
History Matters: Incremental Ontology Reasoning
Using Modules

Bernardo Cuenca Grau1, Christian Halaschek-Wiener2, and Yevgeny Kazakov1

1 The University of Manchester, School of Computer Science, Manchester, M13 9PL, UK
2 Department of Computer Science, University of Maryland, College Park, MD 20740, USA

Abstract. The development of ontologies involves continuous but relatively small
modifications. Existing ontology reasoners, however, do not take advantage of the
similarities between different versions of an ontology. In this paper, we propose
a technique for incremental reasoning—that is, reasoning that reuses information
obtained from previous versions of an ontology—based on the notion of a mod-
ule. Our technique does not depend on a particular reasoning calculus and thus
can be used in combination with any reasoner. We have applied our results to
incremental classification of OWL DL ontologies and found significant improve-
ment over regular classification time on a set of real-world ontologies.

1 Introduction

The design and maintenance of OWL ontologies are highly complex tasks. The sup-
port of a reasoner is crucial for detecting modeling errors, which typically manifest
themselves as concept unsatisfiability and unintended subsumption relationships.

The development of ontologies involves continuous but relatively small modifica-
tions. Even after a number of changes, an ontology and its previous version usually
share most of their axioms. Unfortunately, when an ontology evolves, current reasoners
do not take advantage of the similarities between the ontology and its previous version.
That is, when reasoning over the latest version of an ontology, current reasoners do not
reuse existing results already obtained for the previous one and repeat the whole rea-
soning process. For large and complex ontologies this may require a few minutes, or
even a few hours. If the response of the reasoner is too slow, ontology engineers may
end up not using the reasoner as often as they would wish. For ontology development
and maintenance tasks it is important to detect possible errors as soon as possible; for
such a purpose, the reasoner should be executed often and real time response from the
reasoner becomes an important issue.

In this paper, we propose a technique for incremental ontology reasoning—that is,
reasoning that reuses the results obtained from previous computations. Our technique
is based on the notion of a module and can be applied to arbitrary queries against on-
tologies expressed in OWL DL. We focus on a particular kind of modules that exhibit
a set of compelling properties and apply our method to incremental classification of
OWL DL ontologies. Our techniques do not depend on a particular reasoner or rea-
soning method and could be easily implemented in any existing prover, such as Pellet,

FaCT++, KAON2 or RACER. Our empirical results using Pellet3 show substantial per-
formance improvements over regular classification time.

2 Preliminaries

We introduce the syntax of the description logic SHOIQ [11], which provides the
logical underpinning for OWL DL.

A SHOIQ-signature is the disjoint union S = R]C] I of sets of atomic roles
(denoted by R,S, · · ·), atomic concept (denoted by A,B, · · ·) and nominals (denoted
by a, b, c, · · ·). A SHOIQ-role is eitherR ∈ R or an inverse roleR− withR ∈ R. We
denote by Rol the set of SHOIQ-roles for the signature S. The set Con of SHOIQ-
concepts for S is defined by the following grammar:

Con ::= ⊥ | a | A | ¬C | C1 u C2 | ∃R.C | >nS.C

where a ∈ I, A ∈ C, C(i) ∈ Con, R,S ∈ Rol, with S a simple role,4 and n a positive
integer. We use the following abbreviations: C tD stands for ¬(¬C u ¬D); > stands
for ¬⊥; ∀R.C stands for ¬(∃R.¬C); and 6nS.C stands for ¬(>n+1S.C).

A SHOIQ ontology O is a finite set of role inclusion axioms (RIs) R1 v R2 with
Ri ∈ Rol, transitivity axioms Trans(R) with R ∈ R and general concept inclusion
axioms (GCIs) C1 v C2 with Ci ∈ Con.5 The concept definition A ≡ C is an abbre-
viation for the two GCIs A v C and C v A. The signature Sig(α) of an axiom α is
the union RN(α)∪CN(α)∪ Ind(α) of atomic roles, atomic concepts, and nominals that
occur in α. The signature Sig(O) of an ontology O is defined analogously.

For the semantics of SHOIQ, we refer the interested reader to [11].

3 The Challenge for Incremental Reasoning in Ontologies

Consider the medical ontology O1 given in Table 1, which consists of three concept
definitions D1 – D3 and two inclusion axioms C1 – C2. For exposition, suppose that
an ontology engineer in charge of this ontology notices that the definition D1 for the
concept Cystic Fibrosis is incomplete and reformulates it by adding the new conjunct
∃has Origin.Genetic Origin. As a result, a new version O2 of the ontology is obtained.
In order to ensure that no errors have been introduced by this change, the ontology
engineer uses a reasoner to classify the new ontology O2.

Table 2 shows some subsumption relationships between atomic concepts in O1 and
O2, which should be computed for classification. We can see that some of these sub-
sumption relations have changed as a result of a modification in the ontology: axiom α1

follows from the axioms D3, C2 and D1 in O1, but does not follow from O2 anymore
since D1 has been modified; in contrast, the subsumption α2, which did not follow from
O1, is now a consequence of the modified D1, D2 and C1 in O2. Other subsumptions

3Pellet Homepage: http://pellet.owldl.com.
4See [11] for a precise definition of simple roles.
5Note that ABox assertions a :C can be expressed in SHOIQ using GCIs a v C.

