interesting to pursue this affinity further for both theoretical
and practical reasons. Theoretically, it would give us insight into how to devise smarter less non-
deterministic expansion rules. This might lead to an efficient procedure to compute the set of
UCSs for a Forest Logic Program which could serve as the basis for a practical implementation.

An interesting point which the work on this thesis touched upon is the connection between
automata-based procedures and tableau-based procedures: in Section 4.5.1 of Chapter 4 we
discussed at length the work in [Baader et al., 2003b] concerning abstract tableau systems for
Description Logics and their translation into looping tree automata. On the other hand, [Hladik
and Sattler, 2003] and [Hladik, 2007] explored this link in the opposite direction: it provided
a translation from alternating looping tree automata into the Description Logic FLEUIf . As
we explained in Section 5.9, our tableau algorithms do not fit into the framework of [Baader
et al., 2003b]. At the same time, we know that for CoLPs it is possible to reduce satisfiability
checking of unary predicates to emptiness testing for two-way alternating tree automata with a
parity condition. This raises some questions:

• would it be possible to reduce the task of checking emptiness of two-way alternating tree
automata with a parity condition to satisfiability checking with respect to CoLPs?

• could satisfiability checking with respect to FoLPs be polynomially encoded as an empti-
ness check of two-way alternating tree automata? Of course, this question is very much
related to the one concerning the theoretical complexity of FoLPs. If the answer is posi-
tive, then FoLPs are EXPTIME-complete. Even though there exists such an encoding for
CoLPs, the answer to this question is not trivial. This is for similar reasons for which it is
also not trivial to lift the deterministic algorithmAdet

3,c introduced in Section 6.2 to the full
FoLP case. For more details, see the discussion in Section 6.4.

Finally, we mentioned briefly at the end of Chapter 6 several possible optimizations that
could be brought to the deterministic algorithms Adet

3,c and Adet
3,s for reasoning with CoLPs and

simple FoLPs, respectively, in the direction of interleaving the construction of AND/OR com-
pletion structures with their evaluation. This would enable the identification of models before
the whole search space is explored. Such an interleaving algorithm would be at the same time
worst-case optimal and exhibit pay-as-you-go behaviour. We plan to also investigate further that
dimension.

182

Bibliography

[Anger et al., 2005] Anger, C., Gebser, M., Linke, T., Neumann, A., and Schaub, T. (2005).
The nomore++ approach to answer set solving. In Sutcliffe, G. and Voronkov, A., editors,
Proceedings of the Twelfth International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, volume 3835 of Lecture Notes in Computer Science, pages 95–
109.

[Baader et al., 2003a] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and (eds), P.
F. P. (2003a). The description logic handbook: Theory, implementation, and applications. In
Description Logic Handbook. Cambridge University Press.

[Baader et al., 2003b] Baader, F., Hladik, J., Lutz, C., and Wolter, F. (2003b). From tableaux to
automata for description logics. Fundamenta Informaticae, 57(2-4):247–279.

[Baader and Hollunder, 1995] Baader, F. and Hollunder, B. (1995). Embedding defaults into
terminological representation systems. Journal of Automated Reasoning, 14(2):149–180.

[Baader and Sattler, 2001] Baader, F. and Sattler, U. (2001). An overview of tableau algorithms
for description logics. Studia Logica, 69(1):5–40.

[Baral, 2002] Baral, C. (2002). Knowledge Representation, Reasoning, and Declarative Prob-
lem Solving. Cambridge University Press, Cambridge, UK.

[Baral and Gelfond, 1994] Baral, C. and Gelfond, M. (1994). Logic programming and knowl-
edge representation. Journal of Logic Programming, 19 & 20(Suppl. 1):73–148.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic
web. Scientific American, 284(5):34–43.

[Berrueta et al., 2011] Berrueta, D., Korf, R., Kiss, E. M., Hoppenbrouwers, J., Nijssen, S.,
Nazarenko, A., Ghali, A. E., Citeau, H., and de Sainte Marie, C. (2011). D6.1 - Specification
of the ONTORULE platform. Technical report, ONTORULE IST-2009-231875 Project.

