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ABSTRACT

Coalescent theory deals with the dynamics of how sampled genetic material has spread through a
population from a single ancestor over many generations and is ubiquitous in contemporary molecular
population genetics. Inherent in most applications is a continuous-time approximation that is derived
under the assumption that sample size is small relative to the actual population size. In effect, this
precludes multiple and simultaneous coalescent events that take place in the history of large samples. If
sequences do not recombine, the number of sequences ancestral to a large sample is reduced sufficiently
after relatively few generations such that use of the continuous-time approximation is justified. However,
in tracing the history of large chromosomal segments, a large recombination rate per generation will
consistently maintain a large number of ancestors. This can create a major disparity between discrete-time
and continuous-time models and we analyze its importance, illustrated with model parameters typical of
the human genome. The presence of gene conversion exacerbates the disparity and could seriously
undermine applications of coalescent theory to complete genomes. However, we show that multiple and
simultaneous coalescent events influence global quantities, such as total number of ancestors, but have
negligible effect on local quantities, such as linkage disequilibrium. Reassuringly, most applications of the
coalescent model with recombination (including association mapping) focus on local quantities.

KINGMAN (1982) models the ancestry of a sample
of sequences with a continuous-time Markov pro-

cess referred to as the Kingman coalescent. Lineages
collide or coalesce after random exponential waiting
times with rate dependent upon the population and
sample size. This means that the probability of multiple
(i.e., three or more sequences coalescing into a com-
mon ancestor in a single coalescent event) and simul-
taneous (i.e., two or more coalescent events happening
at exactly the same time) coalescent events is zero. The
derivation of the process can be obtained by scaling the
discrete-time Wright–Fisher model and taking the limit
as the population size tends to infinity. This model is
extended by Hudson (1983) to incorporate recombi-
nation. The derivation of Hudson’s continuous-time
approximation to the Wright–Fisher model with recom-
bination is discussed later in more detail but is valid
provided only that the set of ancestors to the sample of
extant sequences remains small relative to the effective
population size. In such situations it is justified to
assume that multiple and simultaneous coalescent
events do not occur in the evolutionary history of the
sample and that ancestral sequences can recombine
only with nonancestral sequences and never with each
other. As the sample size increases relative to the pop-

ulation size, the probability of such events occurring
becomes nonnegligible and consequently in these
instances the rate of coalescence is underestimated
by Hudson’s continuous-time model. Hudson’s model
is widely used in population genetics to describe
ancestries of sequences that can recombine. Conse-
quently it is of interest to question to what extent the
rate of coalescence is underestimated and how this
influences other features of the coalescent.

Fu (2006) shows the Kingman coalescent Kingman

(1982) provides a good approximation to the discrete-
time Wright–Fisher Model in most cases, even when the
sample size is not small relative to the population size.
This study is performed in the absence of recombina-
tion and any large sample will quickly coalesce to a small
sample such that the assumption soon becomes valid
and the corresponding results are accurate. In the pres-
ence of recombination this is not the case; the process
tracking the number of sequences ancestral to the ex-
tant sample can be shown to reach an equilibrium dis-
tribution in which the number of sequences remains
large for a significant amount of time.

Pitman (1999), Sagitov (1999), Schweinsberg (2000),
and Sagitov (2003) derive continuous-time exact
coalescent processes allowing for coalescents with mul-
tiple collisions, simultaneous multiple collisions, and
simultaneous and multiple collisions, respectively, al-
though none of these processes incorporate recombi-
nation. Wiuf and Hein (1997) derive analytical results
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for the expectation and the variance of the number of
ancestral segments and the expected length of a seg-
ment and approximate simulation results on the mean
number of ancestors to a sample of sequences subject
to recombination and coalescence. These results are
derived using Hudson’s approximate continuous-time
model with recombination.

In this article we compare results obtained by simu-
lations of the exact Wright–Fisher coalescent with re-
combination with that of Hudson’s continuous-time
approximation. Our simulation results can be consid-
ered in two categories: quantities that are calculated
locally at a segment level and quantities calculated
globally. Local quantities do not require knowledge of
the entire composition of each sequence (for example,
where a segment is located) whereas global quantities
require knowledge of the entire sequence. We show that
local quantities including average segment length, the
total number of segments, linkage disequilibrium, and
the total length of ancestral material are well approxi-
mated by Hudson’s continuous-time model whereas
global quantities including the total number of sequen-
ces carrying ancestral material and the rate of coales-
cence differ markedly between the models.

THE ANCESTRY OF A SAMPLE OF SEQUENCES IN
THE PRESENCE OF RECOMBINATION

In the following section we describe the exact
discrete-time Wright–Fisher model with recombination
and Hudson’s continuous-time approximation of this
model. We also show where assumptions are made in
the derivation of the continuous-time approximation
and when they may be considered inappropriate. In our
results we simulate from these models and use them to
calculate Monte Carlo estimates of the expectation of
various local and global quantities.

