
Semantics and Expressive Power of
Subqueries and Aggregates in SPARQL 1.1

Mark Kaminski
kaminski@cs.ox.ac.uk

Egor V. Kostylev
ekostyle@cs.ox.ac.uk

Bernardo Cuenca Grau
berg@cs.ox.ac.uk

Department of Computer Science, University of Oxford, UK

ABSTRACT
Answering aggregate queries is a key requirement of emerg-
ing applications of Semantic Technologies, such as data ware-
housing, business intelligence and sensor networks. In order
to fulfill the requirements of such applications, the standard-
isation of SPARQL 1.1 led to the introduction of a wide
range of constructs that enable value computation, aggre-
gation, and query nesting. In this paper we provide an in-
depth formal analysis of the semantics and expressive power
of these new constructs as defined in the SPARQL 1.1 speci-
fication, and hence lay the necessary foundations for the de-
velopment of robust, scalable and extensible query engines
supporting complex numerical and analytics tasks.

1. INTRODUCTION
An increasing number of RDF-based applications require

support for aggregate queries, which, rather than simply re-
trieving data, involve some form of computation or summari-
sation. Answering aggregate queries is a key requirement
in data warehousing and business intelligence, where data
is aggregated across many dimensions looking for patterns
[1, 9, 19–21, 25, 42], as well as in emerging applications in-
volving sensor networks and streaming RDF data [5,10,13].

The first version of SPARQL [36], however, did not pro-
vide support for aggregation, which limited its applicability
in such applications. The standardisation of SPARQL1.1[23]
addressed these limitations by introducing a wide range of
constructs in line with those in SQL:

– a collection of aggregate functions for value computation,
such as Min, Max, Avg, Sum, and Count;

– the grouping constructs GROUP BY and HAVING, which re-
strict the application of aggregate functions to groups of
solutions satisfying certain conditions;

– the variable assignment constructs BIND, VALUES, and AS

which are used to assign the value of a complex (e.g.,
arithmetic) expression to a variable; and

– a query nesting mechanism for embedding queries within
graph patterns as well as within expressions.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2883022.

A key distinguishing feature of SPARQL over previous
RDF query languages is that it comes with a well-defined
algebraic semantics, which has been the subject of intensive
research and has laid the foundations for subsequent imple-
mentations [3,29,30,34,35,38,40]. Similarly to its predeces-
sor, the semantics of SPARQL 1.1 is specified by means of an
(extended) normative algebra and many of the new features
such as property paths [6,28,33,41], query federation [11,12],
or entailment regimes [2,7,26,27] have already received sig-
nificant attention in the literature. In contrast, the theoret-
ical properties of the algebraic operators that enable value
computation, aggregation, and query nesting remain largely
unexplored. This is in stark contrast to the case of relational
databases, where the formal properties of arithmetic and ag-
gregation have been studied in depth [14–18,24,31,32,39].

Our aim is to provide a systematic study of the semantics
and expressive power of the SPARQL 1.1 algebra with aggre-
gates and nesting. Understanding the capabilities of the new
constructs and their inter-dependencies is a key requirement
for the development of query engines supporting complex
numerical and analytics tasks while providing correctness,
robustness, scalability and extensibility guarantees.

In our investigation we take the well-known SPARQL alge-
bra as a starting point, which we recapitulate in Section 2.
Most existing works on SPARQL assume that graph pat-
terns are interpreted as sets of solution mappings rather
than multisets (or bags) as in the normative specification.
This simplifying assumption is, however, no longer reason-
able once aggregation comes into play and hence we adopt
multiset semantics from the word go in this paper.

In Section 3 we study the query nesting mechanisms avail-
able in SPARQL 1.1. We first consider in Section 3.1 the
nesting of SELECT and SELECT DISTINCT query blocks. In al-
gebraic terms, this amounts to allowing the unrestricted use
of the operators Project and Distinct rather than restrict-
ing them to the outermost level of queries as in SPARQL.
We show that there is no gain of expressive power by al-
lowing the unrestricted use of just one of these operators.
In contrast, if both operators are allowed unrestrictedly, we
show how to construct queries that cannot be equivalently
expressed in SPARQL. The additional expressive power is
due to the interplay between the set semantics enforced by
the Distinct operator and the bag semantics of Project—a
phenomenon that was first observed in the relational case by
Cohen [15], and was later conjectured by Angles and Gutier-
rez to also yield additional expressive power in SPARQL [4].
As argued in Section 3.1, however, the evidence given in [4]
in support of their conjecture is unsatisfactory. Our results

settle this question and provide a detailed account of which
combinations of constructs lead to expressivity gains and
which ones are redundant. Besides subqueries as patterns,
SPARQL 1.1 also provides a mechanism where graph pat-
terns can be embedded within expressions in filter condi-
tions. We investigate this form of query nesting in Section
3.2 and show that it can be simulated within SPARQL, thus
not resulting in additional expressive power.

In Section 4 we turn our attention to variable assignment
and aggregation. The former is enabled in the SPARQL 1.1
algebra by the Extend operator, which extends solution map-
pings with a fresh variable assigned to the value of an expres-
sion. In Section 4.1 we show that Extend can be simulated
within SPARQL whenever the given expression is Boolean-
valued. This is in contrast to the general case, where Extend
adds significant expressive power as it introduces arithmetic
into the language [39]. In Section 4.2 we analyse the ag-
gregate SPARQL 1.1 algebra, which is rather non-standard
when compared to its relational counterpart. This algebra
provides a great deal of power and flexibility, and we show
that it can express all forms of query nesting and variable
assignment previously described. Then, in Section 4.3 we
define a normal form, which we exploit to define a substan-
tial simplification of the normative aggregate algebra where
most of its unconventional aspects have been eliminated.
The resulting algebra is much closer to its relational coun-
terpart and can be exploited to provide a more transparent
algebraic translation of the SPARQL 1.1 syntax.

We subsequently use this simplification in Section 5 to pro-
vide a clean semantics for analytic queries, such as cube and
window-based queries. Finally, in Section 6 we revisit the
simplifying assumptions adopted in our formal presentation
with respect to the standard, and discuss their implications.

2. THE SPARQL ALGEBRA
We next recapitulate the SPARQL algebra as well as basic

notions on RDF, query equivalence, and expressive power.
In contrast to most papers about SPARQL in the literature,
we follow the W3C standard by using the three-place left
join (OPTIONAL) operator and defining the semantics of the
algebra in terms of bags rather than sets.

RDF Graphs Let I, L, and B be countably infinite pair-
wise disjoint sets of IRIs, literals, and blank nodes, respec-
tively, where literals can be numbers, strings, or Boolean
values true and false. The set of (RDF) terms T is I∪L∪B.
An (RDF) triple is an element (s, p, o) of (I ∪ B) × I × T,
with s the subject, p the predicate, and o the object. An
(RDF) graph is a finite set of RDF triples.

SPARQL Algebra Syntax We adopt the basic algebra
from the SPARQL specification [36], but omit certain fea-
tures which are immaterial to our results; these simplifi-
cations are discussed in Section 6. We refer to this basic
algebra as Sparql. We distinguish three types of syntactic
building blocks—expressions, patterns, and queries, as de-
fined next. They are built over terms T and an infinite set
X = {?x, ?y, . . .} of variables, disjoint from T.

Expressions in Sparql are defined inductively as follows:

– all variables in X and all terms in I ∪ L are expressions;
– if ?x ∈ X, then bound(?x) is an expression;
– if E1 and E2 are expressions, then so are

- (E1 + E2), (E1 − E2), (E1 ∗ E2), and (E1/E2); and
- (E1

.
= E2), (E1 < E2), (¬E1), (E1∧E2), and (E1∨E2).

We use E1 → E2 and E1 ↔ E2 as abbreviations for ¬E1∨E2

and (E1 ∧ E2) ∨ (¬E1 ∧ ¬E2), respectively. Furthermore,
given a set of variables X and a renaming θ of X, that
is, an injective substitution from X into fresh variables, we
denote with eq(X, θ) the expression∧

?x∈X
(bound(?x)↔ bound(?xθ))∧(bound(?x)→ ?x

.
=?xθ).

(Graph) patterns in Sparql are inductively defined as follows:

– a triple pattern is a triple in (I∪L∪X)×(I∪X)×(I∪L∪X);
– if P1 and P2 are patterns, then so are Join(P1, P2) and

Union(P1, P2); if, additionally, E is an expression, then
Filter(E,P1) and LeftJoin(E,P1, P2) are also patterns.

Finally, queries are defined as follows: if P is a pattern and
X a set of variables (called free variables) then Project(X,P)
and Distinct(Project(X,P)) are queries.