[Bonatti et al., 2006] Bonatti, P., Lutz, C., and Wolter, F. (2006). Expressive non-monotonic
description logics based on circumscription. In Proceedings of the 10th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR’06), pages 400–410.

183

[Bonatti et al., 2008] Bonatti, P., Pontelli, E., and Son, T. C. (2008). Credulous resolution for
answer set programming. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (2008), pages 418–423. AAAI.

[Bonatti, 2011] Bonatti, P. A. (2011). On the decidability of FDNC programs. Intelligenza
Artificiale, 5(1):89–93.

[Calì et al., 2008] Calì, A., Gottlob, G., and Kifer, M. (2008). Taming the infinite chase: Query
answering under expressive relational constraints. In Baader, F., Lutz, C., and Motik, B.,
editors, Description Logics’08, volume 353. CEUR-WS.org.

[Calì et al., 2009] Calì, A., Gottlob, G., and Lukasiewicz, T. (2009). Datalog± : A unified ap-
proach to ontologies and integrity constraints. In Proceedings of the International Conference
on Database Theory ICDT, volume 9, pages 14–30.

[Calì et al., 2010a] Calì, A., Gottlob, G., and Pieris, A. (2010a). Advanced processing for onto-
logical queries. Proceedings of the VLDB Endowment, 3(1):554–565.

[Calì et al., 2010b] Calì, A., Gottlob, G., and Pieris, A. (2010b). Query answering under non-
guarded rules in Datalog±. In Proceedings of the 4th International Conference on Web Rea-
soning and Rule Systems (RR 2010), pages 1–17.

[Calvanese et al., 2007a] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and
Rosati, R. (2007a). Eql-Lite: Effective first-order query processing in description logics.
In Proceedings of IJCAI’2007, pages 274–279.

[Calvanese et al., 2007b] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and
Rosati, R. (2007b). Tractable reasoning and efficient query answering in description log-
ics: The DL-Lite family. JAR, 39(3):385–429.

[Clark, 1978] Clark, K. L. (1978). Negation as failure. In Minker, J., editor, Logic and Data
Bases, volume 1, pages 293–322. Plenum Press, New York, London.

[de Bruijn, 2009] de Bruijn, J. (2009). D3.1 - State-of-the-art survey of issues. Technical report,
ONTORULE IST-2009-231875 Project.

[de Bruijn et al., 2006] de Bruijn, J., Eiter, T., Polleres, A., and Tompits, H. (2006). On rep-
resentational issues about combinations of classical theories with nonmonotonic rules. In
Knowledge Science, Engineering and Management, First International Conference, KSEM
2006, Guilin, China, August 5-8, 2006, Proceedings, volume 4092 of Lecture Notes in Com-
puter Science, pages 1–22. Springer.

[De Giacomo et al., 1996] De Giacomo, G., Donini, F. M., and Massacci, F. (1996). EXPTIME
tableaux for ALC. In Padgham, L., Franconi, E., Gehrke, M., McGuinness, D. L., and Patel-
Schneider, P. F., editors, Description Logics, volume WS-96-05 of AAAI Technical Report,
pages 107–110. AAAI Press.

184

[Dean and Schreiber, 2004] Dean, M. and Schreiber, G. (2004). OWL web ontology language
reference. W3C recommendation, W3C.

[Dimopoulos et al., 1997] Dimopoulos, Y., Nebel, B., and Koehler, J. (1997). Encoding plan-
ning problems in nonmonotonic logic programs. In Steel, S. and Alami, R., editors, Recent
Advances in AI Planning, volume 1348 of Lecture Notes in Computer Science, pages 169–
181.

[Donini et al., 1998] Donini, F., Lenzerini, M., Nardi, D., and Schaerf, A. (1998). AL-log: In-
tegrating Datalog and description logics. Journal of Intelligent and Cooperative Information
Systems, 10:227–252.

[Donini and Massacci, 2000] Donini, F. and Massacci, F. (2000). EXPTIME tableaux forALC.
Journal of Artificial Intelligence, 124(1):87–138.

