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Abstract. InKreSAT is a prover for the modal logics K, T, K4, and S4.
InKreSAT reduces a given modal satisfiability problem to a Boolean
satisfiability problem, which is then solved using a SAT solver. InKreSAT
improves on previous work by proceeding incrementally. It interleaves
translation steps with calls to the SAT solver and uses the feedback
provided by the SAT solver to guide the translation. This results in better
performance and allows to integrate blocking mechanisms known from
modal tableau provers. Blocking, in turn, further improves performance
and makes the approach applicable to the logics K4 and S4.

1 Introduction

InKreSAT is a prover for the modal logics K, T, K4, and S4 [3] that works by
encoding modal formulas into SAT. The idea of a modal prover based on SAT
encoding has previously been explored by Sebastiani and Vescovi [15]. While
building on the same basic idea, InKreSAT extends the approach in [15] in
several ways. Rather than encoding the entire modal formula in one go and
then running a SAT solver on the resulting set of clauses, InKreSAT interleaves
encoding phases with calls to an incremental SAT solver. If the SAT solver
returns unsatisfiable, the initial modal problem is unsatisfiable, so no further
encoding needs to be done. Otherwise, the SAT solver returns a propositional
model of a partial encoding of the modal formula, which is used by InKreSAT
to guide further encoding steps. While InKreSAT is the first system that decides
modal satisfiability by incremental encoding into SAT, similar ideas have been
explored for semi-decision procedures for first-order [7] and higher-order logic [4].

To deal with transitivity as it occurs in K4 and S4, and to further improve
the overall performance of InKreSAT, we extend our basic approach by blocking
(see, e.g., [11]).

We evaluate InKreSAT, confirming the effectiveness of our incremental ap-
proach compared to Sebastiani and Vescovi’s one-phase approach. InKreSAT
also proves competitive with state-of-the-art modal tableau provers.

InKreSAT is implemented in OCaml and employs the SAT solver MiniSat [5]
(v2.2.0). The source code of InKreSAT and the benchmark problems used in the
evaluation are available from www.ps.uni-saarland.de/∼kaminski/inkresat.

www.ps.uni-saarland.de/~kaminski/inkresat
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2 Reduction to SAT

We now present the SAT encoding that underlies InKreSAT. We restrict our-
selves to the case of multimodal K. An alternative, more detailed presentation
of (a variant of) the encoding can be found in [15].

We distinguish between propositional variables (denoted p, q) and relational
variables (denoted r). From these variables, the formulas of K can be obtained
by the following grammar: ϕ,ψ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈r〉ϕ | [r]ϕ.
We call formulas of the form 〈r〉ϕ diamonds and formulas of the form [r]ϕ boxes.

We assume a countably infinite set of prefixes (denoted σ, τ) and a strict
total order ≺ on prefixes. We call pairs σ : ϕ prefixed formulas. We assume an
injective function that maps every prefixed diamond σ : 〈r〉ϕ to a prefix τσ:〈r〉ϕ
such that σ ≺ τσ:〈r〉ϕ. The SAT encoding underlying InKreSAT is based on the
following tableau calculus for K (working on formulas in negation normal form).

(¬)
σ : ϕ, σ : ∼ϕ

⊗
(∧i)

σ : ϕ1 ∧ ϕ2

σ : ϕi
i ∈ {1, 2} (∨)

σ : ϕ1 ∨ ϕ2

σ : ϕ1 | σ : ϕ2

(♦)
σ : 〈r〉ϕ
τσ:〈r〉ϕ : ϕ

(�)
σ : [r]ϕ, σ : 〈r〉ψ

τσ:〈r〉ψ : ϕ

In the formulation of (¬), we write ∼ϕ for the negation normal form of ¬ϕ,
while the symbol ⊗ stands for the empty conclusion that closes a branch.

It can be shown that the tableau calculus is sound and complete with respect
to the relational semantics of K (in fact, the calculus yields a decision procedure
for K). In other words, a formula ϕ of K is satisfiable if and only if there is a
maximal tableau rooted at σ : ϕ (for an arbitrary prefix σ) that has an open
branch (we use the terms “tableau” and “(tableau) branch” as in [6]).

