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Abstract. We propose a novel consequence-based algorithm for TBox reasoning
in SHIQ. This work is at very early stage: we have no experimental results
and we have not even proved completeness. Instead, we focus on explaining the
intuitions behind the algorithm, and show that it has all the favorable properties of
existing consequence-based algorithms, namely optimal worst-case complexity,
one-pass classification, and pay-as-you-go behavior.

1 Background

While many general description logic (DL) [15] reasoners, such as FaCT++ [25], Her-
miT [18], Pellet [23], and RacerPro [10], are based on variants of highly-optimized
tableau algorithms [26], consequence-based (CB) algorithms have received increased
attention in recent years due to their favorable properties for TBox reasoning, espe-
cially for ontology classification, including optimal worst-case complexity, one-pass
classification, and pay-as-you-go behavior [13,21]. CB algorithms were first proposed
for (extensions of) EL [1], then for Horn-SHIQ [13] and Horn-SROIQ [19], and
recently even for non-Horn ALCH [21] and ALCI [22]. Popular CB reasoners for EL
include CEL [3], ELK [14], jcel [17], and Snorocket [16], and prototype implemen-
tations for more expressive logics exist and perform well in practice [13,21]. We here
propose a novel CB algorithm for TBox reasoning in SHIQ.

2 Motivation

CB algorithms can be described in terms of the following principles. Firstly, the algo-
rithms do not build models, instead, they apply inference rules to derive logical conse-
quences of the ontology. Secondly, the derived consequences are not stored altogether
in one bag, instead, they are distributed amongst multiple contexts each corresponding
to some logical type in the underlying logic. Finally, the set of contexts is dynamic; new
contexts are introduced whenever new types are needed to satisfy existential and uni-
versal restrictions occurring in existing contexts. Before we present our CB algorithm
for SHIQ in the next section, here we illustrate these principles on the simpler DL
ALCI. The algorithm below is inspired by earlier works (e.g., [21,22]), but we adapt
the presentation by making contexts first-class citizens of inference rules.

The CB algorithm for ALCI derives clauses of the form K v M where K is a con-
junction of atomic concepts and M a disjunction of literals of the form A, ∃R.A, or ∀R.A
for an atomic concept A and a (possibly inverse) role R. In this case, the logical types
are conjunctions of atomic concepts, and each context v is associated with a conjunction



corev of atomic concepts called the core of v. The set of clauses stored in context v is
denoted Sv; the algorithm maintains that K = corev for each clause K v M ∈ Sv.1

The algorithm takes on input a normalized ontology O that only contains clauses,
and, for classification, it starts with one context vA with corevA = A for each atomic
concept A occurring in O. Then, the algorithm applies four inference rules which we
here call Core, Hyper, Succ, and Pred. The Core rule simply initializes each set Sv

with the tautological clauses corev v A for each A ∈ corev. The Hyper rule applies hy-
perresolution [20,4] within a single context as follows:

Hyper :
{corev v Mi t Ai ∈ Sv}

n
i=1

�n
i=1 Ai v M ∈ O

corev v
⊔n

i=1 Mi t M ∈ Sv
.

Thus, the rule takes n premises from the same context v, resolves them with a clause
from the ontology, and puts the conclusion back into v. The Succ rule introduces a
new “successor” context u, if needed, for each type induced by one existential and any
number of universal restrictions in a “predecessor” context v as follows:

Succ :
corev v M0 t ∃R.A ∈ Sv {corev v Mi t ∀R.Bi ∈ Sv}

n
i=1

ensure there is a context u with coreu = A u
�n

i=1 Bi
.

Observe that the rule can reuse any existing context u with an identical core. For any
such pair 〈v, u〉 of contexts, the Pred rule then resolves the clauses in v with each rele-
vant conclusion in u as follows (note the similarity to the Hyper rule):

Pred :

corev v M0 t ∃R.A ∈ Sv

{corev v Mi t ∀R.Bi ∈ Sv}
n
i=1

A u
�n

i=1 Bi v
⊔m

j=1 ∀R−.C j ∈ Su

corev v
⊔n

i=0 Mi t
⊔m

j=1 C j ∈ Sv
.

