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We extend Pratt’s worst-case optimal decision procedure for PDL to a

richer logic with nominals, difference modalities, and inverse actions. We

prove correctness and worst-case optimality. Our correctness proof is

based on syntactic models called demos. The main theorem states that

a formula is satisfiable if and only if it is contained in a demo. From this

theorem the correctness of the decision procedure is easily obtained. Our

development is modular and we extend it stepwise from modal logic with

eventualities to the full logic.

1 Introduction

Propositional dynamic logic (PDL) is an expressive extension of modal logic de-

signed for reasoning about properties of programs and goes back to Fischer

and Ladner [9]. Its satisfiability problem is ExpTime-complete [24], and the first

worst-case optimal decision procedure was given in [25]. Nominals are the basic

feature of hybrid logic, which extends modal logic and goes back to Arthur Prior

[26]. Nominals denote single states in models, allowing to express properties that

are not expressible in standard modal logic, such as irreflexivity. The difference

modality D says that a property holds in some state different from the current

state, and was first described in [28]. It can be simulated using nominals and the

global modality E via a satisfiability-preserving translation [11]. Nominals can be

expressed using D, the dual of D.

We consider combinations of PDL with nominals, difference modalities and

converse actions, and we are interested in worst-case optimal decision proce-
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dures for such combinations. Let HPDL
−
D denote the logic that combines all these

features. Its computational complexity is known: the satisfiability problem is

ExpTime-complete. The lower bound follows from that for PDL by Fischer and

Ladner [10]. The upper bound is due to [5, 1] via a chain of reductions that

consecutively replaces D with E, removes E and converse, and ends in PDL.

The bounded model property of PDL [10]—every satisfiable formula s is satis-

fiable in a model of size exponential in |s|—yields a straightforward guess-and-

check decision procedure, whose determinization requires doubly exponential

time. Pratt devised a worst-case optimal decision procedure for PDL in [25],

based on Hintikka structures as a nonstandard notion of a model. These con-

sist of Hintikka sets—consistent, downward saturated theories—and syntactic

links. The search for a model is performed using tree-shaped tableaux of poten-

tially infinite size. Using the classical filtration argument from [10] underlying

the bounded model theorem (BMT), the possibly infinite tableau is filtered into

a graph-shaped tableau of at most exponential size, and a straightforward pro-

cedure for searching a subgraph that represents a satisfying model is applied.

In [24], Pratt describes a much leaner worst-case optimal procedure that, again,

starts from all Hintikka subsets of the given formula’s closure and then deletes

those that contain unsatisfied diamonds. The resulting substructure contains a

satisfying model if one exists. We call this type of procedure Pratt-style and its

two stages construct and prune. Pratt’s procedure is described in [16, 22, 17, 3],

where [3] uses a stricter notion of Hintikka sets and excludes tests.

A practical problem with Pratt-style procedures is that the initial construct

stage is “best-case exponential”, although certainly not every Hintikka set plays

a role in a satisfying model. This problem is reduced in decision procedures

based on (non-branching) tableaux, such as Pratt’s procedure in [25]. They

make construct more goal-directed by restricting the creation of new nodes—

representatives of Hintikka sets—to those that reduce formulas in nodes already

present. Such tableau-based procedures exist for different modal-like logics and

are often optimized further by interleaving construct and prune [13, 14].

Decision procedures based on branching tableau systems [27, 18, 6, 4, 21] en-

joy wide regard in automated reasoning with modal and description logics.They

typically run in worst-case non-deterministic doubly exponential time, but highly

optimized systems work well in practice [15, 30]. However, there are exponential-

time algorithms based on branching tableaux for description logics [7, 12].

Automata-theoretic decision procedures exploit some form of tree-model

property of the logic in question, transfer a given formula into an automaton of

typically exponential size, and thus reduce satisfiability to the emptiness prob-

lem of the automata model corresponding to the logic. This approach is ap-

plied to expressive modal logics extending PDL [31, 29]. However, in general, the
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complexity is “best-case exponential” again: the whole automaton needs to be

constructed. Whenever new features are added to the logic, the automata model

needs to be adjusted and, often, the complexity proof for the emptiness problem

redone.

This paper presents a modular approach to obtaining lean proofs of the BMT

and the correctness of worst-case optimal Pratt-style decision procedures for

the above mentioned extensions of PDL. These decision procedures will be able

to handle hybrid operators in an additional deterministic guess stage. We use

the notion of a demo—a syntactic representation of a satisfying model in terms

of Hintikka sets. With this notion, we tailor the proofs of the BMT for said logics

to the expressive features involved. We will analyze the conceptual, technical

and computational costs required for incorporating each of those features, as

well as their combinability.

The strengths of the modular approach are the following.

• We refactor the standard proofs leading to the the BMT such that standard

induction over term lengths suffices.

• The explicit use of demos makes the BMT proofs transparent and reusable for

the correctness of the decision procedure.

• The addition of the above named expressive features is modular: different

features can be added independently by combining the techniques needed

for every single feature.

• To our knowledge, this is the first explicit and simple worst-case optimal

decision procedure for a logic that combines PDL and hybrid operators.

The paper is organized as follows. We will introduce hybrid PDL, introduce

demos for test-free PDL and discuss their relevant properties, present the de-

cision procedure, discuss extentions of the language separately, and relate this

approach to those in the literature.