Original Ontology O1: Modified Ontology O2:

D1 Cystic Fibrosis ≡ Fibrosis u Cystic Fibrosis ≡ Fibrosis u
∃located In.Pancreas ∃located In.Pancreas u

∃has Origin.Genetic Origin

D2 Genetic Fibrosis ≡ Fibrosis u Genetic Fibrosis ≡ Fibrosis u
∃has Origin.Genetic Origin ∃has Origin.Genetic Origin

D3 Pancreatic Fibrosis ≡ Fibrosis u Pancreatic Fibrosis ≡ Fibrosis u
Pancreatic Disorder Pancreatic Disorder

C1 Genetic Fibrosis v Genetic Disorder Genetic Fibrosis v Genetic Disorder

C2 Pancreatic Disorder v Disorder u Pancreatic Disorder v Disorder u
∃located In.Pancreas ∃located In.Pancreas

∆O = diff(O1,O2) = (∆−O,∆+O)

∆−O = Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas

∆+O = Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

Table 1. Evolution of a Bio-Medical Ontology O

α Axiom: O1 |=? α, follows from: O2 |=? α, follows from:

α1 Pancreatic Fibrosis v Cystic Fibrosis Yes D3, C2, D1 No —

α2 Cystic Fibrosis v Genetic Disorder No — Yes D1, D2, C1

α3 Pancreatic Fibrosis v Disorder Yes D3, C2 Yes D3, C2

α4 Genetic Fibrosis v Cystic Fibrosis No — No —
Table 2. Subsumption Relations Before and After the Change

such as α3 and α4 did not change: α3 is a consequence of axioms D3 and C2 which
have not been modified; α4 follows neither from O1 nor from O2.

It is reasonable to expect that small changes in ontologies will not affect many sub-
sumption relations. That is, the number of subsumptions that change their entailment
status w.r.t. the ontology, like, say, α1 or α2 in Table 2, is probably small compared
to the number of subsumptions that do not, like α3 or α4. If so, then many (possibly
expensive) re-computations can be avoided by reusing the subsumption relations com-
puted for the previous version of the ontology. In order to realize this idea, one has to
identify which subsumptions could be affected by a change and which are not.

Suppose we know that a subsumption α holds in O1. Then we can guarantee that
α still holds in O2 provided the axioms from which α follows in O1 have not been
modified. For example, in Table 2, the subsumption α3 is a consequence of axioms
D3 and C2, both of which have not been modified in O2. Hence, we can conclude
that α3 holds in O2 without performing reasoning over O2. In contrast, this test is not
applicable for the subsumption α1, since α1 is a consequence of axioms D3, C2 and D1
in O1, and D1 has been modified in O2. In this case, the status of α1 in O2 has to be
computed by other means, e.g. using a reasoner. Thus, the status of every subsumption

relation α that holds in O1 requires re-computation for O2 only if in every justification
for α (every minimal subset of O1 which implies α) some axiom has been modified.
This approach is reminiscent of the way Truth Maintenance Systems (TMS) maintain
logical dependencies between axioms [6, 3]. The notion of justification for an axiom
has also been used for pinpointing the axioms responsible for errors in ontologies, such
as unsatisfiable concepts and unintended subsumptions [14, 13].

The situation is principally different in the case of subsumptions α that do not hold
in O1. In this case, if to follow the previous approach, one has to keep track of “ev-
idences” for non-entailments of subsumptions in ontologies and verify if at least one
such “evidence” for α in O1 can be reused in O2. Here, the “evidence” might be, for
example, a (part of a) counter-model for α in O1 that is constructed by tableau-based
procedures. Such techniques based on model caching have been recently proposed in
the context incremental reasoning [8]. These techniques, however, have only been ap-
plied so far to additions and deletions of ABox assertions, since changes in general
axioms often require considerable modifications of the models. Moreover, such tech-
niques require close interaction with the model construction routine of the tableau rea-
soner, which precludes their use in arbitrary “off-the-shelf” reasoners without consider-
able modifications. In particular, these techniques cannot be directly used in reasoners
like KAON2, which are not tableaux-based.

We stress that the challenge for incremental ontology reasoning is mainly to main-
tain non-subsumptions since, in typical ontologies, almost 99% of subsumption rela-
tions between atomic concepts do not hold. In other words, the case of axiom α4 in
Figure 2 is likely to be the most one after a change in an ontology.6

In this paper we propose an alternative approach for incremental reasoning based on
the module-extraction techniques introduced in [2]. Our technique can be used to keep
track of “evidences” for both subsumptions and non-subsumptions modulo arbitrary
changes in ontologies, and works in combination with any DL-reasoner providing for
standard reasoning services.

