Fixed Parameter Tractable Reasoning in DLs via
Decomposition

FrantiSek Simancik, Boris Motik, and Markus Kroétzsch

Department of Computer Science, University of Oxford, UK

1 Introduction

DL reasoning is of high computational complexity even for basic DLs such as ALCT
[3, Chapter 3]. Intuitively, due to disjunctions (or-branching) and/or existential quan-
tifiers (and-branching), a DL reasoner may need to investigate (at least) exponentially
many combinations of concepts. A range of highly-tuned optimizations, such as absorp-
tion, dependency-directed backtracking, blocking, and caching [3, Chapter 9], can be
used to tame these sources of complexity. None of these techniques, however, provide
formal tractability guarantees. Such guarantees can be obtained by restricting the lan-
guage expressivity, as done in the &L [2], DL-Lite [6,1], and DLP [11] families of DLs.
Tractable DLs typically do not support disjunctions, which eliminates or-branching, and
they either significantly restrict universal quantification (as in &£ and DL-Lite) or disal-
low existential quantification (as in DLP), which eliminates or reduces and-branching.

Obtaining tractability guarantees for hard computational problems has been exten-
sively studied in parameterized complexity [8]. The general idea is to measure the “hard-
ness” of a problem instance of size n using a nonnegative integer parameter k, and the
goal is to solve the problem in time that becomes polynomial in n whenever & is fixed.
A particular goal is to identify fixed parameter tractable (FPT) problems, which can be
solved in time f(k) - n°, where c is a constant and f is an arbitrary computable function
that depends only on k. Note that not every problem that becomes tractable if k is fixed
is in FPT. For example, checking whether a graph of size n contains a clique of size k
can clearly be performed in time O(n%), which is polynomial if & is a constant; however,
since k is in the exponent of n, this does not prove membership in FPT.

Note that every problem is FPT if the parameter is the problem’s size, so a useful
parameterization should allow increasing the size arbitrarily while keeping the param-
eter bounded. Various problems in Al were successfully parameterized by exploiting
the graph-theoretic notions of tree decompositions and treewidth [9,10,13], which we
recapitulate next. A hypergraph is a pair G = (V, H) where V is a set of vertices and
H c 2V is a set of hyperedges. A tree decomposition of G is a pair (T, L) where T is
an undirected tree whose sets of vertices (also called bags) and edges are denoted with
B(T) and E(T), and L : B(T') — 2V is a labeling of B(T') by subsets of V such that

(T1) foreachv € V, theset{b € B(T) | v € L(b)} induces a connected subtree of T, and
(T2) for each e € H, there exists a bag b € B(T') such that e C L(b).

The width of (T, L) is defined as maxpep(ry L(b) — 1. Finally, the treewidth of G is the
minimum width among all possible tree decompositions of G. Consider now an in-
stance N of the SAT problem, where N is a finite set of clauses (i.e., disjunctions

of possibly negated propositional variables). The notions of tree decompositions and
treewidth of N are defined w.r.t. the hypergraph Gy = (Vy, Hy) where Vy is the set of
propositional variables occurring in N, and Hy contains the hyperedge {p;, ..., px} for
each clause (=)p; V...V (=)pr € N. When parameterized by treewidth, SAT is FPT
[13]. Intuitively, the treewidth of N shows how many propositional variables must be
considered simultaneously in order to check the satisfiability of N; thus, bounding the
treewidth has the effect of bounding or-branching.

Inspired by these results, we present a novel DL reasoning algorithm that ensures
fixed parameter tractability. To this end, in Section 3 we introduce a notion of a de-
composition D of a signature 2. Intuitively, D is a graph that restricts the propagation
information between the atomic concepts in 2. A decomposition of X' can be seen as
one or more tree decompositions, each reflecting the propagation of information due
to or-branching, interconnected to reflect the propagation of information due to and-
branching. We identify a parameter of O called width; intuitively, this parameter deter-
mines an upper bound on the number of concepts that must be considered simultane-
ously to solve a reasoning problem. Let O be an ALCT ontology normalized to contain
only axioms of the form [];A; € | |; Bj, AT IR.B, and A C VR.B, where A(; and B;
are atomic concepts, and R is a (possibly inverse) role. We present a resolution-based
reasoning calculus that runs in time O(f(d) - |D| - |O]), where d is the width of D, |D) is
the size of D, and |Q| is the number of axioms in Q. Our calculus is not complete for all
D: it is not guaranteed to derive all consequences that might be of interest. To remedy
that, we introduce a notion of D being admissible for O and the relevant consequences,
and we show that admissibility guarantees completeness.

Ideally, given O and the relevant consequences, one would identify an admissible
decomposition D of smallest width and then run our calculus in order to obtain an FPT
algorithm. In Section 4, however, we show that, for certain O, all admissible decompo-
sitions of smallest width have exponentially many vertices. This is in contrast to tree
decompositions (e.g., for each instance of SAT, a tree decomposition of minimal width
exists in which the number of vertices is linear in the size of the instance) and is due
to the fact that, in addition to or-branching, our decompositions analyze information
flow due to and-branching as well. We therefore further restrict the notion of admissi-
ble decompositions in several ways. For each of the resulting notions, one can compute
a decomposition of width at most d (if one exists) in time f(d)-|O|° with f a computable
function and ¢ an integer constant; together with our resolution-based calculus, we thus
obtain an FPT calculus for reasoning with normalized ALCT ontologies.

In Section 5 we show that the minimum decomposition width of several commonly
used ontologies is much smaller than the respective ontology’s size. This suggests that
decomposition width provides a “reasonable” measure of ontology complexity, and that
our approach might even provide practical tractability guarantees.

Our results can be applied to SH I ontologies by transforming away role hierar-
chies and transitivity and normalizing the ontology in a preprocessing step. Such trans-
formations, however, are don’t-care nondeterministic, and the minimum decomposition
width of the normalization result might depend on the nondeterministic choices. In this
paper we thus restrict our attention to normalized ALCI ontologies, and we leave an
investigation of how normalization affects the minimum width for future work.

KiCMUA ANK,C M,

2

AEA KinK,EM, UM,
BN[,D;C;E;
R KCMeO R > [WDCELLE 223\;;1;)600
: = G E D €
*kKcM EMe 4 ANTLGEL,F,

E;CVR .F;€0

Fig. 1. A simple resolution calculus

2 Source of Complexity in DL Reasoning

In order to motivate the results presented in the following sections, in this section we
present a very simple calculus that is not FPT, and we discuss the rough idea for making
the calculus FPT. The calculus is based on resolution, and is similar to the calculus pre-
sented in [12]. Resolution can often provide worst-case optimal calculi whose best case
complexity is significantly lower than the worst case complexity; indeed, the calculus
from [12] has demonstrated excellent practical performance.