2 Preliminaries: hybrid PDL

Let Pred and Act be countably infinite sets, whose elements are called predi-

cates and actions, respectively. Let Nom ⊆ Pred be the set of all nominals. We

assume formulas to be in negation normal form (NNF), i.e., negation is allowed

to occur only directly in front of predicates. We also assume programs to be

in converse normal form (CNF), i.e., the converse operator is allowed to occur

only directly after actions. Formulas s and programs α of HPDL
−
D are defined by
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mutual recursion as follows, where p ∈ Pred and a ∈ Act.

s ::= p | s ∧ s | 〈α〉s | Ds |

¬p | s ∨ s | [α]s | Ds

α ::= a | a− | αβ | α+β | α∗ | s

We denote predicates by p,q, . . . , nominals by x,y, . . . , formulas by s, t, . . . , ac-

tions by a,b, . . . and programs by α,β, . . . The operator D is called the difference

modality, and D is its dual. If we want to denote the fragment of HPDL
−
D without

converse, nominals, and/or difference modalities, we leave out the superscript

“−”, the leading H and/or the subscript D.

Choosing to adapt NNF and CNF is not crucial for our approach to work. It

merely simplifies the presentation, even though it increases some basic defini-

tions by dual cases. It is no computational obstacle either: any formula can be

transformed into an equivalent formula in NNF and CNF in linear time.

In order to capture tests as programs, and only for this purpose, we use Tait

negation: ∼s denotes the NNF of ¬s, with the obvious consequence ∼∼s = s. We

further use the notation |s| to denote the size of a formula, which is defined as

usual, with the only exception being |¬p| = |p|. This ensures that |∼s| = |s|.

We recall the standard operations on binary relations R, S over a set X.

R− = {(x,y) | (y,x) ∈ R}

R ◦ S = {(x, z) | ∃y ∈ X : (x,y) ∈ R and (y, z) ∈ S}

R0 = {(x,x) | x ∈ X}

Rn = R ◦ Rn−1, for n á 1

R∗ =
⋃

ná0

Rn

As usual, the semantics of HPDL
−
D is defined in terms of Kripke models. A

model M consists of

• a nonempty set |M| of states,

• a transition relation
a
-→M ⊆ |M| × |M| for every a ∈ Act,

• a set Mp ⊆ |M| for every p ∈ Pred, where |Mx| = 1 for every x ∈ Nom.

The transition relations for complex programs and the satisfaction relation be-

tween models, their states and formulas, written M,w ⊨ s, are defined via mu-
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tual induction.

a−
-→M =

a
-→

−
M

αβ
-→M =

α
-→M ◦

β
-→M

α+β
-→M =

α
-→M ∪

β
-→M

α∗
-→M =

α
-→

∗
M

s
-→M = {(w,w) | M,w ⊨ s}

M,w ⊨ p ⇐⇒ w ∈ Mp for p ∈ Pred

M,w ⊨ ¬p ⇐⇒ w ∉ Mp for p ∈ Pred

M,w ⊨ s ∧ t ⇐⇒ M,w ⊨ s and M,w ⊨ t

M,w ⊨ 〈α〉s ⇐⇒ M, v ⊨ s for some v ∈ |M| with w
α
-→M v

M,w ⊨ Ds ⇐⇒ M, v ⊨ s for some v ≠ w

The satisfaction relation for the remaining operators can be obtained from the

equivalences s ∨ t ≡ ¬(¬s ∧¬t), [α]s ≡ ¬〈α〉¬s, and Ds ≡ ¬D¬s.

We extend the notion of satisfaction to sets A of formulas in the obvious way:

M,w ⊨ A if M,w ⊨ s for all s ∈ A.

A literal is a formula of the form p, ¬p, 〈a〉s, [a]s, 〈a−〉s, [a−]s, Ds or Ds,

where p ∈ Pred, a ∈ Act, and s is an arbitrary formula.

A Hintikka set is a partial description of a possible state. It contains formu-

las satisfied by that state. A system of Hintikka sets then represents a satisfying

model, and our goal is to show that every satisfiable formula is contained in a

Hintikka set that is part of a finite such system. More precisely, a Hintikka set is

a nonempty set H that satisfies the following properties.

• For every p ∈ Pred: {p,¬p} 6⊆ H.

• s ∧ t ∈ H =⇒ s ∈ H and t ∈ H

• s ∨ t ∈ H =⇒ s ∈ H or t ∈ H

• 〈αβ〉s ∈ H =⇒ 〈α〉〈β〉s ∈ H

• [αβ]s ∈ H =⇒ [α][β]s ∈ H

• 〈α+β〉s ∈ H =⇒ 〈α〉s ∈ H or 〈β〉s ∈ H

• [α+β]s ∈ H =⇒ [α]s ∈ H and [β]s ∈ H

• 〈α∗〉s ∈ H =⇒ 〈α〉〈α∗〉s ∈ H or s ∈ H

• [α∗]s ∈ H =⇒ [α][α∗]s ∈ H and s ∈ H

• 〈t〉s ∈ H =⇒ t ∈ H and s ∈ H

• [t]s ∈ H =⇒ ∼t ∈ H or s ∈ H
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A Hintikka system S is a finite, nonempty set of Hintikka sets. We say that a

formula s is contained in S if it is contained in some H ∈ S.

In order to restrict the choice of possible elements of a Hintikka set, we as-

sume a finite, nonempty formula universe F, which is modelled on the Fischer-

Ladner closure [10] of a given formula s. F consists of formulas in NNF and

satisfies the following closure properties.