4 Modules and Syntactic Locality

In this section we define the notion of a module [2], which underlies our technique for
incremental reasoning. We also outline the algorithm proposed in [2] for extracting a
particular kind of modules, called locality-based modules.

Definition 1 (Module for an Axiom and a Signature). Let O be an ontology and
O1 ⊆ O is a (possibly empty) subset of axioms in O. We say that O1 is a module for
for an axiom α in O (or short, an α-module in O) if: O1 |= α iff O |= α.

We say that O1 is a module for a signature S if for every axiom α with Sig(α) ⊆ S,
we have that O1 is a module for α in O.

Intuitively, a module for an axiom α in an ontology O is a subset O1 of O which
contains the axioms that are “relevant” for α in O, in the sense that O implies α if and
only if O1 implies α. In case O implies α, then every module O1 for α should contain

6In Section 6 we provide empirical evidences confirming our conjectures

at least one justification for α (that is, a minimal set of axioms which imply α). In case
O does not imply α (that is, there are no justifications for α), O1 can be any subset
of O. Hence, knowing all the justifications for α in O is sufficient for identifying all
modules for α in O.

The notion of module for a signature has been introduced in [2]. Intuitively, a mod-
ule for a signature is a subset of the ontology that is a module for every axiom con-
structed over this signature. An algorithm for extracting modules based on a notion of
syntactic locality was proposed in [2], and it was empirically verified that this algorithm
extracts reasonably small modules in existing ontologies.

Definition 2 (Syntactic Locality for SHOIQ). Let S be a signature. The following
grammar recursively defines two sets of concepts Con∅(S) and Con∆(S) for S:

Con∅(S) ::= A∅ | (¬C∆) | (C∅ u C) | (C u C∅)
| (∃R∅.C) | (∃R.C∅) | (>nR∅.C) | (>nR.C∅) .

Con∆(S) ::= (¬C∅) | (C∆1 u C∆2) .

where A∅ /∈ S is an atomic concept, R∅ is (possibly inverse of) an atomic role r∅ /∈ S,
C is any concept, R is any role, and C∅ ∈ Con∅(S), C∆(i) ∈ Con∆(S), i = 1, 2.

An axiom α is local w.r.t. S if it is of one of the following forms: (1) R∅ v R, or
(2) Trans(R∅), or (3) C∅ v C or (4) C v C∆.7

Intuitively, an axiom α is syntactically local w.r.t. S if, by simple syntactical sim-
plifications, one can demonstrate that α is true in every interpretation I = (∆I , ·I)
in which concept and atomic roles not from S are interpreted with the empty set. For
example, the axiom D2 from Table 1 is local w.r.t. S = {Fibrosis, has Origin}: if we
interpret the remaining symbols in this axiom with the empty set, we obtain a model of
the axiom, independently of the interpretation of the symbols in S.

∅︷ ︸︸ ︷
Genetic Fibrosis ≡ Fibrosis u ∃has Origin.

∅︷ ︸︸ ︷
Genetic Origin︸ ︷︷ ︸
∅

If an ontology O can be partitioned as O = O1 ∪ Os such that every axiom in Os is
syntactically local w.r.t. S ∪ Sig(O1), then O1 is a module for S in O [2]. Algorithm 1
extracts a module O1 for a signature S from an ontology O using this property. The
procedure first initializes O1 to the empty set and then iteratively moves to O1 those
axioms α from O that are not local w.r.t. S ∪ Sig(O1) until all such axioms have been
moved. We assume that s local(α,S) tests for syntactic locality of an axiom α w.r.t.
signature S according to Definition 2. In Table 3 we provide a trace of Algorithm 1 for
the input ontology O1 in Table 1 and signature S = {Pancreatic Fibrosis}.

Proposition 1 (Correctness of Algorithm 1 (see [2]) for details).
Given an SHOIQ ontologyO and a signature S, Algorithm 1 terminates in polynomial
time in the size of O and returns a module O1 for S in O.

7Recall that ∀R.C, (6nR.C) and C1 t C2 are expressed using the other constructors, so
they can be used in local axioms as well.

Algorithm 1 extract module(O,S)

Input:
O: ontology
S: signature

Output:
O1: a module for S in O

1: O1 ← ∅ O2 ← O
2: while not empty(O2) do
3: α← select axiom(O2)
4: if s local(α, S∪ Sig(O1))

then
5: O2 ← O2 \ {α}
6: else
7: O1 ← O1 ∪ {α}
8: O2 ← O \O1

9: end if
10: end while
11: return O1

A sample trace for the Algorithm 1 for O = O1 from
Table 1 and S = {Pancreatic Fibrosis} :

O1 O2 New X ∈ S∪ Sig(O1) α loc?

1 – D1, D2, D3,
C1, C2

Pancreatic Fibrosis D3 No

2 D3 D1, D2,
C1, C2

Fibrosis,
Pancreatic Disorder

D1 Yes

3 D3 D2,
C1, C2

– D2 Yes

4 D3 C1, C2 – C1 Yes

5 D3 C2 – C2 No

6 D3, C2 D1, D2,
C1,

Disorder, located In,
Pancreas

D1 Yes

7 D3, C2 D2, C1 – D2 Yes

8 D3, C2 C1 – C1 Yes

9 D3, C2 – – –

Table 3. An algorithm for extracting syntactic locality-based modules from ontologies.