The calculus manipulates clauses—expressions of the form K & M, where K is a
finite conjunction of atomic concepts, and M is a finite disjunction of atomic concepts.
With sig(K), sig(M), and sig(K € M) we denote the sets of atomic concepts occurring
in K, M, and K C M, respectively. We consider two disjunctions (resp. conjunctions) to
be the same whenever they mention the same atoms; that is, we disregard the order
and the multiplicity of atoms. We write empty K and M as T and L, respectively.
Furthermore, we say that a clause K’ T M’ is a strengthening of a clause K C M if
sig(K”) C sig(K) and sig(M’) C sig(M). We write K T M & N if the set of clauses N
contains at least one strengthening of the clause K C M.

Given a normalized ontology O, our calculus constructs a derivation—a sequence
Sy, S1,... of sets of clauses such that Sy = 0, and for each i > 0, set S; is obtained
from S;_; by applying a rule from Fig. 1. Rules Ry and Ry implement propositional
resolution, and rule Rz ensures that each clause in O is taken into account. Rule Ry
handles role restrictions; letter R stands for a role (i.e., R need not be atomic), and
inv(R) is the inverse role of R; finally, note that the atom B in the premise of the rule is
optional. Intuitively, the rule says that, if B, D;, and =E; jointly imply a contradiction,
but A C JR.B, C; E VYR.D;, and —=F; C VYR.—E; hold, then A, C;, and —F; jointly imply
a contradiction too. Reasoning with the second premise is analogous.

A saturation is defined as S := | J; S;. The calculus infers a clause K E M, written
OrKCM,if KC MéES. It is straightforward to see that the calculus is sound: if
O+ KE M, then O K C M. Typically, resolution is used as a refutation-complete
calculus; however, it is possible to show that the variant of resolution presented here
is complete in the following stronger sense: if O | K T M, then O + K T M; note that
this means that the calculus infers at least one strengthening of each clause entailed by
O. This stronger notion of completeness can be useful in practice; for example, O can
be classified using a single run of the calculus, which is not the case for calculi (such as
tableau) that are only refutationally complete.

Let d be the number of atomic concepts in O. Since each clause is uniquely identi-
fied by the atomic concepts that occur in K and/or M, the calculus can derive at most
44 clauses, which is exponential in |O|. The high complexity of DL reasoning arises
because one may have to consider exponentially many combinations of concepts, and
this fact fundamentally underpins all DL reasoning algorithms. Clearly, a tractable algo-
rithm should consider only polynomially many combinations. For example, reasoning
algorithms for £L exploit the fact that only polynomially many combinations are “rele-
vant” and that all of them can be constructed deterministically. In the following sections,
we ensure tractability of reasoning in a radically different way. Instead of restricting the
ontology language, we show that by restricting the structure of the ontology with a
suitable parameter one can limit the number of concepts that must be simultaneously
considered, which effectively limits the exponent in the above calculation. Since the
base of the exponent not depend on |O|, we will thus obtain an FPT reasoning calculus.

3 Reasoning with Decompositions

In this section we develop the notions of decomposition, decomposition admissibility,
and the resolution calculus. We start by introducing the notion of decomposition.

Definition 1. Ler 2 = (X4, 2g) be a DL signature, where X, is a finite set of atomic
concepts and Xy is a finite set of atomic roles; let Zg- = {R™ | R € 2Zg} be the set of
inverse roles of 2g, and let € be a symbol not contained in X, U Xg U Zg-.

A decomposition of 2 is a labeled graph D = (V, &, sig), where V is a finite set
of vertices, &E CV XV X (2 U2, U €} is a set of directed edges labeled by a role or
by €, and sig : V — 2*4 is a labeling of each vertex with a set of atomic concepts. The

width of D is defined as wd(D) = maX,cy [Sig(V)|.

Note that D is not defined w.r.t. an ontology, but w.r.t. a signature 2, and we will
establish a link between D and O shortly in our notion of admissibility. This is mainly
so as to gather all conditions that guarantee completeness in one place. We discuss the
intuition behind this definition after presenting the resolution-based calculus.

Definition 2. Ler X be a DL signature, let D = (V,E, sig) be a decomposition of X,
and let O be a normalized ALCI ontology over X. The resolution calculus for D and
O is defined as follows.

A clause system for D is a function S that assigns to each vertex v € V a set of
clauses S(v). A derivation of the calculus is a sequence of clause systems Sy, S1,Ss, ...
such that So(v) = 0 for each v € V and, for each i > 0, S; is obtained from S;_ by
an application of a derivation rule from Fig. 2; we assume that each derivation is fair
in the usual sense. The saturation is the clause system S defined by S(v) := |J; S;(v) for
each v € V. The calculus infers a clause K T M at vertex v, written O,v +o K T M, if
K T M & SWv); furthermore, the calculus infers a clause K T M, written O v+ K T M,
if a vertex v € V exists such that O,v +p K T M.

The calculus is complete (sound) if O E K T M implies (is implied by) O v KT M
for each clause K T M over X. Given a set of clauses C over X, the calculus is C-
complete if O = K T M implies O+ K T M for each KT M € C.

Ry —— :Acsi
' ddAC A0Sy o ESiIW

KiCM, UAeSW) AMK,C M,eSWv)
add Ky, MK, T My UM, tOS(V)

KEMeO
add K C M to S(v) ~sig(K E M) C sig(v)

B'_'|_|,~DiE|_|,-Ej€S(u) AC3IARBeO
or M:DiCLIEj € Su) G C VI.?.D,- €0
tE;CVinv(R).F; €0
addANT],C EL]; FjtoSW)

{u,v,Ry € &
SigANT[]; G C L, F)) Csig(v)

KC M e S Au,v,e) €&
add K C M to S(v) ~sig(K E M) C sig(v)

Fig. 2. The decomposition calculus

While the simple calculus from Section 2 saturates a single set of clauses, the res-
olution calculus for 9 and O saturates one set of clauses per decomposition vertex. In
particular, for a vertex v € V, set S(v) contains only clauses whose propositional atoms
are all contained in sig(v), so v identifies a propositional subproblem of O. Rules R1—R3
implement propositional resolution “within” each vertex v. Rule Rs propagates proposi-
tional consequences from vertex u to vertex v connected by an e-labeled edge; thus, the
e-labeled edges of D “connect” the subproblems of O in accordance with or-branching.
Finally, rule R4 propagates modal consequences from a vertex u to a vertex v connected
by an R-labeled edge; thus, the R-labeled edges of D “connect” the subproblems of O
in accordance with and-branching. A clause is inferred if at least one saturated set S(v)
contains a strengthening of the clause.