The Wright–Fisher model with recombination: The
basic Wright–Fisher model not including recombina-
tion is a forward-in-time model for the evolution of
a haploid population of constant size. The next gen-
eration can be simulated by selecting individuals from
the current generation at random (with replacement).
Each time an individual is selected it becomes the
parent of a new individual that is added to the next
generation. Equivalently it can be viewed backward in
time to simulate the genealogy of a sample or a popu-
lation; ancestors to a current sample in the previous
generation are selected randomly from the population
of the previous generation. When two or more individ-
uals in the next generation share a parent, their lineages
coalesce and this is referred to as a coalescent event. It
can be extended to incorporate more complex struc-
tures including the addition of recombination.

The exact discrete-time (in generations) Wright–
Fisher model with recombination can be described as
follows: Let the population of haploid individuals be of

constant size 2N with sequence length L 1 1 nucleo-
tides. Let r be the probability of a recombination
between any two consecutive nucleotides in a sequence
per generation. Then the distribution of recombination
breakpoints on a single sequence per generation is
binomial with expectation rL. Since r is assumed to be
very small and L large, the binomial distribution is well
approximated by a Poisson distribution with intensity
R, where R :¼ rL. Hence it is reasonable to approxi-
mate the discrete-sequence model with a continuous-
sequence model where recombination breakpoints
along a sequence can be simulated by placing them
along a real interval of length R according to events
of a Poisson process with constant rate 1. If R is also
small then R is approximately the probability of one
or more recombination events occurring along the se-
quence in a single generation. The parameter R is usu-
ally specified directly (rather than L and r separately),
and it allows R to be well defined in the limit as r/0
and L/‘ if desired.

The ancestry of a sample of sequences can be
simulated back in time. For each sequence we place
recombination breakpoints at exponentially distributed
intervals and select two parents at random from the
previous generation. In Figure 1 recombination break-
points are indicated by small arrows and the two parents
selected from the previous generation are the sequen-
ces in the middle row. The genetic material of a current
sequence is a mosaic of the material of its parents. The
breakpoints determine from which parent the material
originates, alternating at each breakpoint. The genetic
material in the parents that is not passed on to the
offspring is referred to as nonancestral to the offspring
sequence. In Figure 1 nonancestral material in the first-
generation parents is shown as boxes with single

Figure 1.—An illustration of how ancestral material is
traced two generations back in time. Material ancestral to
the bottom sequence (the sample/offspring) is shaded, while
material ancestral to the two parents is shown with hatched
lines going in opposite directions. Although the left grandpar-
ent carries material ancestral to all of the left parent, it does
not carry material ancestral to all of the offspring. Some of
this has been passed via the right parent to the right grand-
parent. Also observe that the amount of material ancestral
to the parents at the grandparents is less than twice the se-
quence length, as material has coalesced in the crosshatched
regions of the left grandparent.
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hatched lines and no shading. Genetic material at a
more distant ancestor to a current sequence is defined
as ancestral or nonancestral in the natural way by taking
the transitive closure of these relations. In Figure 1 an-
cestral material in the two grandparents is identified by
the shaded boxes.

When considering the ancestry of a sample of se-
quences we trace only events and individuals carrying
material ancestral to any of the sample sequences. (In
the example in Figure 1 there is a single sample se-
quence and material ancestral to this is shaded.) From
now on, we use ‘‘ancestral material’’ to refer to the ge-
netic material ancestral to a sample.

Simulating recombination events in the way described
previously automatically simulates coalescent events. A
multiple coalescent event occurs when more than two
sequences choose the same parent. Simultaneous events
occur if two or more single or multiple coalescent events
occur simultaneously in a generation. Recombination
events between ancestral lineages are permitted such
that a sequence can be involved in a recombination
event and a coalescent event at the same time.

At every stage although each individual carrying an-
cestral material has two parents in the previous gener-
ation each point in the sequence has exactly one parent
in the previous generation. So each point from a set of
extant sequences evolves according to the basic coa-
lescent without recombination with a resulting coa-
lescent tree that is local to that position. Consequently
the genealogy relating a set of extant sequences with
recombination can be considered a collection of local
trees together with linkage information for ancestral
segments.

Hudson’s continuous-time model: Hudson (1983)
derives the continuous-time coalescent model with re-
combination. It can be obtained by taking the limit of
the discrete-time Wright–Fisher model with recombi-
nation. We outline the derivations of the distributions
of the waiting times between recombination and coa-
lescent events, highlighting the assumptions made and
when it may be invalid to use them.