In order to extract a module for an axiom α in O it is sufficient to run Algorithm 1
for S = Sig(α). However, when α is a subsumption between atomic concepts,> or⊥, it
suffices to extract a module only for S = Sig(X), as given in the following proposition.

Proposition 2 (see [2] for details). Let O be a SHOIQ ontology, X,Y ∈ CN(O) ∪
{>} ∪ {⊥}, and OX the output of Algorithm 1 for input O and S = Sig(X). Then OX
is a module in O for α = (X v Y).

Finally, we point out that the modules extracted using Algorithm 1 are not neces-
sary minimal ones. That is, if O |= α, the computed module for α might be a strict
superset of a justification for α in O, and if O 6|= α then the module for Sig(α) might
not necessarily be the empty set. In fact, if α is not a tautology, computing a minimal
module for α in O is at least as hard as checking whether O 6|= α since O |= α iff
the minimal module for α is empty. The last problem is computationally expensive for
many ontology languages, including OWL DL. The advantage of the module-extraction
algorithm described in this section is that, on the one hand, it runs in polynomial and,
on the other hand, it still generates reasonably small modules.

5 Incremental Classification Using Locality-Based Modules

In this section we show how to use then notion of module for incremental reasoning over
ontologies. First, we outline the general idea behind using modules for incrementally
maintaining (non)entailment of axioms and then describe an algorithm for incremental
classification of ontologies using locality-based modules, as described in Section 4.

The following proposition, which is a simple consequence of Definition 1, provides
the basic property underlying incremental reasoning using modules:

Proposition 3. Let O1, O2 be ontologies, α an axiom, and O1
α, O2

α respectively mod-
ules for α in O1 and O2. Then:

1. If O1 |= α and O1
α ⊆ O2, then O2 |= α

2. If O1 6|= α and O2
α ⊆ O1, then O2 6|= α

Proposition 3 suggests that, in order to test if the entailment of an axiom α has not
been affected by a change O1 ⇒ O2, it is sufficient to compute, depending on whether
O1 |= α orO1 6|= α, a moduleO1

α for α inO1, or a moduleO2
α for α inO2 respectively.

If the change does not involve any of the axioms in the module, then the status of
the entialment of α also does not change. The converse of this is not necessarily true:
even if the corresponding module has been modified, the status of α might still remain
unaffected. For example, the axiom α = (Cystic Fibrosis v Fibrosis) follows from D1
both before and after the change, even though D1 has been modified. In such a case, the
status of αw.r.t.O2 should be verified using the reasoner. The use of modules, however,
is also valuable in this situation: instead of checking if α follows from O2, one could
equivalently check if α follows from the (hopefully much smaller) module O2

α.
Therefore, the use of modules provides two compelling advantages for incremental

reasoning: first, the computation of a given query may be avoided and the answer can be
simply reused from a previous test; second, even if the query needs to be performed, the
use of modules allows for filtering out irrelevant axioms and reduces the search space.

Note that the sizes of modules O1
α and O2

α have a direct impact on the quality of
the incremental entailment test for α. The smaller the modules, the more likely it is
that they do not contain the modified axioms. Nevertheless, as pointed out in Section 4,
computing a smallest possible module is computationally expensive: it is at least as hard
as just checking whether O1 |= α (respectively O2 |= α). Thus, there is a trade-off
between the complexity of computing a module on the one hand, and its usefulness for
incremental reasoning on the other hand. Intuitively, the smaller the module, the more
useful and the harder it is to compute. We demonstrate empirically that Algorithm 1
computes small enough modules to be useful for incremental reasoning.

In the remainder of this section we apply the general idea for incremental reasoning
sketched above for incremental classification of ontologies using the module-extraction
procedure given by Algorithm 1. Classification of an ontologyO amounts to computing
subsumption relations X v Y where X and Y range over all atomic concepts from O,
⊥, and>. The relations are non-trivial whenX ∈ CN(O)∪{>} and Y ∈ CN(O)∪{⊥}.
As shown in Proposition 2, in order to check incrementally a subsumption relation
α = (X v Y), it is sufficient to keep track of the modules OX for Sig(X) in O.