Note that rules Ry—R3 consider only one vertex at a time, whereas rules R4 and Rs
involve two vertices. Thus, although this was not our initial motivation, the calculus
seems to exhibit significant parallelization potential. We leave a thorough investigation
of the reasoning problem in terms of parallel complexity classes for future work.

The notion of C-completeness takes into account that one might be interested not
only in refutational completeness, but in the derivation of all clauses from some set C.
For example, if one is interested in the classification of O, then C would contain all
clauses of the form A C B with A and B atomic concepts occurring in O.

The following proposition determines the complexity of the calculus in terms of the
sizes of D and the number |O] of axioms in O. It essentially observes two key facts: first,
since the clauses in each S(v) are restricted to atomic concepts in sig(v), the maximum
number of clauses in S(v) is determined solely by wd(2); and second, given a node or a
pair of nodes, all rules can be applied in time that also depends solely on wd(D). Once
we limit the size of D, this proposition will provide us with an FPT algorithm.

Proposition 1. Let D = (V, &, sig) and O be as in Definition 2. The saturation of the
resolution calculus for D and O can be computed in time O(f(wd(D)) - (V| + |&)) - |O)),

where f is some computable function.

Proof. We show that, given D and O, it is possible to generate all instances of the rules
in Fig. 2 in time O(f(d) - (|'V| + |&]) - |O|), where d = wd(D) and f is some computable
function. It is well known that the closure of a system of instantiated rules can be com-
puted by forward-chaining in linear time [7].

For each v € V, the number of clauses K C M with sig(K C M) C sig(v) is bounded
by 4¢: each clause is uniquely identified by the atoms from sig(v) that occur in K and/or
M. Then, rule Ry admits at most d - ['V] instances, rule Ry admits at most (49)2 - d - [V
instances, rule Rs admits at most |V - [O] instances, and rule Rs admits at most 4¢ - |&]
instances. The only nontrivial case is rule Rq: due to the side conditions from O, a
straightforward analysis suggests that there are O(JO|Y) instances of the rule. Let us,
however, fix an edge (u, v, R) € & Then O contains at most d> axioms A C JR.B that
can be used as a side condition in the rule: each such axiom must satisfy A € sig(x) and
B € sig(v). In a similar vein, O contains at most d? axioms C C YR.D and at most d°
axioms E C YR™.F that can be used as side conditions in the rule. All such axioms can
be collected in one pass through O. The total number of axioms that can be used in a side
condition is O(d?), and each instance of rule R4 requires at most O(d) side conditions;
therefore, all instances of rule R4 can be computed in time O(g(d) - |E| - |O|), where g is
some computable function. |

The rules of our calculus are clearly sound for arbitrary decompositions 9 and
ontologies O; however, the converse is not true. As a trivial example, note that the
decomposition with the empty vertex and edge sets satisfies Definition 1, and that our
calculus does not infer any clause using such D. Therefore, we next introduce the notion
of admissibility, which we later show to be sufficient for completeness.

Definition 3. Let D = (V, &, sig) be a decomposition of a DL signature X = (X4, 2g).
Let ‘W C V be an arbitrary set of vertices. The signature of ‘W is defined as
sig(W) = Uyew Sig(w). The e-projection of D w.r.t. ‘W is the undirected graph Dy
that contains the undirected edge {u, v} for each {u,v, €y € & with u,v € W. Set ‘W is
e-connected if, for all u,v € W, vertices {wo, w1, ...,w,} C W exist such that wy = u,
wy, =V, and {w;_1,w;, €) € & for each 1 < i < n; furthermore, ‘W is an e-component of
D if W is e-connected, and each ‘W'’ such that W C ‘W’ C V is not e-connected.
Decomposition D is admissible for an ontology O if (u, v, €) € & implies (v,u,€) € &
forall u,v € V, and if each e-component ‘W of D satisfies the following properties:

(i) Dy is an undirected tree;
(ii) for each atomic concept A € sig(‘W), the set {w € W | A € sig(w)} is e-connected;
(iii) for each clause K T M € O such that sig(K) C sig(‘W), a vertex w € ‘W exists such
that sig(K T M) C sig(w);
(iv) for each axiom A T AR.B € O such that A € sig(‘W), an e-component U of D and
vertices w € W and u € U exist such that
- {(u,w,RY e &,
— A esiglw),

— B e sig(u),
— foreach C T YR.D € O, if C € sig(‘W) then C € sig(w) and D € sig(u), and
— for each E CTYinv(R).F € O, if E € sig(U) then E € sig(u) and F € sig(w).

A clause K € M is covered by D if an e-component W of D and a vertex w € ‘W
exist such that sig(K) U [sig(M) N sig(‘W)] C sig(w). Decomposition D is admissible
for C if each clause in C is covered by D.

Definition 3 incorporates two largely orthogonal ideas. First, each e-component ‘W
of D reflects the propositional constraints on domain elements of a particular type in a
model of O. To deal with or-branching, each ‘W is a tree decomposition formed by undi-
rected e-labeled edges. Conditions (i)—(iii) are analogous to (T1) and (T2) in Section 1,
but (iii) is more general: instead of requiring sig(K T M) C sig(w) foreach KT M € O
and some w € W, Condition (iii) takes into account that, if sig(K) ¢ sig(‘W), then
K T M can be satisfied by making the atomic concepts in Sig(K) \ sig(‘W) false on the
appropriate domain element; thus, sig(K £ M) C sig(w) must hold for some w € W
only if sig(K) C sig(‘W). Admissibility for C uses an analogous idea.

Second, to deal with and-branching, the e-components of 9 are interconnected via
role-labeled edges. If a concept A occurs in an e-component ‘W and in an axiom of O of
the form A C 3R.B, then a domain element corresponding to W might need to have an
R-successor; to reflect that, 9 must contain an e-component U, and vertices w € ‘W and
u € U connected by an R-labeled edge must exist such that A € sig(w) and B € sig(u).
Furthermore, in order to address the universal quantifiers over R, if C C YR.D € O and
C e sig(‘W), then C € sig(w) and D € sig(x) must hold, and analogously for universals
over inv(R). These conditions ensure that w and u contain all atomic concepts that might
be relevant for modal reasoning, which in turn allows our calculus to infer all relevant
constrains on atomic concepts.