The variables var(P) in the scope of a pattern P are all
the variables occurring in P (this definition will be different
for some extensions of Sparql), and the variables var(Q) in
the scope of a query Q are its free variables.

SPARQL Algebra Semantics The semantics of Sparql
is defined in terms of (solution) mappings, that is, partial
functions µ from variables X to terms T. The domain of
µ, denoted dom(µ), is the set of variables over which µ is
defined. Mappings µ1 and µ2 are compatible, written µ1 ∼
µ2, if µ1(?x) = µ2(?x) for each ?x in dom(µ1)∩ dom(µ2). If
µ1 ∼ µ2, then µ1∪µ2 is the mapping obtained by extending
µ1 according to µ2 on all the variables in dom(µ2)\dom(µ1).

The evaluation JEKµ,G of an expression E with respect to
a mapping µ and a graph G is a value in T ∪ {error}, as
defined next (G does not affect the semantics of expressions
in Sparql, but it will do so in relevant extensions of Sparql):

– J?xKµ,G is µ(?x) if ?x ∈ dom(µ) and error otherwise;
– J`Kµ,G is ` for ` ∈ I ∪ L;
– Jbound(?x)Kµ,G is true if ?x ∈ dom(µ) and false otherwise;
– JE1 ◦E2Kµ,G, for an arithmetic or comparison operator ◦,

is JE1Kµ,G ◦ JE2Kµ,G if JE1Kµ,G and JE2Kµ,G are both not
error and of suitable types, or error otherwise;

– J¬E1Kµ,G is true if JE1Kµ,G = false, it is false if JE1Kµ,G =
true, and it is error otherwise;

– JE1∧E2Kµ,G is true if JE1Kµ,G = JE2Kµ,G = true, it is false
if JE1Kµ,G or JE2Kµ,G is false, and it is error otherwise;

– JE1 ∨ E2Kµ,G is equal to J¬(¬E1 ∧ ¬E2)Kµ,G.

The semantics of patterns and queries is based on multi-
sets Ω = (SΩ, cardΩ), where SΩ is the base set of mappings,
and the multiplicity function cardΩ assigns a positive num-
ber to each element of SΩ. We write µ ∈ Ω to denote µ ∈ SΩ.
We will often use the following operations on multisets.

– The multiset union Ω1] Ω2 of Ω1 and Ω2 is the multiset
with base set SΩ1 ∪ SΩ2 and such that the multiplicity of
each mapping µ is cardΩ1(µ) + cardΩ2(µ) if µ is in both
SΩ1 and SΩ2 , and cardΩi(µ) if µ is only in SΩi .

– The multiset restriction {|µ | µ ∈ Ω,Cond |} of Ω given a
condition Cond is the multiset whose base set consists of
all µ ∈ Ω for which Cond is true, while the multiplicity of
each such µ coincides with that of µ in Ω.

We also consider two generalisations of multiset restriction:

– {|µ′ | µ ∈ Ω,Cond |} for Ω and Cond is the multiset with
base set consisting of all µ′ for which there exists µ ∈ Ω
such that Cond holds for µ′ and µ; the multiplicity of µ′

is the sum of multiplicities of the contributing µ;

– {|µ′ | µ1 ∈ Ω1, µ2 ∈ Ω2,Cond |} for Ω1, Ω2 and Cond is the
multiset with base set consisting of all µ′ such that Cond
holds for µ′ and some µ1 in Ω1 and µ2 in Ω2, and where
the multiplicity is defined as the following sum ranging
over the pairs of contributing µ1, µ2:∑

cardΩ1(µ1)× cardΩ2(µ2).

The semantics of patterns and queries over a graph G is
defined as follows, where µ(P) is the pattern obtained from
P by replacing its variables according to µ:

– JtKG for a triple pattern t is the multiset with SJtKG con-
sisting of all µ such that dom(µ) = var(t) and µ(t) belongs
to G, and cardJtKG(µ) = 1 for each such µ;

– JJoin(P1, P2)KG =
{|µ | µ1 ∈ JP1KG, µ2 ∈ JP2KG, µ = µ1 ∪ µ2 |};

– JUnion(P1, P2)KG = JP1KG] JP2KG;
– JFilter(E,P1)KG = {|µ | µ ∈ JP1KG, JEKµ,G = true |}; and
– JLeftJoin(E,P1, P2)KG =
{|µ | µ ∈ JJoin(P1, P2)KG, JEKµ,G = true |}]
{|µ | µ ∈ JP1KG,

∀µ2 ∈ JP2KG.
(
µ 6∼ µ2 or JEKµ∪µ2,G = false

)
|}.

We conclude with the semantics of Sparql queries, which
are also evaluated as multisets in our formalisation:

– JProject(X,P)KG is such that its base set consists of the
restrictions µ′ to X of all µ in JP KG, and the multiplicity
of µ′ is the sum of multiplicities of all corresponding µ;

– JDistinct(Q)KG is the multiset with the same base set as
JQKG, but with multiplicity 1 for all mappings.

Expressive Power of Query Languages We consider
extensions of Sparql with various constructs. This may lead
to an increase in expressive power, that is, some queries in
the extended language may not be equivalently rewritable
to the original language. We next make this notion precise.

A query language for RDF is a pair (Q, J.K.) where Q is
the class of queries and J.K. is the evaluation function that
maps queries and RDF graphs to multisets of solution map-
pings (e.g., algebra Sparql is a query language for RDF). A
language L2 = (Q2, J.K2

.) extends a language L1 = (Q1, J.K1
.)

if Q1 ⊆ Q2 and the restriction of J.K2
. to Q1 coincides with

J.K1
. . A query Q in a language L = (Q, J.K.) is equivalent

to Q′ in L′ = (Q′, J.K′.) if JQKG = JQ′K′G for every graph G.
If such Q′ exists, then Q is L′-expressible. Language L1 is
more expressive than L2 if every L1 query is L2-expressible.
We say that L1 and L2 have the same expressive power if
each of them is more expressive than the other one. Finally,
L1 is strictly more expressive than L2 if it is more expressive,
but does not have the same expressive power.

3. NESTED QUERIES
In this section we investigate the expressive power pro-

vided by nested queries; that is, those having another query
(a subquery) embedded within. The subquery can itself be a
nested query; thus, queries can have a deep nested structure.

SPARQL 1.1 allows for two kinds of nesting. First, sub-
queries can play the role of patterns within the WHERE clause
of another query. In algebraic terms, this is tantamount to
allowing the arbitrary use of the algebraic operators Project
and Distinct within patterns (in which case there is no real
distinction between queries and patterns anymore), rather
than allowing them only on the outermost level of queries.
We investigate this basic form of nested queries in Sec-
tion 3.1. Second, graph patterns can be embedded within

Alice 3000 Bob 4000 Charlie 5000

a b c

CS Physics Math

OX1 OX2

depart .

name sal .

depart .
depart .

name sal .

depart .

name sal .

postcode
postcode

postcode

Figure 1: Example RDF graph Gex

expressions in filter conditions by means of the exists con-
struct. We investigate this form of nesting in Section 3.2.

Before moving into further particulars, we first show that
Sparql can express a “set difference” operator, which we will
exploit throughout this section to encode other constructs.1

Definition 1. For P1 and P2 patterns, SetMinus(P1, P2)
is a pattern, whose semantics for a graph G is as follows:

JSetMinus(P1, P2)KG = {|µ | µ ∈ JP1KG, µ /∈ JP2KG |}.

In contrast to the relational multiset difference operator,
where the occurrences of µ in JP1KG are subtracted from
those in JP2KG, this operator yields µ, with the same cardi-
nality as in JP1KG, if µ 6∈ JP2KG. Thus, µ is not returned
whenever µ ∈ JP2KG, regardless of its cardinality in JP1KG.

Proposition 1. For any extension SparqlX of Sparql the
pattern SetMinus(P1, P2) with SparqlX patterns P1 and P2

is expressible in SparqlX .

Proof Sketch. We need to establish a mechanism to
distinguish between the mappings in JP1KG that occur in
JP2KG from those mappings that do not. The idea is to
first construct a pattern P3 whose evaluation captures the
latter together with all mappings in JP2KG extended with
fresh variables ?x, ?y, and ?z. We do this as follows, where
X = var(P1) ∪ var(P2) and θ is a renaming of X:

P ′2 = Join(P2, (?x, ?y, ?z)); P3 = LeftJoin(eq(X, θ), P1, P
′
2θ).

Now, we define SetMinus(P1, P2) = Filter(¬bound(?x), P3),
where the filter condition eliminates all mappings with fresh
variables, thus producing the required result.