The algorithm is complete in the sense that, for each context v and each disjunc-
tion of atomic concepts M, if O |= corev v M, then the algorithm will eventually derive
corev v M′ ∈ Sv for at least one M′ ⊆ M. Note that the latter clause entails the former;
we say that the latter clause is a strengthening of the former. Furthermore, the algorithm
terminates in exponential time: it needs to introduce at most exponentially many con-
texts (one per conjunction), and in each context it can derive at most exponentially many
clauses. This is worst-case optimal since reasoning in ALCI is ExpTime-complete [24].

It is interesting to compare the CB algorithm to tableau- and resolution-based ap-
proaches. Similarly to tableau algorithms, the CB algorithm introduces new contexts in
a top-down manner as new logical types are discovered. However, unlike tableau algo-
rithms, the CB algorithm can freely reuse an existing context with an identical core, and
therefore terminates naturally without need of blocking [11,7] or caching [6,9,8]. Sim-
ilarly to resolution-based approaches [5,12], the CB algorithm applies inference rules
to derive new consequences in a bottom-up manner. Unlike resolution, the CB algo-
rithm avoids consequences about irrelevant types. For example, in EL, where due to
lack of universal restrictions the core of each context is just a single atomic concept,

1 For this reason, some presentations of CB algorithms identify contexts with antecedents of
clauses. We will relax this invariant in our algorithm and allow overloading of contexts.



the algorithm only derives clauses K v M with |K| = |M| = 1. In contrast, unrestricted
hyperresolution derives clauses with arbitrarily large antecedents even in EL. Further-
more, in the CB algorithm, it is relatively easy to apply the inference rules in different
contexts in parallel; this idea underlies the concurrent implementation of ELK [14].

3 Algorithm

In this section we present our extension of the CB algorithm to SHIQ. This is non-
trivial since, due to the interplay between inverse roles and number restrictions, one
may need to consider equality between a successor and the predecessor of an element
(in a tree-shaped model). Similarly to pairwise blocking [11] in tableaux, we propose to
overcome this difficulty by extending the type of an element x to include its predecessor
y and also all roles between x and y. Since this is cumbersome in the DL syntax, we use
the syntax of first-order logic instead. Thus, instead of a conjunction of atomic concepts,
a type is a conjunction of unary and binary atoms over two variables x and y, and the
algorithm derives first-order clauses with equality over x and y. It is helpful to think of
x as the central variable and of y as the predecessor variable. Moreover, we Skolemize
existential restrictions and denote the successors of x by successor terms fi(x). We do
not, however, use any other function terms and, in particular, no nesting of functions.

Definition 1 (Variables, Terms, Literals). A variable is either the central variable x,
the predecessor variable y, or a neighbor variable yi for i ∈ N. A successor term is of
the form fi(x) for i ∈ N, with fi a unary function symbol. A term is either a variable or
a successor term. A neighbor term is any term except the central variable x.

Let s and t be neighbor terms. An atom is an expression of the form A(x), A(t),
R(x, t), or R(t, x) for A an atomic concept and R an atomic role. A literal is either an
atom, an equality s ≈ t, or an inequality s 0 t. Equality and inequality are defined to be
symmetric operators. We reserve the letters T and L for atoms and literals, respectively.
A literal L is function-free if no function symbols occur in L.

Notice that, for example, we do not allow literals of the form R(s, t) or x ≈ t for neighbor
terms s and t—these are not needed for SHIQ—and we consider s ≈ t and t ≈ s to be
the same literals. Next we introduce variable substitutions and clauses.

Definition 2 (Substitutions). A substitution σ is a partial function from variables to
terms. Given a substitution σ and an expression E, we write Eσ for the result of si-
multaneously replacing each variable v ∈ dom(σ) in E by the term σ(v). We write
[t1/v1, . . . , tn/vn] to denote the substitution σ for which σ(vi) = ti for each 1 ≤ i ≤ n.

A substitution σ is central if it maps the central variable x to itself, i.e., if σ(x) = x.

Definition 3 (Clauses). A clause is an implication of the form
∧n

i=1 Ti →
∨m

j=1 L j,
where n,m ≥ 0, each Ti is a function-free atom, and each L j a literal. Clauses have
standard first-order semantics with each variable assumed to be universally quantified.

