Abstract

In this work, we consider function-free existential rules extended with nonmonotonic negation under a stable model semantics. We present new acyclicity and stratification conditions that identify a large class of rule sets having finite, unique stable models, and we show how the addition of constraints on the input facts can further extend this class. Checking these conditions is computationally feasible, and we provide tight complexity bounds. Finally, we demonstrate how these new methods allowed us to solve relevant reasoning problems over a real-world knowledge base from biochemistry using an off-the-shelf answer set programming engine.

1 Introduction

Logic-based knowledge representation (KR) languages are widely used to model complex, structured information, e.g., in biology [Gkoutos et al., 2012] and chemistry [Hastings et al., 2012]. Structured knowledge models, such as the ChEBI database and ontology of chemical compounds [de Matos et al., 2010], serve as shared reference terminologies. Reasoning supports a wide range of tasks including quality assurance, modelling, data integration, and search, and can complement statistical and machine learning approaches, e.g., in classifying chemical structures [Ferreira and Couto, 2010].

Many ontologies, including ChEBI, are based on description logics (DLs); DLs are, however, severely limited in their ability to model structures that are not tree-shaped. This explains, e.g., why ChEBI does not model molecular structures in its ontology, thus excluding its main content from logical reasoning. Numerous extension of DLs, such as description graphs [Motik et al., 2009], provide carefully restricted kinds of rule-based or graph-based modelling, but remain largely unrealised in tools and applications. Moreover, a form of closed-world assumption is often needed to reason about the absence of structural features, e.g., to conclude that a molecule is inorganic if it does not contain carbon. This can be naturally modelled using an nonmonotonic DL, but such DLs currently lack tool support [Motik and Rosati, 2010].

This motivates the use of (nonmonotonic) rule languages for modelling ontologies. Existential rules—function-free Horn rules with existential quantifiers in rule heads—have been proposed as an ontology and data integration language [Calì et al., 2010; Baget et al., 2011a], and can be viewed as a restricted kind of logic programs with function symbols. Recent works have considered nonmonotonic rule-based ontology languages using stratified negation [Calì et al., 2009; Magka et al., 2012], stable model semantics [Eiter et al., 2012], and well-founded semantics [Gottlob et al., 2012]. If we additionally remove the stratification requirement, then the resulting language allows for the accurate modelling of complex finite structures such as those found in ChEBI.

Unfortunately, reasoning in these formalisms is computationally challenging. If negation is stratified, then all of these semantics agree, and programs have uniquely determined stable models; this is highly desirable and easy to check, but too restrictive for many applications. Moreover, even without negation, satisfiability, fact entailment, query answering, and the existence of finite models are all undecidable; and, while many non-stratified programs also have unique stable models, this property, too, is undecidable in general. As most ontologies are concerned with finite, uniquely determined structures, these problems raise serious doubts about the use of such formalisms in ontological modelling.

We address this issue by presenting new conditions that are computationally feasible to check, and that identify a large class of programs having finite and unique stable models. These conditions are based on an analysis of whether one rule relies on another, in the sense that it might either be ‘triggered’ or ‘inhibited’ by the other rule’s application. These relationships allow us to define R-acyclicity and R-stratification. Specifically, our contributions are as follows:

- We define R-acyclic and R-stratified logic programs, and show that recognising such programs is coNP-complete.
- We show that R-acyclic programs have finite stable models, and that reasoning is coN2EXP-TIME-complete (NP-complete for data complexity).
- We show that R-stratified programs have unique stable models, so that reasoning becomes deterministic, and that if programs are also R-acyclic, reasoning becomes 2EXP-TIME-complete (P-complete for data complexity).
- We extend reliances to exploit constraints, and show that this strictly generalises our earlier criteria. Reasoning complexities carry over, but deciding R-acyclicity and R-stratification under constraints is complete for \(\Pi_2^p\).
We conduct a case study with ChEBI, which demonstrates that our conditions do not preclude suitable modelling, that R-stratification can be exploited to allow the DLV reasoner [Leone et al., 2006] to scale to the large number of rules in our experiments, and that DLV can then be used to discover missing relationships in ChEBI.

We first introduce basic notions (Section 2) and discuss the use of nonmonotonic existential rules in ontological modelling (Section 3). Next, we study positive reliances and Racyclicity (Section 4), negative reliances and R-stratification (Section 5), and the extension of these notions with constraints (Section 6). We then present the ChEBI case study (Section 7), discuss related works (Section 8), and conclude (Section 9). A companion report contains details and proofs that were omitted for reasons of space [Magka et al., 2013].