[Donini et al., 2002] Donini, F. M., Nardia, D., and Rosati, R. (2002). Description logics of
minimal knowledge and negation as failure. ACM Trans. on Comput. Logic, 3(2):177–225.

[Eiter et al., 2007] Eiter, T., Faber, W., Fink, M., and Woltran, S. (2007). Complexity results for
answer set programming with bounded predicate arities. Annals of Mathematics and Artificial
Intelligence, 51(2-4):123–165.

[Eiter et al., 2004] Eiter, T., Faber, W., Leone, N., Pfeifer, G., and Polleres, A. (2004). A logic
programming approach to knowledge-state planning: Semantics and complexity. ACM Trans.
Comput. Logic, 5(2):206–263.

[Eiter et al., 2011] Eiter, T., Ianni, G., Lukasiewicz, T., and Schindlauer, R. (2011). Well-
founded semantics for description logic programs in the semantic web. ACM Transactions in
Computational Logic, 12(2).

[Eiter et al., 2008] Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., and Tompits, H. (2008).
Combining answer set programming with description logics for the semantic web. Artificial
Intelligence, 172(12-13):1495–1539.

[Eiter et al., 2012] Eiter, T., Ortiz, M., and Šimkus, M. (2012). Conjunctive query answering in
the description logic SH using knots. Journal of Computer and System Sciences, 78(1):47–
85.

[Eiter and Šimkus, 2009] Eiter, T. and Šimkus, M. (2009). Bidirectional answer set programs
with function symbols. In Boutilier, C., editor, IJCAI 2009, Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17,
2009, pages 765–771.

[Faber et al., 2004] Faber, W., Leone, N., and Pfeifer, G. (2004). Recursive aggregates in dis-
junctive logic programs: Semantics and complexity. In Proceedings JELIA-2004, volume
3229 of LNCS/LNAI, pages 200–212. Springer.

185

[Fages, 1991] Fages, F. (1991). A new fix point semantics for generalized logic programs com-
pared with the well-founded and the stable model semantics. New Generation Computing,
9(4).

[Fages, 1994] Fages, F. (1994). Consistency of Clark’s completion and existence of stable mod-
els. Methods of Logic in Computer Science, 1(1):51–60.

[Feier, 2012] Feier, C. (2012). Worst-case optimal reasoning with forest logic programs. In
Brewka, G., Eiter, T., and McIlraith, S. A., editors, Principles of Knowledge Representation
and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome,
Italy, June 10-14.

[Feier and Heymans, 2008] Feier, C. and Heymans, S. (2008). A sound and complete algorithm
for simple conceptual logic programs. In Proceedings of the 3rd International Workshop on
Applications of Logic Programming to the (Semantic) Web and Web Services (ALPSWS2008),
co-located with the 24th International Conference on Logic Programming (ICLP) Udine,
Italy, December 12, 2008, volume 434 of CEUR Workshop Proceedings. CEUR-WS.org.

[Feier and Heymans, 2009] Feier, C. and Heymans, S. (2009). Hybrid reasoning with forest
logic programs. In Proceedings of 6th Annual European Semantic Web Conference (ESWC
2009), volume 5554, pages 338–352. Springer.

[Feier and Heymans, 2010] Feier, C. and Heymans, S. (2010). An optimization for reasoning
with forest logic programs. In Proceedings of 3rd International Workshop on Answer Set
Programming and Other Computing Paradigms (ASPOCP), July 20th, 2010, Edinburgh.

[Feier and Heymans, 2013] Feier, C. and Heymans, S. (2013). Reasoning with forest logic pro-
grams and f-hybrid knowledge bases. TPLP, 3(13):395–463.

[Furbach et al., 2009] Furbach, U., Günther, H., and Obermaier, C. (2009). A knowledge com-
pilation technique for ALC tboxes. In Proc. of the Twenty-Second International Florida Ar-
tificial Intelligence Research Society Conference, May 19-21, 2009, Sanibel Island, Florida,
USA.