The following theorem shows that admissibility indeed ensures completeness.

Theorem 1. Let O be an ontology, let C be a set of clauses, and let D = (V, E, sig) be
a decomposition that is admissible for O and C. Then, the resolution calculus for D and
O is C-complete.

Proof. The claim holds vacuously if O Fo K & M for each K T M € C, so we assume
that O ¥y K T M for at least one clause K T M € C. Let S be a saturation of the res-
olution calculus for D and O. To prove the claim of this theorem, we construct from
S an interpretation 7 = (A%, -?) such that that 7 = O and I £ K C M for each clause
K T M € C such that O ¥y K T M. In the construction of 7, we rely on the complete-
ness of propositional resolution [4], which we restate in light of DLs as follows:

(%): Let N be a set of clauses saturated under Ry and Ro, and let K C M be a
clause such that K & M & N. Then, an interpretation J with a single domain
element 7y exists such that = N and J £ KC N.

We next define 7 in three stages: we first define the domain set, then we interpret atomic
concepts, and finally we interpret atomic roles.

The domain set AL of I is the smallest set such that, for each e-component ‘W
of D and each clause K C M, if w € W exists such that sig(K C M) € sig(w) and

O,w ¥qp K T M, then AT contains an element Oaw kcm- By assumption, O Fp KE M
for at least one clause K C M € C; since the clause is covered by D, an e-component
W and a vertex w € ‘W exist such that sig(K) C sig(w). Let M’ be the disjunction of all
atoms that occur in both M and sig(w); thus sig(K T M’) C sig(w). Now O ¥p KT M
implies O, w ¥ K T M, which implies O,w ¥p K T M’. Thus, oy kcar € AL, so a7
is not empty.

To interpret atomic concepts, consider an arbitrary 4y xcy € AT and an arbitrary
atomic concept A. If A ¢ sig(‘W), we define 7 such that Sy kcm ¢ AL If A € sig(‘W),
we use the following conditions to determine whether 64| xcy should be added to AL
Choose an arbitrary vertex w € ‘W such that sig(K T M) € sig(w) and O,w Fp K T M;
such w exists by the definition of 64y k. Furthermore, order the elements of ‘W in a
sequence wy, wy, ..., w, obtained by an arbitrary breadth-first traversal of Dy starting
from w. Fix an arbitrary object y and define inductively interpretations Jo, 1, ..., In
(all of whose domains will contain only), conjunctions Ky, K1, ..., K, and disjunc-
tions My, My, ..., M, as follows.

— Case i = 0. Define Ky := K and M, := M. Since Ko C My € S(wp) and S(wp)
is saturated under Ry and Ra, by (*) an interpretation Jy with domain AJo = (v}
exists such that Jo E S(wg) and o £ Ko T M,.

— Case i > 0. Let w; be the parent of w; in the breadth-first traversal of Dqy; note
that w; is considered before w; in the ordering, so at this point J; has been defined.
Define K; and M; as follows:

K; = [1{B € sig(w;) N sigw;) | y € BT7},
M; = ||{B € sig(w;) Nsig(w;) | y ¢ BT}

The definition of K; and M; implies that J; ¢ K; C M;, so K; © M; & S(w;). Since
S is saturated under Rs, we have K; C M; & S(w;) as well. Furthermore, S(w;) is
saturated under Ry and Ra, so (*) an interpretation J; with domain AJi = {y} exists
such that J; E S(w;) and J; £ K; C M;.

We are now ready to determine whether 64| xcy should be added to AL Let k be the
smallest integer such that A € sig(wy); then, éqy | kcm € AL if and only if y € ATx,
We next show that 7 as defined thus far satisfies the following important property:

(#%): For each 6w kcm € AT with sequences W, Wi, ..., Wy, Ko, Ki,...,K,,
My, My, ... ,M,, and 9y, 9J1,...,9, as above, for each 0 < i, j < n, and for
each A € sig(w;) N sig(w;), we have AT = A7),

The proof is by induction on the length of the shortest path from w; to w; in Dy .
The case i = j is trivial. Assume that w; is the parent of w; in the traversal of Day;
then J; £ K; © M; implies y € Kij" andy ¢ M;7"; by the latter and the definition of K;
and M;, if A € sig(K;) then y € AYi and y € A7/, and if A € sig(M;) then y ¢ A7 and
y ¢ AJJ; but then, sig(K;) U sig(M;) = sig(w;) N sig(w;) implies (+#). The case when w;
is the parent of w; in the traversal of Dqy is symmetric. For the induction step, consider
an arbitrary A € sig(w;) N sig(w;). Let wy be an arbitrary vertex on a path between w;
and w;. By property (ii) of Definition 3, we have A € sig(wy). Furthermore, by property

(1) of Definition 3, the path between w; and w; is unique, so the paths from w; to wy,
and from wy to w; are both shorter than the path from w; to wj; thus, the induction
assumption (*x) holds for i and k, and for k and j; but then, () holds for i and j.

The following property follows straightforwardly from (sx), the definition of 7 on
daw|kcum, and the fact that the above construction ensures Jo - K E M and J; E S(w;)
foreach 1 <i<n.

(#**): Consider an arbitrary element 4y |xcy € AT, Then Ow|kcMm € K* and
0w kcm & MY . Furthermore, Oaw xkcm € (=K' U M"Y for each vertex w € ‘W
and each clause K’ C M’ € S(w). Finally, 64y xcy ¢ A? for each A ¢ sig(‘W).

Consider now an arbitrary clause K’ C M’ € O; we next show that I £ K’ T M’.
Consider an arbitrary domain element dqy | gcy € AT If K’ contains an atomic concept
A such that A ¢ sig(‘W), then Sqy ke & AL by (+x%), 50 Sqy xkcy € (=K' U M), If
sig(K’) ¢ sig(‘W), by property (iii) of Definition 3 a vertex w € ‘W exists such that
sig(K’ C M’) C sig(w); since S(w) is saturated under Rz, we have K’ T M’ € S(w); but
then, 6y kcm € (=K’ U M’)! by (++x). Consequently, I £ K’ T M’.