2 Preliminaries

We consider a standard first-order language. We use the letters $a, b$ for constants, $f, g$ for functions, $x, y, z$ for variables, and $r$ for terms. Lists of terms $(t_1, \ldots, t_n)$ are abbreviated as $\mathbf{t}$, similarly for lists of variables $\mathbf{x}$. We treat lists as sets when order is irrelevant. A special nullary predicate symbol $\bot$ is used to denote falsity. We use $\text{Pred}(e)$, $\text{Var}(e)$, and $\text{Const}(e)$ to denote the predicates, variables, and constants, respectively, that occur in an expression $e$. Atoms, i.e., formulae without operators, are written $\alpha, \beta, \gamma$. When used like a formula, sets of atoms always denote the conjunction of their members. Nonmonotonic negation is denoted $\not \! \! \!$. For a set $A$ of atoms, we define $\not \! \! \! A \! := \! \{ \not \! \! \! \alpha \mid \alpha \in A \}$. A nonmonotonic existential rule (or simply rule) is of the form

$$r : \forall x. \forall y. B^+ \land \not \! \! \! B^- \rightarrow \exists y. H$$

(1)

where the positive body $B^+$, negative body $B^-$, and head $H$ are sets (or conjunctions) of atoms without function symbols, such that $\text{Var}(B^+) = x \cup y$, $\text{Var}(B^-) \subseteq x \cup y$, and $\text{Var}(H) \subseteq x \cup y$. We abbreviate $r$ as $(B^+, B^-, H)$. When writing rules as in (1), universal quantifiers are usually omitted. Sets of rules are called (logic) programs.

The skolemisation $\text{sk}(r)$ of a rule $r$ as in (1) is obtained by replacing each variable $y \in y$ in $H$ by a skolem term $f_1(x)$, where $f_1$ is a fresh skolem function symbol of arity $|x|$. Given a program $P$, we set $\text{sk}(P) := \{ \text{sk}(r) \mid r \in P \}$. Assuming a fixed choice of skolem functions, sk is a bijection between rules and their skolemisations, which allows us to use the term rule literally without risk of confusion. Our results refer to rules (or their skolemisations), and do not generally hold for arbitrary logic programming rules with function symbols.

A term or formula is ground if it contains no variables. Ground atoms are called facts. The Herbrand universe $\text{HU}(P)$ of a program $P$ is the set of all ground terms formed with constants and function symbols from $\text{sk}(P)$ (using an auxiliary constant if $\text{Const}(\text{sk}(P)) = \emptyset$). The grounding $\text{ground}(P)$ of $P$ is the set of all rules that can be obtained from rules in $\text{sk}(P)$ by uniformly replacing variables with terms from $\text{HU}(P)$.

An (Herbrand) interpretation $\mathcal{M}$ is a set of facts with $\bot \notin \mathcal{M}$. Satisfaction is defined as usual: $\mathcal{M} \models B^+ \land \not \! \! \! B^- \land \mathcal{M}$, holds if $B^+ \subseteq \mathcal{M}$ and $B^- \cap \mathcal{M} = \emptyset$; $\mathcal{M} \models (B^+, B^-, H)$ if $\mathcal{M} \not\models B^+$, $\mathcal{M} \models B^-$, $\mathcal{M} \models H$; and $\mathcal{M} \models P$ if $\mathcal{M} \models r$ for all $r \in P$. The Gelfond-Lifschitz reduct of $P$ w.r.t. $\mathcal{M}$ is

$$\text{GL}(P, \mathcal{M}) := \{ (B^+, \emptyset, H) \mid (B^+, B^-, H) \in \text{ground}(P) \land B^- \cap \mathcal{M} = \emptyset \}.$$ 

$\mathcal{M}$ is a stable model of $P$, written $\mathcal{M} \models_{SM} P$, if $\mathcal{M} \models \text{GL}(P, \mathcal{M})$ and there is no smaller model $\mathcal{M'} \subseteq \mathcal{M}$ with $\mathcal{M'} \models \text{GL}(P, \mathcal{M})$. We consider cautious entailment: for a program $P$ and a fact $\alpha, \mathcal{M} \models \alpha$ if $\alpha \in \mathcal{M}$ for all stable models $\mathcal{M}$ of $P$. Consequences of programs can be computed with the $T_P$ operator:

**Definition 1.** Consider a program $P$ and set of facts $F$. For a rule $r \in P$ with $\text{sk}(r) = (B^+, B^-, H)$, define

$$r(F) := \{ H \theta \mid B^+ \theta \subseteq F \land B^- \theta \cap F = \emptyset \}.$$ 

Moreover, let $T_p(F) := F \cup \bigcup_{r \in P} r(F)$ and define

$$T_p^{0}(F) := F, \quad T_p^{i+1}(F) := T_p(T_p^i(F)), \quad T_p^\omega(F) := \bigcup_{i \geq 0} T_p^i(F).$$

Given a program $P$, a sequence of disjoint programs $P = P_1, \ldots, P_n$ is a stratification of $P$ if $P = \bigcup_{i=1}^n P_i$ and, for all programs $P_i, P_j \in P$, rules $(B_1^+, B_1^-, H_1) \in P_i$ and $(B_2^+, B_2^-, H_2) \in P_j$, and every predicate $R \in \text{pred}(H_1)$, we have: (i) if $R \in \text{pred}(B_2^+)$ then $i \leq j$, and (ii) if $R \in \text{pred}(B_2^-)$ then $i < j$. The elements of $P$ are called strata. $P$ is stratified if it has a stratification. The $T_p$ operator can be used to characterise stable models; for stratified programs, we even obtain a deterministic computation procedure [Apt and Bol, 1994].