• s ∈ F and t is a subformula of s =⇒ t ∈ F

• 〈αβ〉s ∈ F =⇒ 〈α〉〈β〉s ∈ F

• [αβ]s ∈ F =⇒ [α][β]s ∈ F

• 〈α+β〉s ∈ F =⇒ 〈α〉s, 〈β〉s ∈ F

• [α+β]s ∈ F =⇒ [α]s, [β]s ∈ F

• 〈α∗〉s ∈ F =⇒ 〈α〉〈α∗〉s ∈ F

• [α∗]s ∈ F =⇒ [α][α∗]s ∈ F

• [t]s ∈ F =⇒ ∼t ∈ F

This is a slight variation of the definitions in the literature [9, 22, 17]. Still, we

can use the following original result.

Lemma 2.1 ([9]) For every formula s, one can compute a finite formula universe

F such that s ∈ F and the cardinality of F is linear in the size of s.

From now on, all formulas, Hintikka sets and systems range over a given F.

3 Demos as a syntactic representation of models

We aim at the following criterion for syntactically demonstrating that a given

formula s is satisfiable: s is satisfiable if and only if s occurs in a Hintikka system

S that sufficiently describes a model. We call such a system a demo. A maximal

demo corresponds to the result of any of the elimination procedures for Hintikka

systems described in [25, 17, 3]. The notion of a demo derives from that of an

evident subset of a Pratt-style graph tableau in [20]. Making the demo notion

explicit will allow for factoring the bounded model theorem into lemmas that use

simpler inductions. The main lemmas, demo existence and satisfaction lemmas

will almost immediately imply correctness of the decision procedure.

In this section, we introduce the notion of a demo and study it in depth. In

order to keep the presentation simple, we begin with test-free PDL and will add

nominals, difference modalities, tests and converse separately in Sections 5–8.

This will allow us to to isolate the conceptual, technical, and computational cost

of adding those features.

6



Definition 3.1 Let S be a Hintikka system. The transition relation
α
-→S ⊆ S×S is

defined as follows.

a
-→S =

{

(H,H′)
∣

∣ for all s :
(

[a]s ∈ H ⇒ s ∈ H′
)

}

αβ
-→S =

α
-→S ◦

β
-→S

α+β
-→S =

α
-→S ∪

β
-→S

α∗
-→S =

α
-→

∗
S

Proposition 3.2 Let S ⊆ S′ be Hintikka systems. Then
α
-→S ⊆

α
-→S′ .

Definition 3.3 A Hintikka system D is a demo if the following condition is sat-

isfied.

(D♦) If 〈α〉s ∈ H ∈ D, then there is some H′ ∈ D with H
α
-→D H

′ and s ∈ H′.

It suffices to require (D♦) only for programs α that are actions or iterations

β∗. The remaining cases would then follow via the definition of Hintikka sets.

For clarity of the presentation, however, we do not make this restriction.

Example 3.4 The figure below shows a demo that consists of three Hintikka

sets:
{

〈a∗〉p, 〈a〉〈a∗〉p, [a]¬p
}

,
{

〈a∗〉p, 〈a〉〈a∗〉p, ¬p
}

and
{

p
}

. Sets related

by
a
-→ are connected with an arrow. Arrows for

a∗
-→ are implicit. �

〈a∗〉p, 〈a〉〈a∗〉p, [a]¬p 〈a∗〉p, 〈a〉〈a∗〉p, ¬p p

The following fact is obvious from the formulation of Demo Condition (D♦):

demos are closed under union, and therefore there is a unique maximal demo

for F. This will be important for the correctness of the decision procedure.

In order to establish that demos represent exactly models modulo F, we show

that (a) every model induces a demo in the natural way, and (b) every demo has

a model that satisfies all of the demo’s members. We start with (a).

Given a model M and a state w ∈ |M|, let HM,w = {s ∈ F | M,w ⊨ s} be the

Hintikka set induced by w in M. The following proposition is obvious.

Proposition 3.5 HM,w is a Hintikka set.

From now on, we write Hw instead of HM,w if no confusion can arise. We now

consider the system of all Hintikka sets induced by M, i.e., SM = {Hw | w ∈ |M|}.

In order to establish that SM is a demo, we need the following lemma.
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Lemma 3.6 Let M be a model and v,w ∈ |M|. If v
α
-→M w, then Hv

α
-→SM

Hw .

Proof We proceed by induction on the size of α.

α = a. Since v
a
-→M w, we have that M,w ⊨ s for all [a]s with M, v ⊨ [a]s. This

implies that s ∈ Hw whenever [a]s ∈ Hv . Hence, Hv
a
-→SM

Hw .

α = βγ. If v
βγ
-→M w, there is some u ∈ |M| with v

β
-→M u

γ
-→M w. Applying the

induction hypothesis to β and γ yields Hv
β
-→SM

Hu
γ
-→SM

Hw , i.e., Hv
βγ
-→SM

Hw .

α = β+γ. If v
β+γ
-→M w, then v

β
-→M w or v

γ
-→M w. Applying the induction hy-

pothesis to β and γ yields Hv
β
-→SM

Hw or Hv
γ
-→SM

Hw , i.e., Hv
β+γ
-→SM

Hw .

α = β∗. If v
β∗

-→M w, then v
β
-→

n
M w for some n á 0. We proceed by induction on

n. If n = 0, then v = w and therefore Hv = Hw , i.e., Hv
β∗

-→SM
Hw . If n > 0,

there is some u ∈ |M| with Hv
β
-→SM

Hu
β
-→

n−1
SM

Hw . From both induction

hypotheses, we obtain Hv
β∗

-→SM
Hw . �

Lemma 3.7 SM is a demo.

