
Extracting Modules from Ontologies:
A Logic-based Approach

Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov and Ulrike Sattler
The University of Manchester
School of Computer Science
Manchester, M13 9PL, UK

{bcg, horrocks, ykazakov, sattler}@cs.man.ac.uk

1 Introduction

The design, maintenance, reuse, and integration of ontologies are highly complex tasks—
especially for ontologies formulated in a logic-based language such as OWL. Like soft-
ware engineers, “ontology engineers” need to be supported by tools and methodologies
that help them to minimise the introduction of errors, i.e., to ensure that ontologies have
appropriate consequences. In order to develop this support, important notions from soft-
ware engineering, such asmodule, black-box behavior, andcontrolled interaction, need
to be adapted so as to take into account the fact that an OWL ontology is, in essence, a
logical theory; due to the expressive power of OWL, this turns out to be difficult.

In this paper, we focus on the use of modularity to support thepartial reuseof on-
tologies. Given a foreign ontology from which we are reusing a set of symbols, our goal
is to extract, from the foreign ontology, a small fragment that captures the meaning of
the terms we use in our ontology. For example, when building an ontology describing
research projects, we may use terms such asCystic Fibrosis andGenetic Disorder in
our descriptions of medical research projects. In order to improve the precision of our
ontology, we may want to add more detail about the meaning of these terms; for reasons
of cost and accuracy, we would prefer to do this by reusing information from a medical
ontology. Such ontologies are, however, typically very large, and importing the whole
ontology would make the consequences of the additional information costly to compute
and difficult for our ontology engineers (who are not medical experts) to understand.
Thus, in practice, we need to extract a (hopefully small) module that includes just the
relevant information. More specifically, we will require that, when answering a query
(expressed in a fixed query language) against our project ontology, importing the mod-
ule would give usexactly the same answersas if we had imported the whole medical
ontology. In this case, importing the module instead of the whole ontology will have no
observable effect on our ontology.

In this paper, we propose a definition of amoduleQ1 within a given ontologyQ
for a given vocabularyS. We show that, for OWL DL, which is a syntactical variant
of the Description LogicSHOIN , checking whetherQ1 is a module inQ for S is an
undecidable problem. Given this negative result, we propose sufficient conditions for
Q1 to be a module inQ—that is, ifQ1 satisfies our conditions then we can guarantee
that it is a module forS in Q, but not vice-versa. The conditions we present here are
based on the notion ofsyntactic locality, first introduced in [3], and can be checked

Ontology of medical research projectsP:

P1 Genetic Disorder Project ≡ Project u ∃has Focus.Genetic Disorder

P2 Cystic Fibrosis EUProject ≡ EUProject u ∃has Focus.Cystic Fibrosis

P3 EUProject v Project

Ontology of medical termsQ:

M1Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

M2Genetic Fibrosis ≡ Fibrosis u ∃has Origin.Genetic Origin

M3Fibrosis u ∃located In.Pancreas v Genetic Fibrosis

M4Genetic Fibrosis v Genetic Disorder

M5DEFBI Gene v Immuno Protein Gene u ∃associated With.Cystic Fibrosis

Table 1: Reusing medical terminology in an ontology on research projects

in polynomial time for OWL DL ontologies. We propose an algorithm for computing
locality-based modules and present our experimental results on a set of real-world on-
tologies of varying size and complexity. We show that the modules we obtain are much
smaller than the ones computed using existing techniques.

We refer the interested reader to the extended version of this paper [2] for a more
detailed presentation of our results.

2 Modules for Knowledge Reuse

For exposition, suppose that an ontology engineer wants to build an ontology about
research projects. The ontology defines different types of projects according to the
research topics they focus on. Suppose that the ontology engineer defines two con-
ceptsGenetic Disorder Project andCystic Fibrosis EUProject in his ontologyP. The
first one describes projects about genetic disorders; the second one describes European
projects about cystic fibrosis, as given by the axioms P1 and P2 in Table 1.