[Gebser and Schaub, 2006] Gebser, M. and Schaub, T. (2006). Tableau calculi for answer set
programming. In Proc. of 22nd Int. Conf. on Logic Programming (ICLP), volume 4079 of
LNCS, pages 11–25. Springer.

[Gelder et al., 1991] Gelder, A. V., Ross, K., and Schlipf, J. S. (1991). The well-founded se-
mantics for general logic programs. Journal of the ACM, 38(3):620–650.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The stable model seman-
tics for logic programming. In Proc. of ICLP’88, pages 1070–1080.

[Gelfond and Lifschitz, 1991] Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic
programs and disjunctive databases. New Generation Computing, 9:365–385.

186

[Giunchiglia et al., 2006] Giunchiglia, E., Lierler, Y., and Maratea, M. (2006). Answer set pro-
gramming based on propositional satisfiability. Journal of Automated Reasoning, 36:345–
377.

[Goré, 2009] Goré, R. (2009). Global caching, inverse roles and fixpoint logics. In Grau,
B. C., Horrocks, I., Motik, B., and Sattler, U., editors, Proceedings of the 22nd International
Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30, 2009, volume 477 of
CEUR Workshop Proceedings.

[Goré and Nguyen, 2007] Goré, R. and Nguyen, L. (2007). EXPTIME tableaux with global
caching for description logics with transitive roles, inverse roles and role hierarchies. In
Automated Reasoning with Analytic Tableaux and Related Methods, volume 4548 of Lecture
Notes in Computer Science, pages 133–148. Springer.

[Goré and Nguyen, 2013] Goré, R. and Nguyen, L. (2013). EXPTIME tableaux forALC using
sound global caching. Journal of Automated Reasoning, 50(4):355–381.

[Goré and Widmann, 2009] Goré, R. and Widmann, F. (2009). Sound global state caching for
ALC with inverse roles. In Giese, M. and Waaler, A., editors, Automated Reasoning with
Analytic Tableaux and Related Methods, volume 5607 of Lecture Notes in Computer Science,
pages 205–219. Springer.

[Goré and Nguyen, 2008] Goré, R. and Nguyen, L. A. (2008). Sound global caching for ab-
stract modal tableaux. In et al., G. L., editor, Proceedings of Concurrency, Specification and
Programming (CS&P’2008), pages 157–167.

[Gottlob and Lukasiewicz, 2009] Gottlob, A. C. G. and Lukasiewicz, T. (2009). A general
Datalog-based framework for tractable query answering over ontologies. In In Proc. PODS-
2009, pages 77–86. ACM Press.

[Grädel, 2003] Grädel, E. (2003). Decidable fragments of first-order and fixed-point logic.
From prefix-vocabulary classes to guarded logics. In Proceedings of Kalmár Workshop on
Logic and Computer Science, Szeged.

[Grädel and Walukiewicz, 1999] Grädel, E. and Walukiewicz, I. (1999). Guarded fixed point
logic. In Proceedings of 14th IEEE Symposium on Logic in Computer Science LICS ‘99,
Trento, pages 45–54.

[Grimm and Hitzler, 2007] Grimm, S. and Hitzler, P. (2007). Reasoning in circumscriptive
ALCO. Technical report, FZI at University of Karlsruhe, Germany.

[Grimm and Hitzler, 2008] Grimm, S. and Hitzler, P. (2008). Defeasible inference with circum-
scriptive OWL Ontologies. In Workshop on Advancing Reasoning on the Web: Scalability
and Commonsense.

[Grimm and Hitzler, 2009] Grimm, S. and Hitzler, P. (2009). A preferential tableaux calculus
for circumscriptive ALCO. In Polleres, A. and Swift, T., editors, Proceedings of the 3rd

187

International Conference on Web Reasoning and Rule Systems (RR 2009), volume 5837,
pages 40–54. Springer.

[Grosof et al., 2003] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003). Description
logic programs: Combining logic programs with description logic. In Proceedings of WWW
2003, pages 48–57. ACM.

[Heymans, 2006] Heymans, S. (2006). Decidable Open Answer Set Programming. PhD thesis,
Theoretical Computer Science Lab (TINF), Department of Computer Science, Vrije Univer-
siteit Brussel.