Consider now an arbitrary clause K T M € C such that O ¥, K T M; we next show
that / £ K C M. Since K C M is covered by D, an e-component ‘W of D and a vertex
w € W exist such that sig(K) U [sig(M) N sig(‘W)] C sig(w). Let M’ be the disjunc-
tion of precisely those atoms in M that occur in sig(‘W); then, O ¥p K T M implies
O ¥y K E M, which in turn implies O, w ¥y K T M’. But then, AT contains element
Saw | kear - BY (+xx) we have Say kcar & (=K U M'), as well as 6y kcpr ¢ A” for each
A € sig(M) \ sig(M"). Consequently, dqy|kcpr ¢ (K U MY, andI - KC M.

To interpret atomic roles, consider an arbitrary axiom A C dR.B € O and an arbi-
trary dqy kcm € AL, By the latter property and (+#x), we have A € sig(‘W); but then,
an e-component U of D, as well as vertices w € W and u € U exist that satisfy the
conditions in property (iv) of Definition 3. We define K' and M as follows:

K' :=[D; | C; EVR.D; € O and Sayxcm € C7},
M' = {E; | E; CVinv(R).F; € O, E; € sig(U), and 6ay|xcm ¢ F).

We next show that 8¢/ gngica 1S an element of A%, To this end, we define K, and M,
as follows:

K? = [HCi | C; E VR.D; € O and Ow|kcMm € CZI},
M? = | |{F; | E; EYinv(R).F; € O, E; € sig(U), and Sy kcu ¢ Ff}.

By property (iv) of Definition 3, we have A € sig(w) and B € sig(u). Consider an ar-
bitrary axiom C; C YR.D; € O with dqy xkcy € Cij ; the latter fact and () imply
C; € sig(‘W); but then, property (iv) of Definition 3 implies C; € sig(w) and D; € sig(u).
Consider an arbitrary axiom E; C Yinv(R).F; € O with E; € sig(U); then, property (iv)
of Definition 3 implies E; € sig(u) and F; € sig(w). Thus, sig(B M K'C M") C sig(u)
and sig(A M K? C M?) C sig(w). We next show that O, u ¥ Br K' T M'; to this end,
we assume the contrary. Then, a conjunction K3 and a disjunction M?> exist such that
sig(K?) C sig(K"), sig(M?) C sigtM"), and BN K> C M3 € S(u) or K> T M? € S(u).
By property (iv) of Definition 3, we have {u, w, R) € &; furthermore, since S is saturated

under Ry, a conjunction K* and a disjunction M* exist such that A 1 K* C M* € S(w),
sig(K*) C sig(K?), and sig(M*) C sig(M?). By the definition of K2, M?, and A, we
have 6y kcm € (AN K> and Ow|kcMm € (M*T; but then, ow|kcm € (AN K%T and
Oaw kM ¢ (M*)!, which contradicts (++#). Consequently, O, u ¥ BN K' £ M', so we
have 6‘LI|B|‘|K‘§M1 € AI.

We are now ready to interpret atomic roles. In particular, for an arbitrary atomic role
S, we define S as the smallest set such that, for each axiom A T AR.Be O withR = S
or R =57 and each 6w |kcm € A% we have

— (Swikem s Suyprxiew) € STIER =S,
— (O ket » Owikem) € STIfR=S".

We finally show that I satisfies each axiom in O that is not a clause. Consider
an arbitrary axiom A € 3AR.B € O and an arbitrary dqy|xcy € A, and let U, K', K2,
and 0q/ pngicyt be defined as discussed above. By the construction of 7, we have
(0w |kcum > O Brkicm') € R’; furthermore, by (+#*) we have O Brk'cM € B”; con-
sequently, 64y |kcy € (A U AR.B)!. Consider an arbitrary axiom C E YR.D € O such
that 64y |k € CZ. Then D occurs in K, so by (xxx) we have 8¢/ grgican € D73 con-
sequently, 54y gxcy € (-C U YR.D)?. Consider an arbitrary axiom E E Yinv(R).F € O
such that d¢/| gngican € ET. By (##x) then E € sig(U). Assume now that Sy xcp ¢ F7;
then E occurs in M', so by (###) we have OqtBrk'cm € E’, which is a contradiction.
Consequently, dqy | kcm € F?,s0 Sq gkt € (CE U inv(R).F)! Thus, T k O. a

Ideally, given an ontology O and a set of clauses C, one would identify a decom-
position D of smallest width and then apply the resolution calculus for O and O to
obtain an FPT algorithm. The following theorem shows, however, that this idea does
not work, since it is not the case that, for each ontology O, there exists a decomposition
of minimal width that is admissible for O and whose size is polynomial in |0|. In order
to address this problem, in Section 4 we further restrict the notion of admissibility.

Theorem 2. A family of ALCI ontologies {O,} exists such that each decomposition
admissible for O,, and C = {C T L} of minimal width has size exponential in |O,,|.

Proof. Let n be a positive integer; let 2 = ({C,Ay,..., Ay, By,..., By}, {R1,...,R,}) be
a signature; let C = {C C L}; and let O, be the ontology (of size polynomial in n) over
2 containing the following axioms.

CC 3R, .A4

CC 3AR,.B,

A; C AR 1Ay foreach1 <i<n

A; C AR;y1.Biy1 foreachl <i<n
A;CVR;.A; foreachl <i<j<n
B; C dR;.1.Aiq foreachl <i<n

B; C AR, .B foreach1 <i<n

B; C VR;.B; foreachl <i<j<n

Let an AB-number be each set X of the form X = {X{, ..., X,,} such that each X; is
either A; or B;. The following property holds the key to establishing a lower bound on
the size of admissible decompositions for O, and C of minimal width.

(): Let D = (V, &, sig) be an arbitrary decomposition admissible for O, and
C. Then, for each AB-number X = {X;,...,X,,} and each k with 1 <k <n, a
vertex v € V exists such that {X1, ..., X;} C sig(v).

Let X = {X|, ..., X,} be an arbitrary AB-number; by induction on k we prove that ()
holds for X. For the base case, assume that k = 1. Since D is admissible for O,, and C,
clause C C 1 is covered by D, so an e-component ‘W exists such that C € sig(‘W);
since C C dR.X; € O,, by property (iv) of Definition 3 vertex u exists such that
X, € sig(u); consequently, (*) holds for X and k = 1. For the induction step, assume
that () holds for some 1 < k < n and choose an arbitrary vertex v € V such that
{X1,..., X} C sig(v); since X; T AR 1.Xk41 € Op and X; T VR X; € O, for all
1 < i < k, by property (iv) of Definition 3 vertex u exists such that X; € sig(u) for all
1 <i <k + 1; consequently, (x) holds for X and &k + 1.