3.1 Subqueries as Patterns
We start with a discussion of the basic nesting mechanism

in SPARQL 1.1, which allows queries to be subpatterns of
other patterns. Consider the query (Q1) given next.

(Q1) Find the names of people and the postcodes of the de-
partments where they work.

SELECT ?n ?p WHERE {?x name ?n .

{SELECT DISTINCT ?x ?p

WHERE {?x department ?d . ?d postcode ?p}}}

Let us evaluate (Q1) over the RDF graph Gex depicted
in Figure 1, which we will use as a running example. Vari-
able ?d for departments is only visible within the subquery,
whereas ?x and ?p are projected and hence visible in the

1Note that our operator is different from the MINUS operator
in SPARQL or the difference operator discussed in [3, 8].

outer query. Since a person can work in two departments
with the same postcode (e.g., Bob works in CS and Physics,
both located in OX1), the subquery uses DISTINCT to en-
sure that the result of the subquery does not contain dupli-
cates. The evaluation of (Q1) over Gex yields the multiset
of mappings µa = {?n 7→ Alice, ?p 7→ OX1}, µb = {?n 7→
Bob, ?p 7→ OX1}, and µc = {?n 7→ Charlie, ?p 7→ OX2},
all with multiplicity 1. Omitting DISTINCT in the subquery
would yield two copies of µb in the evaluation.

To support queries such as (Q1), we extend our main-
frame language Sparql by allowing Project and Distinct in
patterns. After this extension, there is no longer a meaning-
ful distinction between patterns and queries in the language.

Definition 2. The language SparqlPD extends Sparql by
allowing the query constructs Project(X,P) and Distinct(P)
as patterns, called subquery patterns. The intermediate lan-
guages SparqlP and SparqlD allow only for Project and only
for Distinct in patterns, respectively.

The language SparqlPD captures the query nesting func-
tionality in SPARQL 1.1. Specifically, (Q1) is as follows:

Project({?n, ?p}, Join((?x,name, ?n),

Distinct(Project({?x, ?p},
Join((?x, department , ?d), (?d, postcode, ?p)))))).

At first sight, query nesting provides a great deal of power
and flexibility to the language. As we have seen, it can
lead to sophisticated interactions between set and bag se-
mantics, which may be difficult (or impossible) to simulate
within plain Sparql. Furthermore, subquery nesting can be
arbitrarily deep, and it is reasonable to expect that each ad-
ditional level of nesting may increase the expressive power.

We now show that every SparqlPD query can be brought
into a normal form in which query nesting is bounded by
depth two; that is, there exists a natural bound on the level
of nesting after which no further increase in expressive power
can be achieved. This normal form is defined as given next,
and one can check that query (Q1) satisfies its requirements.

Definition 3. A SparqlPD query Q is in s-normal form
if either Q = Distinct(Project(X,P)) with P a subquery-free
pattern, or Q = Project(X,P) where all subquery patterns
in P are of the form Distinct(Project(X ′, P ′)) with X ′ (
var(P ′) and P ′ subquery-free.

This normal form not only limits nesting depth, but also
restricts the ways in which Project and Distinct can be com-
bined. In particular, if Q is in SparqlP (or in SparqlD) and
hence Distinct (respectively, Project) only occurs in the out-
ermost level, then Definition 3 requires that P is subquery-
free and hence Q is a Sparql query. We show that each
SparqlPD query can be brought into s-normal form.

Theorem 1. Let X be one of P,D,PD. Every query in
SparqlX has an equivalent SparqlX query in s-normal form.

Proof Sketch. The first relevant observation is that all
occurrences of Distinct in a SparqlX query Q that are in
scope of other Distinct subpatterns can be removed up-
front without affecting the semantics. Indeed, if Q has a
subpattern Distinct(P) where P has in turn a subpattern
Distinct(P ′), we can simply replace Distinct(P ′) with P ′.
Second, Project can be “pushed” upwards through all opera-
tors except Distinct . For instance, Join(Project(X,P1), P2)

can be rewritten as Project(X∪var(P2), Join(P1θ, P2)) with
θ a renaming of var(P1) \ X. Moreover, subsequent occur-
rences of Project can be merged since Project(X1 ∩ X2, P)
and Project(X1,Project(X2, P)) are equivalent.

To complete the proof, it suffices to show that Distinct
can be eliminated in every subpattern of Q of the form
Distinct(P) with P subquery-free. For this, we bring P
into the normal form of [34, Proposition 3.8] where Union
patterns are arguments only of other Union operators, and
then observe that Distinct(Union(P1, P2)) can be written as

Project(X,Union(Union(SetMinus(Distinct(P1), P2),

SetMinus(Distinct(P2), P1)),

Filter(eq(X, θ),Distinct(Join(P1, P2θ))))),

where X = var(P1) ∪ var(P2) and θ is a renaming of X. Al-
though this rewriting introduces an additional occurrence of
Project , this occurrence can be pushed up to the outermost
level (since, by construction, there is no Distinct between
the occurrence of Project and the outermost level of Q).

When all occurrences of Project and Union are above
Distinct we can simply erase all Distinct operators; indeed,
this does not change the semantics because in the absence of
Project or Union, mappings in the evaluation of a pattern
are pairwise incompatible (see [34] for details), and hence
Join, LeftJoin, and Filter cannot produce duplicates.

Corollary 1. The languages SparqlP , SparqlDand Sparql
have the same expressive power.

Under set semantics, Distinct is redundant so we can con-
clude that in this setting subqueries as patterns do not add
expressivity to Sparql. Thus, the obvious question is whether
subqueries in patterns can be completely eliminated under
bag semantics. Cohen [15] observed that query nesting in
SQL can cause a complex interplay between bag and set se-
mantics, which was then used by Angles and Gutierrez [4]
to conjecture that query nesting adds expressive power to
SPARQL. The claim in [4], however, comes without a proof,
and the example given of an inexpressible nested query can
in fact be rewritten in Sparql. A closer look at Cohen’s
techniques also reveals that they cannot be used for show-
ing inexpressibility. We now settle this question and show
that there exist SparqlPD queries that cannot be expressed
in Sparql (and by Corollary 1 also in SparqlP or SparqlD);
that is, query nesting cannot be fully eliminated.

Theorem 2. The language SparqlPD is strictly more ex-
pressive than Sparql.

Proof Sketch. We claim that the following query Q in
s-normal form is not expressible in Sparql:

Project({?x, ?y}, Join((?x, p, ?z),

Distinct(Project({?y}, (?y, q, ?u))))).

Indeed, consider graphs Gm,n, m,n ≥ 1, of the form

{ (a, p, b1), . . . , (a, p, bm), (c, q, d1), . . . , (c, q, dn) }.

Query Q evaluates on Gm,n to the multiset with m copies
of the mapping µ = {?x 7→ a, ?y 7→ c}. In contrast, every
Sparql query equivalent to Q modulo multiplicities evaluates
on Gm,n to a multiset Ω′ such that either cardΩ′(µ) = 1 or
cardΩ′(µ) = m · n. Intuitively, this is so because a Sparql
query cannot distinguish between the different bi and dj and

hence if a query of the form Project(X,P) returns µ once, it
must return all its m ·n copies. Of course, we can always use
Distinct in the query’s outermost level, but then we obtain
a single copy of µ instead of required m copies.

3.2 Subqueries within Expressions
Expressions in Sparql can only be constructed inductively

from other expressions; that is, it is not possible for other
constructs such as patterns or queries to occur within expres-
sions. In SPARQL 1.1, however, the construct exists can be
used to nest patterns within (possibly complex) expressions.

Consider the following query (Q2), which evaluates to the
single mapping {?n 7→ Charlie} on graph Gex in Figure 1.

(Q2) Find the names of people not working in CS.

SELECT ?n

WHERE {?x name ?n .

FILTER NOT EXISTS {?x department CS}}

To support queries such as (Q2), we introduce the exists
construct in the algebra as defined next.

Definition 4. Given any extension SparqlX of Sparql,
the language Sparql∃X further extends SparqlX by permitting
expressions of the form exists(P) for a pattern P . Its se-
mantics is as follows, for a mapping µ and graph G:

Jexists(P)Kµ,G =

{
true, if Jµ(P)KG is not empty,

false, otherwise.

Contrary to Sparql expressions, the semantics of exists de-
pends on the relevant RDF graph. Query (Q2) is written in
Sparql∃ as follows, where the expression in the filter evalu-
ates to true only for the mapping {?x 7→ c, ?n 7→ Charlie}:

Project({?n},
Filter(¬exists((?x, department ,CS)), (?x, name, ?n))).