Consider the ontologies O1 and O2 in Table 1 and the axioms α1–α4 in Table 2.
Each of these axioms is of the form α = (X v Y), with X and Y atomic concepts.
Table 4 provides the locality-based modules for α1–α4 in O1 and in O2 computed
using Algorithm 1. Note that the modules are not minimal: in our case, they are strict
supersets of the actual minimal modules from Table 2 where the additional axioms are
underlined. The modules for axioms α1–α3 have been changed, whereas the module
for the axiom α4 has remained unchanged. Hence, the sufficient test for preservation

α AxiomX v Y : O1
X O2

X

α1 Pancreatic Fibrosis D3,C2,D1
v Cystic Fibrosis D3,C2

α2 Cystic Fibrosis D1
v Genetic Disorder D1,D2,C1

α3 Pancreatic Fibrosis D3,C2,D1
v Disorder D3,C2

α4 Genetic Fibrosis C1

v Cystic Fibrosis C1

X O1
X O2

X

Cystic Fibrosis D1 D1,D2,C1
Fibrosis ∅ ∅
Pancreas ∅ ∅
Genetic Fibrosis C1 C1
Genetic Origin ∅ ∅
Pancreatic Fibrosis D3,C2,D1 D3,C2
Pancreatic Disorder C2 C2
Genetic Disorder C1 C1
Disorder C2 C2
> ∅ ∅

Table 4. Modules For Subsumptions and Concept Names in Ontologies from Table 1

of (non)subsumptions using modules gave us only one “false positive” for subsumption
α3, where the subsumption relation did not change, but the modules have been modified.

The right part of Table 4 provides the full picture on the modules and their changes
for our example ontology from Table 1. The only modules that have been changed
are the ones for X = Cystic Fibrosis and X = Pancreatic Fibrosis, where for the
first module axiom D1 has been changed, and for in the second module axiom D1 has
been removed. Applying Proposition 2 and Proposition 3 we can conclude that every
subsumption that dissapears as a the result of the change should be either of the form
α = (Cystic Fibrosis v Y) or α = (Pancreatic Fibrosis v Y), and every subsumption
that can appear should be of the form α = (Cystic Fibrosis v Y).

Algorithm 2 outlines an incremental classification procedure based on the ideas just
discussed. Given an ontology O1 and a change ∆O = (∆−O, ∆+O) consisting of the
sets of removed and added axioms, the algorithm computes the subsumption partial
order v2 for the resulting ontology O2 = (O1 \∆−O) ∪∆+O by reusing the one v1

already computed for O1. In order to perform this operation, the algorithm internally
maintains the modules O1

X and O2
X for every atomic concept or the top concept X .

We will show that mantaining these additional modules does not involve a significant
overhead in practice. The algorithm consists of the following phases:

1. Process the new symbols (lines 2–6): The modulesO1
X and the subsumption partial

order v1 for O1 are extended for every newly introduced atomic concept A. The
module for A, about which nothing has been said yet, is equivalent to the module
for the empty signature–that, is the module for >. Thus, we have: (i) O1

A = O1
>,

(ii) O1 |= A v Y iff O1 |= > v Y , and (iii) O1 |= X v A iff O1 |= X v ⊥.
2. Identifying the affected modules (lines 7–19): The sets M− and M+ contain those
X ∈ CN(O1) ∪ {>} for which the corresponding modules must be modified by
removing and/or adding axioms. If α removed fromO1 is non-local w.r.t. Sig(O1

X)
then at least α should be removed from O1

X . If α is added to O1 and is non-local
w.r.t. Sig(O1

X), then the module O1
X needs to be extended at least with α.

3. Computing new modules and subsumptions (lines 20–34): The affected modules
found in the previous phase are re-extracted and those that are not are just copied

Algorithm 2 inc classify(O1, ∆O,v1, X → O1
X)

Input:
O1: an ontology
∆O = (∆−O,∆+O): removed / added axioms
v1: subsumption relations in O1

X → O1
X : a module for every X ∈ CN(O1) ∪ {>}

Output:
O2: the result of applying the change ∆O to O1

v2: subsumption relations in O2

X → O2
X : a module for every X ∈ CN(O2) ∪ {>}

1: O2 ← (O1 \∆−O) ∪∆+O
2: for each A ∈ CN(O2) \ CN(O1) do
3: O1

A ← O1
>

4: for each > v1 Y do A v1 Y ← true
5: for each X v1⊥ do X v1 A← true
6: end for
7: M− ← ∅ M+ ← ∅
8: for each X ∈ CN(O2) ∪ {>} do
9: for each α ∈ ∆−O do

10: if not s local(α,Sig(O1
X)) then

11: M−← M−∪ {X}
12: end if
13: end for
14: for each α ∈ ∆+O do
15: if not s local(α,Sig(O1

X)) then
16: M+← M+∪ {X}
17: end if
18: end for
19: end for
20: for each X ∈ CN(O2) ∪ {>} do
21: if X ∈ M− ∪M+ then
22: O2

X ← extract module(Sig(X),O2)
23: else
24: O2

X ← O1
X

25: end if
26: for each Y ∈ CN(O2) ∪ {⊥} do
27: if (X ∈ M− and X v1 Y) or
28: (X ∈ M+ and X 6v1 Y) then
29: X v2 Y ← test(O2

X |= X v Y)
30: else
31: X v2 Y ← X v1 Y
32: end if
33: end for
34: end for
35: return O2,v2, X → O2

X

(lines 21–25). Then, every subsumption X v Y , using Proposition 3, is either re-
computed against the module O2

X , or is reused from O1 (lines 26–33).