**Fact 1.** Given a program $P$, a set of facts $F$, and a stable model $\mathcal{M} \models_{SM} P \cup F$, we have $\mathcal{M} = T_p^{\omega}(P)$.

If $P = P_1, \ldots, P_n$ is a stratification of $P$, then $\mathcal{M} = T_{p_1}(\ldots T_{p_n}(F)\ldots)$ is the unique stable model of $P$ if $\bot \notin \mathcal{M}$.

3 Modelling with Nonmonotonic Rules

Rule-based formalisms are well suited for modelling relational structures, irrespective of whether these structures are tree-shaped or cyclic. We consider practical examples related to the modelling of chemical compounds in ChEBI. The structure of molecules can be readily represented as a logical structure. For example, the formula $M_{\text{CH}_2O}(x, y, z) := \text{o}(x) \land \text{bond}(x, y) \land \text{bond}(x, z) \land \text{h}(y) \land \text{h}(z)$ could represent a water molecule (using unidirectional bonds for simplicity). We model molecules as members of a unary predicate mol, related to their constituting atoms by the predicate ha (has atom). The following rule infers the structure of the six atoms of methanol ($\text{CH}_3\text{OH}$), described by the formula $M_{\text{CH}_3\text{OH}}(y)$:

$$\text{methyl}(x) \rightarrow \exists y. \text{mol}(x, y) \land M_{\text{CH}_3\text{OH}}(y) \land \bigwedge_{i=1}^6 \text{h}(y, x)$$

(2)

Molecules can also be classified by their structure, e.g., to identify molecules that contain oxygen, or organic hydroxy molecules (those with a substructure C-O-H):

$$\text{h}(x, y) \land \text{a}(y) \rightarrow \text{hso}(x)$$

(3)

$$M_{\text{CO}_2}(y) \land \bigwedge_{i=1}^3 \text{h}(x, y, i) \rightarrow \text{orgHydroxy}(x)$$

(4)

It is not hard to express syntactic identity with a predicate $= $, predefined in most rule engines; see [Magka et al., 2013] for details. Using not we can express syntactic inequality and define, e.g., molecules with exactly one carbon atom:

$$\text{h}(x, y, 1) \land \text{c}(y) \land \text{not}(y_1 = y_2) \rightarrow \text{multiC}(x)$$

(5)

$$\text{mol}(x) \land \text{h}(x, y, 1) \land \text{c}(y) \land \text{not molt\text{C}(x)} \rightarrow \text{oneC}(x)$$

(6)
The fact methanol\(a\) and the rules (2)–(6) have a unique stable model (using skolem functions \(f_1, \ldots, f_6\) for (2)).

\[
M_1 := \{ \text{methanol}(a), \text{hasO}(a), \text{orgHydroxy}(a), \text{oneC}(a), \text{mol}(a), \text{aH}(a, f_1(a))^6_{i=1}, \text{MCHSOH}(f_1(a), \ldots, f_6(a)) \}
\]

We can thus conclude, e.g., that methanol is an organic hydroxy molecule. To obtain such inferences for organic hydroxy molecules in general, we can use another rule:

\[
\text{orgHydroxy}(x) \rightarrow \exists y. \text{COH}(y) \land \bigwedge^3_{i=1} \text{hA}(x, y_i) \quad (7)
\]

The fact \text{orgHydroxy}(b) and the rules (3)–(7) have a unique stable model (using skolem functions \(g_1, \ldots, g_3\) for (7)).

\[
M_2 := \{ \text{orgHydroxy}(b), \text{hasO}(b), \text{hA}(b, g_i(b))^3_{i=1}, \text{MCHSOH}(g_1(b), g_2(b), g_3(b)) \}
\]

Hence, organic hydroxy molecules are structures with oxygen, as expected. However, if we consider all of the above rules and facts together, then rather than \(M_1 \cup M_2\) we obtain \(M_1 \cup M_2 \cup \{ \text{hA}(a, g_i(a))^3_{i=1}, \text{MCHSOH}(g_1(a), g_2(a), g_3(a)), \text{multiC}(a) \} \setminus \{ \text{oneC}(a) \}\) as the unique stable model, since rule (7) is applicable to \text{orgHydroxy}(a). Thus, the stable model is no longer a faithful representation of the molecule \(a\), which is wrongly classified as a multi-carbon molecule.

Nonmonotonic negation can be used to overcome this problem. We replace rules (4) and (7) by the following, where we abbreviate \text{orgHydroxy} by \(oh\):

\[
\text{MCHSOH}(y) \land \bigwedge^3_{i=1} \text{hA}(x, y_i) \land \neg n(y_i) \rightarrow \text{oH}(x) \land r(x) \quad (8)
\]

\[
\text{oH}(x) \land \neg r(x) \rightarrow \exists y. \text{MCHSOH}(y) \land \bigwedge^3_{i=1} \text{hA}(x, y_i) \land n(y_i) \quad (9)
\]

The predicates \(r\) (‘recognised’) and \(n\) (‘new’) ensure that only one of these rules is applicable to a given structure. The above facts with rules (2), (3), (5), (6), (8), and (9) have the unique stable model \(M_1 \cup M_2 \cup \{ r(a, n(g_1(b))), n(g_2(b)), n(g_3(b)) \}\), as desired. However, the resulting set of rules is not stratified, which causes various problems. First, we cannot be sure that the stable model will be unique for other sets of facts. Second, rule engines may need to apply more complex algorithms to find the stable model. Our experiments in Section 7 suggest that this may cause performance issues that prevent rule engines from computing entailments at all. The goal of this work is to overcome these issues.