We identify conjunctions and disjunctions of literals with sets of literals (i.e., they
are unordered and without repeated literals) and we use them in standard set opera-
tions; furthermore, we write the empty conjunction and the empty disjunction as > and



Table 1. Example translations from DL axioms to normal clauses⊔n
i=1 Ai v

⊔m
j=1 B j

∧n
i=1 Ai(x)→

∨m
j=1 B j(x) (1)

A v ∃R.B A(x)→ R(x, fk(x)) and A(x)→ B( fk(x)) (2)

A v ∀R.B A(x) ∧ R(x, y1)→ B(y1) (3)

A v >n R.B A(x)→ R(x, fi(x)) and A(x)→ B( fi(x)) for 1 ≤ i ≤ n
A(x)→ fi(x) 0 f j(x) for 1 ≤ i < j ≤ n

(4)

A v 6n R.B A(x) ∧
∧n

i=0(R(x, yi) ∧ B(yi))→
∨

0≤i< j≤n yi ≈ y j (5)

R v S R(x, y1)→ S (x, y1) (6)

Disjoint(R, S ) R(x, y1) ∧ S (x, y1)→ ⊥ (7)

⊥, respectively. We reserve the letter K for a conjunction of function-free atoms, and M
for a disjunction of literals, thus we often write clauses as K → M.

We say that a clause K1 → M1 is a strengthening of a clause K2 → M2 if K1 ⊆ K2
and M1 ⊆ M2; furthermore, we write K → M ∈̂ S to denote that the set of clauses S
contains at least one strengthening of K → M.

Our algorithm will only derive clauses over the two variables x and y. The neighbor
variables yi can occur only in the input ontology which needs to be normalized as fol-
lows. For simplicity, we do not allow the predecessor variable y to occur in ontologies.

Definition 4 (Normal Clauses). A clause α is normal if y does not occur in α, and each
neighbor variable yi that occurs in α also occurs in some atom of the form R(x, yi) or
R(yi, x) in the antecedent of α. A normal ontology is a finite set of normal clauses.

Our normal clauses are similar to HT-clauses considered by Motik et al. [18]. By apply-
ing the normalization method from that paper and subsequently Skolemizing all at-least
restrictions, one can transform an arbitrary SHIQ TBox T into a normal ontology O
that entails the same consequences over the atomic concepts occurring in T . Moreover,
assuming unary encoding of number restrictions, this can be performed in polynomial
time. Example translations are shown in Table 1. Note that normal clauses are more
general than what is strictly needed for SHIQ. For example, they can express role
disjointness, as in (7), and even arbitrary safe role expressions.

The following definition describes the main datastructure used in our algorithm.
Essentially, the algorithm operates with a collection of contexts labeled by types, and it
derives two kinds of consequences: clauses in contexts and edges between contexts.

Definition 5 (Context Structure). A type is a finite conjunction of function-free atoms
over x and y. A context structure is a tuple D = 〈V , core,S, E〉, where V is a finite set
of contexts, core is a function that assigns to each context v ∈ V a type corev, S is a
function that assigns to each context v ∈ V a finite set Sv of clauses over x and y, and
E ⊆ V × V × { fi}i∈N is a finite set of edges labeled by function symbols.

Such context structure D is sound for a normal ontology O provided:

– O |= corev ∧ K → M for each context v ∈ V and each clause K → M ∈ Sv, and
– O |= corev → coreu[ fk(x)/x, x/y] for each edge 〈v, u, fk〉 ∈ E .



xy fk(x)

context v

xy
f1(x)

f2(x)

context u
fk

Fig. 1. Relationship between contexts v and u connected by an edge 〈v, u, fk〉

Observe how the above definition gives semantics to clauses and edges in a context
structure. Unlike in Section 2, here we assume that each clause in Sv implicitly contains
corev in the antecedent. For example, the clause > → A(x) ∈ S v represents the axiom
corev → A(x). An edge 〈v, u, fk〉 asserts that each element of type corev has an fk-
successor of type coreu. As illustrated in Fig. 1, it helps to mentally identify the central
variable x and the successor term fk(x) in context v with the predecessor variable y and
the central variable x in context u, respectively. For example, if coreu = R(y, x) ∧ B(x),
then the edge 〈v, u, fk〉 represents the axiom corev → R(x, fk(x)) ∧ B( fk(x)).

