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Abstract. We show that adding role conjunctions to the Description
Logics (DLs) SHI and SHOIF causes a jump in the computational
complexity of the standard reasoning tasks from ExpTime-complete to
2ExpTime-complete and from NExpTime-complete to N2ExpTime-hard
respectively. We further show that this increase is due to a subtle inter-
action between inverse roles, role hierarchies, and role transitivity in the
presence of role conjunctions and that for the DL SHQ a jump in the
computational complexity cannot be observed.

1 Introduction

Description Logics are knowledge representation formalisms [1], which are mostly
based on decidable fragments of First-Order Logic with only unary and binary
predicates, called concepts and roles. The DLs SHIF and SHOIN provide a
logical underpinning for the W3C standards OWL Lite and OWL DL and highly
optimized reasoner implementations are available.

Current standardization efforts go into the direction of also supporting a
richer set of constructors for roles. It was recently shown that role compositions
in the proposed OWL2 standard cause an exponential blowup [2] in the compu-
tational complexity of the standard reasoning problems. We show that allowing
for conjunctions over roles can also cause such a blowup.

Role conjunctions are closely related to conjunctive queries. In [3] it was
shown how the problem of conjunctive query answering over SHIQ can be re-
duced to reasoning in SHIQ⊓—the extension of SHIQ with role conjunctions.
For example, the query 〈x〉 ← r(x, y)∧s(x, y)∧A(y) can be answered by retriev-
ing all instances of the concept ∃(r ⊓ s).A for A a concept name, r, s roles, and
x, y variables. In [3] it was also shown that reasoning in SHIQ⊓ is in 2ExpTime.
It was an open question whether this bound is tight.

In this paper we demonstrate that standard reasoning in SHIQ⊓ and even in
SHI⊓ is 2ExpTime-hard. It follows from the construction in [3] that reasoning
in SHIQ⊓ is in ExpTime when either the number of transitive roles in role
inclusions, or the length of role conjunctions is bounded. We also demonstrate
that reasoning in SHIQ⊓ without inverse roles is in ExpTime as well. Thus, the
increased complexity of SHIQ⊓ is due to a combination of inverse roles, role
transitivity, role hierarchies, and role conjunctions. A similar effect is observed
for propositional dynamic logics (PDL), where the intersection operator causes



a complexity jump from ExpTime to 2ExpTime [4]. PDL is closely related to the
DL ALC extended with regular expressions on roles.

We now introduce some basic definitions and notations used throughout the
paper. In Section 3, we prove that for SHQ⊓ the standard reasoning tasks remain
in ExpTime. In Section 4, we present the 2ExpTime-hardness result for SHI⊓

by a reduction to the word problem for exponentially space bounded Turing
machines. In Section 5 we demonstrate that SHOIF⊓ is already N2ExpTime-
hard using a reduction to domino tiling problems. This paper is accompanied by
a technical report which contains intermediate lemmata and full proofs [5].

2 Preliminaries

Let NC , NR, and NI be countably infinite sets of concept names, role names,
and individual names. We assume that the set of role names contains a subset
NtR ⊆ NR of transitive role names. A role R is an element of NR∪{r− | r ∈ NR},
where roles of the form r− are called inverse roles. A role conjunction is an
expression of the form ρ = (R1 ⊓ · · · ⊓Rn). A role inclusion axiom (RIA) is an
axiom of the form R ⊑ S where R and S are roles. A role hierarchy R is a finite
set of role inclusion axioms.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the domain
of I, and a function ·I , which maps every concept name A to a subset AI ⊆ ∆I ,
every role name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I , every role name
r ∈ NtR to a transitive binary relation rI ⊆ ∆I × ∆I , and every individual
name a to an element aI ∈ ∆I . The interpretation of an inverse role r− is
{〈d, d′〉 | 〈d′, d〉 ∈ rI}. The interpretation of a role conjunction R1 ⊓ · · · ⊓ Rn is
R1

I ∩ · · · ∩ Rn
I . An interpretation I satisfies a RIA R ⊑ S if RI ⊆ SI , and a

role hierarchy R if I satisfies all RIAs in R.

For a role hierarchy R, we introduce the following standard DL notations:

1. We define the function Inv over roles as Inv(r) := r− and Inv(r−) := r for
r ∈ NR.

2. We define ⊑R as the smallest transitive reflexive relation on roles such that
R ⊑ S ∈ R implies R ⊑R S and Inv(R) ⊑R Inv(S). We write R ≡R S if
R ⊑R S and S ⊑R R.