The ontology engineer is an expert on research projects: he knows, for example,
that anEUProject is aProject (axiom P3). He might be unfamiliar, however, with most
of the topics the projects cover and, in particular, with the termsCystic Fibrosis and
Genetic Disorder mentioned in P1 and P2. In this case, he decides to reuse the knowl-
edge about these subjects from a well-established and widely-used medical ontology.

The most straightforward way to reuse these concepts is to import the foreign med-
ical ontology. This may be, however, a large ontology, which deals with other mat-
ters in which the ontology engineer is not interested, such as genes, anatomy, surgical
techniques, etc. Ideally, one would like to extract a (hopefully small) fragment of the
medical ontology—amodule—that describes in detail the reused concepts. Intuitively,
importing the moduleQ1 into P instead of the full ontologyQ should have the same
impact on the modeling of the ontologyP as importingQ.

Continuing with the example, suppose thatCystic Fibrosis andGenetic Disorder
are described in an ontologyQ containing axioms M1-M5 in Table 1. If we include

in the moduleQ1 just the axioms that mentionCystic Fibrosis or Genetic Disorder,
namely M1, M4 and M5, we lose the following dependency:

Cystic Fibrosis v Genetic Disorder (1)

The dependenciesCystic Fibrosis v Genetic Fibrosis v Genetic Disorder follow
from axioms M1-M5, but not from M1, M4, M5, since the dependencyCystic Fibrosis v
Genetic Fibrosis does not hold after removing M2 and M3 fromQ. The dependency
(1), however, is crucial for our ontologyP as it (together with axiom P3) implies the
following axiom:

Cystic Fibrosis EUProject v Genetic Disorder Project (2)

This means that all the projects annotated withCystic Fibrosis EUProject must be
included in the answer for a query onGenetic Disorder Project. Importing a part of
Q containing only axioms that mention the terms used inP instead ofQ results in
an underspecified ontology. We stress that the ontology engineer might be unaware of
dependency (2), even though it concerns the concepts of his primary scope.

The example above suggests that the central requirement for a moduleQ1 ⊆ Q to
be reused in our ontologyP is thatP ∪Q1 should yield thesamelogical consequences
in the vocabulary ofP asP ∪ Q does. Furthermore, the fact thatQ1 is a module in
Q should be independent from the particularP under consideration—that is, ifQ1

“behaves” in the same way asQ for a given ontologyP but not for a different ontology
P ′, thenQ1 should not be a module inQ. Based on this intuition, we can formalize the
notion of amoduleas follows:

Definition 1 (Module). LetQ1 ⊆ Q be two ontologies andS a signature. We say that
Q1 is an S-module inQ w.r.t. an ontology languageL, if for every ontologyP and
axiomα expressed inL with Sig(P)∩ Sig(Q) ⊆ S andSig(α) ⊆ Sig(P), we have that
P ∪Q |= α if and only ifP ∪Q1 |= α.

Definition 1 implies that, for anyP, the axioms inQ excluded from the moduleQ1 do
not cause new consequences inP and therefore can be disregarded. In Definition 1 the
signatureS acts as theinterfacesignature betweenP andQ in the sense that it contains
the symbols thatP and may share withQ. Unfortunately, it can be shown that, for
the description logicALCO—the fragment of OWL DL that disallows transitive roles,
role hierarchies, inverse roles, and cardinality restrictions—checking whetherQ1 is a
module inQ for S is an undecidable problem (see [1]).

Theorem 1. Given a signatureS, anALC-ontologyQ and anALCO ontologyQ1 ⊆
Q, it is undecidable whetherQ1 is anS-module inQ w.r.t. L = ALCO.

It is a consequence of this theorem that many relevant tasks, such as the extraction
of minimal modules or the extraction of all the modules, cannot be algorithmically
solved in OWL DL. Theorem 1, however, doesnot imply the impossibility of designing
an algorithm for findingsome(not necessarily minimal) modules. In particular, it is
always possible to extract anS-module inQ since one can simply returnQ which is
always anS-module inQ. From a practical point of view, our goal is to find a procedure
for computing “reasonably small” modules. Obviously, by Theorem 1, the set of all
modules and the set of all minimal modules inQ for a given signatureS cannot be
computed using our procedure.