To avoid proliferation of contexts, we will restrict types to atoms that can “trigger”
hyperresolution with some clause in the input ontology O as in the next definition.

Definition 6 (Triggers). Let O be a normal ontology. An atom T occurs negatively in
O if T occurs in the antecedent of some normal clause in O. An atom T over x and y is
a trigger in O if at least one of the following conditions holds:

– T [yi/y] occurs negatively in O for some neighbor variable yi, or
– T = A(x) for some atomic concept A that occurs in O.

We denote the set of all triggers in O by triggers(O). Intuitively, if A(yi) occurs neg-
atively in O for no neighbor variable yi, then it is irrelevant whether a neighbor of an
element is an instance of A, so it is not necessary to consider the atom A(y) in a type.
Indeed, our algorithm will only consider types that are subsets of triggers(O). As we
will see in Section 4, this leads to nice pay-as-you-go behavior on fragments of SHIQ.

We are now ready to present our CB algorithm. It takes on input a normal ontology
O and a context structure D sound for O, and it exhaustively applies the inference
rules from Table 2, which modify D. Rules Core, Hyper, and Pred are analogous to
the corresponding rules in Section 2. The Hyper rule requires a central substitution; in
particular, it cannot map x to a successor term fi(x), so there is no nesting of functions.
The Pred rule applies over an edge 〈v, u, fk〉 and it only pushes those atoms from u to
v that are triggers. The Eq rule applies to an equality s ≈ t and an arbitrary literal L(s),
and produces the literal L(t) by replacing each occurrence of s in L(s) by t. The Ineq rule
eliminates inequalities t 0 t, which are trivially false. The redundancy elimination rule
Elim is optional. It can be used to delete a clause from a context if a (strict) strengthening
of the clause is derived in the same context. Note that a variant of Elim is already
incorporated in the negative preconditions of all inference rules: no rule is applicable if
a strengthening of its conclusion is already present in the context.

The Succ rule is more involved than the rule in Section 2 and needs explanation.
For a context v and a successor term fk(x), the rule gathers into type K1 all triggers that
are known to hold for the fk-successor, and into type K2 all triggers that might hold for



Table 2. Inference rules

C
or

e If T ∈ corev,
and > → T < Sv,

then add > → T to Sv.

H
yp

er

If
∧n

i=1 Ti → M ∈ O,
σ is a central substitution,
Ki → Mi ∨ Tiσ ∈ Sv for 1 ≤ i ≤ n,
and
∧n

i=1 Ki →
∨n

i=1 Mi ∨ Mσ 6∈̂ Sv,
then add

∧n
i=1 Ki →

∨n
i=1 Mi ∨ Mσ to Sv.

S
uc

c

If fk(x) occurs in Sv and no edge 〈v, u, fk〉 ∈ E exists such that
T → T ∈̂ Su for each atom T ∈ K2 \ coreu,

then let 〈u, core′〉 B strategy(K1,D);
if u < V , then let V B V ∪ {u}, coreu B core′, and Su B ∅;
add the edge 〈v, u, fk〉 to E ; and
add T → T to Su for each atom T ∈ K2 \ coreu;

where K1 = {T ∈ triggers(O) | > → T [ fk(x)/x, x/y] ∈ Sv} and
K2 = {T ∈ triggers(O) | K′ → M′ ∨ T [ fk(x)/x, x/y] ∈ Sv}.

P
re

d

If 〈v, u, fk〉 ∈ E ,∧n
i=1 T ′i →

∨m
j=1 T j ∈ Su,

Ki → Mi ∨ T ′i [ fk(x)/x, x/y] ∈ Sv for 1 ≤ i ≤ n,
T j[y/x, x/y] ∈ triggers(O) for 1 ≤ j ≤ m,
and
∧n

i=1 Ki →
∨n

i=1 Mi ∨
∨m

j=1 T j[ fk(x)/x, x/y] 6∈̂ Sv,
then add

∧n
i=1 Ki →

∨n
i=1 Mi ∨

∨m
j=1 T j[ fk(x)/x, x/y] to Sv.