3. A role R is called transitive w.r.t. R (notation R+ ⊑R R) if R ≡R S for
some role S such that S ∈ NtR or Inv(S) ∈ NtR.

4. A role S is called simple w.r.t. R if there is no role R such that R is transitive
w.r.t. R and R ⊑R S. A role conjunction R1 ⊓ · · · ⊓Rn is simple w.r.t. R if
each conjunct is simple w.r.t. R.

The set of SHOIQ⊓-concepts is the smallest set built inductively from
NC ,NR, and NI using the following grammar, where A ∈ NC , o ∈ NI , n is
a non-negative integer, ρ is a role conjunction and δ is a simple role conjunction:

C ::= A | {o} | ¬C | C1 ⊓ C2 | ∀ρ.C | >n δ.C.



We use the following standard abbreviations: C1 ⊔C2 ≡ ¬(¬C1 ⊓ ¬C2), ∃ρ.C ≡
¬(∀ρ.(¬C)), and 6 n δ.C ≡ ¬(> (n + 1) δ.C).

The interpretation of concepts in I is defined as follows:

{o}I = {oI}, (C ⊓D)I = CI ∩DI , (¬C)I = ∆I \ CI ,

(∀ρ.C)
I

= {d ∈ ∆I | if 〈d, d′〉 ∈ ρI , then d′ ∈ CI},

(> n δ.C)
I

= {d ∈ ∆I | ♯sI(d, C) ≥ n}

where ♯M denotes the cardinality of the set M and sI(d, C) is defined as {d′ ∈
∆I | 〈d, d′〉 ∈ sI and d′ ∈ CI}. Concepts of the form {o} are called nominals.

The DL SHOIF⊓ is obtained by only allowing for the declaration of roles
as functional (e.g., Func(R)) instead of full number restrictions. By disallowing
number restrictions and nominals, we obtain SHI⊓. Finally, SHOIQ⊓ minus
nominals and inverse roles, results in the DL SHQ⊓.

A general concept inclusion (GCI) is an expression C ⊑ D, where both C
and D are concepts. A finite set of GCIs is called a TBox. An interpretation I
satisfies a GCI C ⊑ D if CI ⊆ DI , and a TBox T if it satisfies every GCI in T .

An (ABox) assertion is an expression of the form C(a), r(a, b), where C is
a concept, r a role, and a, b ∈ NI . An ABox is a finite set of assertions. We use
NI (A) to denote the set of individual names occurring in A. An interpretation I
satisfies an assertion C(a) if aI ∈ CI , r(a, b) if 〈aI , bI〉 ∈ rI . An interpretation
I satisfies an ABox A if it satisfies each assertion in A, denoted as I |= A.

A knowledge base (KB) is a triple (R, T ,A) with R a role hierarchy, T a
TBox, and A an ABox. Let K = (R, T ,A) be a knowledge base and I = (∆I , ·I)
an interpretation. We say that I satisfies K if I satisfies R, T , and A. In this
case, we say that I is a model of K and write I |= K. We say that K is satisfiable
if K has a model. A concept D subsumes a concept C w.r.t. K if CI ⊆ DI for
every model I of K. A concept C is satisfiable w.r.t. K if there is a model I of K
such that CI 6= ∅. It should be noted that the standard reasoning tasks such as
knowledge base satisfiability, concept subsumption, or concept satisfiability are
mutually reducible in polynomial time.

3 SHQ
⊓ is ExpTime-complete

In this section, we show that adding role conjunctions to the DL SHQ does not
increase the computational complexity of the standard reasoning tasks. For this
purpose, we devise a polynomial translation of a given SHQ⊓ knowledge base to
an equisatisfiable ALCHQ⊓ knowledge base (i.e., SHQ⊓ minus role transitivity)
for which the standard reasoning tasks are ExpTime-complete [6, 3, 7].

Let K = (R, T ,A) be an SHQ⊓ knowledge base. We say that K is simplified
if T contains only axioms of the form:

A ⊑ ∀ρ.B | A ⊑ ∃ρ.B | A ⊑ ⊲⊳n δ.B |
l

Ai ⊑
⊔

Bj,

where A(i) and B(j) are atomic concepts, ρ (δ) is a (simple) conjunction of roles,
and ⊲⊳ stands for 6 or >. Furthermore, concept assertions in A are limited to the



form A(a) for A a concept name. Every SHQ⊓ knowledge base, which is not in
this form, can be transformed in polynomial time into the desired form by using
the standard structural transformation, which iteratively introduces definitions
for compound sub-concepts and sub-roles (see, e.g., [8]).