Proof Let 〈α〉s ∈ Hw ∈ SM. Then M,w ⊨ 〈α〉s, that is, there is some v ∈ |M|

such that w
α
-→M v and M, v ⊨ s. Due to Lemma 3.6 and the definition of Hv , we

obtain Hw
α
-→SM

Hv and s ∈ Hv . �

Lemma 3.8 (Demo existence) For every satisfiable formula s ∈ F, there is a

demo D over F that contains s.

Proof Let M,w ⊨ s. Take D = SM, which contains Hw with s ∈ Hw . �

As for the direction (b) above, we start by making some general statements about

Hintikka systems. The first such statement is that S, together with the transition

relations
a
-→S, induces a model MS as follows.

Definition 3.9 Let S be a Hintikka system. MS is the model defined as follows.

|MS| = S

a
-→MS =

a
-→S

MSp = {H ∈ S | p ∈ H}

In general, MS does not need to satisfy the Hintikka sets in S. However, under

additional conditions categorized under the notion of a demo, there is a direct

correspondence between Hintikka systems and models. .
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Lemma 3.10 Let S be a Hintikka system and α a program. Then
α
-→S ⊆

α
-→MS .

Proof We proceed by induction on α.

α = a. The claim holds due to the defintion of MS.

α = βγ. Let H
βγ
-→S H

′. Then there is some H′′ ∈ S with H
β
-→S H

′′ γ
-→S H

′. We

apply the induction hypothesis: H
β
-→MS H

′′ γ
-→MS H

′, i.e., H
βγ
-→MS H

′.

α = β+γ. Let H
β+γ
-→SH

′. Then, H
β
-→SH

′ or H
γ
-→SH

′. With the induction hypoth-

esis, we obtain H
β
-→MS H

′ or H
γ
-→MS H

′, i.e., H
β+γ
-→MS H

′.

α = β∗. Let H
β∗

-→S H
′, i.e., H

β
-→

n
S H

′ for some n á 0. We proceed by induction

on n. The case n = 0 is trivial. If n > 0, we have H
β
-→SH

′′ β
-→

n−1
S H′ for some

H′′ ∈ S. From both induction hypotheses, we obtain H
β
-→

∗
MS
H′. �

Lemma 3.11 Let S be a Hintikka system with H,H′ ∈ S and [α]s ∈ H
α
-→MS H

′.

Then s ∈ H′.

Proof We proceed by induction on the size of α.

α = a. We obtain s ∈ H′ directly from the definition of
a
-→MS .

α = βγ. Due to the definition of
βγ
-→MS , there is aH′′ ∈ S withH

β
-→MSH

′′ γ-→MSH
′.

Since H is a Hintikka set, we obtain [β][γ]s ∈ H. Applying the induction

hypothesis to β and then γ yields [γ]s ∈ H′′ and s ∈ H′.

α = β+γ. Since H is a Hintikka set, we obtain [β]s ∈ H and [γ]s ∈ H. From

H
β+γ
-→MS H

′, we obtain H
β
-→MS H

′ or H
γ
-→MS H

′. The induction hypothesis

applied to either β or γ yields s ∈ H′.

α = β∗. Since H is a Hintikka set, we obtain (i) s ∈ H and (ii) [β][β∗]s ∈ H. From

H
β∗

-→MS H
′ we conclude H

β
-→

n
MS
H′ for some n á 0. We proceed by induction

on n. The case n = 0 is trivial given (i). If n > 0, there is some H′′ ∈ S

with H
β
-→MS H

′′ β
-→

n−1
MS

H′. Using (ii), we apply the outer induction hypothesis

to the first arrow and obtain [β∗] ∈ H′′. We then apply the inner induction

hypothesis to the second arrow and obtain s ∈ H′. �

Lemma 3.12 (Demo satisfaction) If D is a demo then, for all H ∈ D : MD,H ⊨

H.

9



Proof We take s ∈ H ∈ D and prove MD,H ⊨ s by induction on the size of

s. The case s = p follows from the definition of MDp. The Boolean cases are

straightforward. The cases of diamond and box formulas remain.

s = 〈α〉t. If 〈α〉t ∈ H ∈ D, then Demo Condition (D♦) requires the existence

of an H′ ∈ D with H
α
-→D H

′ and t ∈ H′. We can now apply Lemma 3.10,

whose additional assumption is satisfied due to the induction hypothesis,

to conclude H
α
-→MD H

′. The induction hypothesis also yields MD,H
′ ⊨ t.

Therefore, MD,H ⊨ 〈α〉t.

s = [α]t. If [α]t ∈ H ∈ D, then we can apply Lemma 3.11, whose additional

assumption is satisfied due to the induction hypothesis, to conclude that t ∈

H′ for every H′ ∈ D with H
α
-→MDH

′. The induction hypothesis further yields

MD,H
′ ⊨ t. Therefore, MD,H ⊨ [α]t. �

The following central insight about demos follows directly from Lemmas 3.8,

3.12.

Theorem 3.13 A formula s is satisfiable if and only if s is contained in a demo.

Lemmas 3.8 and 3.12 also imply the Bounded Model Theorem for test-free

PDL, which has been established in [10] for PDL: every satisfiable formula s is

satisfiable in a finite model of size exponential in |s|.