Recombination events and coalescent events occur
independently; hence the probability that a sequence is
involved in both a recombination and a coalescent event
simultaneously is the product of the corresponding
probabilities. In discrete time when R is small and N is
large this quantity is given by (3) and r :¼ 4NR, where r

is twice the expected number of recombination events
per generation in the population. It is derived by con-
sidering two current sequences. The probability that
one experiences a recombination event and the other
does not is approximately given by

2Rð1� RÞ � 2R : ð1Þ

The probability that one of the recombinants coa-
lesces with the parent of the other sequence is given by

1� 1� 1

2N

� �2

¼ 1

N
� 1

4N 2 � 1=N : ð2Þ

Hence the required product is

1

N
3 2R ¼ 1

N
3

r

2N
¼ r

2N 2: ð3Þ

For fixed r and for large N this quantity is negligible
and consequently in the continuous-time model it is
assumed that such events do not occur. This assumes
that r is sufficiently small relative to the population size.
When the rate of recombination is high and the popu-
lation of fixed size this assumption may be invalid.

Using the setup above for the discrete model, we
first derive the continuous-time model for recombi-
nation events. The waiting time T in generations until
a recombination event occurs in a single sequence is
geometric. Since the number of recombination events
per sequence per generation is Poisson distributed
with parameter R, the probability that a recombina-
tion event does not occur in a single generation is
given by e�R. Then the geometric distribution for the
waiting time in generations until a recombination
event follows:

PðT ¼ mÞ ¼ ðe�R Þm�1ð1� e�RÞ m 2 N: ð4Þ

To take the continuous limit, let N /‘, R/0, such
that r=2 ¼ 2NR . Hence when time is rescaled to be
measured in units of 2N generations, the continuous
waiting time TC is shown to be exponentially distributed
with

PðTC # tÞ ¼ 1� ðe�R Þº2Ntc � 1� ðe�2NRtÞ
¼ 1� ert=2: ð5Þ

For an individual sequence, as shown above, the
continuous waiting time for a recombination event is
exponentially distributed with parameter r/2 so it fol-
lows that if there are k sequences ancestral to the sample
then the time until the next recombination event is
exponentially distributed with parameter kr/2. Then
given that a recombination event occurs, it is equally
likely to occur on any of the k sequences present and the
recombination breakpoint is placed uniformly along
the selected sequence.

We now turn our attention to the derivation of the
continuous-time model for coalescent events. The rate
at which coalescent events occur in the Wright–Fisher
model with recombination is the same as that of the
Wright–Fisher model without recombination. A coa-
lescent event occurs between any two sequences in a
single generation with probability 1=2N such that the
waiting time until a coalescent event occurs is geo-
metric with mean 2N. Since any two sequences can
coalesce, it is necessary to consider the probability that
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with a sample of k sequences from the current popula-
tion, no coalescent event occurs in a single generation.
This probability is given exactly by

Yk

j¼1

ð2N � ð j � 1ÞÞ
2N

¼
Yk�1

j¼1

1� j

2N

� �
: ð6Þ

We can expand this product as

Yk�1

j¼1

1� j

2N

� �

¼ 1�
Xk�1

j¼1

j

2N
1 O

1

N 2

� �
¼ 1�

k

2

 !
1

2N
1 O

1

N 2

� �
:

ð7Þ

Only zero and first-order terms in 1/N are explicitly
stated; higher-order terms are gathered together in the
O 1=N 2ð Þ term. When the sample size is small relative to
the population size 2N these terms contribute only
negligibly to the probability and are ignored in the der-
ivation of the Kingman coalescent. The O 1=N 2ð Þ terms
are indeed the sum of the probabilities of all possible
multiple and simultaneous coalescent events. They are
only negligible provided k>2N . As k approaches 2N
these terms cannot be neglected. Without even con-
sidering the exact nature of the higher-order terms,
this is obvious from the fact that 1� ðk2Þð1=2N Þ, 0 when
k . 2

ffiffiffiffiffi
N
p

.
The derivation of the Kingman coalescent is based on

the assumption that the waiting time while there are k
ancestors to a sample is geometrically distributed with
mean 2Nðk2Þ

�1. The continuous-time coalescent process
is obtained by scaling time to be measured in units of
2N generations and letting 2N /‘. The derivation of
the distribution of the continuous waiting time until a
coalescent event while there are k ancestral sequences is
analogous to that of the waiting time until a recombi-
nation event and yields an exponential random variable
with parameter ðk2Þ. To simulate the genealogy back in
time, once a coalescent time has been simulated, the
pair of sequences to coalesce is chosen at random out of
the possible ðk2Þ.

A recombination event with a breakpoint passing
ancestral material to both parents increases the number
of sequences with ancestral material by one and a coa-
lescent event decreases the number of sequences by
one. The two processes can thus be seen as competing to
either increase or decrease k. An algorithm to simulate
the ancestry of k sequences under the continuous model
of the coalescent with recombination is described in
detail in Hein et al. (2005).