3 Modules Based on Locality

Consider axiom M5 from Table 1. Suppose that we are given an interpretationIS for
the vocabularyS = {Cystic Fibrosis}. Suppose that we define a new interpretation
I by takingIS and interpreting the remaining symbols in M5, namelyDEFB Gene,
Inmuno Protein Gene andassociated With as the empty set. It is not hard to see thatI
is a model of M5 regardless of the interpretation ofCystic Fibrosis. For module extrac-
tion, this means that M5 is irrelevant to the meaning ofCystic Fibrosis and hence this
axiom need not be included in a module for this symbol.

This intuition can be used to define a particular kind of modules, which are based
on the notion ofsyntactic locality, first introduced in [3].

Definition 2 (Syntactic Locality for SHOIQ).
Let S be a signature. The following grammar recursively defines two sets of concepts
C⊥S andC>S for a signatureS:

C⊥S ::= A⊥ | (¬C>) | (C u C⊥) | (∃R⊥.C) | (∃R.C⊥) | (>n R⊥.C) | (>n R.C⊥) .

C>S ::= (¬C⊥) | (C>
1 u C>

2) .

whereA⊥ /∈ S is a atomic concept,R is a role, andC is a concept,C⊥ ∈ C⊥S ,
C>

(i) ∈ C
>
S , i = 1, 2, andR⊥ /∈ Rol(S) is a role.

An axiomα is syntactically local w.r.t.S if it is of one of the following forms:
(1) R⊥ v R, or (2) Trans(R⊥), or (3) C⊥ v C or (4) C v C>. ASHOIQ ontology
O is syntactically local w.r.t.S if all its axioms are syntactically local w.r.t.S.

Intuitively, every concept inC⊥S becomes equivalent to⊥ if we replace every symbol
A⊥ or R⊥ not in S with the bottom concept⊥ and the empty role respectively, which
are both interpreted as the empty set under every interpretation. Similarly, the concepts
from C>S are equivalent to> under this replacement. Syntactically local axioms become
tautologies after these replacements.

For example, the axiom M5 from Table 1 is local w.r.t.S = {Fibrosis, has Origin}:
if we replace the remaining symbols in this axiom with⊥, we obtain a tautology⊥ ≡ ⊥:

⊥︷ ︸︸ ︷
DEFBI Gene ≡

⊥︷ ︸︸ ︷
Inmuno Protein Gene u ∃

empty role︷ ︸︸ ︷
associated With .Cystic Fibrosis

Given a signatureS and an ontologyO, syntactic locality can be used as a sufficient
condition for a fragmentO1 ⊆ O to be anS-module inO, as given by the following
proposition:

Proposition 1. LetO1,O2 beSHOIQ ontologies andS a signature such thatO2 is
local w.r.t.S ∪ Sig(O1). ThenO1 is anS-module inO1 ∪ O2.

Based on Proposition 1, we can define a particular modules that can be identified using
locality:

Definition 3 (Modules based on Locality Condition).
Given an ontologyQ and a signatureS, we say thatQ1 ⊆ Q is a locality-basedS-
module inQ if Q \ Q1 is local w.r.tS ∪ Sig(Q1).

Algorithm 1 extractmodule(Q,S)
Input:
Q: ontology
S: signature

Output:
Q1: a locality-basedS-module inQ

1: Q1 ← ∅ Q2 ← Q
2: while not empty(Q2) do
3: α← selectaxiom(Q2)
4: if locality test(α, S ∪ Sig(Q1)) then
5: Q2 ← Q2 \ {α} . α is processed
6: else
7: Q1 ← Q1 ∪ {α} . moveα intoQ1

8: Q2 ← Q \Q1 . resetQ2 to the complement ofQ1

9: end if
10: end while
11: return Q1

For example, we have seen that axiom M5 is local w.r.t.Sig(Q1) with Q1 =
{M1, . . . , M4}. Hence, according to Definition 3,Q1 is a locality-basedS-module in
Q for everyS ⊆ Sig(Q1).