4 Positive Reliances and R-Acylicity

As recalled in Fact 1, every stable model of a logic program can be obtained from a (possibly infinite) sequence of consecutive rule applications. Insights about the semantics of a program can thus be gained by analysing, for all pairs of rules \(r_1\) and \(r_2\), whether an application of \(r_1\) can potentially enable a later application of \(r_2\). In this section, we formalise this idea of positive reliance between rules and define R-acyclic programs, which have stable models of bounded size.

**Definition 2 (Positive Reliance).** Let \(r_1\) and \(r_2\) be rules such that \(\text{sk}(r_1) = (B_1^+, B_1^-, H_1)\) and \(\text{sk}(r_2) = (B_2^+, B_2^-, H_2)\); w.l.o.g. assume that \(\text{Var}(r_1) \cap \text{Var}(r_2) = \emptyset\). Rule \(r_2\) positively relies on \(r_1\) (written \(r_1 \Rightarrow r_2\)) if there exists a set of facts \(F\) that contains no skolem terms and a substitution \(\theta\) such that:

\[
B_1^+ \theta \subseteq F \quad (P1) \\
B_2^+ \theta \cap (F \cup H_1 \theta) = \emptyset \quad (P4)
\]

\[
B_2^+ \theta \cap (F \cup H_1 \theta) = \emptyset \quad (P5)
\]

\[
B_2^+ \theta \cap (F \cup H_1 \theta) = \emptyset \quad (P6)
\]

Thus, \(r_1 \Rightarrow r_2\) holds if there is a situation (defined by \(F\)) where \(r_1\) is applicable (\(P1\))(\(P2\)), \(r_2\) is not applicable (\(P5\)), and applying \(r_1\) allows \(r_2\) to derive something new (\(P3\))(\(P4\))(\(P6\)).

**Example 1.** Consider rule \(r_4(4)\) of (4), and rule \(r_7(7)\) obtained from (7) by replacing variable \(x\) with \(x'\). We find that \(r_{4(4)} \Rightarrow r_{7(7)}\), since \(F := \{ \text{MCHSOH}(b) \} \cup \{ \text{hA}(a, b_i) \}_{i=1}^3\) and \(\theta := \{ a \rightarrow a, x \rightarrow b, x' \rightarrow a' \}\) satisfy (P1)–(P6).

In contrast, \(r_{7(7)} \not\Rightarrow r_{4(4)}\). Intuitively, \(r_4(4)\) can only derive facts that are already necessary to apply \(r_{7(7)}\) in the first place, thus violating (P6). More formally, suppose that \(r_{7(7)} \not\Rightarrow r_{4(4)}\) could be shown using \(F'\) and \(\theta'\). By (P1) and (P6), \(\theta'(x) \neq \theta'(x')\). Thus, by (P3), \(\text{hA}(x, y_i) \theta' \in F'\) for all \(i \in \{1, 2, 3\}\). Since \(F'\) must not contain skolem terms, \(\theta'(y_i) \neq g_i(\theta'(x'))\), so \(\text{MCHSOH}(y) \theta' \notin F'\), again by (P3). Thus (P5) would be violated.

Various previous works consider similar notions. The activation relation by Greco et al. [2012] is most similar to Definition 2, but allows \(F\) to contain function terms to accommodate arbitrary disjunctive logic programs with functions. Our stronger restriction is needed to show \(r_{7(7)} \not\Rightarrow r_{4(4)}\) in Example 1. This illustrates how we can take advantage of the specific structure of existential rules to discard certain potential interactions. Other similar notions are the \(\prec\) relation by Deutsch et al. [2008] and the rule dependency by Baget et al. [2011a], neither of which cover negation. Baget et al. omit condition (P6), needed to show \(r_{7(7)} \not\Rightarrow r_{4(4)}\) in Example 1.

If a finite program has an infinite stable model, some rule with an existential quantifier must be applicable an infinite number of times. This, however, requires that there is a cycle in rule dependences, motivating the following definition.

**Definition 3 (R-Acyclic).** A program \(P\) is R-acyclic if there is no cycle of positive reliances \(r_1 \Rightarrow \ldots \Rightarrow r_n \Rightarrow r_1\) that involves a rule with an existential quantifier.

**Example 2.** The complete list of positive reliances for the rules \(r_2(2)\), \(r_3(3)\), \(r_4(4)\), \(r_5(5)\), \(r_6(6)\), \(r_7(7)\), \(r_7(7)\), \(r_7(7)\), \(r_7(7)\), \(r_7(7)\), and \(r_7(7)\). Thus the program is R-acyclic. To model \(\approx\), we assume that \(y_i = y_i\) is derived for all existential variables \(y_i\).