4 The decision procedure

We use Pratt’s approach of constructing the set of all Hintikka sets and pruning it

to the greatest demo. The correctness of this procedure will immediately follow

from the fact that pruning respects demos: every single pruning action does not

remove any Hintikka set that is part of a demo contained in the system before

the pruning action. This argument exploits the existence of a maximal demo,

which is not guaranteed in the presence of nominals or D. We will deal with that

problem in Sections 5–6.

We define a relation between Hintikka systems that represents a single prun-

ing action: let S
p
→ S′ if S′ can be obtained from S by deleting some H ∈ S that

violates the Demo Condition (D♦), i.e., for some 〈α〉s ∈ H ∈ S, there is no H′ ∈ S

such that H
α
-→S H

′ and s ∈ H′. We further define S
p
⇝ S′ to hold if S

p
→
∗
S′ and

S′
p
→S′′ for no S′′.

The following proposition is immediate because (1) every pruning action re-

moves only Hintikka sets that violate the demo condition, and (2) when no more

pruning can be done, all Hintikka sets in S′ satisfy the demo condition.
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Proposition 4.1

1. If S
p
→S′ and D is a demo with D ⊆ S, then D ⊆ S′.

2. If S
p
⇝ S′ ≠ 0, then S′ is a demo.

Theorem 4.2 If S
p
⇝ S′ and S contains a demo, then S′ is the greatest demo

contained in S.

Proof Due to Prop. 4.1 1, S′ contains all demos contained in S, including the

greatest such demo. Due to 2, S′ is a demo itself, hence it is contained in the

greatest demo contained in S. Both inclusions together yield the equality. �

The following method decides satisfiability of a given formula s by pruning

the system of all Hintikka sets and checking whether s is contained in the result-

ing demo.

Decision method for PDL-satisfiability

Input: formula s

1. Compute the formula universe F for s.

2. H = {H | H is a Hintikka set with H ⊆ F}

3. Compute D with H
p
⇝D.

4. s is satisfiable iff s ∈ H for some H ∈ D.

The above decision method is a notational variant of Pratt’s [24] decision pro-

cedure. By making the notion of a demo explicit. We can conclude correctness

directly from Theorem 4.2, while the correctness proofs in [22, 17] use complex

inductive arguments quite similar to the proofs of the filtration theorem. Steps 1

and 2 correspond to Stage construct, and Step 3 to prune. The transition rela-

tions
α
-→S are not computed upfront. Instead, whenever the decision procedure

needs to decide for a pair of Hintikka sets whether they are in some
α
-→S, it does

so via the inductive definition of
α
-→S, in time polynomial in |α|multiplied by the

sizes of the Hintikka sets.

We now convince ourselves that the above method is worst-case optimal, i.e.,

that it runs in time exponential in |s|, looking at each step in turn.

1. Due to Lemma 2.1, the cardinality of F is linear in |s|. Furthermore, if F

is taken to be the smallest formula universe that contains s, then F can be

computed in time polynomial in |s| by following the closure properties.

2. In order to compute H , one can create all exponentially many subsets of

F and remove those that are not Hintikka sets. Checking the Hintikka set

properties of any such H requires time at most polynomial in the cardinality
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of H, which in turn is linear in |s|. In preparation for the following step, all

transition relations
α
-→S over H can be precomputed and reused for every S

during the pruning phase. For every α, determining
α
-→S takes time quadratic

in the cardinality of H .

3. Since the number of Hintikka sets decreases with every single pruning action,

there can be at most exponentially many pruning actions. Each of them can

be performed in time exponential in |s|: traverse through all Hintikka sets

H in the remaining system S and all formulas 〈α〉s ∈ H, and check whether

some H′ ∈ S exists with H
α
-→S H

′.

4. Traversing through all Hintikka sets left and through their contents to search

for s is clearly in exponential time as well.

For practical purposes, creating all Hintikka sets in the first place is highly

inefficient in terms of both time and space. We have discussed possible opti-

mizations in Section 1.

5 Nominals

Extending the demo notion with nominals is rather straightforward. We need to

introduce the notion of nominal coherence: a Hintikka system H is nominally

coherent if every nominal x ∈ F occurs in exactly one H ∈ S. Now the definition

of a demo (Def. 3.3) and of MS, as well as the assumptions of Lemma 3.10 have

to be extended by the requirement (DN) that D and S be nominally coherent.1

Demos for PDL with nominals are no longer closed under union, but this will

not affect the proofs of Section 3. We only need to extend the proof of Lemma

3.7 by saying that SM satisfies (DN): if x ∈ F, then x denotes a unique state

wx ∈ |M|. Therefore, x is contained in the unique induced Hintikka set Hwx .

So far, the addition of nominals has been at no extra conceptual or technical

cost. When it comes to pruning, however, we can no longer remove arbitrary Hin-

tikka sets that “violate the demo conditions”. For example, if the same nominal

x is contained in two Hintikka sets H,H′ of the system S and we remove H, then

further pruning actions carried out to restore (D♦) could lead to H′ being deleted

as well. More generally, since there may not need to be a unique maximal demo,

Theorem 4.2 does not hold. However, it can be reestablished using an additional

assumption here and in the preceding proposition.

Proposition 5.1 Let S be nominally coherent. Then the following hold.

1 While it would suffice for the proofs in this section to require that every nominal x ∈ F occurs

in at most one H ∈ S, this would not be enough in the presence of difference modalities.