In Algorithm 5, the procedure extract module(S, O) refers to Algorithm 1 in Sec-
tion 4. The procedure test(O |= X v Y) uses a reasoner to check if O entails the
subsumption X v Y . The correctness of the algorithm is easy to prove using Proposi-
tion 2 and Proposition 3.

It is worth emphasizing that, in our algorithm, the reasoner is only used as a black
box to answer subsumption queries; this provides two important advantages: on the one
hand, the internals of the reasoner need not be modified and, on the other hand, any
sound and complete reasoner for OWL DL can be plugged in, independently of the
reasoning technique it is based on (e.g. tableaux or resolution).

To conclude, we illustrate the execution of Algorithm 5 on the ontologiesO1,O2 in
Table 1, where the sets ∆−O and ∆+O of removed and added axioms for our example
are given in the lower part of Table 1. In our case, O2 doesn’t introduce new atomic
concepts w.r.t. O1. Thus, Phase 1 in Algorithm 2 can be skipped. The sets M−,M+

computed in Phase 2 are as follows: M− = {Cystic Fibrosis,Pancreatic Fibrosis} and
M+ = {Cystic Fibrosis} since the axiom in ∆−O (see Table 1) is not sytactically local
w.r.t. the signature of the module in O1 for Cystic Fibrosis and Pancreatic Fibrosis;
analogously, the axiom in ∆+O is non-local w.r.t. the signature of the module in O2

for Cystic Fibrosis. In Phase 3, the modules for Cystic Fibrosis and Pancreatic Fibrosis
are re-computed. In the former module, the algorithm recomputes only the subsumption
relations between Cystic Fibrosis and Pancreatic Fibrosis and their subsumers in O1;
in the latter one, the only the subsumption relations between the non-subsumers of
Cystic Fibrosis in O1 are computed.

6 Empirical Evaluation

We have implemented Algorithm 2 and used the OWL reasoner Pellet for evaluation.
Our implementation is, however, independent from Pellet, and our results intend to
determine the usefulness of our approach for optimizing any reasoner. Our system im-
plements a slightly more simplistic procedure than the one in Algorithm 2; in particular,
once the affected modules have been identified, our implementation simply reclassifies
the union of these modules using Pellet to determine the new subsumption relations,
instead of using the procedure described in lines 20–34 of Algorithm 2.

As a test suite, we have selected a set of well-known ontologies that are currently
being developed. NCI8, and the Gene Ontology9 are expressed in a simple fragment of
OWL DL. In contrast, GALEN10, and NASA’s SWEET ontology11 are written in a more
expressive language. Table 5 includes their expressivity, number of atomic concepts and
axioms, total classification time in Pellet, and the percentage of possible subsumption
relations that actually hold between atomic concepts. Note that for large ontologies,

8http://www.mindswap.org/2003/CancerOntology/nciOncology.owl
9http://www.geneontology.org

10http://www.openclinical.org/prj galen.html
11http://sweet.jpl.nasa.gov/ontology/

over 99% of subsumpton relations do not hold. Table 5 also shows the average time to
extract the modules for all atomic concepts, as well as the average and maximum size of
these modules (in terms of the number of axioms). Even if the initial module extraction
may introduce overhead, we argue that this “startup-cost” is bearable since the set of
all modules needs only be computed once. We observe that, in general, the modules are
very small relative to the size of the ontology.

] Concept] Class. % Init. Mod. Mod. Size Non-Loc.
Ontology Logic Names Axioms Time (s.) Subs Extract (s.) (Avg/Max) Axioms
SWEET SHOIF 1400 2573 3.6 0.37 1.05 76 / 420 28
Galen SHF 2749 4529 15.7 0.37 4.8 75 / 530 0
GO EL 22357 34980 63 0.04 69.6 17.6 / 161 0
NCI EL 27772 46940 41.1 0.03 76.5 28.9 / 436 0

Table 5. Test suite ontologies.

We have performed the following experiment for each ontology: for various num-
bers n, we have 1) removed n random axioms; 2) classified the resulting ontology using
Pellet; then, we have repeated the following two steps 50 times: 3) extracted the mini-
mal locality-based module for each atomic concept, 4) removed an additional n axioms,
added back the previously removed n axioms, and reclassified the ontology using our
incremental algorithm. Our goal is to simulate the ontology evolution process where n
axioms are changed (which can be viewed as a simultaneous deletion and addition); all
results have been gathered during step 4) of the experiment. We considered different
types of axioms, namely concept definitions, GCIs and role axioms.