[Heymans et al., 2009] Heymans, S., Feier, C., and Eiter, T. (2009). A reasoner for simple
conceptual logic programs. In Polleres, A. and Swift, T., editors, Proc. of the 3rd Int. Conf.
on Web Reasoning and Rule Systems (RR 2009), volume 5837, pages 55–70. Springer.

[Heymans et al., 2006] Heymans, S., Van Nieuwenborgh, D., and Vermeir, D. (2006). Con-
ceptual logic programs. Annals of Mathematics and Artificial Intelligence (Special Issue on
Answer Set Programming), 47(1–2):103–137.

[Heymans et al., 2007] Heymans, S., Van Nieuwenborgh, D., and Vermeir, D. (2007). Open
answer set programming for the semantic web. Journal of Applied Logic, 5(1):144–169.

[Heymans et al., 2008] Heymans, S., Van Nieuwenborgh, D., and Vermeir, D. (2008). Open
answer set programming with guarded programs. Transactions on Computational Logic,
9(4):1–53.

[Hladik, 2007] Hladik, J. (2007). To and Fro between Tableaus and Automata for Description
Logics. PhD thesis, Dresden University of Technology.

[Hladik and Sattler, 2003] Hladik, J. and Sattler, U. (2003). A translation of looping alternating
automata into description logics. In Baader, F., editor, Proceedings of the 19th International
Conference on Automated Deduction (CADE-19), Miami Beach, FL, USA, volume 2741 of
Lecture Notes in Computer Science, pages 90–105. Springer.

[Horrocks, 2003] Horrocks, I. (2003). Implementation and optimisation techniques. In Baader,
F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. F., editors, The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, pages 306–346. Cambridge
University Press.

[Horrocks and Patel-Schneider, 2004] Horrocks, I. and Patel-Schneider, P. F. (2004). A pro-
posal for an OWL rules language. In Proc. of the World Wide Web Conference (WWW), pages
723–731. ACM.

[Horrocks and Sattler, 2001] Horrocks, I. and Sattler, U. (2001). Ontology reasoning in the
SHOQ(D) description logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence.

188

[Horrocks et al., 1999] Horrocks, I., Sattler, U., and Tobies, S. (1999). Practical reasoning for
expressive description logics. In Proc. of the 6th Int. Conf. on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705 in LNCS, pages 161–180. Springer.

[Horrocks et al., 2000] Horrocks, I., Sattler, U., and Tobies, S. (2000). Reasoning with individ-
uals for the description logic SHIQ. In CADE-17: Proceedings of the 17th International
Conference on Automated Deduction, pages 482–496, London, UK. Springer-Verlag.

[Kazakov, 2008] Kazakov, Y. (2008). RIQ and SROIQ are harder than SHOIQ. In Princi-
ples of Knowledge Representation and Reasoning: Proceedings of the Eleventh International
Conference, KR 2008, Sydney, Australia, September 16-19, 2008, pages 274–284. AAAI
Press.

[Kifer, 2008] Kifer, M. (2008). Rule interchange format: The framework. In Calvanese, D.
and Lausen, G., editors, Web Reasoning and Rule Systems, volume 5341 of Lecture Notes in
Computer Science, pages 1–11. Springer Berlin Heidelberg.

[Kifer and Boley, 2010] Kifer, M. and Boley, H. (2010). RIF overview. Working Group Note,
22nd of july.

[Krötzsch et al., 2008a] Krötzsch, M., Rudolph, S., and Hitzler, P. (2008a). Description logic
rules. In Proc. ECAI, pages 80–84. IOS Press.

[Krötzsch et al., 2008b] Krötzsch, M., Rudolph, S., and Hitzler, P. (2008b). ELP: Tractable
rules for OWL 2. In Proc. 7th Int. Semantic Web Conf. (ISWC-08), pages 649–664.

[Lee and Lifschitz, 2003] Lee, J. and Lifschitz, V. (2003). Loop formulas for disjunctive logic
programs. In Palamidessi, C., editor, Proc. of International Conference of Logic Program-
ming, volume 2916 of Lecture Notes in Computer Science, pages 451–465.