The exists construct seems rather powerful as it makes the
languages of patterns and expressions mutually recursive.
Furthermore, expressions can occur not only as parameters
of Filter , but also in LeftJoin patterns. As we show next,
however, exists does not provide additional expressive power,
and can be fully simulated by means of other constructs. We
proceed according to the following three steps.

1. We first show that exists can be eliminated from LeftJoin
patterns. This is intuitively achieved by “pushing” com-
plex expressions from LeftJoin into Filter patterns.

2. We then show that any Filter pattern can be expressed
in terms of exists-free Filter patterns and patterns of the
form Filter(exists(P1), P2) and Filter(¬exists(P1), P2).

3. In the last step, we show that all patterns of the form
Filter(exists(P1), P2) and Filter(¬exists(P1), P2) can be
rewritten in terms of exists-free patterns only.

The first step is justified by the following lemma.

Lemma 1. Let Sparql∃X be any language extending Sparql
and allowing for exists expressions. For every Sparql∃X pat-
tern there exists an equivalent Sparql∃X pattern with each
LeftJoin subpattern of the form LeftJoin(eq(X, θ), P ′1, P

′
2).

Proof Sketch. Consider a pattern LeftJoin(E,P1, P2)
in Sparql∃X . We first construct P such that, for any G, JP KG
captures (with possibly incorrect multiplicities) all the map-
pings µ1 in JP1KG having a compatible µ2 in JP2KG such that

JEKµ1∪µ2,G is true or error extended with a “certificate” in
the form of a possible compatible extension. Such P can
be defined as follows, where E′ is an expression such that
JE′Kµ,G = true if JEKµ,G ∈ {true, error} and JE′Kµ,G = false
otherwise, X = var(P1)∪var(P2), and θ1 is a renaming of X:

Filter(E′θ1, Join(Filter(eq(X, θ1), Join(P1, P1θ1)), P2θ1)).

Then, we construct P ′ such that JP ′KG captures, with cor-
rect multiplicities, all mappings in JP1KG and not in JP KG.
For this, we use the following construction, which involves
fresh variables ?x, ?y, ?z and another renaming θ2 of X:

P ′ = Filter(¬bound(?x),LeftJoin(eq(X, θ2), P1, P
xθ2)),

where P x = Join(P, (?x, ?y, ?z)). The semantics of LeftJoin
then ensures that the pattern LeftJoin(E,P1, P2) is equiva-
lent to Union(Filter(E, Join(P1, P2)), P ′).

In the second step, we show that patterns Filter(E,P1)
where exists may occur arbitrarily (and more than once)
in E can be reduced to patterns Filter(E′, P2) where E′ is
either exists-free or is of the form (¬)exists(P).

Lemma 2. Let Sparql∃X be any extension of Sparql allow-
ing for exists. Each Sparql∃X pattern has an equivalent pat-
tern where each Filter-subpattern involving exists is of the
form Filter(exists(P2), P1) or Filter(¬exists(P2), P1).

Proof. Consider a Sparql∃X pattern of the form
Filter(E,P), where an expression exists(P ′) occurs in E.
Since exists(P ′) must evaluate to either true or false, we can
capture each possibility by replacing exists(P ′) in E by the
respective truth value to obtain the equivalent pattern

Union(Filter(exists(P ′),Filter(E[true], P)),

Filter(¬exists(P ′),Filter(E[false], P))),

where E[E′] is E with exists(P ′) replaced by E′.

For the final step, we observe that patterns of the form
Filter(¬exists(P2), P1) can be directly expressed in Sparql
(e.g., see [3, 8]), whereas patterns Filter(exists(P2), P1) can
be reduced to the former using the SetMinus operator.

Lemma 3. Let Sparql∃X be any language extending Sparql
and allowing for exists, and let P1, P2 be Sparql∃X patterns.
Then, Filter(¬exists(P2), P1) and Filter(exists(P2), P1) are
expressible in SparqlX .

Proof. A pattern of the form Filter(¬exists(P2), P1) can
be rewritten as follows, with ?x, ?y, and ?z fresh variables:

Filter(¬bound(?x),LeftJoin(true, P1, Join(P2, (?x,?y,?z)))).

In turn, a pattern of the form Filter(exists(P2), P1) is equiv-
alent to SetMinus(P1,Filter(¬exists(P2), P1)).

The following result then follows from Lemmas 1–3.

Theorem 3. Let Sparql∃X be a language extending Sparql
and allowing for exists. Then, Sparql∃X has the same expres-
sive power as SparqlX (i.e., the extension without exists).

4. ASSIGNMENT AND AGGREGATION
In addition to retrieving data, many applications require

the ability to perform some form of computation. SQL pro-
vides a wide range of constructs to this effect: on the one

hand, it allows for Boolean and arithmetic expressions for
computing new data values, which can subsequently be as-
signed to variables; on the other hand, it is equipped with
powerful constructs for grouping and aggregation. Formal-
ising these features requires a significant extension to the
relational algebra, which involves grouping and generalised
projection operators, and aggregate functions (e.g., see [22]).

The original SPARQL recommendation, however, did not
provide any such features. Although arithmetic expressions
were available, computed values could only be used as part
of filter conditions; thus, the means for assigning such values
to variables and subsequently return them in query answers
was missing. Similarly, SPARQL did not provide any sup-
port for grouping and aggregation, which limited its appli-
cability in many practical scenarios.

The standardisation of SPARQL 1.1 addressed these lim-
itations. As in SQL, introducing these features into the lan-
guage required an extended algebra, which, however, turned
out rather unconventional when compared to SQL.

Our aim in this section is to provide an in-depth for-
mal analysis of the SPARQL 1.1 assignment and aggrega-
tion algebra, which (to the best of our knowledge) has not
been studied in the literature. In Section 4.1 we study the
Extend operator, which provides the means for assigning
variables to complex expressions. In Section 4.2 we dis-
cuss the SPARQL 1.1 normative algebra for aggregation and
present its equivalent formalisation that closes unspecified
corner cases and makes ambiguous aspects of the specifica-
tion precise. Then, we demonstrate the power of the ag-
gregate algebra by showing that it is capable of expressing
variable assignment (i.e., Extend) as well as nested queries in
their full generality. In Section 4.3 we present a normal form
for aggregate algebra queries, which leads to a substantial
simplification of the SPARQL 1.1 aggregate algebra where
most of its unconventional aspects have been eliminated.

4.1 Variable Assignment to Expressions
SPARQL 1.1 provides binding constructs BIND and VALUES

and the alias construct AS for assigning values of complex ex-
pressions to variables. As an example, consider the following
query, where variables are assigned to computed values.

(Q3) Return people’s names with their salaries after 20% tax
and flags indicating whether they work in the CS department.

SELECT ?n (0.8 * ?s AS ?t) ?c

WHERE {?x name ?n . ?x salary ?s .

?x department ?d BIND (?d=CS AS ?c)}

Over graph Gex, query (Q3) yields mappings such as
{?n 7→ Alice, ?t 7→ 2400, ?c 7→ true}, indicating Alice’s net
salary and the fact that she works in the CS department.

To support such queries, the SPARQL 1.1 algebra pro-
vides the Extend operator as defined next.

Definition 5. Given any extension SparqlX of Sparql,
the language SparqlXE further extends SparqlX by permitting
patterns of the form Extend(?x,E, P), where ?x is a vari-
able not in var(P), E is an expression, and P is a pattern.
For a graph G, its semantics is as follows:

JExtend(?x,E, P)KG =
{|µ′ | µ∈ JP KG, µ′=µ∪{?x 7→ JEKµ,G}, JEKµ,G 6= error |}]
{|µ | µ ∈ JP KG, JEKµ,G = error |}.

We also set var(Extend(?x,E, P)) = {?x} ∪ var(P).

For instance, (Q3) is translated into the algebra as follows:

Project({?n, ?t, ?c},Extend(?t, 0.8 ∗ ?s,

Extend(?c, ?d = CS , Join((?x,name, ?n),

Join((?x, salary , ?s), (?x, department , ?d)))))).

Unsurprisingly, adding Extend to the language increases
its expressive power, since it provides means for queries to
return values that do not occur in the queried graph.

Proposition 2. The language SparqlPDE is strictly more
expressive than SparqlPD .

Proof. Let the query Q be defined as follows:

Project({?x},Extend(?x, bound(?y), (?y, a, a))).

JQKG contains the mapping {?x 7→ true} for G = {(a, a, a)}.
However, any SparqlPD query Q′ has µ(?z) = a for each µ ∈
JQ′KG and ?z ∈ dom(µ′), so it is not equivalent to Q.