1:] Mod. 2:] Axioms 3: Update 4: Re-class. 5. Total 6:] New 7:] Mod.
Affected in Aff. Mod. Aff. Mod. Aff. Mod. Time (Non)Sub. (Non)Sub

n (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx)
NCI 2 67 / 936 545 / 3025 .81 / 5.4 .21 / 1.2 1.03 / 6.77 54 / 1268 17 / 348
SWEET 2 36.9 / 300 281 / 857 .097 / .929 .182 / 1.4 .280 / 2.3 39 / 686 20.1 / 255
Galen 2 134 / 1045 1003 / 2907 .833 / 3.6 2.8 / 13 3.6 / 16.5 111 / 1594 17 / 158
GO 1 39.2 / 1513 127 / 1896 .24 / 1.4 .05 / .47 .29 / 1.5 69 / 2964 33 / 1499
GO 2 46 / 891 216 / 1383 .5 / 2.8 .07 / .43 .57 / 3.2 51 / 1079 26 / 775
GO 4 97 / 1339 474 / 3021 1.4 / 10.1 .25 / 3.2 1.7 / 13.4 94 / 1291 44 / 1034

Table 6. Results for varying update sizes for class and role axioms. Time in seconds.

Table 6 summarizes the results of the experiments for n = 2. Columns 1 and 2
detail the number of affected modules and their total size respectively. It can be ob-
served that, in general, only a very small number of the modules are affected for a
given update. Column 3 provides the total time to locate and re-extract the affected
modules; Column 4 shows the reclassification time for all the affected modules after

they have been re-extracted. In all cases, the average time is significantly smaller than
standard re-classification. It can be observed that, in the case of Galen, the maximum
time to classify the affected modules actually takes longer than classifying the entire
ontology. While unexpected, this is likely caused as traditional classification optimiza-
tions (e.g., model merging, top-bottom search, etc.) are not as effective, due to affected
modules containing a subset of the original axioms; therefore, additional subsumption
checks have to be performed. We note, however, that on average this does not occur.
Column 5 presents the total time to update the modules, load them into the reasoner,
and reclassify them; it can be seen that this outperforms reclassifying from scratch. For
future work, we plan to more tightly integrate the approach into Pellet, as this will avoid
the additional overhead attributed to loading the affected modules into the reasoner for
classification. Column 6 shows the number of new subsumption and non-subsumption
relations (i.e., the sum) for each ontology, and column 7 provides the average number
of modules which have a new subsumption or non-subsumption after a change. The
number of new (non) subsumptions is very small, which supports our initial hypothesis
that changes do not typically affect a large portion of the original ontology. In the case
of SWEET, the ratio of modules with new (non)subsumptions is relatively high when
compared to the average number of modules affected; specifically in these cases, almost
50% of the affected modules actually contains a new subsumption/non-subsumption re-
lation after the update. This empirically demonstrates that locality-based modules can
be very effective for maintaining (non)subsumptions relations as the underlying ontol-
ogy changes. Finally, the last two rows of the Table show the results for n = 1, 2, 4
in the case of the Gene Ontology. These results suggests that incremental classification
time may grow linearly with the number of modified axioms; similar behavior can be
observed for the remaining ontologies.

1:] Mod. 2:] Axioms 3: Update 4: Re-class. 5. Total 6:] New 7:] Mod.
Affected in Aff. Mod. Aff. Mod. Aff. Mod. Time (Non)Sub. (Non)Sub

n (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx)
NCI 2 2274 / 10217 12161 / 29091 25.7 / 60.4 10.4 / 30.8 36.2 / 91.3 0 / 0 0 / 0
SWEET 2 116 / 296 411 / 956 .42 / .93 .6 / 1.4 1.03 / 2.33 .56 / 28 .28 / 14
Galen 2 524 / 1906 1813 / 3780 2.1 / 4.7 6.5 / 15.6 8.6 / 20.4 3.3 / 82 2.5 / 37

Table 7. Results for varying update sizes for role axiom changes only. Time in seconds.

Table 7 considers the particular case of changes to role axioms only12. As shown in
Table 7, for SWEET the results are comparable to those presented in Table 6. For NCI
and Galen, changes in role axioms do have a more substantial impact.

The particular case of changes to concept axioms only is provided in Table 813. It
can be observed that the are much better than those when only role axiom changes are
performed. These results confirm that role axioms may cause larger effects than changes
in concept definitions.

12GO has not been included in Table 7 as it only contains one role axiom
13Again GO has not been included in Table 8 as it only contains one role axiom

1:] Mod. 2:] Axioms 3: Update 4: Re-class. 5. Total 6:] New 7:] Mod.
Affected in Aff. Mod. Aff. Mod. Aff. Mod. Time (Non)Sub. (Non)Sub

n (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx) (Av / Mx)
NCI 2 33 / 847 396 / 5387 .59 / 8.7 .15 / 2.6 .75 / 11.4 67 / 2228 20 / 610
SWEET 2 15.2 / 243 276 / 800 .02 / .07 .07 / .65 .095 / .732 31 / 553 12 / 241
Galen 2 131 / 1463 913 / 3397 .84 / 4.5 2.6 / 15.4 3.4 / 19.5 69 / 4323 42 / 1178
Table 8. Results for varying update sizes for concept axiom changes only. Time in seconds.