Gene conversion: The algorithms discussed previ-
ously to simulate the ancestry of a sample of sequences

place recombination breakpoints along sequences.
These breakpoints result in crossover recombination
events such that large segments are distributed onto two
different sequences. In the human genome, it is also
common to see the substitution of a small fragment of
DNA from one chromosome to another. They are called
homologous gene conversion events and are thought
to occur more frequently than would be expected if
they could occur only by drawing a very small distance
between breakpoints. They can be modeled directly
by adding a rate of gene conversion. Gene conversion
events essentially occur independently of crossover re-
combination and coalescent events and they can be
simulated in a similar way. In complete analogy to cross-
over recombinations we denote by g the probability of
initiating a gene conversion between any two nucleo-
tides and define G :¼ gL and g :¼ 4NG. The length of
the small fragment to be transferred can be either fixed
or taken from another distribution. In the human ge-
nome fragments lengths vary between 100 and 300 bases,
which is approximately one millionth of the total length
of the genome. We take this as the fixed length of a seg-
ment and incorporate gene conversion into the discrete
Wright–Fisher model and Hudson’s continuous-time
model as follows.

Simulate the ancestry of a sample of n sequences
under the discrete Wright–Fisher model with recombi-
nation and gene conversion:

1. Start with k ¼ n sequences each of length R 1 G.
2. For each of the k ancestral sequences in the current

generation, choose two parents from the previous
generation at random. If the same parent is chosen
twice, no gene conversion or recombination occurs.
If two distinct parents are chosen, place gene con-
version and recombination events along the se-
quence by proceeding to step 3. Otherwise place all
the ancestral material on the parent chosen twice and
proceed to the next sequence.

3. Simulate intervals between breakpoints along a
sequence using an exponential random variable with
parameter 1. Where possible, place a breakpoint
along the sequence to the right of the previous
breakpoint or from the left end of the sequence if
it is the first breakpoint. If the end of the interval
stretches beyond the length of the sequence, go
straight to step 6.

4. With probability G/(R 1 G) it is a gene conversion
event and with probability R/(R 1 G) it is a recom-
bination event. If it is a gene conversion event go to
step 5; otherwise record the breakpoint and go back
to step 3.

5. Place another breakpoint on the sequence at dis-
tance one millionth to the right of the first break-
point where this is possible. If it is possible (i.e., one
millionth following the breakpoint does not stretch
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beyond the length of the sequence) go back to step 3.
Otherwise go to step 6.

6. Distribute the ancestral material between breakpoints
alternately onto the two parents chosen at random
from step 2. Update k, the current number of ances-
tral sequences, and proceed to the next sequence.

Simulate the ancestry of a sample of n sequences
under Hudson’s continuous-time model with recombi-
nation and gene conversion:

1. Start with k ¼ n sequences each of length R 1 G.
2. Simulate the time back to the next event drawing

from an exponential distribution with parameter
ðk2Þ1 kr=2 1 kg=2.

3. Determine the type of event. With probability (k �
1)/(k � 1 1 r 1 g) it is a coalescent event, with
probability r/(k � 1 1 r 1 g) it is a recombination
(crossover) event and with probability g/(k� 1 1 r 1

g) it is a gene conversion event.
4. If it is a recombination or a coalescent event proceed

as described in Hein et al. (2005, Algorithm 5).
Update k, the current number of ancestors to the
sample, and continue. Otherwise it is a gene con-
version event. Place a breakpoint at random, uni-
formly along the sequence. Place another breakpoint
along the sequence at a distance one millionth to the
right of the initial one. Then distribute the ancestral
material on two newly created ancestors. Place the
ancestral material between the two breakpoints onto
one of the ancestors and the remainder on the other.
Update k, the current number of ancestors to the
sample, and continue.

Modeling gene conversion creates more breakpoints
along the sequence, therefore affecting the way in which
the ancestral material is distributed on a single ancestor.
Each sequence can choose only two parents, and the
rate at which coalescent events occur is the same as that
without gene conversion; hence we would expect the
number of ancestors to a sample (in equilibrium) to
remain about the same, but on each ancestor we would
expect to see more (yet smaller) segments of ancestral
material.

RESULTS

We investigate the effect of multiple and simulta-
neous coalescent/recombination events via Monte
Carlo simulation. We run all simulations using a con-
stant population size of 2N ¼ 10,000 for the exact dis-
crete model. To investigate the effect of increasing the
rate of recombination we use values of R ¼ 0.1, 1, 2.5,
and 36. The rate of R ¼ 36 is approximately the scaled
length of the human genome as estimated by Kong

et al. (2002). To investigate the effect of increasing the
sample size we run simulations for sample sizes of 500,
3000, and 8000 (all out of a population of 10,000 for

the discrete model). All simulation results about the
equilibrium distribution are obtained by starting with a
sample size of 500 and discarding the time until virtually
all positions have found a common ancestor as burn in.
Subsequent approximate expectations of the quantities
of interest are calculated from simulation of a further
20,000 generations and are independent of the initial
sample size.