Literals (denoted l) are possibly negated propositional variables. We define
¬p := p and p := ¬p. We assume an injective function that maps every prefixed
formula σ : ϕ to a literal lσ:ϕ such that lσ:ϕ = l̄σ:∼ϕ. Note that all of the above
rules have the form σ:ϕ1,...,σ:ϕm

τ :ψ1|···|τ :ψn where m ∈ {1, 2} and n ∈ {0, 1, 2}. Thus, we

can use the following mapping to assign a clause to every instance of a rule.

σ : ϕ1, . . . , σ : ϕm
τ : ψ1 | · · · | τ : ψn

 l̄σ:ϕ1
∨ · · · ∨ l̄σ:ϕm ∨ lτ :ψ1

∨ · · · ∨ lτ :ψn

The mapping can be lifted to tableaux as demonstrated by the following example:

σ : (p ∨ q) ∧ ¬p  lσ:(p∨q)∧¬p
σ : p ∨ q (∧1)  l̄σ:(p∨q)∧¬p ∨ lσ:p∨q
σ : ¬p (∧2)  l̄σ:(p∨q)∧¬p ∨ lσ:¬p

σ : p σ : q (∨)  l̄σ:p∨q ∨ lσ:p ∨ lσ:q
⊗ (¬)  l̄σ:p ∨ l̄σ:¬p (redundant)

Note that the prefixed formula σ : (p ∨ q) ∧ ¬p at the root of the tableau is
mapped to a unit clause since it is considered an assumption rather than a
consequence of a tableau rule application. The last clause, which corresponds
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Input: a formula ϕ0

Variables: Agenda := {σ0 :ϕ0} (for some arbitrary but fixed prefix σ0)

while Agenda 6= ∅ do:
1. for all σ :ϕ ∈ Agenda do:

if ϕ is a diamond then add Cσϕ∪{Bσψϕ | σ :ψ processed, ψ box } to SAT solver
else if ϕ is a box then add {Bσϕψ | σ :ψ processed, ψ diamond } to SAT solver
else if ϕ is a conjunction then add C1

σϕ and C2
σϕ to SAT solver

else add Cσϕ to SAT solver
2. run SAT solver
3. if SAT solver returns unsat then return unsat

else Agenda := {σ :ϕ | σ :ϕ pending, lσ:ϕ true in model returned by SAT solver }
return sat

Fig. 1. InKreSAT: basic algorithm

to the application of (¬) to σ : p and σ :¬p, is redundant since our mapping of
prefixed formulas to literals already ensures that lσ:p and lσ:¬p are contradictory.

Thus, every tableau can be mapped to a set of Boolean clauses. It can be
shown that the set is satisfiable if and only if the tableau has an open branch (a
variant of the claim is shown in [15]). The encoding can be extended to T, K4,
and S4 by suitably extending the underlying tableau calculus (see [6]).

3 Basic Algorithm

The basic algorithm underlying InKreSAT interacts with an incremental SAT
solver by adding new clauses to the solver and periodically running the solver
on the clauses added so far. If the solver returns satisfiable, it also returns a
satisfying model that is used in selecting new clauses to be added.

The premise of a clause C, where C corresponds to an instance of a tableau
rule σ:ϕ1,...,σ:ϕm

τ :ψ1|···|τ :ψn , consists of the literals lσ:ϕ1
, . . . , lσ:ϕm . We call a prefixed for-

mula σ :ϕ processed if lσ:ϕ occurs in the premise of a clause added to the SAT
solver. Otherwise, we call σ :ϕ pending, but only if (1) lσ:ϕ occurs in a clause
added to the SAT solver and (2) ϕ is not of the form p or ¬p. We exclude
formulas σ : p and σ :¬p because they require no further processing: since our
mapping of prefixed formulas to literals takes care of trivial inconsistencies, we
never generate clauses for the rule (¬).

Let ϕ be a disjunction or a diamond. We write Cσϕ for the clause correspond-
ing to the instance of (∨) or (♦), resp., that has σ :ϕ as its unique premise (e.g.,
Cσ(〈r〉p) = l̄σ:〈r〉p ∨ lτσ:〈r〉p:p). If ϕ is a conjunction, we write Ciσϕ (i ∈ {1, 2})
for the clause corresponding to the instance of (∧i) that has σ :ϕ as its premise.
Finally, we write Bσϕψ, where ϕ is a box and ψ a diamond, for the clause
corresponding to the instance of (�) that has σ :ϕ and σ :ψ as its premises.