[Leone et al., 2006] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-
cello, F. (2006). The DLV system for knowledge representation and reasoning. ACM Trans.
Comput. Log., 7(3):499–562.

[Levy and Rousset, 1996] Levy, A. Y. and Rousset, M. (1996). CARIN: A representation lan-
guage combining Horn rules and description logics. In Proc. of ECAI’96, pages 323–327.

[Lierler, 2008] Lierler, Y. (2008). Abstract answer set solvers. In Proc. of the 26th Int. Conf. on
Logic Programming (ICLP), pages 377–391.

[Lifschitz, 2008] Lifschitz, V. (2008). What is answer set programming? In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
July 13-17, pages 1594–1597. AAAI Press.

[Lifschitz and Turner, 1994] Lifschitz, V. and Turner, H. (1994). Splitting a logic program. In
Proceedings ICLP-1994, pages 23–38. MIT Press.

189

[Lifschitz and Woo, 1992] Lifschitz, V. and Woo, T. Y. C. (1992). Answer sets in general non-
monotonic reasoning (preliminary report). In Nebel, B., Rich, C., and Swartout, W. R.,
editors, Proceedings of the 3rd International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’92). Cambridge, MA, October 25-29, pages 603–614. Morgan
Kaufmann.

[Lin and You, 2002] Lin, F. and You, J. (2002). Abduction in logic programming: A new defi-
nition and an abductive procedure based on rewriting. Artificial Intelligence, 140:175–205.

[Lin and Zhao, 2002] Lin, F. and Zhao, Y. (2002). ASSAT: Computing answer sets of a logic
program by SAT solvers. In Proc. of 18th National Conf. on Artificial Intelligence, pages
112–117. AAAI.

[Lin and Zhao, 2004] Lin, F. and Zhao, Y. (2004). ASSAT: Computing answer sets of a logic
program by SAT solvers. Journal of Artificial Intelligence, 157(1–2):115 – 137.

[Lloyd, 1987] Lloyd, J. W. (1987). Foundations of Logic Programming; (2nd Extended Ed.).
Springer-Verlag New York, Inc., New York, NY, USA.

[Lukasiewicz, 2004] Lukasiewicz, T. (2004). A novel combination of answer set programming
with description logics for the semantic web. In In Proceedings of KR-2004, pages 141–151.
AAAI Press.

[Lukasiewicz et al., 2012] Lukasiewicz, T., Calì, A., and Gottlob, G. (2012). A general Datalog-
based framework for tractable query answering over ontologies. Web Semantics: Science,
Services and Agents on the World Wide Web, 14(0).

[Magka et al., 2013] Magka, D., Krötzsch, M., and Horrocks, I. (2013). Computing stable mod-
els for nonmonotonic existential rules. In Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence (IJCAI’13), Beijing, China, August 3-9. AAAI Press/IJCAI.

[Magka et al., 2012] Magka, D., Motik, B., and Horrocks, I. (2012). Modelling structured do-
mains using description graphs and logic programming. In Proceedings of the 9th Extended
Semantic Web Conference, pages 330–344, Berlin, Heidelberg. Springer-Verlag.

[Marek, 1999] Marek, V. W. (1999). Stable models and an alternative logic programming
paradigm. In In The Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag.

[Marek and Truszczynski, 1989] Marek, V. W. and Truszczynski, M. (1989). Stable semantics
for logic programs and default theories. In Lusk, E. L. and Overbeek, R. A., editors, NACLP,
pages 243–256. MIT Press.

[Minsky, 1985] Minsky, M. (1985). A framework for representing knowledge. In Brachman,
R. J. and Levesque, H. J., editors, Readings in Knowledge Representation, pages 245–262.
Kaufmann, Los Altos, CA.

190

[Motik et al., 2009a] Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., and Lutz,
C., editors (27 October 2009a). OWL 2 Web Ontology Language: Profiles. W3C Recommen-
dation. Available at http://www.w3.org/TR/owl2-profiles/.