7 Related Work

While there has been substantial work on optimizing reasoning services for description
logics (see [10] for an overview), the topic of reasoning through evolving DL knowl-
edge bases remains relatively unaddressed. Notable exceptions include [7–9, 12]; these
papers, however, investigate the problem of incremental reasoning using model-caching
techniques in application scenarios that involve changes only in the ABox.

There has been substantial work on incremental query and view maintenance in
databases (e.g., [1, 15, 16]) and rule-based systems (e.g., Datalog [4, 5]). While related,
our work addresses a more expressive formalism; further, traditionally in database sys-
tems the problem of incremental maintenance is considered with respect to data (corre-
sponding to DL ABoxes) and not with respect to the database schema (corresponding
to DL TBoxes). Our technique, however, focuses on schema reasoning.

There has additionally been extensive work in Truth Maintenance Systems (TMSs)
for logical theories (e.g., [3, 6]). As pointed out in Section 3, a justification-based ap-
proach would be advantageous for incremental classification only if the number of pos-
itive subsumptions was larger than the number of non-subsumptions; that is, if most of
the formulas the justifications keep track of were provable. This is, however, not the
case, as typically there are far more non-subsumptions than subsumptions. Addition-
ally, a TMS system designed to support non-subsumptions (e.g., by caching models)
would most likely be impractical due to the potentially large size of these models and
substantial modifications likely to be caused by changes in general axioms; however, in
our approach, maintaining locality-based modules introduces limited overhead. Finally,
the representation language in practical TMSs is mostly propositional logic, whereas
we focus on much more expressive languages.

8 Conclusion

We have proposed a general technique for incremental reasoning under arbitrary changes
in an ontology. We have used locality-based modules due to their compelling properties
and applied our method to incremental classification of OWL DL ontologies.

For ontology development, it is desirable to re-classify the ontology after a small
number of changes. In this scenario, our results are very promising. Incremental clas-
sification using modules is nearly real-time for almost all ontologies and therefore the
reasoner could be working transparently to the user in the background without slow-
ing down the editing of the ontology. There are, however, some disadvantages of our

approach. First, there are cases where a change which does not affect the concept hi-
erarchy, affects a large number of modules; second, for complex ontologies including
nominals, such as the Wine ontology, the modules can be large; third classifying a (large
enough) fragment might be more expensive than classifying the whole ontology. In most
cases, however, our incremental approach provides a substantial speed-up w.r.t. regu-
lar classification. For future work, we are planning to exploit modules for incremental
ABox reasoning tasks, such as query answering.

Acknowledgements: This work is supported by the EU Project TONES (Thinking
ONtologieES) ref:IST-007603 and by the EPSRC Project REOL (Reasoning in Expres-
sive Ontology Languages) ref:EP/C537211/1. We would like to acknowledge Evren
Sirin and Mike Smith for their contributions to the empirical evaluation presented here.

References

1. J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently updating materialized views. In
Proc. of SIGMOD ’86: ACM SIGMOD International Conference on Management of Data,
pages 61–71, 1986.

2. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amount: Extracting
modules from ontologies. In Proc. of WWW2007, 2007.

3. J. de Kleer. An assumption-based TMS. Artif. Intell., 28(2):127–162, 1986.
4. G. Dong, J. Su, and R. W. Topor. Nonrecursive incremental evaluation of datalog queries.

Annals of Mathematics and Artificial Intelligence, 14(2-4), 1995.
5. G. Dong and R. W. Topor. Incremental evaluation of datalog queries. In Proc. of the 4th Int.

Conference on Database Theory, 1992.
6. J. Doyle. A truth maintenance system. Readings in nonmonotonic reasoning, pages 259–279,

1987.
7. V. Haarslev and R. Möller. Incremental query answering for implementing document re-

trieval services. In Proc. of DL-2003, pages 85–94, 2003.
8. C. Halaschek-Wiener and J. Hendler. Toward expressive syndication on the web. In Proc. of

the 16th Int. World Wide Web Conference (WWW 2007), 2007.
9. C. Halaschek-Wiener, B. Parsia, and E. Sirin. Description logic reasoning with syntactic

updates. In Proc. of ODBase2006, 2006.
10. I. Horrocks. Implementation and optimisation techniques. In The Description Logic Hand-

book: Theory, Implementation, and Applications, pages 313–355. Cambridge University
Press, 2003.

11. I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proc. of IJ-
CAI 2005, pages 448–453. Professional Book Center, 2005.

12. B. Parsia, C. Halaschek-Wiener, and E. Sirin. Towards incremental reasoning through up-
dates in OWL-DL. Reasoning on the Web - Workshop at WWW-2006, 2006.

13. B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In WWW, pages 633–
640, 2005.

14. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In Proc. of IJCAI, 2003, pages 355–362. Morgan Kaufmann, 2003.

15. M. Stonebraker. Implementation of integrity constraints and views by query modification. In
SIGMOD ’75: Proc. of the 1975 ACM SIGMOD international conference on Management
of data, pages 65–78, New York, NY, USA, 1975.

16. D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous queries over append-only
databases. In Proc. of the Intl. Conf. on Management of Data, 1992.