We prove that checking positive reliance for two rules is NP-complete. Similar results are shown by Deutsch et al. [2008] and by Baget et al. [2011b] for rules without negation. The complexity refers to the size of the two involved rules rather than to the size of the whole program: in practice, positive reliances can be checked efficiently by checking the applicability of one of the rules to a linear number of facts.

**Theorem 1.** Given rules \(r_1\) and \(r_2\), the problem of deciding whether \(r_1 \Rightarrow r_2\) is NP-complete. Checking whether a program \(P\) is R-acyclic is coNP-complete.

The main result of this section shows that entailment under stable model semantics is decidable for R-acyclic programs. Hardness for coN2E\text{XPTIME} can be shown by reducing the
Example 4. Consider rule $r_8$ of (8), and rule $r_9'$ obtained from (9) by variable $x$ with $x'$. We can show $r_8 \Rightarrow r_9'$ using $F := \{oH(a), MC_{OB}(b)\} \cup \{hA(a,b_i)\}_{i=1}^3$ and $\theta := \{x \mapsto a, y \mapsto b, x' \mapsto a\}$. Conversely, $r_9' \Rightarrow r_8$ follows from a similar argument as in Example 1, since $F$ is not allowed to contain skolem terms.

The following definition is inspired by the classical notion of stratification in logic programming.

Definition 5 (R-Stratification). A sequence of disjoint programs $P = P_1, \ldots, P_n$ is an R-stratification of a program $P$ if $P = \bigcup_{i=1}^n P_i$ and, for every two programs $P_i, P_j \in \mathcal{P}$ and rules $r_1, r_2 \in P_i$ and $r_1, r_2 \in P_j$, we have:

- if $r_1 \rightarrow r_2$ then $i \leq j$ and if $r_1 \rightarrow r_2$ then $i < j$.
- $P$ is R-stratified if it has an R-stratification.

Example 4. For $P$ consisting of rules $r_2, r_3, r_5, r_6, r_8$, and $r_9$, we obtain the reducts $r_2 \rightarrow r_5, r_2 \rightarrow r_9, r_3 \rightarrow r_6, r_3 \rightarrow r_5, r_6 \rightarrow r_9$, $r_9 \rightarrow r_5$, $r_9 \rightarrow r_6$, and $r_9 \rightarrow r_9$. An R-stratification of $P$ is therefore given by $P_1 := \{r_2, r_6\}, P_2 := \{r_3, r_5, r_6\}$, and $P_3 := \{r_9\}$. In contrast, $P$ is not stratified due to rules $r_8$ and $r_9$.

Together with the previous example, the next result shows that R-stratification properly generalises stratification.

Proposition 1. If $P$ is stratified, then $P$ is R-stratified.

The graph structure that is induced by reducts, defined next, can be used to decide R-stratification in practice, as shown in Proposition 2 below.

Definition 6 (Graph of Reliances). For a program $P$, the graph of reducts $GoR(P)$ is a directed graph that has the rules of $P$ as its vertices and two sets of edges: positive edges that correspond to the positive reducts of $P$ and negative edges that correspond to the negative reducts of $P$.

Proposition 2. $P$ is R-stratified iff its graph of reducts $GoR(P)$ contains no directed cycle with a negative edge.

From the previous result it is clear that, given the graph of reducts, R-stratification can be decided in polynomial time. The overall complexity is therefore dominated by the complexity of checking individual reducts—in this sense, it is polynomial in the total number of rules, and coNP-complete only in the maximal size of a rule. Moreover, in contrast to the NP-completeness of checking positive reducts (Theorem 1), negative reducts can be detected in polynomial time.

Theorem 3. Given rules $r_1$ and $r_2$, it can be decided in polynomial time whether $r_1 \rightarrow r_2$. Checking whether a program $P$ is R-stratified is coNP-complete.

It remains to show that R-stratified programs have at most one stable model, and that this model can always be obtained by repeated application of rules according to their stratification. This leads to a semi-decision procedure for entailment. If the program is also R-acyclic, we obtain a decision procedure and tight complexity bounds.

Note that Definition 4 does not include a condition that corresponds to (P6) from Definition 2. Indeed, as the next example shows, such a condition would not lead to a notion of R-stratification that ensures unique stable models.

Example 5. Given the rules $r_1 : \not p \rightarrow q$ and $r_2 : q \rightarrow p$, we find that $r_1 \rightarrow r_2$ and $r_2 \rightarrow r_1$, so that the program is not R-stratified. Indeed, it has no stable models for the empty set of facts. Yet, if we required that $H_2 \theta \not 
 F$ in Definition 4, then $r_2 \rightarrow r_1$ would not hold, and the program would be R-stratified. Intuitively speaking, negative reducts do not just consider the case where $r_2$ could derive something new, but also the case where $r_2$ has already been used in a derivation that is no longer justified after applying $r_1$.