We simulate from the discrete model and the contin-
uous approximation with and without the presence of
gene conversion and report comparisons of the follow-
ing: (1) the total number of sequences ancestral to a
sample once these processes have reached an equilib-
rium, (2) the average rate at which coalescent events
occur when the processes are in equilibrium, (3) the
total number of ancestral segments (in equilibrium),
(4) the average length of an ancestral segment (in
equilibrium), (5) the rate at which the amount of an-
cestral material decays, and (6) the r2 measure of cor-
relation between the two end loci of the sequences.

Simulation results without gene conversion: The
number of ancestors to a sample: The number of sequences
carrying ancestral material at time t is a stochastic
process. It is described by a Markov chain (either con-
tinuous or discrete) and these processes converge in
both the discrete and the continuous case to an equi-
librium distribution that is independent of the initial
sample size and dependent only upon the rate of re-
combination. This is illustrated by Figure 2.

Each of the plots in Figure 2 corresponds to simu-
lations run with different recombination rates (as la-
beled in the figure). Simulations are run with sample
sizes of 500, 3000, and 8000 for both the continuous and
the discrete model, which are plotted as dark gray and
light gray lines, respectively. For large recombination
rates the approach to the equilibrium distribution and
the equilibrium distribution itself differ significantly
according to the type of model used. For small recom-
bination rates (see R ¼ 0.1 in Figure 2) and relatively
small sample sizes, the convergence to the equilibrium
is very similar and the graphs concur. Furthermore both
models converge to the same equilibrium distribution.
This is not surprising since with a low recombination
rate, the assumption that sequences are never involved
in a coalescent and a recombination event simultaneously
is reasonable and for small samples the number of an-
cestors to the extant sample at any point back in time
does not grow too large relative to the population size.
For a large sample size and low rate of recombination,
the rate at which the number of ancestors decrease is
higher for the discrete model due to an increased inci-
dence of multiple and simultaneous coalescent events.

The effects of increasing the rate of recombination
can be seen in the other three plots in Figure 2. The
plots corresponding to R ¼ 1 and R ¼ 2.5 show similar
patterns; the behaviors of the continuous and the dis-
crete model are significantly different and the discrep-
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ancy between them increases as the sample size is
increased. In both cases the shape of the approach to
the equilibrium and the equilibrium distributions them-
selves are different. The equilibrium distribution for
the discrete model oscillates around a smaller number
of ancestors and the peak in the number of ancestors
prior to the equilibrium is also smaller. This indicates
that the rate of coalescence for the continuous model is
significantly underestimated. As R is increased further
(R ¼ 36) to model the length of the human genome,
these effects are amplified.

To distinguish the difference between the equilib-
rium distributions for the continuous and discrete
models, in Figure 3 we plot the average number
(estimated over 20,000 generations of a single run of
the process) of ancestral sequences as a proportion of

the population size once the processes are stationary.
For each recombination rate the equilibrium distribu-
tion is centered around a larger number of ancestors in
the continuous case. As the recombination rate in-
creases, the difference between the equilibrium distri-
butions also gets larger.

Figure 3 also shows that the mean number of ances-
tors to which the continuous distribution oscillates
around once it has reached the equilibrium can be
larger than the effective population size, yielding pro-
portions .1. Although this may seem a strange result, it
is consistent with the continuous model since there are
no restrictions on the number of sequences that can
contain ancestral material. This phenomenon cannot
occur with the discrete model since ancestors are chosen
from the previous generation that has constant fixed
size, thereby imposing 2N as an upper bound.

The rate of coalescent events: To estimate how frequently
coalescent events occur, we simulate genealogies of a
sample of genes and simply count the number of
coalescent events. We consider a single coalescent event
to be the merging of exactly two sequences in a single
generation. Multiple events are counted as the number
of sequences coalescing minus one. Simultaneous co-
alescent events are counted by summing in the natural
way. Results are independent of sample size and depend
only on recombination rate. For each recombination
rate, the expected number of events per generation is
estimated from a single run of 20,000 generations taken
from the equilibrium distribution. The results are
presented in Figure 4 and there is a clear distinction
between the discrete and the continuous model. In the
continuous case it is possible to calculate exactly the
expected number of coalescent events per generation
and this illustrated by the dashed line. As Figure 4 shows,
our simulations of the continuous model agree with the
analytical expectation. The light gray line showing the

Figure 3.—The mean proportion of sequences of the total
population that are ancestral to an extant sample (of any size)
as a function of recombination rate once the process has
reached an equilibrium distribution. The horizontal dashed
line is drawn in for reference and shows where this proportion
is exactly 1, i.e., where the entire population is ancestral to the
sample.