E
q

If K1 → M1 ∨ s ≈ t,
K2 → M2 ∨ L(s) ∈ Sv,
and K1 ∧ K2 → M1 ∨ M2 ∨ L(t) 6∈̂ Sv,

then add K1 ∧ K2 → M1 ∨ M2 ∨ L(t) to Sv.

In
eq

If K → M ∨ t 0 t ∈ Sv,
and K → M 6∈̂ Sv,

then add K → M to Sv.

E
lim

If K1 → M1 ∈ Sv,
K2 → M2 ∈ Sv,
K1 → M1 is a strengthening of K2 → M2 and the two clauses are distinct,

then remove K2 → M2 from Sv.



the fk-successor. The rule then connects v by an fk-labeled edge to some (either new or
existing) context u with coreu ⊆ K1, and for each atom T ∈ K2 \ coreu the rule pushes
into S u the tautology T → T ; we say that the rule overloads context u with atom T .
Roughly speaking, in a context u overloaded with atoms T1, . . . ,Tn, the algorithm will
derive consequences of all types between coreu and coreu ∧ T1 ∧ . . . ∧ Tn.2 However,
if a context u is overloaded with atoms T1 and T2 in two different applications of the
Succ rule, then the algorithm may derive in Su clauses with T1 ∧ T2 in the antecedent,
even though the type coreu ∧ T1 ∧ T2 would otherwise not be considered.

Thus, context overloading allows more aggressive reuse of contexts at the cost of
reasoning about irrelevant types. Intuitively, there is a trade-off between (i) eagerly
introducing many specific contexts with large cores, and (ii) heavily overloading few
generic contexts with small cores. In the extreme case, the Succ rule can always reuse
just one context u with the empty core and overload it with all atoms. Since different
levels of context overloading may lead to very different algorithmic behavior, we do not
hardcode any fixed strategy for choosing the context u and its core in our Succ rule.
Instead, we formulate the rule in Table 2 with a generic expansion strategy as follows.

Definition 7 (Strategy). An expansion strategy is a polynomial-time computable func-
tion strategy that takes on input a type K and a context structure D = 〈V , core,S, E〉.
The result of strategy(K,D) is a pair 〈v, core′〉 where core′ is a subset of K, and either
v < V is a new context or v ∈ V is an existing context in D such that corev = core′.

We propose three concrete strategies. We reserve for each type K a distinguished context
vK whose core will be set to K. On input K and D, the eager strategy returns 〈vK ,K〉, the
central strategy returns 〈vKx ,Kx〉where Kx = {A(x) ∈ K}, and the trivial strategy returns
〈v>,>〉. These strategies can return at most exponentially many different contexts, in
which case the algorithm terminates in exponential time. However, strategies that return
multiple contexts with the same core are also possible.

The algorithm is sound as in Theorem 1. We propose that the algorithm is complete
for deriving strengthenings of clauses over x as in Conjecture 2; this is similar to what
we had for the algorithm in Section 2, but we have not produced a full proof yet.

Theorem 1 (Soundness). Let O be a normal ontology and let D be a context structure
that is sound for O. Inference rules from Table 2 preserve soundness of D for O.

Proof. Let O be a normal ontology and let D = 〈V , core,S, E〉 be an arbitrary context
structure that is sound for O. We show that each context structure obtained by apply-
ing an inference rule from Table 2 to D is also sound for O. In the proof we rely on
soundness of hyperresolution: for arbitrary formulas ω, φi, ψi, and γi, where 1 ≤ i ≤ n,
we have

n∧
j=1

φ j → ω and γi → ψi ∨ φi for 1 ≤ i ≤ n imply
n∧

i=1

γi →

n∨
i=1

ψi ∨ ω. (8)

(Core rule) If T ∈ corev, then clearly O |= corev → T .

2 This idea is related to “context partitioning” from [21].



(Hyper rule) Suppose (i)
∧n

i=1 Ti → M ∈ O and (ii) Ki → Mi ∨ Tiσ ∈ S v for 1 ≤
i ≤ n, where σ is a central substitution. It follows from (i) that O |=

∧n
i=1 Tiσ → Mσ.