The basic algorithm (restricted to K) is shown in Fig. 1. It maintains an
agenda consisting of pending prefixed formulas that are true in the model re-
turned by a preceding invocation of the SAT solver (initially, the agenda contains
the input formula). Every formula σ :ϕ on the agenda is processed by adding
clauses with lσ:ϕ in their premise (after which σ :ϕ becomes processed).
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4 Blocking

Blocking is a technique commonly used with tableau calculi to achieve termi-
nation in the presence of transitive relations or background theories [11]. Even
when it is not required for termination, blocking can improve the performance of
tableau-based decision procedures [10]. Blocking typically restricts the applica-
bility of the rule (♦). An application of (♦) to a prefixed diamond on a branch is
blocked if one can determine that the successor prefix that would be introduced
by the application is subsumed by some prefix that is already on the branch.

Because of the close correspondence between the translational method un-
derlying InKreSAT and modal tableau calculi, blocking is necessary to make our
translation terminating in the presence of transitive relations.

Extending the one-phase approach in [15] with blocking is problematic since
the approach has no explicit representation of tableau branches. Known blocking
techniques are all designed to work on a single tableau branch at a time. Blocking
across branches typically destroys the correctness of a tableau system.

In our case, however, the propositional model used to guide the translation
in step 3 of the main loop in Fig. 1 yields a suitable approximation of a tableau
branch—the formulas whose corresponding literals are true in the model. We can
show that blocking restricted to these formulas preserves the correctness of our
procedure. To explore the impact of blocking, we extend the basic algorithm by a
variant of anywhere blocking [1] (with ideas from pattern-based blocking [12]).

Unlike with tableau provers [10], blocking in InKreSAT can cause consider-
able overhead. After every run of the SAT solver, the data structures needed for
blocking may have to be recomputed from scratch because models returned by
two successive runs of the solver may differ in an unpredictable way. To avoid the
recomputation, we must be able to guarantee that the model returned by the
solver is an extension of the previously computed model. This leads us to a final
refinement of our procedure, called model extension (MX). We make the SAT
solver always first search for extensions of the existing model by adding all literals
true in the model to the input of the solver (as unit clauses). If the solver finds an
extension of the model, we proceed without recomputing the data structures for
blocking. Otherwise, we run the solver once again, now without the additional
clauses, and recompute the data structures from scratch. The goal of MX is to
reduce the overhead of blocking, thus increasing its effectiveness. On the other
hand, MX can cause more calls to the solver, which may decrease performance.

5 Evaluation and Conclusions

We evaluate the effects of incremental translation to SAT and blocking by run-
ning InKreSAT in four different modes: a “one phase” mode, where, like in [15],
the encoding is generated in one go, a “no blocking” mode, where clause gener-
ation is performed incrementally, but blocking is switched off, a “no MX” mode,
where blocking is enabled, but MX is disabled, and the default mode, where both
blocking and MX are enabled. Besides, we include the results from four other
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branch n 12 12 13 4 9 10 15 12
branch p 18 15 14 4 10 9 16 18

d4 n 21 21 7 6 21 21 6 21
d4 p 21 21 13 8 21 21 9 21

dum n 21 21 21 17 21 21 19 21
dum p 21 21 21 16 21 21 18 21
lin n 21 21 21 21 21 21 21 13

path n 14 21 6 6 21 21 13 21
path p 12 21 8 7 21 21 14 21
ph n 21 21 21 21 21 12 21 11
ph p 9 9 9 9 8 7 9 8
t4p n 21 21 7 4 21 21 4 21
t4p p 21 21 13 8 21 21 8 21

Subclass In
K
re
S
A
T

(d
e
fa
u
lt
)

In
K
re
S
A
T

(n
o
M

X
)

S
p
a
rt
a
c
u
s

F
a
C
T
+
+

branch n 11 11 9 6
md n 8 9 21 10
md p 3 4 9 4
ipc n 9 11 21 10
ipc p 8 11 21 9
path n 4 9 16 21
path p 5 10 17 21
ph n 13 11 10 8
ph p 9 9 5 6
s5 n 14 20 16 19