Figure 2.—The number of sequences
carrying ancestral material as a function
of generations back in time. Each plot cor-
responds to a different recombination rate
as labeled.
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average number of coalescent events for the discrete
model shows the extent to which the continuous model
underestimates the rate of coalescence. As the number
of ancestral sequences is increased beyond one-fifth of
the population size the effect of multiple and simulta-
neous events becomes significant and raises the rate of
coalescence. This confirms our intuition and explains
the differences in the equilibrium distributions dis-
cussed previously and shown in Figure 2.

The distribution of ancestral material: Figure 2 shows the
number of sequences ancestral to the extant sample as a
function of time. The number alone gives no indication
of how much ancestral material lies on each of the
ancestors. Initially the total amount of ancestral mate-
rial is exactly nR (where n is the sample size). As a

function of time, the total amount of ancestral material
decreases until each position along the sequence has
found a most recent common ancestor. After this point
the amount of ancestral material remains constant
(namely R) and is redistributed only by subsequent
recombination and coalescent events. Our simulations
show that the rate at which the total amount of ancestral
material decreases does not depend on the model type.
In Figure 5 the lines corresponding to the discrete and
the continuous model are almost indistinguishable.

We also compare the average total number and
average length of ancestral segments once the process
describing the number of segments has converged to an
equilibrium distribution (Figure 6). Figure 6 (left)
shows that the simulation results for the number of
ancestral segments at equilibrium agree almost exactly.
Furthermore the results are consistent with the exact
expectation of the number of segments derived by Wiuf

and Hein (1997) for the continuous model (in equilib-
rium). They derive the expected number of ancestral
segments E½S� ¼ 1 1 r/2 and Figure 6 illustrates this
linear relationship.

Our simulation results (Figure 6, right) show that the
expected segment length is also approximately the same
for the discrete and the continuous model. These
results are not surprising since the recombination
process that splits the ancestral material into different
sequences is modeled in the same way with breakpoints
placed at exponential distances with the same expected
number of events per generation. The underestimation
of the rate of coalescence does not affect this process,
unless the extra coalescent events in the discrete model
tend to merge segments. Our simulations show that
there is no tendency toward the extra coalescent events
in the discrete model merging a significant number of
segments. Consequently, there are more segments
found on a typical ancestor taken from the discrete

Figure 4.—The average number of coalescent events per
generation as a function of the number of ancestral sequen-
ces. The number of ancestral sequences is specified indirectly
by fixing the recombination rate R. The intervals at which
data points are plotted along the horizontal axis are obtained
as the average number of sequences in the equilibrium distri-
butions. The dashed line is the expected number of events
calculated exactly from the continuous process.

Figure 5.—The total amount of ances-
tral material as a function of generations
back in time. Each of the plots corresponds
to a different rate of recombination (com-
parable with Figure 2).
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model compared with a typical ancestor taken from the
analogous continuous model.

Shared and correlated ancestries: As described in
Griffiths and Marjoram (1996) the ancestry of a
sample of sequences subject to recombination can be
described by the Ancestral Recombination Graph
(ARG). From the ARG it is possible to trace the ancestry
of a single nucleotide or locus by following the appro-
priate branches in the ARG to produce a coalescent
tree. As the distance between two positions increases
(and hence the scaled rate of recombination), the cor-
relation of the ancestries decreases. For example, the
probability that a recombination event occurs in a small
window surrounding a locus is very small and conse-
quently the coalescent trees for the positions contained
in this interval are likely to be either identical or very
similar to that of the locus itself. Conversely if there is
a large distance between two loci it is more likely that
recombination events occur between them such that
the resulting ancestral histories seem independent
with little similarity. There are several measures of cor-
relation and similarity between two trees and such
quantities are of great interest with applications in

disease association mapping. In particular, we consider
the effect of multiple and simultaneous coalescent
events on linkage disequilibrium (LD) by Monte Carlo
simulation.

There are many qualitative measures of tree similarity
defined but many are dependent on the number of
leaves of the tree and further, they are not widely used
for disease association mapping since knowledge of the
two trees corresponding to the loci of interest is
required. Instead a measure of correlation of the two
loci, r2, is typically reported. It is defined by

r 2 ¼ ðp11 � p1q1Þ2
p1ð1� p1Þq1ð1� q1Þ

; ð8Þ

where p11 denotes the probability of seeing the wild type
in both trees and p1 and q1 denote the probability of
observing the first and the second wild type, respectively.
We simulate the coalescent with recombination under
the continuous and the discrete models and construct
the coalescent trees for two distinct loci, varying the
recombinational distance between them. We choose
recombinational distances of 0.1, 2, 10, and 36 and
compare the correlation coefficients. The simulations
are run until both of the loci have found a most recent
common ancestor. The correlation is computed by
placing a mutation at random on each of the resulting
trees and then considering the proportions of allelic
types. For similar trees larger values of r2 are expected
although they are unlikely to yield a value of 1 since this
reflects the probability that a mutation is placed on the
same branch in the tree.