In order to construct a locality-basedS-module in an ontologyQ, it suffices to
partition the ontologyQ asQ = Q1 ∪ Q2 such thatQ2 is local w.r.t.S ∪ Sig(Q1).
Algorithm 1 outlines a simple procedure which performs this task. Assuming there is
an effective locality test localitytest(α,S), which returns true only for axiomsα that
are local w.r.t.S, the algorithm first initializes the partition to the trivial one:Q1 = ∅
andQ2 = Q, and then repeatedly moves toQ1 those axioms fromQ2 that are not local
w.r.t. S ∪ Sig(Q1) until no such axioms are left inQ2.

In Table 2 we provide a trace of Algorithm 1 for the input(Q,S), whereQ consists
of the axioms M1-M5 from Table 1 andS = {Cystic Fibrosis, Genetic Disorder}.
Each row in the table corresponds to an iteration of the while loop in Algorithm 1. The

Q1 Q2 New elements inS ∪ Sig(Q1) α local?

1 − M1−M5 Cystic Fibrosis, Genetic Disorder M1 No

2 M1 M2−M5 Fibrosis, located In, Pancreas, has Origin, Genetic Origin M2 No

3 M1, M2 M3−M5 Genetic Fibrosis M3 No

4 M1−M3 M4, M5 − M4 No

5 M1−M4 M5 − M5 Yes

6 M1−M4 − − −
Table 2: A trace of Algorithm 1 for the inputQ = {M1, . . . , M5} and S =
{Cystic Fibrosis, Genetic Disorder}

(a) ConceptDNA Structure in NCI (b) Syntactic locality-based module for the
conceptDNA Structure in NCI

Fig. 1: The Module Extraction Functionality in Swoop

last column of the table provides the result of the locality test in line 4. It can be shown
[2] that Algorithm 1 computes, for eachQ,S, a locality-basedS-module inQ.

Note that there is an implicit non-determinism in Algorithm 1, namely, in line 3 in
which an axiom fromQ2 is selected. It might well be the case that several choices for
α are possible at this moment. For example, in Table 2 at step 2 we might have selected
axiom M3 instead of M2: It is possible to show (see [1] for detail) that the output of
Algorithm 1 is uniquely determined by its inputQ andS.

In many Semantic Web applications, reuse often boils down to the following high-
level task: given an atomic concept in the ontology that we want to borrow, provide the
axioms in the ontology that are relevant to its meaning. Consequently, it is interesting
to determine the scope of a locality-based moduleQloc

{A} for A in Q.

Proposition 2. Let Q be ontology,A and B atomic concepts, andQloc
{A} a locality-

based module inQ for S = {A}. Then,Q |= (A v B) iff Qloc
{A} |= (A v B).

Proposition 2 (see [1] for a proof) implies that any locality-based module for a single
atomic conceptA provides a complete representation of all the super-classes ofA.

As an illustration, consider in Figure 1 the locality-based module for the atomic con-
ceptDNA Structure in the NCI ontology, as obtained in SWOOP [5]. The user interface
of SWOOP allows for the selection of an input signature and the retrieval of the corre-
sponding module. As given in Proposition 2, the locality-based moduleOloc

{A} for every
atomic conceptA ∈ Sig(O) contains all the necessary axioms for, at least, all the (en-
tailed) super-concepts ofA inO. ThusOloc

{A} can be seen as the “upper ontology” forA.
In fact, Figure 1 shows that the locality-based module forDNA Structure contains only
the concepts in the “path” fromDNA Structure to the top level conceptAnatomy Kind.
This suggests that the knowledge in NCI about the particular conceptDNA Structure
is very shallow in the sense that NCI only “knows” that aDNA Structure is a macro-
molecular structure, which, in the end, is an anatomical concept.