Since D is sound for O, (ii) implies O |= corev ∧ Ki → Mi ∨ Tiσ for i ≤ i ≤ n. By (8),
we conclude O |= corev ∧

∧n
i=1 Ki →

∨n
i=1 Mi ∨ Mσ, as required.

(Succ rule) Let σ B [ fk(x)/x, x/y]. Since D is sound for O, we have O |= corev →

Tσ for each atom T ∈ K1; hence O |= corev → K1σ. Since coreu ⊆ K1 by the
requirement on strategy in Definition 7, also O |= corev → coreuσ. Therefore, it is
sound to add the edge 〈v, u, fk〉 to E . Finally, it is clearly sound to add the tautological
clauses T → T to Su in the last line of the rule.

(Pred rule) Let σ B [ fk(x)/x, x/y]. Suppose (i)
∧n

i=1 T ′i →
∨m

j=1 T j ∈ Su, (ii)
〈v, u, fk〉 ∈ E , and (iii) Ki → Mi ∨ T ′iσ ∈ Sv for 1 ≤ i ≤ n. Since D is sound for O,
(i) implies O |= coreuσ ∧

∧n
i=1 T ′iσ →

∨m
j=1 T jσ, (ii) implies O |= corev → coreuσ,

and (iii) implies O |= corev ∧ Ki → Mi ∨ T ′iσ for 1 ≤ i ≤ n. By (8), we conclude
O |= corev ∧

∧n
i=1 Ki →

∨n
i=1 Mi ∨

∨m
j=1 T jσ, as required.

The Eq and the Ineq rules are trivially sound. Finally, for the Elim rule, it is always
sound to remove a clause from a context. ut

Conjecture 2 (Completeness) Let O be a normal ontology and let D = 〈V , core,S, E〉
be a context structure such that no inference rule from Table 2 is applicable to O and
D. Let v ∈ V be a context and let α be a clause of the form

∧
i Ai(x)→

∨
j B j(x) such

that corev ⊆
∧

i Ai(x) and Ai(x)→ Ai(x) ∈̂ S v for each i. If O |= α, then α ∈̂ Sv.

For classification, we initialize the algorithm with the context vA(x) with core A(x)
for each atomic concept A; the algorithm will then derive in vA(x) all entailed clauses of
the form A(x)→

∨
j B j(x). Alternatively, one could initialize the algorithm with only

the context v> with core > and overload it with atoms A(x) for all atomic concept A; the
algorithm will then derive in v> all entailed clauses of the form

∧
i Ai(x)→

∨
j B j(x).

Example 1. Let O be the ontology consisting of the following normal clauses:

A(x)→ R(x, f1(x)) (9)
R(x, y1)→ B(x) ∨C(y1) (10)

C(x)→ D(x) (11)
D(x) ∧ R(y1, x)→ S (x, y1) ∨ B(y1) (12)

R(x, y1) ∧ S (y1, x)→ ⊥ (13)

Our goal is to prove that O |= A(x)→ B(x). First, we identify the triggers in O:

triggers(O) = {A(x),R(x, y), B(x),C(x),D(x),R(y, x), S (y, x)}.

Note that S (x, y) is not a trigger because no S (x, yi) occurs in the antecedent of a clause.
We initialize the algorithm with a context structure D = 〈V , core,S , E〉 with V = {v},
E = ∅, corev = A(x), and Sv = ∅. We then derive the following clauses in Sv:

> → A(x) by Core from corev (14)
> → R(x, f1(x)) by Hyper applied to (9) and (14) (15)
> → B(x) ∨C( f1(x)) by Hyper applied to (10) and (15) (16)



Note that we cannot apply Hyper to (11) and (16) to derive > → B(x) ∨ D( f1(x))
because the necessary substitution is not central, i.e., we cannot map x to f1(x). Instead,
we now apply Succ to f1(x) in v using the eager strategy. Since we have K1 = {R(y, x)}
and K2 = {C(x),R(y, x)} in the Succ rule, the rule adds a new context u to V with
coreu = R(y, x), adds the edge 〈v, u, f1〉 to E , and overloads u with C(x). We find that
Su contains the clauses:

C(x)→ C(x) overloading in the Succ rule above (17)
> → R(y, x) by Core from coreu (18)