Since () holds for k = n, property (*) implies that the width of an arbitrary decom-
position D admissible for O, and C is at least n, and that if the width of D is exactly
n, then D contains at least one vertex per AB-number, so it has at least 2" vertices. To
complete the proof, we next construct a decomposition D = (V, &, sig) of width n that
is admissible for O,, and C. Let V = {C} U {X | X is an AB-number}. Let & be the min-
imal set containing (C,{A,A>,...,A,;},Ry) and (C,{By, B, ..., B}, R;) and, for each
AB-number X and each 1 < i < n, the edges

<X7 {X17 RN Xi7Ai+17Xi+2, cee aXn}aRi+l> and
<X, {Xl’ R Xi’ Bi+19Xi+29 ce 3Xn}9Ri+1>'

Finally, let sig(C) = {C} and sig(X) := X. It is straightforward to check that D satisfies
all conditions of Definition 3, that it covers C C L, and that it has width . O

4 Constructing Decompositions of Polynomial Size

In Section 4.3 we present a general method for computing admissible decompositions
of polynomial size, for which we obtain the desired FPT result. This method embodies
two largely orthogonal ideas, each of which we present separately for didactic purposes.
In particular, in Section 4.1 we present an approach for analyzing and-branching, and
in Section 4.2 we present an approach for analyzing or-branching.

4.1 Analyzing And-Branching via Deductive Overestimation

In this section we present an approach for analyzing and-branching, which is inspired
by the reasoning algorithm for &L [2]. The approach uses an overestimation of the
subsumption relation to construct the decomposition. It manipulates expressions of the
form K ~» A, where K is a conjunction of atomic concepts, and A is an atomic concept.

JAN...MA,EBU...UB,€C

E1K->A1 . KwA, K=An..nA,
K A ... K A,
E, — 1 A M...MA,CB U...UB, €0
K~B ... K~ By,
K~ A
Es 55 ACIRBEO
E K~ A KWC.AEER.BEO K~ A BWE_AEHR.BEO
4 B~ D "CCVYRDeO 5 K~ F "ECVYR .FeO

Fig. 3. Computing the deductive overestimation for O and C

Given an ALCT ontology O and a set of clauses C, the deductive overestimation ~~ for
O and C is the relation obtained by exhaustive application of the rules shown in Fig. 3.

Intuitively, K ~~ A states that an object whose existence is required to satisfy K can
become an instance of A. On &L ontologies ~~ coincides with the subsumption relation,
but on more expressive ontologies ~» overestimates the subsumption relation. In order
to check whether a clause K C M € C is entailed by O, rule E4 introduces an instance
of all atomic concepts in K. Rule Ep addresses the fact that, if some object « is an
instance of Ay,...,A, and O contains a clause A; M...MA, C By U...U B, then the
object must be an instance of some B;. Since a polynomial overestimation method that
reasons by case is unlikely to exist, rule Es overestimates the subsumption relation by
saying that @ can be an instance of all By, ..., B,,. Rule Ej takes into account that, given
A C 3R.B € O, each instance of A needs an R-successor that is an instance of B. Anal-
ogously to the EL reasoning calculus, in order to obtain a polynomial overestimation
method, rule E; “reuses” the same successor to satisfy multiple existential restrictions
to the same concept B. Finally, rules E4 and Es implement modal reasoning.

Having computed ~~, we construct the decomposition Dg = (V, &, sig) of the sym-
bols occurring in O and C as shown below. Note that Dg contains no e-labeled edges,
as this decomposition method does not analyze or-branching. By Theorems 1 and 3, the
resolution calculus for Dg and O is C-complete.

YV ={vg | K ~ A for some A} siglvk) ={A | K ~~ A}
& = {vp,vg,R)| K~ Aand AC AR.B € O}

Theorem 3. Decomposition Dg is admissible for O and C.

Proof. We check the conditions of Definition 3. Since Dg has no e-edges, each e-
component is a singleton subset of V that clearly satisfies conditions (i) and (ii).

For condition (iii), consider a clause K T M € O and an e-component {vg/} with
sig(K) C sig(vg/). The latter implies that K’ ~» A for each A € sig(K); but then, by E;
we have K’ ~~ B for each B € sig(M); consequently, sig(M) C sig(vk-), as required.

For condition (iv), consider an axiom A C dR.B € O and an e-component {vg,} with
A € sig(vk/). Then vertices u = vg and w = vg satisfy the condition. Indeed, we have
(v, vk, R) € &by the definition of Dg; furthermore, B ~~ B by Eg, so B € sig(vg). The

final two subconditions of (iv) straightforwardly correspond to the consequences of E4
and Es, respectively.

Consider a clause KT M € C. By E; we have K ~» A for each A € sig(K), so
vk € V and sig(K) C sig(vk); but then, sig(K) U [sig(M) N sig(vk)] C sig(vk) clearly
holds, so K £ M is covered by Dg. O

4.2 Analyzing Or-Branching via Tree Decomposition

We now present an approach for computing admissible decompositions that analyzes
or-branching. The approach handles the clauses in O as explained in Section 1 for SAT,
and it imposes additional constraints in order to satisfy condition (iv) of Definition 3.

Given a normalized ontology O and a set of clauses C, we define the hypergraph
Goc = (V,H) such that V and H are the smallest sets satisfying the following proper-
ties. For each atomic concept A occurring in O or C, we have A € V. For each clause
KT M €O, we have sig(K C M) € H. For each A C AR.B € O, set H contains hyper-
edges domucag g and ranscag g defined as shown below, where C; EVR.D;, 1 <i<n
and E; C Vinv(R).F}, 1 < j < m are all axioms in O of the respective forms:

domAEEIR.B :: {A7 Cl” . "Cn’Fl’ .. "Fm}’
ranacarp = {B9Dl9-"3Dn9E1,"-9Em}'

Finally, sig(K E M) € H foreach KC M € C.