4 Related Work

The problem of extracting modular fragments of ontologies has recently been addressed
in [9], [7] and [8]. In [9], the authors propose an algorithm for partitioning the concepts
in an ontology. The goal is to facilitate the visualization of and navigation through the
ontology. The algorithm uses a set of heuristics for measuring the degree of depen-
dency between the concepts in the ontology and outputs a graphical representation of
these dependencies. The algorithm is intended as a visualization technique, and does
not establish a correspondence between the nodes of the graph and sets of axioms in
the ontology. The algorithms in [7] and [8] use structural traversal techniques to extract
modules from ontologies for a given signature. None of these approaches provides a
characterization of the logical properties of the extracted modules, nor do they establish
a notion of correctness of the modularization. In fact, in general, they do not produce
modules according to Definition 1.

In [4], the authors propose a definition of a module and an algorithm for extracting
modules based on that definition. The notion of a module in an ontologyQ for a sig-
natureS also provides logical guarantees concerning the preservation of the meaning
of the reused symbols. The logical requirements in [4] lead, in many cases, to modules
which are larger than one may wish. The reason is that, for every atomic conceptA ∈ S,
the moduleQ1 for A inQmust be a module for all its sub-concepts and super-concepts.

Our notion module is closely related to the notion of a conservative extension, which
has been recently investigated in the context of ontologies [6]; we refer the reader to [2]
for further details about this relationship. Finally, in our previous work [3] we have used
locality as a sufficient condition for safe integration of ontologies.

5 Evaluation

Given an input ontology and an input signature, locality-based modules are not the only
possible modules we can obtain. It remains to be shown that the locality-based modules
obtained in realistic ontologies aresmall enoughto be useful in practice.

Ontology] Atomic A1: Prompt-Factor [7] A2: Mod. in [4] A3: Loc.-based mod.

ConceptsMax.(%) Avg.(%) Max.(%) Avg.(%) Max.(%) Avg.(%)

NCI 27772 87.6 75.84 55 30.8 0.8 0.08

SNOMED 255318 100 100 100 100 0.5 0.05

GO 22357 1 0.1 1 0.1 0.4 0.05

SUMO 869 100 100 100 100 2 0.09

GALEN-Small 2749 100 100 100 100 10 1.7

GALEN-Full 24089 100 100 100 100 29.8 3.5

SWEET 1816 96.4 88.7 83.3 51.5 1.9 0.1

DOLCE-Lite 499 100 100 100 100 37.3 24.6

Table 3: Comparison of Different Modularization Algorithms

For evaluation and comparison, we have implemented the following algorithms us-
ing Manchester’s OWL API:1

A1: The PROMPT-FACTOR algorithm, as described in [7];
A2: The algorithm for extracting modules described in [4];
A3: Our algorithm for extracting modules (Algorithm 1), based on syntactic locality.

As a test suite, we have collected a set of well-known ontologies available on the Web,
which can be divided into two groups:

Simple. In this group, we have included the National Cancer Institute (NCI) Ontology,2

the SUMO Upper Ontology,3 the Gene Ontology (GO),4 and the SNOMED Ontology5.
These ontologies use a simple ontology language and are of a simple structure; in par-
ticular, they contain only definitions.

Complex.This group contains the well-known GALEN ontology (GALEN-Full),6 the
DOLCE upper ontology (DOLCE-Lite),7 and NASA’s Semantic Web for Earth and
Environmental Terminology (SWEET)8. These ontologies are complex since they use
many constructors from OWL DL and/or include a significant number of general inclu-
sion axioms and cyclic dependencies. In the case of GALEN, we have also considered a
version GALEN-Small that has commonly been used as a benchmark for OWL reason-
ers. This ontology is almost 10 times smaller than the original GALEN-Full ontology,
but it is similar in structure.

1 http://sourceforge.net/projects/owlapi
2 http://www.mindswap.org/2003/CancerOntology/nciOncology.owl
3 http://ontology.teknowledge.com/
4 http://www.geneontology.org
5 http://www.snomed.org
6 http://www.openclinical.org/prj galen.html
7 http://www.loa-cnr.it/DOLCE.html
8 http://sweet.jpl.nasa.gov/ontology/

(a) Modularization of NCI(a) Modularization of NCI (b) Modularization of GALEN-Small(b) Modularization of GALEN-Small

(c) Modularization of SNOMED(c) Modularization of SNOMED (d) Modularization of GALEN-Full(d) Modularization of GALEN-Full

Fig. 2: Distribution for the sizes of syntactic locality-based modules for atomic concepts: the X-
Axis gives the number of concepts in the modules and the Y-Axis the number of modules for
each size range.