C(x)→ D(x) by Hyper applied to (11) and (17) (19)
C(x)→ S (x, y) ∨ B(y) by Hyper applied to (12) and (18) and (19) (20)

Observe now that both S (y, x) and B(x) are triggers. Hence, we can apply Pred over the
edge 〈v, u, f1〉 ∈ E and derive the following clauses in Sv:

> → B(x) ∨ S ( f1(x), x) by Pred applied to (20) and (16) (21)
> → B(x) by Hyper applied to (13) and (15) and (21) (22)

Hence O |= A(x)→ B(x) since the algorithm is sound and we have corev = A(x) and
> → B(x) ∈ Sv. If we had chosen to use the trivial or the central strategy instead of the
eager strategy in the above, then coreu would have been empty and u would have been
overloaded with both C(x) and R(y, x). The clauses derived by the algorithm would have
been the same, except that (18) and (20) would also contain R(y, x) in the antecedent.

4 Pay-As-You-Go Behavior

In this section we discuss the behavior of our algorithm on various fragments of normal
clauses. We start with the Horn fragment (a clause is Horn if it contains at most one
literal in the consequent). All inference rules in Table 2 are Horn-preserving, so on a
Horn ontology the algorithm only derives Horn clauses. Furthermore, with the eager
strategy on a Horn ontology, there is no overloading of contexts and the algorithm only
derives clauses with empty antecedents; therefore, there are at most polynomially many
clauses in each context. This might not be the case for other strategies where, due to
context overloading, the algorithm can derive Horn clauses with larger antecedents.

Next, we consider various DL fragments of SHIQ. Since the Succ only constructs
types consisting of triggers in O, we have the following properties:

1. If, for an atomic concept A, there is no negative occurrence of A(yi) in O for a
neighbor variable yi, then the algorithm never puts A(y) in the core of a context.

2. If, for an atomic role R, there is no occurrence of R(t, x) in O for a neighbor term t,
then the algorithm never puts R(x, y) nor R(y, x) in the core of a context.

Observe (e.g., in Table 1) that negative atoms A(yi) are needed only for qualified at-most
restrictions, and atoms R(t, x) are needed only for inverse roles. In particular, none of
these are needed for DLs such as SHN , in which case all cores are simply conjunctions



of atoms A(x). This is similar to switching from pairwise to single blocking in tableau
algorithms [18], but in our algorithm it happens automatically by restricting types to
triggers. Note, however, that the behavior of the algorithm depends not only on the
underlying DL, but also on the particular translation from DL axioms to normal clauses.
This is illustrated in the example below.

Example 2. Consider a DL ontology O = {A v ∃R.>, A v ∀R.B}. The first axiom is
Skolemized to (23) below, but the second axiom can be written either as (24) or (25).

A(x)→ R(x, f1(x)) (23)
A(x) ∧ R(x, y1)→ B(y1) (24)

A(y1) ∧ R(y1, x)→ B(x) (25)

Let O1 = {(23), (24)} and O2 = {(23), (25)}. Then triggers(O1) = {A(x), B(x),R(x, y)}
and triggers(O2) = {A(x), B(x), A(y),R(y, x)}. Thus, although (24) and (25) are logically
equivalent, the negative occurrence of A(y1) in (25) suggests that it is important to know
if the predecessor of an element is an instance of A, whereas the negative occurrence
of A(x) in (24) suggests that it is important to know whether the element itself is an
instance of A. To illustrate this, consider a context v with corev = A(x). In either case,
the Core and the Hyper rules successively derive the following clauses in context v:

> → A(x) ∈ Sv and > → R(x, f1(x)) ∈ S v. (26)

First, consider the case of O1. The Hyper rule resolves the clauses in (26) with
(24) to derive > → B( f1(x)) ∈ Sv. The Context rule with the eager strategy then in-
troduces a new context u1 whose core contains each atom T ∈ triggers(O1) such that
> → T [ f1(x)/x, x/y] ∈ Sv. Thus coreu1 = B(x), and > → B(x) ∈ Su1 by the Core rule.

Second, consider the case of O2. The Hyper rule cannot resolve (26) with (25) since
a central substitution cannot map x to f1(x). Instead, the Context rule with the eager
strategy now introduces a new context u2 with coreu2 = A(y) ∧ R(y, x). The conclusion
> → B(x) ∈ Su2 is then derived by applying the Hyper rule in u2.