Given a tree decomposition (7', L) of Go ¢, we construct (don’t-care nondeterminis-
tically) a decomposition Dt = (V, &, sig) as follows. The vertices of Dy are the bags of
T—that is, V := B(T). The signatures of Dt are the labels of T—that is, sig := L. The
e-edges of Dy are the edges of T—that is, for each {u, v} € E(T), we have (u, v, €) € &.
Finally, for each A C dR.B € O, choose vertices u,v € V such that rang-3z g C L(u)
and domucag g € L(v) and set {(u, v, R) € &; such u and v exist due to property (T2) of
the definition of tree decompositions in Section 1.

Theorem 4. Every decomposition Dy is admissible for O and C.

Proof. Clearly, (u,v, €) € & implies (v,u, €) € &, since T is an undirected tree; further-
more, the only e-component of V is V itself. Property (i) of Definition 3 is satisfied
since T is a tree, and (ii) is an immediate consequence of (T1). For (iii), consider an
arbitrary K © M € O; sig(K £ M) € H by the definition of Go¢, and then by (T2)
vertex v € V exists such that sig(K C M) € sig(v).

For (iv), consider A C dR.B € O and A € sig(‘V). By construction of Dy there exist
vertices w, u € V such that domacag g C sig(w), (u, w,R) € &, and ranacag g C sig(u). It
is straightforward to check that u and w satisfy condition (iv).

For an arbitrary clause K E M € C, sig(K E M) € H by the definition of Gp¢, and
by (T2) vertex v € V exists such that sig(K E M) C sig(v), so Dt covers C. a

Note that, if C contains all possible clauses of the form A E B (i.e., if the goal is to
completely classify O), then Dt will contain a vertex labeled with all atomic concepts
in C, which diminishes the utility of Dt for ontology classification. This, however,
does not happen if C contains only one such clause (i.e., if the goal is to check just one
subsumption), or if C contains only clauses of the form A C L.

4.3 Analyzing And- and Or-Branching Simultaneously

We now show how to combine the approaches for analyzing and- and or-branching to
obtain a C-decomposition of a normalized ALCZ ontology O and a set of clauses C.

The procedure consists of three steps. First, we compute the relation ~~ as described
in Section 4.1. This step analyzes the and-branching inherent in O and C.

Second, for all K such that K ~» A for some A, we simultaneously define hyper-
graphs Gx = (Vk, Hg) where Vg :={A | K ~» A}, and Hy are the smallest sets satisfy-
ing the following conditions. For each clause K’ T M’ € O with sig(K’ T M) C Vg, we
have sig(K’ T M’) € H. For each axiom A C IR.B € O such that A € Vg, set Hg con-
tains hyperedge domg acar g and set Hp contains hyperedge rang acag p defined below,
where C; CVR.D;, 1 <i<nand E; CVinv(R).Fj, 1 < j < mare all axioms in O of the
respective forms such that C; € Vg and E; € Vp:

domgacarp =1{A,C1,....Cp, F1,..., Fp},
rangacars == {B,D1,..., Dy, Ey, ..., Ey}.

Finally, [sig(K T M) N V] € Hg foreach KT M € C.

Third, we compute a tree decomposition (T, Lx) for each hypergraph Gg; without
loss of generality we assume that all sets B(Tx) are disjoint. We then construct the
decomposition D¢ = (V, &, sig) as follows. The vertices of D¢ are the bags of the
tree decompositions—that is, V := | Jg B(Tk). The signatures of D¢ are the labels of
the tree decompositions—that is, sig = |Jgx Lg. The e-edges of D¢ are the edges of
the tree decompositions—that is, {u, v, €) € & for each {u, v} € E(Tk). Finally, for each
axiom A C JR.B € O and each K such that A € Vi, choose u € B(Vp) and v € B(Vy)
such that rang acag p € L(1) and domg acar s © L(v) and set (u, v, R) € &; such u and v
exist due to property (T2) of the definition of tree decompositions in Section 1.

The class of all C-decompositions of O and C consists of all decompositions ob-
tained in the way specified above. Note that the first step (computation of ~) is deter-
ministic, but the second step is not as each Gx may admit several tree decompositions.
The C-width of O and C is the minimal width of any C-decomposition of O and C.

Theorem 5. Every decomposition D¢ is admissible for O and C.
Proof. The proof is a combination of the arguments proving Theorems 3 and 4. |

To show that DL reasoning is FPT if the C-width is bounded, we next estimate the
effort required for computing a C-decomposition of O and C. With ||O|| and ||C]| we de-
note the sizes of (i.e. the numbers of symbols required to encode) O and C, respectively.

Proposition 2. An algorithm exists that takes as input a positive integer d, a normalized
ALCT ontology O, and a set of clauses C, that runs in time O(g(d) - (||O|| + ||C|)°) for
g a computable function, and that computes a C-decomposition of O and C of width at
most d whenever at least one such decomposition exists.

Proof. At most (|0| + |C]) different conjunctions on the left-hand side of ~~ are intro-
duced by rules E4 and E3. Thus, each rule in Fig. 3 has at most (|O] + |C|) - |OJ? instan-
tiations, and the well known saturation algorithm [7] can compute the overestimation
relation ~~ in time O((|O] + |C)) - |O]?).

The number of hypergraphs Gk is bounded by |O] + |C|. Furthermore, each G
has at most ||O|| + ||C]| vertices, at most |O| hyperedges of the form sig(K’ T M’) or
domk acar g, at most (|O] + |C]) - |O| hyperedges rang: acar s, and at most |C| hyperedges
of the form sig(K © M)N Vg. The number of vertices and hyperedges in each G is thus
linearly bounded by (||O|| + ||C|)?, and each hyperedge contains at most max(]|O|, ||CI|)
vertices.

If a C-decomposition has width at most d, all tree decompositions of Gx must be
of width at most d — 1. Determining whether such a tree decomposition of a graph, and
finding one such decomposition if it exists, can be done in time O(g’(d) - n) where g’
is some computable function (in fact an exponential function with an exponent of d°)
and n is the size of a graph [5]. To apply this result to hypergraphs, k-ary hyperedges
are replaced by cliques of k? binary edges. In our hypergraphs G, k is bounded by
IOl + lICII. Thus each Gk induces a binary graph G’ the number of edges of which is
bounded linearly by (||O|| +||C [D*, and this bounds the overall size of G- Thus, the tree
decomposition of each G can be computed in time O(g’(d) - (||O|| + ICIN*), and doing
this for all (|0 + |C|) hypergraphs is possible in O(g’(d) - (||O|| + |ICI|)?) steps.

If for some G no tree decomposition of width at most d exists, the construction
fails; otherwise, the size of each tree decomposition is bounded by g’(d) - (||O]| + lIicin?,
so the corresponding C-decomposition can be computed in time O(g(d) - (||O|| + ICID).