[Motik et al., 2006] Motik, B., Horrocks, I., Rosati, R., and Sattler, U. (2006). Can OWL and
logic programming live together happily ever after? In Proc. of the Int. Semantic Web Conf.
(ISWC), volume 4273 of LNCS, pages 501–514. Springer.

[Motik and Rosati, 2006] Motik, B. and Rosati, R. (2006). Closing semantic web ontologies.
Technical report, University of Manchester, UK.

[Motik and Rosati, 2010] Motik, B. and Rosati, R. (2010). Reconciling description logics and
rules. Journal of the ACM, 57(5):30:1–30:62.

[Motik et al., 2005] Motik, B., Sattler, U., and Studer, R. (2005). Query answering for OWL-
DL with rules. Journal of Web Semantics, 3(1):41–60.

[Motik et al., 2009b] Motik, B., Shearer, R., and Horrocks, I. (2009b). Hypertableau reasoning
for description logics. Journal of Artificial Intelligence Research, 36(1):165–228.

[Niemelä, 1999] Niemelä, I. (1999). Logic programs with stable model semantics as a con-
straint programming paradigm. Ann. Math. Artif. Intell., 25(3-4):241–273.

[Nieuwenhuis et al., 2006] Nieuwenhuis, R., Oliveras, A., and Tinelli, C. (2006). Solving SAT
and SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure
to DPLL(T). J. ACM, 53(6):937–977.

[Nogueira et al., 2001] Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., and Barry, M.
(2001). An A-Prolog decision support system for the Space Shuttle. In Proceedings of
Practical Aspects of Declarative Languages, pages 169–183. Springer.

[OWL 2, 2009] OWL 2 (2009). OWL 2 web ontology language structural specification and
functional-style syntax. Recommendation 27 October 2009, W3C.

[Przymusinski, 1991] Przymusinski, T. C. (1991). Stable semantics for disjunctive programs.
New Generation Computing, 9:401–424.

[Reiter, 1978] Reiter, R. (1978). On Closed World Data Bases. In Gallaire, H. and Minker, J.,
editors, Logic and Data Bases, pages 55–76. Plenum Press, New York.

[Rosati, 2006] Rosati, R. (2006). DL+log: Tight integration of description logics and disjunc-
tive Datalog. In Proc. of the Int. Conf. on Principles of Knowledge Representation and Rea-
soning (KR), pages 68–78.

[Rosati, 2008] Rosati, R. (2008). On combining description logic ontologies and nonrecursive
datalog rules. In Proc. of the 2nd Int. Conf. on Web Reasoning and Rule Systems (RR 2008).

191

http://www.w3.org/TR/owl2-profiles/

[Schild, 1991] Schild, K. (1991). A correspondence theory for terminological logics: Prelimi-
nary report. In Mylopoulos, J. and Reiter, R., editors, Proceedings of the 12th International
Joint Conference on Artificial Intelligence (IJCAI 1991), pages 466–471. Morgan Kaufmann.

[Simons et al., 2002] Simons, P., Niemelá, I., and Soininen, T. (2002). Extending and imple-
menting the stable model semantics. Journal of Artificial Intelligence, 138(1-2):181–234.

[Soininen and Niemelä, 1999] Soininen, T. and Niemelä, I. (1999). Developing a declarative
rule language for applications in product configuration. In Proceedings of Practical Aspects of
Declarative Languages, First International Workshop, PADL ’99, San Antonio, Texas, USA,
January 18-19, volume 1551 of Lecture Notes in Computer Science, pages 305–319. Springer.

[Subrahmanian and Zaniolo, 1995] Subrahmanian, V. S. and Zaniolo, C. (1995). Relating stable
models and AI planning domains. In Proceedings of the Twelfth International Conference on
Logic Programming, Tokyo, Japan, June 13-16, pages 233–247. MIT Press.

[Tiihonen et al., 2003] Tiihonen, J., Soininen, T., Niemelä, I., and Sulonen, R. (2003). A practi-
cal tool for mass-customising configurable products. In Proceedings of the 14th International
Conference on Engineering Design (ICED’03), pages 1290–1299.