The mean and the standard deviation for a large
sample size of 5000 are displayed in Table 1 and are
calculated from 1000 simulations. Simulations from
smaller sample sizes display the same pattern. Reassur-
ingly, the average values of r2 are not significantly dif-
ferent between the models. The reason why r2 decays at a
similar rate can be inferred from the plots in Figure 5.

Figure 6.—(Left) The average number of seg-
ments of ancestral material (once in equilibrium)
plotted as a function of recombination rate.
(Right) The average segment length as a function
of recombination rate.

TABLE 1

Comparison of the approximate mean and variance of r2

calculated on the basis of 1000 simulations from a sample
size of 5000 as the rate of recombination is increased

R
Cont.

mean/10�4

Cont.
SD/10�4

Disc.
mean/10�4

Disc.
SD/10�4

0.1 5.195 0.513 4.998 0.476
1 2.394 0.183 2.364 0.188
2.5 2.156 0.155 2.253 0.173
10 2.037 0.135 2.247 0.155
36 2.005 0.132 2.251 0.154

Cont., continuous time; Disc., discrete time.
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They show that the rate at which overlapping ancestral
material coalesces is the same for both models. Typically
the ‘‘additional’’ coalescent events in the discrete model
coalesce sequences that have no overlap in the ancestral
material they contain. When ancestral material over-
laps, the subsets of sample sequences that each of the
coalescing sequences is ancestral to have to be disjoint.
Without overlap no such restriction exists and we can
expect the subsets of sample sequences to which each of
the coalescing sequences is ancestral, to be more or less
independent of each other. It follows that the value of r2

decays in a similar way for both models.
The impact of gene conversion: We compare the

quantities discussed previously when gene conversion
events are also simulated. We vary the ratio of rates
(gene conversion to crossover recombination) and use
simulation to attain approximate results.

The number of ancestors to a sample: The number of
ancestors to an extant sample is a stochastic process as
a function of time that converges to an equilibrium dis-
tribution. Previously we showed that this equilibrium
distribution depends on the rate of recombination and
the type of model used, i.e., discrete or continuous. Our
simulations including gene conversion yield similar
results (Figure 7).

Each gene conversion event places two breakpoints
(where possible) on a sequence, whereas a single cross-
over recombination event places exactly one breakpoint
along a sequence. Consequently each gene conversion
event generates three segments of ancestral material
rather than two segments generated by a crossover
recombination event. It follows that adding gene con-
version has the effect of raising the overall rate of
recombination and our results in Figure 7 confirm this.
As the ratio of the rate of gene conversion (G) to the
rate of crossover (R) increases we see the proportion of
ancestors that contain ancestral material only as a result

of a gene conversion event (out of the total number of
ancestors) rise. We consider an ancestor to be a gene
conversion ancestor only if every segment of ancestral
material present on the sequence is a conversion
‘‘island,’’ i.e., the segment between the two breakpoints
of a single gene conversion event.

The rate of coalescent events: The rate of coalescence is
dependent solely on the number of ancestors to the
sample; it is not affected by the way in which the
ancestral material is distributed onto ancestral sequen-
ces. Increasing the rate of gene conversion increases the
overall rate at which recombination events (crossover
and conversion) occur and hence raises the average
equilibrium number of ancestors. The rate of coales-
cence given the number of sequences remains the same
for the discrete and the continuous model.

The distribution of ancestral material: The length of a
segment of ancestral material depends on whether
the segment was generated by a gene conversion event
or by a crossover event. Segments cut out by a gene
conversion event are of fixed length (R 1 G) 3 10�6 and
are rarely subsequently hit by another crossover or
conversion event because they are small. This length is
the same in the continuous model and the discrete
model. The main difference we see in the distribution of
ancestral material on a typical ancestor with the addi-
tion of gene conversion is that often there are gene
conversion islands taken out of the recombination
crossover segments.

The total number of ancestral segments with the ad-
dition of gene conversions is also independent of the
model choice. Each crossover event creates one break-
point and one extra segment, whereas each gene con-
version event creates two breakpoints and two extra
segments. For consistency with our results in Figure 6
we expect the average total number of segments to be
1 1 r=2 1 g (since a conversion event generates twice as

Figure 7.—The number of ancestors as
a function of generations back in time.
Each graph corresponds to fixed rates of
recombination (R) and gene conversion
(G) as labeled. The additional dashed lines
represent the number of ancestors that
contain only ancestral material as a result
of a gene conversion event. This number
is initially zero regardless of the sample
size. The larger the sample size is, the high-
er the peak of the corresponding dashed
line.
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many new segments as a crossover event). Our simula-
tions confirm this for both models. The independence
of model choice is also as expected since the underes-
timation of the rate of coalescence changes the average
number of ancestors to a sample and the number of
segments found on each ancestor, but not the total
number of ancestral segments.