We now define a computation scheme that can be used to obtain the unique stable model of R-stratified programs, or to derive a contradiction $\bot$ if no such model exists.

Definition 7. For a set of facts $F$ and a program $P$ with R-stratification $P = P_1, \ldots, P_n$, define $S^0_P(F) := F$ and

$S^{i+1}_P(F) := T_{P_i+1}(S^i_P(F))$ for $0 \leq i < n$.

For the remainder of this section, let $P$ denote an R-stratified program with R-stratification $P = P_1, \ldots, P_n$, let $F$ denote a set of facts, and define $S_P := S^n_P(F)$.

We first show that $S_P$ is a (not necessarily unique) stable model of $F \cup P$, provided that $\bot \not \in S_P$. The next two lemmas are key ingredients to this proof. Intuitively speaking, Lemma 1 asserts that, if the body of a rule $r \in P_i$ is satisfied at some point while computing $S_P$, then it will remain satisfied in all later stages of the computation. The crucial claim is that the negative part of the rule will not be derived at any later stage. The proof of Lemma 1 relies on the definition of $\rightarrow$.

Lemma 1. Consider numbers $1 \leq i \leq j \leq k \leq n$ and $t \geq 0$, a rule $r \in P_i$ with skolemisation $sk(r) = (B^+, B^-, H)$, and a substitution $\theta$. Then $T_{P_j}(S^{i-1}_P) \models B^+ \theta$, not $B^- \theta$ implies $S_P \models B^+ \theta, \text{not } B^- \theta$.
Lemma 2 complements the previous result. Intuitively speaking, it states that a rule \( r \in P \), which is clearly satisfied after computing \( S_P \), will remain satisfied in all later stages of the computation. The key part of this claim concerns the case that \( r \) is satisfied because its positive body is not satisfied. In this case, the positive body will never become satisfied later on, unless the head of the rule becomes satisfied as well. This argument hinges upon the definition of \( \perp \).

**Lemma 2.** Consider numbers \( 1 \leq i < j \leq k \leq n \), a rule \( r \in P \), and a substitution \( \theta \). Then \( S_P^k = \text{sk}(r) \theta \) implies \( S_P^i = \text{sk}(r) \theta \).

Using Lemmas 1 and 2, we can show the following result.

**Proposition 3.** If \( \perp \notin S_P^i \), then \( S_P^i \models_{SM} F \cup P \).

The main result of this section is that stable models of \( R \)-stratified programs are unique. Its proof is obtained by first showing that \( \mathcal{M} \models_{SM} P \cup F \) implies \( S_P^i = \mathcal{M} \), which in turn is established by showing inductively that, for all \( k \in \{0, \ldots, n\} \), \( S_P^k = T_{\text{Gl}(\cup_{i=1}^n P, \mathcal{M})}^w(F) \) [Magka et al., 2013].

**Theorem 4.** If \( \perp \notin S_P^0 \), then \( S_P^0 \) is the unique stable model of \( F \cup P \). Otherwise \( F \cup P \) does not have a stable model.

We can further improve the complexity results of Theorem 2 for programs that are both \( R \)-acyclic and \( R \)-stratified. The Turing machine reduction used to show Theorem 2 can directly be used to show hardness: the constructed program is \( R \)-stratified precisely if the Turing machine is deterministic.

**Theorem 5.** Let \( P \) be an \( R \)-acyclic \( R \)-stratified program, let \( F \) be a set of facts, and let \( \alpha \) be a fact. Deciding \( P \cup F \models \alpha \) is \( \text{2Exptime-complete} \) w.r.t. program complexity and P-complete w.r.t. data complexity.

## 6 Reliances under Constraints

To widen the classes of logic programs with unique stable models, it has been proposed to study stratification for a particular set of facts [Bidoit and Froidevaux, 1991]. Indeed, it might be the case that a program that does not have a unique stable model for all sets of facts still has a unique stable model for all sets of facts that arise in the context of a given application. On the other hand, notions that depend on a particular set of facts do not easily capture a wider class of relevant sets of facts, making it hard to develop logic programs that are robust to changing inputs.

In this section, we therefore propose a generalisation of \( R \)-acyclicity and \( R \)-stratification that considers constraints, that is, rules of the form \( B^+ \rightarrow \perp \) where \( B^+ \) is a set of atoms. As illustrated by the following example, constraints restrict the possible types of input so that more programs are stratified.

**Example 6.** Organic molecules are those containing carbon and each inorganic entity is a molecule of geological origin:

\[
\begin{align*}
   r_1 : & \quad \text{mol}(x) \land \text{hA}(x, y) \land c(y) \rightarrow \text{organic}(x) \\
   r_2 : & \quad \text{mol}(x) \land \text{not} \, \text{organic}(x) \rightarrow \text{inorganic}(x) \\
   r_3 : & \quad \text{inorganic}(x) \rightarrow \text{mol}(x) \land \text{geoOrigin}(x)
\end{align*}
\]

It is easily checked that \( r_1 \bowtie r_2 \bowtie r_3 \bowtie r_1 \), so \( \{r_1, r_2, r_3\} \) is not \( R \)-stratified by Proposition 2. Although the program has a unique stable model for all sets of facts, there is no stratified order of rule applications that produces the stable model. In particular, the set of facts \( \{\text{inorganic}(a), \text{hA}(a, b), c(b)\} \) requires us to apply \( r_3 \) before \( r_1 \). This situation is undesired, since inorganic molecules usually do not contain carbon, and a refined notion of reliance should take this into account.