The standard notion of expressive power, however, is not
well-suited for dealing with constructs such as Extend . As-
sume a very restricted use of Extend where only a Boolean
expression that always evaluates to false is allowed; although
a query could still introduce a fresh value not occurring in
the graph, this is done in a trivial way and hence one could
argue that there is no actual gain in expressive power in this
case. We next introduce a more liberal notion of expressive
power derived from [3,37]. This notion is based on a general-
isation of query equivalence which allows for changes in the
input graph; these changes are, however, far from arbitrary
and need to be uniform across all queries.

Definition 6. Let L1 = (Q1, J.K1
.) and L2 = (Q2, J.K2

.)
be languages, I′ be a finite subset of the set I of IRIs, and
T′ = I′∪B∪L. Let f be a (computable) function from graphs
over T′ to general graphs over T such that f(G) = G∪G′ for
any G, where G′ is a graph not using IRIs in I′. A query
Q1 ∈ Q1 over T′ is f -expressible by a query Q2 ∈ Q2 if
JQ1K1

G = JQ2K2
f(G) for every graph G over T′. Language L2

is weakly more expressive than L1 if for every finite set of
IRIs I′ there exists some f such that each query in L1 over
T′ is f-expressible by a query in L2. The associated strict
notion and the notion of equivalence in expressive power are
defined in the obvious way.

We next show a surprising result: SparqlPDE and SparqlPD

are equivalent under this generalised notion of expressive
power, provided that expressions in Extend patterns are
restricted to be Boolean-valued. This implies that con-
structs such as BIND in queries such as (Q3) can be captured
by query-independent functions for transforming the input
graphs. Intuitively, if the values assigned to variables in
Extend-patterns range over a finite domain D, applications
of Extend can be simulated using Filter and Union when
evaluated over a graph extended by an enumeration of D.

Theorem 4. Let SparqlboolPDE extend SparqlPD by allowing
patterns Extend(?x,E, P) with expression E evaluating only
to Boolean values. Then, SparqlboolPDE and SparqlPD are weakly
equivalent in expressive power.

Proof. We show that SparqlPD is weakly more expres-
sive than SparqlboolPDE , the other direction is straightforward.
Given a finite I′, let ut, uf , u ∈ I \ I′ and consider f such
that f(G) = G ∪ {(ut, u, true), (uf , u, false)} for any G.
Then every SparqlboolPDE query Q1 over T′ is f -expressible by
a SparqlPD query constructed by the following two steps:

1. replace each (s, p, o) in Q1 by Filter(¬(p
.
= u), (s, p, o));

2. replace each subpattern Extend(?x,E, P) by

Union(Union(Join((ut, u, ?x),Filter(E,P)),

Join((uf , u, ?x),Filter(¬E,P))),

SetMinus(P,Filter(E ∨ ¬E,P))).

Note that the SetMinus subpattern corresponds to mappings
for which E evaluates to error .

If we consider general expressions, however, Extend intro-
duces arbitrary arithmetic in the language—something that
cannot be simulated by query-independent transformations.

Theorem 5. Language SparqlPDE is strictly weakly more
expressive than SparqlPD .

Similarly, SparqlPD remains strictly more expressive than
Sparql even under the generalised notion of expressive power,
which can be proved similarly to Theorem 2.

4.2 The Aggregate Algebra
SPARQL 1.1 and SQL provide similar functionality for ag-

gregation: grouping is used to define equivalence classes of
solution mappings over which aggregate functions are sub-
sequently applied. Consider the following example query.

(Q4) Return the total employee salary per department, but
considering only departments having at least two employees.

SELECT ?d (SUM(?s) AS ?n)

WHERE {?x department ?d . ?x salary ?s}

GROUP BY ?d

HAVING COUNT(?x) > 1

Over Gex, (Q4) evaluates to {?d 7→ CS, ?n 7→ 7000}, since
the CS department is the only one with several employees
and the total salary of Bob and Alice is 7000.

The SPARQL 1.1 aggregate algebra, however, has several
unconventional features when compared with SQL:

(F1) groups and aggregates are seen as first-class citizens
of the algebra, which are defined independently using
dedicated constructs Group and Aggregate;

(F2) grouping is allowed on arbitrary lists of expressions,
and not just on lists of variables; and

(F3) aggregation is also allowed on arbitrary lists of expres-
sions, and not just on single expressions.

Both groups and aggregates deal with lists of expressions,
which evaluate to v-lists: lists of values in T ∪ {error}. In
particular, JEKµ,G = [JE1Kµ,G, . . . , JEkKµ,G] for a list of ex-
pressions E = [E1, . . . , Ek].

We start our discussion by introducing groups as first-
class citizens of the algebra. Roughly speaking, a group
induces a partitioning of a pattern’s solution mappings into
equivalence classes, each of which is determined by a key
obtained from the evaluation of a list of expressions.

Definition 7. A group Γ is a construct Group(E,P) with
E a list of expressions and P a pattern. The evaluation JΓKG
of Γ over a graph G is a partial function from v-lists to mul-
tisets of mappings that is defined for all v-lists Key = JEKµ,G
with µ ∈ JP KG as follows:

JΓKG(Key) = {|µ′ | µ′ ∈ JP KG, JEKµ′,G = Key |}.

As in SQL, aggregate functions in SPARQL 1.1 (e.g., SUM
in query (Q4)) allow us to compute a single value for each

group of solution mappings. In the relational case, they are
functions from multisets of values to a single value [14]. Due
to (F3), aggregate functions in SPARQL 1.1 deal with more
complex structures involving multisets of v-lists. To han-
dle them, SPARQL 1.1 introduces a function Flatten, which
maps each multiset Λ of v-lists to the multiset Θ of values
in T ∪ {error} having as base the values in Λ and having
cardΘ(v) =

∑
λ∈Λ(cardΛ(λ) × nv,λ) for each such value v,

where nv,λ is the number of appearances of v in λ.
SPARQL 1.1 provides aggregate functions analogous to

those in SQL. Differences stem mostly from the treatment
of lists and errors.

Definition 8. Let ≺ be a total order on values that ex-
tends the usual orders on literals and such that error ≺ b ≺
u ≺ ` for any b ∈ B, u ∈ I, ` ∈ L. A SPARQL 1.1 aggregate
function is one of the following functions, mapping multisets
of v-lists Λ to values in T ∪ {error}, where Θ = Flatten(Λ):

– Count(Λ) =
∑
v∈Θ,v 6=error cardΘ(v);

– Sum(Λ) is
∑
v∈Θ(cardΘ(v) × v) if all the values in Λ are

numbers, and error otherwise;
– Avg(Λ) is 0 if Count(Λ) = 0 and Sum(Λ) /Count(Λ) oth-

erwise (in particular, it is error if Sum(Λ) = error);
– Min(Λ) is ≺-min value in Θ if Θ 6= ∅ and error otherwise;
– Max(Λ) is ≺-max value in Θ if Θ 6= ∅ and error otherwise;
– Sample(Λ) is some value in Θ if Θ 6=∅ and error otherwise.

Finally, CountD, SumD, and AvgD are defined as their coun-
terparts Count, Sum, and Avg, but applied to the multiset of
v-lists obtained from Λ by removing duplicates.

Note that error does not contribute to Count, but may
affect the results of other functions. Note also that Sample
is non-deterministic. We use Id as its synonym whenever,
by construction, Flatten(Λ) consists of a single value (with
any cardinality); thus, Id is deterministic.

We now define the aggregate construct, which computes a
single value for each group by means of aggregate functions.

Definition 9. An aggregate A is a construct of the form
Aggregate(F, f,Γ), for F a list of expressions, f an aggre-
gate function, and Γ = Group(E, P) a group. The evaluation
JAKG of A over a graph G is the partial function from v-lists
to values such that, for each Key in the domain of JΓKG,

JAKG(Key) = f({|Λ | µ ∈ JΓKG(Key),Λ = JFKµ,G |}).

Finally, the algebra provides the AggregateJoin construct
to combine aggregates A1, . . . , An to form a pattern P . The
semantics mandates that JP KG contain a mapping µKey for
each v-list in the domain of all JAiKG; each µKey defines
variables ?xi to record the values of Ai for that v-list.

Definition 10. Let SparqlX extend Sparql. The language
SparqlAX extends SparqlX by allowing patterns of the form
AggregateJoinx(A), with x = [?x1, . . . , ?xn] a list of vari-
ables and A = [A1, . . . , An] a list of aggregates. For a
graph G and intersection Λ of the domains of all Ai,

JAggregateJoinx(A)KG =
⊎

Key∈Λ
{|µ |

µ = {?xi 7→ v | 1 ≤ i ≤ n, v = JAiKG(Key), v 6= error} |}.