DISCUSSION

Our results show that of the quantities we considered,
only the average rate of coalescence and the equilib-
rium average number of ancestors to a sample (of any
size) are affected by the use of Hudson’s continuous-
time approximation. In particular, linkage disequi-
librium is not affected. This result is not trivial or
immediately intuitive.

The larger average equilibrium number of ancestors
displayed by the continuous model is explained by the
underestimation of the rate of coalescence. The addi-
tional multiple and simultaneous coalescent events that
occur in the discrete simulations typically place disjoint
nonoverlapping regions of ancestral material onto the
same ancestor. Hence the rate at which the total amount
of ancestral material decays remains the same for both
models, and on average the number of segments on an
ancestor (in equilibrium) is greater for the discrete
model.

It is not obvious that r2 should decay with similar rates
for the two models, particularly because the initial
behavior of models and their equilibrium distributions
do not agree for large recombination rates. With fewer
ancestral sequences, one might expect r2 to decay less
rapidly in the discrete model. However, the rate at which
overlapping ancestral material coalesces is the same for
both models and when two or more segments of an-
cestral material are placed onto the same ancestor in the
discrete model they are usually separated by a large
region of nonancestral material. So there are two pos-
sible factors that result in the same decay of r2. First, the
time prior to two segments being placed on the same
ancestral sequence allows for these segments to have very
different histories. Second, ancestral segments may again
be split onto different ancestors when recombination
events put an odd number of breakpoints between the
two segments. So despite events being shared between
the segments for a period of time, this leaves little or no
trace as the segments may carry ancestral material for
unrelated subsets of the sample and the segments may
again become separated in their further ancestry.

The quantities we calculate from our simulations can
be considered in two classes: global or local. Global
quantities are calculated with knowledge of the ancestral
material present on each entire sequence and include
the total number of ancestral sequences and the total
rate at which coalescent events occur (since these re-
quire knowledge about whether any region of the

sequence is ancestral). Local quantities are calculated
on a region/segment level and include the number of
segments of ancestral material, segment length, and the
total amount of ancestral material. Also r2 can be
considered local in the sense that it is computed with
knowledge only of the ancestry of the end points of the
sequence, not that of the entire sequence.

Our simulation results show that the global quantities
are affected by the additional multiple and simultaneous
coalescent events in the discrete-time model, while the
local quantities including r2 are not. The total number of
sequences ancestral to the sample is overestimated by the
continuous model and the error margin increases as the
rate of recombination increases. The rate of coalescence
is vastly underestimated by the continuous model, as
expected, and the increase of the error margin of the
total number of ancestral sequences is a reflection of the
extent to which the rate of coalescence is underestimated
with larger recombination rates.

Local quantities regarding ancestral segments and
linkage disequilibrium are indistinguishable between
models. The total number and the length of segments
are determined by the recombination process rather
than the coalescent process and therefore are not
affected by the underestimation of the rate of coales-
cence in the continuous model. The rate at which the
total amount of ancestral material decays is also indis-
tinguishable between the continuous and the discrete
model. This is an important result for disease association
mapping since the knock on effect is that r2 is not affected
by the use of the continuous-time approximation.

We thank Carol Teo for her collaboration on an introductory sum-
mer project with Joanna Davies.

LITERATURE CITED

Fu, Y. X., 2006 Exact coalescence for the Wright-Fisher model.
Theor. Popul. Biol. 69: 385–394.

Griffiths, R. C., and P. Marjoram, 1996 Ancestral inference from
samples of DNA sequences with recombination. J. Comput. Biol.
3(4): 479–502.

Hein, J., M. H. Schierup and C. Wiuf, 2005 Gene Genealogies Varia-
tion and Evolution. Oxford University Press, London/New York/
Oxford.

Hudson, R., 1983 Properties of the neutral allele model with intra-
genic recombination. Theor. Popul. Biol. 23: 183–201.

Kingman, J. F. C., 1982 The coalescent. Stoch. Proc. Appl. 13:
235–248.

Kong, A., D. F. Gudbjartsson, J. Sainz, G. M. Jonsdottir, S. A.
Gudjonsson et al., 2002 A high resolution recombination
map of the human genome. Nat. Genet. 31: 241–247.

Pitman, J., 1999 Coalescents with multiple collisions. Ann. Probab.
27: 1870–1902.

Sagitov, S., 1999 Coalescents with simultaneous multiple colli-
sions. Electron. J. Probab. 36: 1116–1125.

Sagitov, S., 2003 Convergence to the coalescent with simultaneous
multiple mergers. J. Appl. Probab. 40: 839–854.

Schweinsberg, J., 2000 Coalescents with simultaneous and multi-
ple collisions. Electron. J. Probab. 5: 1–50.

Wiuf, C., and J. Hein, 1997 On the number of ancestors to a DNA
sequence. Genetics 147: 1459–1468.

Communicating editor: Y.-X. Fu

2160 J. L. Davies et al.