Table 1. Results on the LWB benchmarks for K (left) and S4 (right)

provers. (1) K2SAT, Sebastiani and Vescovi’s [15] implementation of their one-
phase translational approach. We used K2SAT in conjunction with MiniSat 2.0,
which is directly integrated into the system (the integrated solution outper-
formed a setup using MiniSat 2.2.0, which is used by InKreSAT). We used the
options -j -u -v -w recommended by the authors. (2) *SAT [16] (v1.3), a rea-
soner for the description logic ALC. *SAT also integrates SAT technology, but
does so in a way that is different from our approach. It uses a SAT solver only
for propositional reasoning, while modal reasoning is handled by a conventional
tableau calculus. (3) FaCT++ [17] (v1.6.1), an established reasoner for the web
ontology language OWL 2 DL. (4) Spartacus [10] (v1.1.3), an efficient prover for
the hybrid logic H(E,@). K2SAT and *SAT are included because they imple-
ment related approaches while FaCT++ and Spartacus are supposed to indicate
the state of the art in automated reasoning for modal logic. Except for K2SAT,
all provers are compiled and run with the default settings (unlike in [8]).

We perform the tests on a Pentium 4 2.8 GHz, 1 GB RAM, with a 60s time
limit per formula (the same setup as in [10]). Table 1: The K and S4 problem sets
from the Logic Work Bench (LWB) benchmarks [2]. LWB is widely used for mea-
suring the performance of modal reasoners (e.g., in [8,10,15]). LWB is the only
suite available to us that includes S4 problems. For each subclass that was not
solved in its hardest instance (21) by every system, Table 1 displays the hardest
instance that could be solved (the best results set in bold). The evaluation on the
S4 problems is limited to systems and configurations of InKreSAT that can cope
with transitivity. Fig. 2, upper half: Randomly generated 3CNFK [8] formulas
of modal depth 2, 4, and 6 (45 problems each, 135 in total; see [10] for details).
The selection allows us to see how performance depends on modal depth. We
plot the number of instances that could be solved against time. The plot on the
left-hand side compares the four different modes of InKreSAT, while on the right
we compare InKreSAT to the other provers. Fig. 2, lower half: A subset of the
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Fig. 2. Results on 3CNFK (upper half) and MQBF formulas (lower half)

TANCS-2000 [14] Unbounded Modal QBF (MQBF) benchmarks for K comple-
mented by randomly generated modalized MQBF formulas [13] (800 problems
in total). In selecting the MQBF problems, we follow [9], but restrict ourselves
to the “easy/medium” and “medium” problem classes because of our time limit
of 60s. For the same reason, we leave out the harder subclasses of non-modalized
“medium” problems (keeping only the problems with V=4, see [9,13,14,10]).

We observe that incremental translation and blocking both lead to consid-
erable performance gains on all benchmarks. With MX, the results are mixed.
On LWB, InKreSAT generally performs better without MX. On MQBF, MX
makes little difference. On 3CNFK , however, it is MX that makes blocking effi-
cient and allows InKreSAT to solve more formulas of high modal depth (solving
45/13/10 formulas of depth 2/4/6, resp., compared to 45/9/1 without blocking).
Without MX, the overhead caused by blocking actually diminishes performance
(to 45/2/0). Compared to the other systems, InKreSAT proves competitive,
solving a number of problems that cannot be solved by others, and displaying
the arguably best results (without MX) on LWB-K. Note also that in the “one
phase” mode, the behavior of InKreSAT expectedly resembles that of K2SAT,
K2SAT being slightly faster because of additional optimizations that do not
work with incremental translation. A notable weakness of InKreSAT as com-
pared to tableau provers is a faster degradation of performance with increasing
modal depth (on LWB-S4 and especially on 3CNFK , where, e.g., Spartacus solves
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40/38/27 problems of depth 2/4/6). We attribute the faster degradation to the
higher overhead of blocking in the present setting and to a lack of a more ef-
ficient heuristic to guide clause generation. Solving these problems, as well as
extending the approach to more expressive logics (e.g., logics with nominals or
converse modalities), are interesting directions for future work.

Acknowledgments. This work was partially supported by the EPSRC project
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10. Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: A tableau prover for hybrid
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