We also set var(AggregateJoinx(A)) = {?x1, . . . , ?xn}.

Our query (Q4) translates into the algebra as given next,
where we have a single group over departments, and aggre-
gates A2 and A3 for counting and summation; an additional

aggregate A1 is required to store the keys of the groups and
incorporate them into a pattern using AggregateJoin:

Project({?d, ?n},Extend(?n, ?v2,Extend(?d, ?v1, P1))),with

P1 = Filter(1< ?v3,AggregateJoin [?v1,?v2,?v3]([A1, A2, A3])),

A1 = Aggregate([?d], Id,Group([?d], P2)),

A2 = Aggregate([?s], Sum,Group([?d], P2)),

A3 = Aggregate([?x],Count,Group([?d], P2)),

P2 = Join((?x, department , ?d), (?x, salary , ?s)).

The operators Group, Aggregate and AggregateJoin pro-
vide a great deal of power and flexibility to the query lan-
guage. We next show that, when added to Sparql, these
operators are sufficiently expressive to capture all forms of
query nesting and variable assignment discussed so far.

Theorem 6. Languages SparqlA and SparqlAPDE have the
same expressive power.

Proof. We first express Extend(?x,E, P) in SparqlAP . For
x = [?x1, . . . , ?xn] an enumeration of var(P) let

PE = AggregateJoin [?x,?x1,...,?xn]([A,A1, . . . , An]), where

Ai = Aggregate([?xi], Id,Group(x, P)), 1 ≤ i ≤ n,
A = Aggregate([E], Id,Group(x, P)).

The evaluation of PE has the same mappings as the evalua-
tion of Extend(?x,E, P), but all with multiplicities 1. Con-
sider the following pattern, with θ a renaming of var(P),
which is fully equivalent to Extend(?x,E, P):

Project({?x} ∪ var(P),Filter(eq(var(P), θ), Join(P, PEθ))).

Patterns Distinct(P) can be expressed similarly. Finally,
Project can be pushed upwards through Sparql operators
as in Theorem 1. Thus, it suffices to show that Project
can be eliminated from Γ = Group(E,Project(X,P)) in
Aggregate(F, f,Γ). We can do so by replacing Project(X,P)
in Γ by Pθ′, with θ′ a renaming of var(P) \X.

4.3 Normalisation and Simplification
We now show that features (F2) and (F3) in the aggregate

algebra do not add expressive power: every query can be
rewritten into a normal form where grouping is only allowed
over lists of variables rather than arbitrary expressions, and
aggregation is done only over singleton lists. Moreover, our
normal form dispenses with the functions CountD, SumD
and AvgD, and hence shows that it suffices to consider ag-
gregate functions that do not involve duplicate elimination.

Definition 11. A SparqlA query is in a-normal form if
each group is of the form Group(x, P) with x a list of vari-
ables and each aggregate is of the form Aggregate([E], f,Γ)
with f different from CountD, SumD, and AvgD.

Next we show that a-normalisation is always feasible.

Theorem 7. Every SparqlA query admits an equivalent
SparqlA query in a-normal form.

Proof Sketch. We first show that the aggregate func-
tions with duplicate elimination can be rewritten using their
usual counterparts. Let fD ∈ {CountD, SumD,AvgD} and
A1 = Aggregate(F, fD,Group(E, P1)) with F = [F1, . . . , Fm]
and E = [E1, . . . , Ek]. We can check that A1 is equivalent
to the following aggregate A′1, where x = [?x1, . . . , ?xm] and

y = [?y1, . . . , ?yk] are lists of fresh variables, and · denotes
list concatenation:

A?xi = Aggregate([Fi], Id,Group(F ·E, P1)), 1 ≤ i ≤ m,
A?yj = Aggregate([Ej], Id,Group(F ·E, P1)), 1 ≤ j ≤ k,
P ′1 = AggregateJoinx·y(A?x1 , . . . , A?xm , A?y1 , . . . , A?yk),

A′1 = Aggregate(x, f,Group(y, P ′1)).

Second, we prove that grouping over lists of expressions
can be reduced to grouping over lists of variables by ex-
ploiting the Extend operator. For this, we show that an
aggregate A2 = Aggregate(F, f,Group(E, P2)) with E =
[E1, . . . , Em] is equivalent to the following aggregate A′2,
where x = [?x1, . . . , ?xm] is a list of fresh variables:

P ′2 = Extend(?x1, E1, . . . ,Extend(?xn, Em, P2) . . .),

A′2 = Aggregate(F, f,Group(x, P ′2)).

By Theorem 6, Extend in P ′2 is inessential as it is expressible
using normalised grouping and aggregation constructs.

For the last step, note that lists of expressions in aggre-
gates can be reduced to single expressions by aggregating the
expressions in the list; e.g., for Avg, aggregating over the list
[E1, . . . , En] is equivalent to aggregating over (Σni=1Ei)/n.
Unlike the previous two steps, this step is sensitive to the
particular aggregate functions available in SPARQL.

The normal form in Definition 11 already provides a sig-
nificant simplification of the algebra. Indeed, features (F2)
and (F3) are inconsequential; also the definition of aggregate
functions can be made more transparent: not only the func-
tions involving duplicate elimination can be dispensed with,
but also the function Flatten is inessential since aggregation
is performed over a single expression rather than a list.

We next show that feature (F1) is also immaterial; that
is, we can collapse the Group, Aggregate and AggregateJoin
constructs into a single pattern operator without affecting
the expressive power of the language. This further simpli-
fication not only brings the SPARQL 1.1 aggregate algebra
closer to its relational counterpart, but can also be exploited
to make the mapping from SPARQL 1.1 syntax into the
algebra much more direct and transparent. The following
definition specifies the aforementioned combined operator.

Definition 12. The language SparqlAs extends Sparql by
permitting patterns of the form GroupAgg(X, ?z, f, E, P),
where X is a set of variables, ?z another variable, f an ag-
gregate function, E an expression, and P a pattern. Given
a graph G and a mapping µ ∈ JP KG, let

vµ = f({| v | µ′ ∈ JP KG, µ′|X = µ|X , v = JEKµ′,G |}),

where ν|X is the restriction of ν to X. Then, the evaluation
JGroupAgg(X, ?z, f, E, P)KG is the multiset with base set

{µ′ | µ′ = µ|X ∪ {?z 7→ vµ}, µ ∈ JP KG, vµ 6= error} ∪
{µ′ | µ′ = µ|X , µ ∈ JP KG, vµ = error},

and multiplicity 1 for each mapping in the base set. We also
set var(GroupAgg(X, ?z, f, E, P)) = X ∪ {?z}.

The GroupAgg construct is close to the grouping operator
in the relational algebra (see [22, Chapter 5]): X represents
the set of grouping variables, ?z is the fresh variable storing
the aggregation result, f is the aggregate function, and E
is the expression (often a variable) we are aggregating over.

Query (Q4) can be written in a more natural way as follows
(exists is used for succinctness and can be dispensed with):

Filter(exists(P2), P1), with

P1 = GroupAgg({?d}, ?n,Sum, ?s, P3),

P2 = Filter(1 < ?v,GroupAgg({?d}, ?v,Count, ?x, P3)),

P3 = Join((?x, dept , ?d), (?x, salary , ?s)).

The following theorem establishes that the GroupAgg con-
struct captures all grouping and aggregation of SPARQL 1.1.

Theorem 8. The languages SparqlAs and SparqlA have
the same expressive power.

Proof. We first show that every SparqlAs pattern P =
GroupAgg({?x1, . . . ,?xn}, ?z, f, E, P ′) has an equivalent pat-
tern in SparqlA. We take Γ = Group([?x1, . . . , ?xn], P ′),
record the values of the grouping variables in each group
using aggregates Ai = Aggregate([?xi], Id,Γ), 1 ≤ i ≤ n, and
capture the value of E using A = Aggregate([E], f,Γ). Then,
P is equivalent to AggregateJoin [?x1,...,?xn,?z]

(A1, . . . , An, A).
For the other direction, we give here a reduction from

SparqlA to SparqlAs
P , the fragment with projection (a reduc-

tion to SparqlAs is similar but less transparent). Consider
a SparqlA pattern P = AggregateJoin [?z1,...,?zn](A1, . . . , An)
in a-normal form withAi = Aggregate([Ei], fi,Group(xi, Pi))
for 1 ≤ i ≤ n. Assume without loss of generality that
all xi are of the same length m since otherwise P evalu-
ates to empty. Let Y = {?y1, . . . , ?ym} be fresh variables
and, for 1 ≤ i ≤ n, let θi be a renaming from variables xi
to corresponding variables in Y . We simulate each Ai by
pattern P ′i = GroupAgg(Y, ?zi, fi, Eiθi, Piθi). We combine
these patterns as follows, with φi, 1 ≤ i < n, renamings of
Y to fresh Yi:

P ′ = Project({?z1, . . . , ?zn},
Filter(eq(Y, φ1), . . . ,Filter(eq(Y, φn−1),

Join(P ′1φ1, . . . , Join(P ′n−1φn−1, P
′
n) . . .)) . . .)).