**Definition 8** (Reliances under Constraints). Let \( r_1 \) and \( r_2 \) be rules, and let \( C \) be a set of constraints.

- \( r_2 \) positively relies on \( r_1 \) under \( C \) (written \( r_1 \bowtie_C r_2 \)) if there exists a set of facts \( F \) and a substitution \( \theta \) that satisfy the conditions in Definition 2, and where \( F \models C \).
- \( r_2 \) negatively relies on \( r_1 \) under \( C \) (written \( r_1 \bowtie_C r_2 \)) if there exists a set of facts \( F \) and a substitution \( \theta \) that satisfy the conditions in Definition 4, and where \( F \models C \).

The classes of programs that are \( R \)-acyclic under \( C \) and \( R \)-stratified under \( C \) are defined as in Definition 3 and 5, respectively, but using \( \bowtie \) instead of \( \|= \).

It should be noted that our earlier results treat constraints like any other rule of \( P \). This is still possible here, e.g., if some constraints are not deemed to be relevant for showing stratification. Indeed, the fewer constraints are part of \( C \), the fewer additional checks are needed to compute reliances.

**Example 7.** Consider the rules of Example 6 and the constraint \( C : \{\text{inorganic}(x) \land \text{hA}(x, y) \land c(y) \rightarrow \perp\} \). With \( C = \{\} \), we find \( r_3 \bowtie_C r_1 \), and indeed \( P_1 := \{r_1\}, P_2 := \{r_2, r_3\} \) is an \( R \)-stratification under these constraints.

The consideration of constraints increases the complexity of checking positive reliances from \( \Sigma^2 \) to \( \Pi^2 \), i.e., the check can be performed in polynomial time by a nondeterministic Turing machine using an NP oracle. Yet, as before, the NP computations correspond to checking the applicability of a rule or constraint to a small set of facts, for which efficient implementations exist. A lower bound can be shown by reducing satisfiability of a quantified Boolean formula \( \exists p \lor q \phi \) to testing a positive reliance under a set of constraints.

**Theorem 6.** Given rules \( r_1 \) and \( r_2 \), and a set of constraints \( C \), deciding whether \( r_1 \bowtie_C r_2 \) is \( \Sigma^2 \)-complete. Checking whether a program \( P \) is \( R \)-acyclic under constraints is \( \Pi^2 \)-complete.

As before, the relations \( \bowtie_C \) and \( \bowtie_C \) induce a graph of reliances under constraints. Analogously to Proposition 2, we can show that \( P \) is \( R \)-stratified under constraints if and only if this graph does not contain cycles that involve \( \bowtie \). This is the basis for deciding \( R \)-stratification under constraints, leading to the following result.

**Theorem 7.** Given rules \( r_1 \) and \( r_2 \), and a set of constraints \( C \), the problem of deciding whether \( r_1 \bowtie_C r_2 \) is in \( \Pi^2 \). Checking whether a program \( P \) is \( R \)-stratified under constraints is \( \Pi^2 \)-complete.

Given an \( R \)-stratification of \( P \) under constraints \( C \), we can again define a computation scheme to obtain unique stable models. \( C \) in this case is evaluated on all strata, though one can also defer constraint checking to the highest stratum.

**Definition 9.** For a set of facts \( F \) and a program \( P \) with \( R \)-stratification \( P = P_1, \ldots, P_n \) under constraints \( C \), define \( S^0_{P,C}(F) := T_C(F) \) and

\[
S^i_{P,C}(F) := T^w_{R_i+1 \cup C}(S^i_{P,C}(F)) \quad \text{for} \quad 0 \leq i < n.
\]
The following result can be shown using the same overall proof structure as in Section 5. The main difference is that in all arguments that discuss potential reliances between rules, we also need to show satisfaction of the constraints. This is usually a consequence of the assumption that \( \perp \) is not derived.

**Theorem 8.** If \( \perp \notin S_{P,C}(F) \), then \( S_{P,C}(F) \) is the unique stable model of \( F \cup P \cup C \), or else \( F \cup P \cup C \) has no stable model.

Theorems 2 and 5 can be generalised to programs that are R-acyclic and R-stratified under constraints:

**Theorem 9.** For a set of facts \( F \), a fact \( \alpha \), and a program \( P \) that is R-acyclic under a set of constraints \( C \), deciding \( P \cup F \cup C \models \alpha \) is co\text{N2EXPTIME}-complete (co\text{NP}-complete) w.r.t. program (data) complexity. If \( P \) is also R-stratified under \( C \), deciding \( P \cup F \cup C \models \alpha \) becomes 2\text{EXPTIME}-complete (P-complete) w.r.t. program (data) complexity.