O

We can now formulate the main FPT result for C-decompositions.

Theorem 6. Let d be a positive integer, let O be a normalized ALCI ontology, and
let K T M be a clause. The problem of deciding whether a C-decomposition of O and
C = {K T M} of width at most d exists, and if so, whether O | K T M, is FPT.

Proof. We first check the existence of a suitable decomposition using Proposition 2
in time O(g(d) - (||0]| + |ICIl)>) and, if a decomposition exists, we use it to compute
a saturation of the resolution calculus. By Proposition 1, the latter can be done in
time O(f(d) - (V| + &) - |0]), where |V|,1E] < O(g(d) - (|O]| + ||CI)*). Thus we obtain
abound of O(g(d) - (IOl +1ICIY’ + £(d) - g(d) - (IOl + [ICI))’ - 101) < OCh(d) - (IOl +ICIN®)
for some computable function 4. |

5 Experimental Results

It can be argued that FPT is interesting only if the parameter can be substantially smaller
than the input size. In order to judge the “usefulness” of C-width as a complexity mea-
sure, we measured the C-width of several ontologies (listed in Table 1) that are often
used for evaluating DL reasoners. We weakened all ontologies to ALCH I by discard-
ing all unsupported features, we applied the structural transformation from [12], and
we eliminated role inclusion axioms by unfolding the role hierarchy into universal re-
strictions to obtain normalized ALCI ontologies. Note that there are several different
ways of formulating and optimizing structural transformation, and each could produce
an ontology of a different C-width, so our results are not necessarily optimal.

Table 1. Upper bounds on C-width for classification

Ontology \ IZal 12 | wd(Dg) wd(De)
SNOMED CT (http://ihtsdo.org/snomed-ct/) | 315,489 516,703 349 100
SNOMED CT-SEP (see [12] for reference) 54,973 149,839 1,196 168
FMA (http://fma.biostr.washington.edu/) 41,700 81,685 1,166 35
GALEN (http://opengalen.org/) 23,136 49,245 646 54
OBI (http://obi-ontology.org/) 2,955 4,296 304 45

After normalization, we next computed the deductive overestimation ~» and the de-
composition Dg as described in Section 4.1, we constructed the hypergraphs G as
described in Section 4.3, and we fed all of them into TreeD'—a library for computing
tree decompositions—to construct a C-decomposition Dg. For each ontology we con-
sidered two sets of goal clauses: C; = {A C L | A € 2}, which corresponds to checking
satisfiability of all atomic concepts, and C; = {A C B | A, B € 2}, which corresponds
to classification. In theory, the C-width of O and C; can be smaller than the C-width of
O and C,; however, we have not observed a difference between the two in practice, so
we present here only the results for classification. Also, please note that TreeD was able
only to produce approximate, rather than exact tree decompositions; hence, our results
provide only an upper bound on the C-width.

The results of our experiments are shown in Table 1. For each ontology we list
the number of atomic concepts in the original ontology (|24]), the number of atomic
concepts after normalization (|27°""™|), and the widths of the two decompositions that
we constructed. Notice that although some of the tested ontologies contain tens or even
hundreds of thousands of concepts, the width of Dg¢ rarely exceeds one hundred, and it
is always by several orders of magnitude smaller than the total number of concepts in
the ontology. This suggests that our notion of a decomposition might even prove to be
useful in practice, provided that our resolution algorithm is suitably optimized.

6 Conclusion

We presented a DL reasoning algorithm that is fixed parameter tractable for a suitable
notion of the input width. We see two main challenges for our future work. On the the-
oretical side, our approach should be extended to more complex ontology languages;
handling counting seems particularly challenging. On the practical side, our algorithm
should be optimized for practical use. A particular challenge is to combine the construc-
tion of a decomposition with actual reasoning and thus save preprocessing time.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite Family and
Relations. Journal of Artificial Intelligence Research 36, 1-69 (2009)

! http://www.itu.dk/people/sathi/treed/

http://ihtsdo.org/snomed-ct/
http://fma.biostr.washington.edu/
http://opengalen.org/
http://obi-ontology.org/
http://www.itu.dk/people/sathi/treed/

10.

11.

12.

13.

. Baader, F, Brandt, S., Lutz, C.: Pushing the &L Envelope. In: Kaelbling, L.P., Saffiotti, A.

(eds.) Proc. of the 19th Int. Joint Conference on Artificial Intelligence (IJCAI 2005). pp.
364-369. Morgan Kaufmann Publishers, Edinburgh, UK (July 30—August 5 2005)

. Baader, F,, Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-

scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, 2nd edn. (August 2007)

. Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: Robinson, A., Voronkov, A.

(eds.) Handbook of Automated Reasoning, vol. I, chap. 2, pp. 19-99. Elsevier Science (2001)

. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small

Treewidth. STAM J. Comput. 25(6), 1305-1317 (196)

. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Reason-

ing and Efficient Query Answering in Description Logics: The DL-Lite Family. Journal of
Automated Reasoning 9, 385-429 (2007)

. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-

tional Horn formulae. Logic Programming 1(3), 267-284 (1984)

. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
. Gottlob, G., Pichler, R., Wei, F.: Bounded Treewidth as a Key to Tractability of Knowledge

Representation and Reasoning. In: Proc. of the 21st Nat. Conf. on Artificial Intelligence
(AAAI2006). pp. 250-256. AAAI Press, Boston, MA, USA (2006)

Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in Al and nonmonotonic
reasoning. Artificial Intelligence 138(1-2), 55-86 (2002)

Grosof, B.N., Horrocks, 1., Volz, R., Decker, S.: Description Logic Programs: Combining
Logic Programs with Description Logic. In: Proc. of the 12th Int. World Wide Web Confer-
ence (WWW 2003). pp. 48-57. ACM Press, Budapest, Hungary (May 20-24 2003)
Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-Based Reasoning beyond Horn On-
tologies. In: Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011) (July
16-222011), to appear

Szeider, S.: On Fixed-Parameter Tractable Parameterizations of SAT. In: Giunchiglia, E.,
Tacchella, A. (eds.) Proc. of the 6th Int. Conf. on Theory and Applications of Satisfiabil-
ity Testing (SAT 2003), Selected Revised Papers. LNCS, vol. 2919, pp. 188-202. Springer,
Santa Margherita Ligure, Italy (May 5-8 2003)