Otherwise, {{x,¬y,Dx}} would be a nominally coherent demo although its only member is

unsatisfiable.
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1. If S contains a demo, then it contains a unique maximal demo.

2. If S
p
→S′ and D ⊆ S is a demo, then D ⊆ S′ and S′ is nominally coherent.

3. If S
p
⇝ S′ and S′ is nominally coherent, then S′ is a demo.

Proof We call a Hintikka set that contains a nominal a nominal set.

1. Let D1,D2 be two demos contained in S. Then, due to S,D1,D2 being nomi-

nally coherent, both Di contain all nominal sets in S. Therefore and because

(D♦) is robust under union, we have that D1 ∪D2 ⊆ S.

2. Every pruning action removes only Hintikka sets that violate (D♦); hence no

Hintikka set from D is removed. Because S is nominally coherent and D

contains all nominal sets in S, S′ is nominally coherent too.

3. Since S′ is nominally coherent, it cannot be empty. Because no more pruning

can be done, all Hintikka sets in S′ satisfy (D♦) as well. �

Theorem 5.2 If S
p
⇝ S′ with S and S′ being nominally coherent, then S′ is the

unique maximal demo contained in S.

Proof The unique maximal demo contained in S exists because of Proposition

5.1 1; we call it D. Due to 3, S′ is a demo contained in S and therefore contained

inD. Due to 2, S′ contains all demos contained in S, includingD. Both inclusions

together yield the equality. �

The decision method from Section 4 can now be extended by inserting a guess

stage between Steps 2 and 3 that guesses a maximal nominally coherent subsys-

tem of the system H of all Hintikka sets, which contains one maximal demo.

As explained above, the transition relations
α
-→S do not need to be computed

upfront. The nondeterministic procedure is given below.

Decision method for HPDL-satisfiability

Input: formula s

1. Compute the formula universe F for s.

2. H = {H | H is a Hintikka set with H ⊆ F}

3. Guess a maximal nominally coherent subset H ′ of H .

4. Compute D with H ′ p
⇝D.

5. Return “satisfiable” iff D is nominally coherent and s ∈ H for some H ∈ D.

We now show that this method has a determinization that runs in exponential

time. Let x1, . . . , xn be the linearly many nominals in F. For x1, Step 3 can guess
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a Hintikka set in H that contains x1 and remove all other Hintikka sets that

contain x1. This action can be iterated for all other xi. Should no Hintikka set

be left that contains xi, then Step 3 rejects straightaway. Otherwise the reduced

Hintikka system after the n-th iteration is a maximal nominally coherent subset

of H . Steps 4 and 5 are then applied deterministically to that subset.

We consider the set of computation paths of this nondeterministic algorithm.

Every path contains n guesses of an element from a subset of H—from a set

exponential in |s|. Each such exponential guess can be implemented as a se-

quence of polynomially many binary guesses, inducing a binary tree of polyno-

mial depth. Since n is linear in |s|, the binary tree induced by the sequence of

all n exponential guesses is still of polynomial depth. In every leaf of this tree, a

deterministic exponential time computation takes place. Hence, the tree has only

exponentially many nodes and can be searched deterministically in exponential

time.

To summarize, adding nominals requires no significant computational costs

as long as only worst-case complexity is concerned. Our decision method re-

mains correct if Step 2 is replaced by the creation of a closed tableau completed

via rules extending those in [20]. However, both versions of our method are im-

practical because prune is repeated a number of times that is linear in the size

of H or the completed tableau. It would be more practical to interleave guess

with construct, but it is currently not clear how to realize this.

6 Difference modalities

To deal with the difference operators, several changes to the conceptual, techni-

cal and computational part are necessary.

Since Ds and Ds do not say anything about the current state, it is not the

notion of a Hintikka set that needs extending, but the notion of a demo. We add

the following conditions to Def. 3.3.

(DD) If Ds ∈ H ∈ D, then there is some H′ ∈ D such that H′ ≠ H and s ∈ H′.

(DD) If Ds ∈ H ∈ D, then, for all H′ ∈ D such that H′ ≠ H, we have s ∈ H′.

Because of Condition (DD) alone, demos for PDL extended by D are not closed

under union. This is not surprising because D can be used to express that a given

predicate behaves as a nominal: p ∧ D¬p. We will therefore have to adapt the

decision procedure to the presence of D at the end of this section. In contrast,

adding only D to PDL does not make closure under unions invalid.

However, the proof of Lemma 3.7—SM is a demo—does not go through for the

D case without further assumptions. Consider, for example, F = {p,Dp} and the
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model M with |M| = {v,w} and Mp = {v,w}. Then M, v ⊨ Dp and Dp ∈ Hv .

Since Hv = Hw , the system SM consists of only Hv and (DD) is violated.

To solve this problem, we assume an injective function that assigns to every

literal Ds ∈ F a nominal xDs ∈ F that is isolated, i.e., which occurs in no other

formula in F. Intuitively, xDs is supposed to denote a state that satisfies s,

provided that such a state exists. If it does, all states that are different from the

one denoted by xDs satisfy Ds. As we will see below, this implies that, whenever

a state w satisfies Ds, then there is a state v that satisfies s with Hv ≠ Hw .

It remains to ensure that the xDs denote the correct states in M. We call

a model M nice for F if, for all Ds ∈ F such that s is satisfiable in M, the

conjunction s ∧ xDs is satisfiable in M too. Since we require that the xDs are

isolated, we do not restrict generality by assuming that satisfying models are

nice.