For each of these ontologies, and for each atomic concept in their signature, we
have extracted the corresponding modules using algorithms A1-A3 and measured their
size. We use modules for single atomic concepts to get an idea of the typical size of
locality-based modules compared to the size of the whole ontology.

The results we have obtained are summarized in Table 3. The table provides the
size of the largest module and the average size of the modules obtained using each
of these algorithms. In the table, we can clearly see that locality-based modules are
significantly smaller than the ones obtained using the other methods; in particular, in
the case of SUMO, DOLCE, GALEN and SNOMED, the algorithms A1 and A2 retrieve
the whole ontology as the module for each atomic concept. In contrast, the modules we
obtain using our algorithm are significantly smaller than the size of the input ontology.
In fact, our modules are not only smaller, but are also strict subsets of the respective
modules computed using A1 and A2.

For NCI, SNOMED, GO and SUMO, we have obtained very small locality-based
modules. This can be explained by the fact that these ontologies, even if large, are sim-
ple in structure and logical expressivity. For example, in SNOMED, the largest locality-

based module obtained is approximately 1/10000 of the size of the ontology, and the
average size of the modules is 1/10 of the size of the largest module. In fact, most of the
modules we have obtained for these ontologies contain less than 40 atomic concepts.

For GALEN, SWEET and DOLCE, the locality-based modules are larger. Indeed,
the largest module in GALEN-Small is 1/10 of the size of the ontology, as opposed to
1/10000 in the case of SNOMED. For DOLCE, the modules are even bigger—1/3 of the
size of the ontology—which indicates that, either the dependencies between the differ-
ent concepts in the ontology are very strong and complicated and thus actual minimal
modules are big themselves, or that no small locality-based modules exist. The SWEET
ontology is an exception: even though the ontology uses most of the constructors avail-
able in OWL, the ontology is heavily underspecified, which yields small modules.

In Figure 2, we have presented a more detailed analysis of the modules for each
concept name in NCI, SNOMED, GALEN-Small and GALEN-Full. Here, the X-axis
represents the size ranges of the obtained modules and the Y-axis the number of modules
whose size is within the given range. The plots thus give an idea of the distribution for
the sizes of the modules.

For SNOMED, NCI and GALEN-Small, we can observe that the size of the modules
follows a smooth distribution. In contrast, for GALEN-Full, we have obtained a many
small modules and many big ones, but no medium-sized modules in-between. This
abrupt distribution indicates the presence of a big cycle of dependencies in the ontology,
which involves all the concepts with large modules.

References

1. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Extracting modules from ontologies:
Theory and practice. Technical report, University of Manchester, 2007. Available from:
http://www.cs.man.ac.uk/∼bcg/Publications.html.

2. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amount: Extracting
modules from ontologies. InProc. of WWW-2007, 2007.

3. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. A logical framework for modularity
of ontologies. InProc. IJCAI-2007, pages 298–304, 2007.

4. B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and Web Ontologies. In
Proc. KR-2006, pages 198–209, 2006.

5. A. Kalyanpur, B. Parsia, E.Sirin, B. Cuenca Grau, and J. Hendler. SWOOP: A web editing
browser.Elsevier’s Journal Of Web Semantics, 4(2):144–153, 2006.

6. C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive description logics.
In Proc. of IJCAI-2007, pages 453–459, 2007.

7. N. Noy and M. Musen. The PROMPT suite: Interactive tools for ontology mapping and
merging.Int. Journal of Human-Computer Studies, 6(59), 2003.

8. J. Seidenberg and A. Rector. Web ontology segmentation: Analysis, classification and use. In
Proc. WWW-2006, 2006.

9. H. Stuckenschmidt and M. Klein. Structure-based partitioning of large class hierarchies. In
Proc. ISWC-2004, pages 289–303, 2004.