[Tobies, 2001] Tobies, S. (2001). Complexity Results and Practical Algorithms for Logics in
Knowledge Representation. PhD thesis, RWTH-Aachen.

[Vardi, 1998] Vardi, M. Y. (1998). Reasoning about the past with two-way automata. In Proc.
25th Int. Colloquium on Automata, Languages and Programming, pages 628–641. Springer.

[Šimkus and Eiter, 2007] Šimkus, M. and Eiter, T. (2007). FDNC: Decidable non-monotonic
disjunctive logic programs with function symbols. In Proc. 14th Int. Conf. on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR 2007).

[Wang, 1961] Wang, H. (1961). Proving theorems by pattern recognition II. Bell System Tech-
nical Journal, 40:1–42.

192

	Contents
	Introduction
	Motivation and Problem Statement
	Main Results
	Structure of the Thesis
	Publications

	Preliminaries
	Trees, Forests, Graphs
	Answer Set Programming
	Syntax
	Semantics

	Open Answer Set Programming
	Conceptual and Extended/Local Forest Logic Programs
	CoLPs and FoLPs
	Local and Acyclic FoLPs
	Tree and Forest Model Property

	Tableau Algorithm for Reasoning with Forest Logic Programs
	Completion Structures
	Expansion Rules
	Expanding a Unary Positive Predicate
	Choosing a Unary Predicate
	Expanding a Unary Negative Predicate
	Expanding a Binary Positive Predicate
	Expanding a Binary Negative Predicate
	Choosing a Binary Predicate

	Applicability Rules
	Saturation
	Blocking
	Redundancy
	Contradictory Completion Structures
	Circular Completion Structures

	Overview of A1
	Termination, Soundness, and Completeness
	Termination of A1
	Soundness of A1
	Completeness of A1
	Complexity Analysis
	FoLPs Have the Bounded Finite Model Property
	Reduction to Answer Set Programming Using the Bounded Finite Model Property

	Illustration of the Algorithm
	Discussion and Related Work
	Connection with DL Tableau Algorithms
	Reflection on Using Standard ASP Reasoning vs. the Tableau Method
	Connection with ASP Reasoning Procedures

	Knowledge Compilation Technique for Reasoning with FoLPs
	Unit Completion Structures
	Computing the Set of Unit Completion Structures: Complexity Considerations
	Redundant Unit Completion Structures
	Reasoning with FoLPs Using Unit Completion Structures
	Discussion and Related Work
	Related Work

	Optimized Tableau Algorithm for Reasoning with Forest Logic Programs
	New Blocking Rule
	Revisiting Redundancy
	Caching
	Overview of A3
	Termination and Complexity
	Soundness
	Completeness
	Simple Reasoning with FoLPs: The Case of Simple Forest Logic Programs
	Simple FoLPs: Definitions
	Reasoning with Simple FoLPs

	Discussion and Related Work

	Worst-Case Optimal Reasoning with Conceptual Logic Programs and Simple Forest Logic Programs
	AND/OR Completion Structures
	Worst-Case Optimal Reasoning with Conceptual Logic Programs
	Evolving an AND/OR Completion Structure for a COLP
	Termination Conditions: Blocking, Caching, and Redundancy
	Deterministic Blocking Rule
	Deterministic Redundancy Rule
	Deterministic Caching Rule
	Complete AND/OR Completion Structures

	Evaluation of an AND/OR Completion Structure
	Termination and Complexity
	Computation of Complete AND/OR Completion Structures
	Complexity Analysis for the Evaluation Procedure

	Soundness and Completeness
	Soundness
	Completeness

	Worst-Case Optimal Reasoning with Simple Forest Logic Programs
	Evolving AND/OR Completion Structure for Simple FoLPs
	Anywhere Blocking for Deterministic Reasoning with Simple FoLPs
	Evaluating AND/OR Completion Structures for Simple FoLPs
	Termination and Complexity

	Discussion and Related Work

	Summary and Future Work
	Further Related Work
	Loosely-coupled Approaches
	Tightly-coupled Approaches
	Integrating Approaches

	Summary
	Future Work

	Bibliography