Lemma 3.7 is now reformulated as follows.

Lemma 6.1 If M is nice for F, then SM is a demo.

Proof

(D♦) As in the proof of Lemma 3.7.

(DN) As in the proof of Lemma 3.7.

(DD) Let Ds ∈ Hw ∈ SM. Then there is some v ≠ w with M, v ⊨ s. In case

M,w ⊨ xDs , we conclude that xDs ∈ Hw and xDs ∉ Hv . Therefore, Hv ≠

Hw . Otherwise, since M is nice, we can assume w.l.o.g. that v is precisely

the state with M, v ⊨ xDs ∧ s. This implies Hv ≠ Hw , too. In both cases, we

have s ∈ Hv from M, v ⊨ s.

(DD) Let Ds ∈ Hw ∈ SM, and let H′ ∈ SM with H′ ≠ Hw . Hence H′ = Hv for

some v ≠ w. From M,w ⊨ Ds, we conclude M, v ⊨ s, i.e., s ∈ Hv . �

We further need to incorporate the assumptions of models being nice into

Lemma 3.8 and its proof (see [19]).

Lemma 6.2 (Demo existence for HPDLD) For every satisfiable formula s ∈ F,

there is a demo D over F that contains s.

Proof Let M,w ⊨ s. Since the auxiliary nominals occur only isolated, we can

always make M nice for F by letting the xDs denote the right states. Therefore

we can assume w.l.o.g. that M is nice and take D = SM, which contains Hw with

s ∈ Hw . �

Extending the proof of Lemma 3.12 is straightforward if we add two cases.
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s = Dt. If Dt ∈ H ∈ D, then Demo Condition (DD) requires the existence of an

H′ ∈ D with H′ ≠ H and t ∈ H′. The induction hypothesis yields MD,H
′ ⊨ t

and, therefore, MD,H ⊨ Dt.

s = Dt. Analogous to the previous case, using Demo Condition (DD).

We conclude that the conceptual cost of adding the existential difference

modality is significant, while the technical additions are straightforward once a

suitable definition of the auxiliary nominals is in place. The universal difference

operator has not caused any difficulties so far, but it will lose its harmlessness

when it comes to the decision procedure.

First, we need to incorporate D into the definition of pruning, which is now

defined as follows: let S
p
→S′ if S′ can be obtained from S by deleting some H ∈ S

that violates (D♦) or (DD), i.e., one of the following two cases occurs:

1. For some 〈α〉s ∈ H ∈ S, there is no H′ ∈ S such that H
α
-→S H

′ and s ∈ H′.

2. For some Ds ∈ H ∈ S, there is no H′ ∈ S such that H′ ≠ H and s ∈ H′.

Since we have lost the existence of a greatest demo not only because of the

auxiliary nominals, but also due to the presence of D, we will have to revisit the

assumptions of Proposition 5.1 and Theorem 5.2 that say under which conditions

pruning respects demos and leads to a unique maximal demo. It suffices to add

the requirement that S satisfies (DD) to both assumptions and observe that all

subsets of S then satisfy (DD). The proofs then go through unchanged.

Therefore, the decision method from the previous section can be reused if we

reformulate Step 3 as follows:

Guess a maximal subset H ′ of H that is nominally coherent and satisfies (DD).

Since H ′ needs to be pruned to a demo (candidate) D, we ensure (DD) by distin-

guishing three cases for every formula Ds ∈ F about its occurrence in a maximal

demo D ⊆H .

(D1) Ds is not contained in D. We can therefore discard all Hintikka sets in H

that contain Ds because they cannot occur in H ′. This ensures that neither

H nor H ′ violates (DD) with Ds.

(D2) All Hintikka sets in D contain s. Then, for the same reason as above, it

is safe to discard all Hintikka sets in H , ensuring that neither H nor H ′

violates (DD) with Ds.

(D3) D contains Hintikka sets H,H′ with Ds ∈ H and s ∈ H′. If s ∈ H, we are

in Case (D2) due to (DD). Hence s ∉ H, and therefore Ds is in no Hintikka

set other than H. In this case, it is safe to choose one H containing Ds and

not s to remain in H and H ′, and all other Hintikka sets that contain Ds

or not s can be discarded.
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It therefore suffices to add another linear number of guessing actions out of an

exponential supply to the guessing phase, and the previous arguments about the

determinization in exponential time still apply.

While the addition of D causes significant conceptual overhead, the extension

of the decision method with D within the given time bounds is non-trivial.

7 Tests

We redefine the transition relation for tests:
s
-→S = {(H,H) | s ∈ H ∈ S}.

In order to prove that the Hintikka system SM induced by a model is a demo,

it suffices to add one straightforward case to the proof of Lemma 3.6.

α = t. If v
t
-→M w, then v = w and M, v ⊨ t. Then we also have that Hv = Hw

and t ∈ Hv . Hence, Hv
t
-→SM

Hw .

For the other direction—every demo is satisfied by its induced model—the

missing cases in Lemmas 3.10 and 3.11 require additional assumptions, which

are added in the following. We restrict the proofs to the cases of tests because

the other cases go through unchanged.

Lemma 7.1 Let S be a Hintikka system and α a program such that, for all tests t

in α and all H ∈ S, t ∈ H implies MS,H ⊨ t. Then
α
-→S ⊆

α
-→MS .