We have that P ′ is equivalent to P .

5. ANALYTIC AGGREGATE QUERIES
An increasing number of applications of semantic tech-

nologies require the analysis of data for effective decision
making. In the databases and data warehousing literature,
this activity is referred to as OLAP and it involves the ex-
ecution of complex aggregate queries. In what follows, we
exploit our algebra SparqlAs to provide a transparent seman-
tics for different types of OLAP queries.

The natural way of thinking about OLAP queries is in
terms of a multidimensional data model, which defines mea-
sures, such as “sales” in an online store application, and
its corresponding dimensions, such as “product”, “year”, or
“country”. In this setting, a basic operation consists of ag-
gregating a measure over one or more dimensions (e.g., to
determine the total sales per year and product), which can
be realised by simply grouping over the relevant dimensions
and aggregating over the given measure.

A more complex form of OLAP queries involves aggregat-
ing over many subsets of dimensions at the same time. Given
k dimensions, a cube query aggregates the measure over all
of the possible 2k subsets of these dimensions. The output
of the query involves the values of both the measure and the
dimensions, and a special symbol is used to indicate that

a particular dimension has been aggregated over. In SQL,
cube queries are supported by extending the GROUP BY con-
struct with the CUBE keyword, which indicates that grouping
must be performed on all subsets of the grouping attributes.

Our algebra can be extended with a cube operator in a
natural and seamless way as given next.

Definition 13. For X a set of variables, ?z another vari-
able, f an aggregate function, E an expression, and P a
pattern, Cube(X, ?z, f, E, P) is a pattern with the following
semantics, where all is a special value not in T:⊎

Y⊆X
{|µ′ | µ ∈ JGroupAgg(Y, ?z, f, E, P)KG,

µ′ = µ ∪ {?x 7→ all | ?x ∈ X \ Y } |}.

The special symbol all is similar to error but has a dif-
ferent semantics. This is in contrast to SQL where NULL
values, which carry a different semantics for arithmetic and
comparison operators, are used. Rather than a dedicated
value all , we could have chosen to leave the relevant vari-
ables unbound; this, however, would yield counter-intuitive
results when further applying operators such as Join.

The semantics of Cube suggests a straightforward trans-
lation to our algebra using GroupAgg , Extend , and Union.

Proposition 3. Cube is expressible in SparqlAs .

Proof. Given Cube(X, ?z, f, E, P), let, for Y ⊆ X,

PY = Extend(?x1, all, . . .

Extend(?xn, all,GroupAgg(Y, ?z, f, E, P))),

where {?x1, . . . , ?xn} = X \ Y . Then Cube(X, ?z, f, E, P)
is equivalent to Union(PY1 , . . . ,Union(PYm−1 , PYm)) where
Y1, . . . , Ym are all the subsets of X.

We conclude by discussing window-based operators, which
are heavily used in OLAP queries involving trend analysis
over time. In the relational case, a window identifies a set
of rows “around” each individual row in a relation. Once a
window has been identified, we can aggregate over the win-
dow for each row and extend the row with the result. There
is an important difference between groups and windows: the
former partition the rows of a relation and compute a value
for each partition, whereas the latter compute a different
value for each row according to its associated window.

Definition 14. Given a pattern P , an expression Fθ over
var(P) ∪ var(Pθ) for a renaming θ, a variable ?z 6∈ var(P),
an aggregate function f , and an expression E over var(P),
the construct AggWindow(Fθ, ?z, f, E, P) is a pattern. For
a graph G and mapping µ, let

vµ = f({| v | µ′ ∈ JP KG, JFθKµ∪µ′θ,G = true, v = JEKµ′,G |}).

Then the semantics of AggWindow is as follows:

JAggWindow(Fθ, ?z, f, E, P)KG =
{|µ′ | µ ∈ JP KG, µ′ = µ ∪ {?z 7→ vµ}, vµ 6= error |}]
{|µ | µ ∈ JP KG, vµ = error |}.

Note that the expression Fθ specifies a window (i.e., a mul-
tiset of “surrounding” mappings) for a specific mapping µ;
in turn, AggWindow is used to compute an aggregate value
for each mapping based on its corresponding window.

This operator can also be expressed in our algebra.

Proposition 4. AggWindow is expressible in SparqlAs .

Proof Sketch. Any pattern AggWindow(Fθ,?z,f,E,P)
is equivalent to the pattern

Project(var(P) ∪ {?z},
Filter(eq(var(P), θ′), Join(P,Distinct(P ′θ′)))),

where θ′ is another renaming of var(P) to fresh variables and
P ′ = GroupAgg(var(P), ?z, f, E,Filter(Fθ, Join(P, Pθ))).

Note that JP ′KG and JAggWindow(Fθ, ?z, f, E, P)KG coin-
cide when interpreted as sets; the additional transformations
are applied to P ′ to obtain the correct multiplicities.

6. ADDITIONAL CONSIDERATIONS
We have made several simplifying assumptions that made

us deviate from the standard. First, we have omitted the
non-deterministic aggregate function GroupConcat; it can
be treated similarly to the other aggregate functions. Sec-
ond, we have considered only expressions already available
in SPARQL, whereas SPARQL 1.1 defines a richer language
for expressions. Third, we have assumed that patterns do
not contain blank nodes. Finally, we have assumed that the
result of a query is a multiset of mappings, where the stan-
dard defines it as a list. The purpose of this section is to
discuss how the last three assumptions affect our results.

Expressions We focus on two constructs due to their po-
tential implications: ternary if, which computes one of two
expressions depending on the evaluation of a third one, and
coalesce, which allows us to “recover” from errors.

Definition 15. If E1, E2 and E3 are expressions then
if(E1, E2, E3) is an expression with the following semantics:
for a mapping µ and graph G the value Jif(E1, E2, E3)Kµ,G is
JE2Kµ,G if JE1Kµ,G = true, it is JE3Kµ,G if JE1Kµ,G = false,
and error otherwise.

If E = [E1, . . . , En] is a list of expressions then coalesce(E)
is an expression with the following semantics: for µ and G
the value Jcoalesce(E)Kµ,G is error if JEiKµ,G = error for
each 1 ≤ i ≤ n, and JEjKµ,G otherwise, for the smallest j
with JEjKµ,G 6= error.

We next show that these expressions can be rewritten in
terms of Sparql expressions, and hence their introduction is
immaterial to our results in this paper.

Proposition 5. Expressions with if and coalesce are ex-
pressible in both Sparql and SparqlAs .

Proof. For Sparql, by Lemma 1, it suffices to eliminate
expressions with if and coalesce in Filter -subpatterns. This
is achieved for if by exhaustively applying the following rule:

Filter(E[if(E1, E2, E3)], P) ;

Union(Union(Filter(E1 ∧E[E2], P),

Filter(¬E1 ∧E[E3], P)),

Filter(E[E1],SetMinus(P,Filter(E1 ∨ ¬E1, P)))).

Similarly, we replace Filter(E[coalesce([E1, E2])], P) with

Union(Filter((E1 ∨ ¬E1) ∧ E[E1], P),
Filter(E[E2],SetMinus(P,Filter(E1 ∨ ¬E1, P)))),

and coalesce over longer lists can be treated analogously. For
SparqlAs we need to eliminate if and coalesce from GroupAgg-
patterns as well, which can be done similarly.

Blank Nodes SPARQL triple patterns may contain blank
nodes in subject and object position, which we disallowed in
Section 2. Furthermore, SPARQL introduces BGPs—sets
of triple patterns—as a separate construct, which we did
not consider. Roughly speaking, blank nodes in BGPs are
treated as variables for the purposes of pattern-graph match-
ing; in contrast to variables, however, the scope of blank
nodes is confined to the BGP in which they occur. The effect
of blank nodes within BGPs can be simulated in our algebra
by using projection: given a BGP P having variables X and
blank nodes B, we have that JP KG = JProject(X,Pθ)KG,
where θ is a renaming of B to fresh variables. As shown
in Section 3, projection in patterns does not add expres-
sive power to Sparql, and hence neither does allowing BGPs
and blank nodes. Note, however, that in combination with
Distinct at pattern level, blank nodes do lead to an in-
crease in expressive power since they introduce projection
and hence the proof of Theorem 2 can be easily adapted.