Thus, in both cases we arrived at a new context whose core implies B(x), but the
two cores are different. Moreover, in case of O1 the axiom A v ∀R.B fired in context v
between the central variable x and the successor term f1(x), whereas in case of O2 the
axiom fired in the new context u2 between the predecessor and the central variables.

Finally, we consider the behavior of our algorithm on EL ontologies. These are often
normalized to only contain axioms of the form

�
i Ai v B, A v ∃R.B, and ∃R.A v B [1].

The first two forms are translated to normal clauses straightforwardly as in Table 1, but
the last form deserves discussion. One can first rewrite the axiom to its negation normal
form > v B t ∀R.¬A, and this then to the normal clauses R(x, y1)→ B(x) ∨ Ā(y1) and
A(x) ∧ Ā(x)→ ⊥. These are, unfortunately, not Horn. Instead, it is more common in
CB reasoning to treat the axiom ∃R.A v B as the equivalent A v ∀R−.B [13] which, al-
though it introduces an inverse role, rewrites to the Horn clause A(x) ∧ R(y1, x)→ B(y1).
We will assume this second translation in the rest of the discussion.

In that case, the set of triggers contains apart from all central atoms A(x) also the
atom R(y, x) for each role R occurring in some negative existential restriction. There-
fore, apart from one context per atomic concept, with the eager strategy the algorithm



will also introduce one context with core R(y, x) ∧ B(x) for each positive existential re-
striction ∃R.B such that R also occurs in some negative existential restriction. Although
these additional contexts are not usually considered by standard EL algorithms, their
number is still only linear in the size of the ontology. Therefore, with the eager strategy,
our algorithm terminates in polynomial time on EL ontologies.

Notably, including the incoming role in the type of a context has been considered
before for supporting role range axioms in EL [2]. Indeed, we can write a range axiom
> v ∀R.A as R(y1, x)→ A(x); the algorithm will then derive > → A(x) in each context
whose core contains the incoming role R(y, x). We leave it as an interesting exercise for
the reader to figure out what would happen if we wrote the axiom as R(x, y1)→ A(y1).

If desired, standard EL algorithms can be recovered by switching to the central
strategy. In that case, there will be only one context per atomic concept. Although the
Succ rule applied to an existential restriction ∃R.C can (if R also occurs in some nega-
tive existential restriction) overload the context v whose core is C(x) with atom R(y, x),
the additional clause R(y, x)→ R(y, x) can only participate in the Hyper rule as follows:

> → A(x) ∈ Sv R(y, x)→ R(y, x) ∈ Sv A(x) ∧ R(y1, x)→ B(y1) ∈ O
R(y, x)→ B(y) ∈ Sv

.

The conclusion of the rule can then participate in the Pred rule to push B(x) to predeces-
sors of context v. This is analogous to deriving axiom corev v ∀R−.B in the algorithm
in Section 2. Since there can be only polynomially many such axioms, our algorithm
terminates in polynomial time on EL ontologies even with the central strategy. With the
trivial strategy (reusing just one context), on the other hand, the algorithm may derive
clauses with arbitrarily large antecedents, and hence potentially run in exponential time.

5 Future Work

Being pay-as-you-go w.r.t. EL, our algorithm has potential to perform competitively
on ontologies that are largely EL but contain a few more expressive constructors. This
has been confirmed experimentally for other CB reasoners [13,21]. Implementation and
evaluation of the algorithm is future work. It may well turn out that further optimizations
will be needed to make the algorithm really practical. One optimization commonly con-
sidered in resolution is to impose a partial order over literals and restrict rule application
to maximal literals [4,21]; it should be investigated how this affects completeness.

Our normal clauses are sufficient for SHIQ and also, e.g., for safe Boolean expres-
sions on roles. For technical reasons, we have omitted reflexive roles—atoms R(x, x)—
from the definition since, due to number restrictions, these can lead to equality even
between the central and the predecessor variable. We do not, however, expect any fun-
damental difficulties there. In contrast, since the complexity of reasoning in SHOIQ
rises to NExpTime [24], extending the algorithm to nominals might be difficult.
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