## 7 Experimental Evaluation

In order to assess the practical utility of our solution, we conducted a case study with ChEBI. Our test datasets, software, and detailed results are published online [Magka et al., 2013].

The ChEBI database (release 97) contains about 20,000 molecular structures and taxonomic relations for about 8,000 chemical classes, while the DL-based ontology contains taxonomic information only. To obtain rules for reasoning, we considered a sample of 500 molecules, with sizes ranging from 2 to 138 atoms. The structure of each molecule (given in MDL Molfile format) was converted to rules of the form (2). Chemical classes, such as one-carbon molecule or organic hydroxy, do not have machine-readable descriptions in ChEBI. We selected 50 chemical classes and manually formalised their human-readable descriptions as rules, such as (3) and (6). In addition, we defined 30 molecule classes that are characterised by small substructures (functional groups of 2 to 8 atoms), e.g., organic hydroxy. We modelled each with two rules of the form (8) and (9), using distinct predicates \( r \) and \( n \) for each pair of rules. Finally, existential quantifiers were skolemised, and conjunctions in rule heads were decomposed into multiple rules. This led to a program \( P \) with 78,957 rules, the largest of which had 38 body atoms (8 negative). \( P \) was not stratified, but was R-stratified and R-acyclic. In addition, we generated a set \( F \) of 530 facts of the form \( C(i,C) \), one for each molecule or functional group. This allowed us to compute subsumptions between chemical classes: \( C \) is subsumed by \( C' \) iff \( C'(i,C) \) is in the unique stable model of \( P \cup F \).

We ran experiments on a desktop computer (2GHz quad-core CPU, 4GB RAM) running Linux. In a first experiment, we tried to compute a stable model of \( P \cup F \) using DLV [Leone et al., 2006], but the system failed to compute this result within a time limit of 600 seconds. In a second experiment, we split \( P \) into R-strata and consecutively computed the stable model of each stratum. Of the five R-strata of \( P \), the first stratum \( P_1 \) contained 78,251 rules, while the 706 rules of the remaining four R-strata formed a stratified program \( P_2 \).

We used DLV to compute the stable model of \( P_1 \cup F \), converted the result into a new set of facts \( S_{P_1} \), and used DLV to compute the stable model of \( S_{P_1} \cup P_2 \). This took 17 seconds, with 13.5 seconds being used for actual reasoning in DLV.

We obtained 8,639 non-trivial subsumptions overall between chemical classes, which we compared to ChEBI’s manually created taxonomy. This revealed several omissions in ChEBI, e.g., the fact that every organic hydroxy (ChEBI id 33822) is an organooxygen compound (ChEBI id 36963), illustrating the practical relevance of our approach.

## 8 Related Work

Nonmonotonic extensions for existential rules are considered by Cali et al. [2009] using stratified negation, and more recently by Gottlob et al. [2012] using well-founded semantics. Another approach to nonmonotonic ontological modelling are \( \mathcal{FDNC} \) programs [Eiter and Simkus, 2010], which are related to DLs and inherit many of their limitations in modelling finite structures.

**Local stratification** generalises stratification by considering the (infinite) groundings of normal logic programs [Przymusinski, 1989]. This condition is undecidable [Cholak and Blair, 1994], but does not generalise R-stratification (see [Magka et al., 2013] for a counterexample). Further extensions along these lines led to weak stratification [Przymusinska and Przymusinski, 1990], effective stratification [Bidoit and Froidevaux, 1991], modular stratification [Ross, 1994], and left-to-right dynamic stratification [Sagonas et al., 2001], all of which are known or suspected to be undecidable in the presence of function symbols.

Many other works study the problem of recognising negation-free programs with finite models, e.g., Fagin et al. [2005], Krötzsch and Rudolph [2011] and Cuenca Grau et al. [2012]. Deutsch et al. [2008] discuss how to generalise weak acyclicity by first partitioning the program into cyclic components; in the same way, reliances can be combined with any notion of acyclicity. Negation is rarely considered. **Omega-restrictedness** uses a kind of ‘stratification’ to ensure finiteness of stable models [Syrjänen, 2001]. Magka et al. [2012] define **semantic acyclicity** to ensure finite models in reasoning about structured objects but only consider stratified negation.

## 9 Conclusions

We showed that nonmonotonic existential rules can tackle complex real-world modelling problems and presented novel conditions to ensure efficient, deterministic reasoning. Our experiments indicate that our approach can dramatically increase the performance of existing reasoners, enabling them to address new practically interesting application areas.

For future work, it is thus very promising to integrate our approach into existing rule engines, which will also allow more extensive evaluations. Section 6 suggests that cyclic or non-stratified programs could be ‘repaired’ by adding suitable constraints, which could inspire new tools for rule modelling. Equality theories often lead to additional reliances, whereas datatypes and numeric constraints could be exploited to discard reliances—further work is needed to study these effects.

**Acknowledgements** This work was supported by the Royal Society, the Seventh Framework Program (FP7) of the European Commission under Grant Agreement 318338, ‘OpIQUE’, and the EPSRC projects ExODA, Score! and MaS13.
References