Lists of Solutions We have so far treated the seman-
tics of patterns and queries uniformly in terms of multisets,
which simplifies the algebra by avoiding numerous type con-
versions. The standard, however, defines query evaluation
in terms of lists (ordered sequences of mappings). The stan-
dard also defines solution modifiers for queries, such as Slice
and OrderBy , the semantics of which depends on the order
of mappings in the solution sequence of the query.

We next argue that dispensing with lists altogether does
not essentially affect any of our results. Given a multiset Ω
of mappings, let ΛΩ be the set of all lists of mappings that
coincide with Ω when disregarding the order of elements.
Furthermore, let h be the function that translates queries
from any our algebra SparqlX into the normative one by
adding the necessary type conversions between multisets and
lists. Then for every SparqlX query Q and graph G, we have
JQKG = Ω if and only if Jh(Q)KstdG ∈ ΛΩ, where J·Kstd· is the
list evaluation function defined in the SPARQL standard.
This correspondence demonstrates an additional benefit of
using multisets rather than lists: every query evaluates to a
unique multiset (except the ones using the non-deterministic
aggregate function Sample), whereas the evaluation to a list
of solutions is non-deterministic even for very simple queries.

7. CONCLUSION AND FUTURE WORK
In this paper we have presented a first in-depth analysis of

the SPARQL 1.1 subquery and aggregate algebra. Our in-
vestigation has shed light on the complex inter-dependencies
between the algebraic operators that enable query nesting,
variable assignment, and aggregation, which are critical to
many emerging applications of semantic technologies.

We see many possible avenues for future work. We are
planning to study the interaction between aggregation and
query nesting operators with other features of SPARQL 1.1
such as property paths, entailment regimes, and query feder-
ation. Furthermore, there have been proposals for an exten-
sion of SPARQL with stream reasoning and event processing
features [5, 10, 13] as well as with analytical queries [19]; it
would be interesting to study the connections between these
languages and the SPARQL 1.1 normative algebra.

8. ACKNOWLEDGMENTS
Work supported by the Royal Society and the EPSRC

projects MaSI3, Score!, DBOnto, and ED3.

9. REFERENCES

[1] A. Abelló, O. Romero, T. B. Pedersen, R. B. Llavori,
V. Nebot, M. J. A. Cabo, and A. Simitsis. Using
semantic web technologies for exploratory OLAP: A
survey. IEEE TKDE, 27(2):571–588, 2015.

[2] S. Ahmetaj, W. Fischl, R. Pichler, M. Simkus, and
S. Skritek. Towards reconciling SPARQL and certain
answers. In WWW, pages 23–33, 2015.

[3] R. Angles and C. Gutierrez. The expressive power of
SPARQL. In ISWC, pages 114–129, 2008.

[4] R. Angles and C. Gutierrez. Subqueries in SPARQL.
In AMW, 2011.

[5] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic.
EP-SPARQL: A unified language for event processing
and stream reasoning. In WWW, pages 635–644, 2011.

[6] M. Arenas, S. Conca, and J. Pérez. Counting beyond a
yottabyte, or how SPARQL 1.1 property paths will
prevent adoption of the standard. In WWW, pages
629–638, 2012.

[7] M. Arenas, G. Gottlob, and A. Pieris. Expressive
languages for querying the semantic web. In PODS,
pages 14–26, 2014.

[8] M. Arenas and J. Pérez. Querying semantic web data
with SPARQL. In PODS, pages 305–316, 2011.

[9] E. A. Azirani, F. Goasdoué, I. Manolescu, and
A. Roatiş. Efficient OLAP operations for RDF
analytics. In ICDE Workshops, pages 71–76, 2015.

[10] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and
M. Grossniklaus. C-SPARQL: a continuous query
language for RDF data streams. Int. J. Semantic
Comput., 4(1):3–25, 2010.

[11] C. Buil Aranda, M. Arenas, Ó. Corcho, and
A. Polleres. Federating queries in SPARQL 1.1:
Syntax, semantics and evaluation. J. Web Sem.,
18(1):1–17, 2013.

[12] C. Buil Aranda, A. Polleres, and J. Umbrich.
Strategies for executing federated queries in
SPARQL1.1. In ISWC, pages 390–405, 2014.

[13] J. Calbimonte, H. Jeung, Ó. Corcho, and K. Aberer.
Enabling query technologies for the semantic sensor
web. Int. J. Semantic Web Inf. Syst., 8(1):43–63, 2012.

[14] S. Cohen. Containment of aggregate queries. SIGMOD
Record, 34(1):77–85, 2005.

[15] S. Cohen. Equivalence of queries combining set and
bag-set semantics. In PODS, pages 70–79, 2006.

[16] S. Cohen. Equivalence of queries that are sensitive to
multiplicities. VLDB J., 18(3):765–785, 2009.

[17] S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries
with arbitrary aggregation functions using views.
ACM TODS, 31(2):672–715, 2006.

[18] S. Cohen, W. Nutt, and Y. Sagiv. Deciding
equivalences among conjunctive aggregate queries. J.
ACM, 54(2), 2007.

[19] D. Colazzo, F. Goasdoué, I. Manolescu, and A. Roatis.
RDF analytics: lenses over semantic graphs. In
WWW, pages 467–478, 2014.

[20] R. Cyganiak and D. Reynolds (Editors). The RDF
data cube vocabulary. W3C recommendation, W3C,
Jan. 2014.

[21] L. Etcheverry and A. A. Vaisman. Enhancing OLAP
analysis with web cubes. In ESWC, pages 469–483,
2012.

[22] H. Garćıa-Molina, J. D. Ullman, and J. Widom.
Database Dystems: The Complete Book. Pearson
Education, 2nd edition, 2009.

[23] S. Harris and A. Seaborne. SPARQL 1.1 query
language. W3C recommendation, W3C, Mar. 2013.

[24] L. Hella, L. Libkin, J. Nurmonen, and L. Wong.
Logics with aggregate operators. J. ACM,
48(4):880–907, 2001.

[25] D. Ibragimov, K. Hose, T. B. Pedersen, and
E. Zimányi. Processing aggregate queries in a
federation of SPARQL endpoints. In ESWC, pages
269–285, 2015.

[26] R. Kontchakov, M. Rezk, M. Rodriguez-Muro,
G. Xiao, and M. Zakharyaschev. Answering SPARQL
queries over databases under OWL 2 QL entailment
regime. In ISWC, pages 552–567, 2014.

[27] E. V. Kostylev and B. Cuenca Grau. On the semantics
of SPARQL queries with optional matching under
entailment regimes. In ISWC, pages 374–389, 2014.

[28] E. V. Kostylev, J. L. Reutter, M. Romero Orth, and
D. Vrgoc. SPARQL with Property Paths. In ISWC,
pages 3–18, 2015.

[29] E. V. Kostylev, J. L. Reutter, and M. Ugarte.
CONSTRUCT queries in SPARQL. In ICDT, pages
212–229, 2015.

[30] A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static
analysis and optimization of semantic web queries.
ACM TODS, 38(4), 2013.

[31] L. Libkin. Logics with counting and local properties.
ACM TOCL, 1(1):33–59, 2000.

[32] L. Libkin. Expressive power of SQL. Theor. Comput.
Sci., 296(3):379–404, 2003.

[33] K. Losemann and W. Martens. The complexity of
evaluating path expressions in SPARQL. In PODS,
pages 101–112, 2012.

[34] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM TODS, 34(3), 2009.

[35] A. Polleres. From SPARQL to rules (and back). In
WWW, pages 787–796, 2007.

[36] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C recommendation, W3C, Jan.
2008.

[37] P. Schäuble and B. Wüthrich. On the expressive power
of query languages. ACM TOIS, 12(1):69–91, 1994.

[38] M. Schmidt, M. Meier, and G. Lausen. Foundations of
SPARQL query optimization. In ICDT, pages 4–33,
2010.

[39] N. Schweikardt. Arithmetic, first-order logic, and
counting quantifiers. ACM TOCL, 6(3):634–671, 2005.

[40] X. Zhang and J. Van den Bussche. On the primitivity
of operators in SPARQL. Inf. Process. Lett.,
114(9):480–485, 2014.

[41] X. Zhang and J. Van den Bussche. On the power of
SPARQL in expressing navigational queries. Comput.
J., 58(11):2841–2851, 2015.

[42] P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on
warehousing and OLAP multidimensional networks. In
SIGMOD, pages 853–864, 2011.