Proof α = t. If H
t
-→S H

′, then H = H′ and t ∈ H. From the additional as-

sumption, we obtain MS,H ⊨ t and, therefore, the definition of
t
-→MS yields

H
t
-→MS H

′. �

Lemma 7.2 Let S be a Hintikka system with H,H′ ∈ S satisfying

• [α]s ∈ H
α
-→MS H

′, and

• For all tests t in α and H ∈ S: if ∼t ∈ H, then MS,H ⊨ ∼t.

Then s ∈ H′.

Proof α = t. Due to the definition of
t
-→MS , we have H = H′ and MS,H ⊨ t.

Since H is a Hintikka set and [t]s ∈ H, we have that ∼t ∈ H or s ∈ H. If ∼t ∈

H, then the additional assumption implies MS,H ⊨ ∼t, which contradicts

MS,H ⊨ t. If s ∈ H, the claim is proven because H = H′. �

The formulation of the decision procedure is unaffected by the addition of

tests. The only difference in detail is that
t
-→H needs to be computed by cycling

through all the exponentially many H ∈H and their linear-size contents.

The surprising consequence is that, even in the presence of tests, a compli-

cated induction order can be avoided in the proofs leading to the demo theorem,

provided that the theorem is sufficiently factored out into lemmas.
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8 Converse actions

The extension with converse actions is straightforward: in Definition 3.1, we

need to replace the case for
a
-→S with

a
-→S =

{

(H,H′)
∣

∣ for all s :
(

[a]s ∈ H ⇒ s ∈ H′
)

and
(

[a−]s ∈ H′ ⇒ s ∈ H
)

}

,

and add the case
a−
-→S =

a
-→

−
S , where

a
-→

−
S denotes the inverse of

a
-→S. All proofs

of Sections 3 and 4 go through after a straightforward converse case has been

added in three places.

• Proof of Lemma 3.6

α = a−. We recall that v
a−
-→M w iff w

a
-→M v and continue with the argument

in the case for a.

• Proof of Lemma 3.10

α = a−. We have
a−
-→S =

a
-→

−
S ⊆

a
-→

−
MS
=

a−
-→MS .

• Proof of Lemma 3.11

α = a−. We can conclude H′
a
-→MS H and then obtain s ∈ H′ from the defini-

tion of
a
-→MS again.

We conclude that adding converse is conceptually, technically and compu-

tationally easy in our setting. The situation is different for tableau-based deci-

sion procedures, where converse operators cause significant technical difficulties

[2, 14].

9 Related work

We have given a Pratt-style worst-case optimal decision procedure for test-free

PDL and step-wise extended it to capture nominals, difference modalities, tests

and converse. The correctness of this method is based on transparent proofs of

the bounded model theorem (BMT). We now discuss how our approach relates to

known approaches of this type.

The basis for our approach is Pratt’s work [24], where he sketches a decision

method that adds pruning to Fischer and Ladner’s method [10], without a formal

correctness proof. This is probably the most straightforward way of obtaining

the exponential-time upper bound. We have extended Pratt’s method with hybrid

operators and converse.

Variations of Pratt’s straightforward approach are given in the literature

[16, 22, 17, 3]. In order to establish the BMT, the authors of [16, 22, 17] use either
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simultaneous induction over formulas and programs, or a non-standard induc-

tion over an order on formulas with and without flags. The correctness of the

decision procedure is not immediate, and requires to partially repeat the course

of the proof of the BMT. The procedure in [3, Section 6.8] requires Hintikka sets

to be upwards saturated, and its proofs use a simpler induction scheme. How-

ever, that approach does not include tests. In contrast to [16, 22, 17], our tech-

nique factorizes the BMT in a way that every lemma can be proven using a single

induction over the subterm relation. The demo notion and its properties can be

directly used to conclude the correctness of the decision procedure.

In [23], the authors state that HPDL
− has the same deterministic upper bound

as PDL without giving an explicit decision procedure. The work in [5, 1] estab-

lishes a chain of polynomial-time satisfiability-preserving translations HPDL
−
D →

HPDL
−
E → HPDL

− → PDL
− → PDL, again without an explicit decision procedure.

In contrast to the work in [25, 13, 14, 20], our approach does not build a

tableau in Stage construct, and therefore the edges of the transition relation do

not need to be an explicit part of our Hintikka systems. The approach in [20] uses

the notion of a clause instead of a Hintikka set and a support relation between

clauses and formulas. The support closures of clauses—i.e., their supported sets

of formulas—are exactly the Hintikka sets. Without the need for computational

optimizations, Hintikka sets are sufficient for our approach and more conve-

nient. While the decision procedure in [20] runs in NExpTime for nominals, we

show how to obtain an ExpTime procedure, answering the question from [20]

whether a demo can be found efficiently w.r.t. the size of the tableau.

In [14], a more practical worst-case optimal decision method for PDL
− is given

and implemented. In contrast, we have acknowledged above that our procedure

is not implementable, and this is not the purpose of this paper. We have ex-

amined how Pratt’s most simple optimal procedure scales to more expressive

features and, in our point of view, this serves the understanding of this type of

procedure rather than its implementation.

Syntactic descriptions of models related to demos can be found in [8]. Their

Hintikka structures for CTL are richer: they contain the transition relation ex-

plicitly and may contain several copies of a Hintikka set.

For future work, it would be interesting to examine whether our approach

can be extended to the hybrid µ-calculus and whether graded modalities can be

incorporated. On the more practical side, a natural next step is to study how

to transfer our approach into a decision procedure that interleaves building a

(graph) tableau and pruning in the presence of hybrid operators.
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