It is well known that transitivity can be eliminated from SHIQ and SHOIQ
knowledge bases by using auxiliary axioms that propagate the concepts over
transitive roles [8, 9]. The transitivity elimination has been extended to SHIQ⊓

[3], however it becomes exponential in the worst case, since one has to introduce
new axioms for (possibly exponentially many) conjunctions of transitive roles.
The procedure is, however, polynomial if either the number of transitive roles in
role inclusions or the length of role conjunctions is bounded. Below we describe
a polynomial elimination of transitivity when there are no role inverses.

Let K = (R, T ,A) be a simplified SHQ⊓ knowledge base. We construct an
ALCHQ⊓ knowledge base K′ = (R′, T ′,A′) from K as follows. The signature of
K′ is defined by NI (K′) := NI (K), NR(K′) := NR(K), NtR(K′) := ∅, NC (K′) :=
NC (K) ∪ {Aa, Ar

a | A ∈ NC (K), a ∈ NI (K), r ∈ NR(K)}. Recall, that w.l.o.g.,
NI (K) is non-empty, therefore there exists at least one Aa for every A ∈ NC (K).
We setR′ := R, A′ := A, and T ′ as an extension of T with the following axioms:

A ⊑
⊔

a∈NI (A) Aa A ∈ NC (K) (1)

Aa ⊑ ∀r.A
r
a A ∈ NC (K), a ∈ NI (A), r ∈ NR(K) (2)

At
a ⊑ ∀t.A

t
a A ∈ NC (K), a ∈ NI (A), t ∈ NtR(K) (3)

At
a ⊑ Ar

a A ∈ NC (K), a ∈ NI (A), t ∈ NtR(K), r ∈ NR(K), t ⊑R r (4)

Ar1

a ⊓ · · · ⊓Arn

a ⊑ B a ∈ NI (A), (A ⊑ ∀ρ.B) ∈ T , ρ = r1 ⊓ · · · ⊓ rn (5)

Theorem 1. Let K = (R, T ,A) be a simplified SHQ⊓ knowledge base and K′ =
(R′, T ′,A′) an ALCHQ⊓ knowledge base obtained from K as described above.
Then (i) K′ is obtained from K in polynomial time and (ii) K is satisfiable iff
K′ is satisfiable.

Proof (Sketch). Claim (i) is straightforward. We sketch the proof for Claim (ii).
For the “if” direction of (ii), one can show that every model J of K′ can

be extended to a model I of K by interpreting non-simple roles r ∈ NR as
rJ ∪

⋃
t⊑Rr, t∈NtR

(tJ )+ and leaving the interpretation of the other symbols un-
changed. All axioms that do not have negative occurrences of non-simple roles
remain satisfied in I. Among the remaining axioms are RIAs r ⊑ s and axioms
of the form A ⊑ ∀ρ.B. RIAs r ⊑ s are satisfied by definition of I, and axioms
of the form A ⊑ ∀ρ.B are satisfied due to axioms (1)–(5).

For the “only if” direction of (ii) we use the fact that every satisfiable SHQ⊓

knowledge base K has a forest-shaped model I, where the ABox individuals form
the roots of the trees and relations can only be between the individuals or within
the trees. The model I can be then extended to a model J of the axioms (1)–(5)
by interpreting Aa as the restriction of A to the elements of the tree growing
from a, and Ar

a as the minimal sets satisfying axioms (2)–(4). For proving that
J satisfies all axioms of the form (5), we use a property that if two elements of
a tree have a common descendant, then one is a descendant of the other. ⊓⊔



Corollary 1. The problem of concept satisfiability in the DL SHQ⊓ is ExpTime-
complete (and so are all the standard reasoning problems).

4 SHI
⊓ is 2ExpTime-complete

In this section, we show that extending SHI with role conjunctions causes an
exponential blow-up in the computational complexity of the standard reasoning
tasks. We show this by a reduction from the word problem of an exponential
space alternating Turing machine.

An alternating Turning machine (ATM) is a tuple M = (Γ, Σ, Q, q0, δ1, δ2),
where Γ is a finite working alphabet containing a blank symbol ⊡, Σ ⊆ Γ \{⊡} is
the input alphabet ; Q = Q∃⊎Q∀ ⊎{qa}⊎{qr} is a finite set of states partitioned
into existential states Q∃, universal states Q∀, an accepting state qa, and a
rejecting state qr; q0 ∈ Q∃ is the starting state, and δ1, δ2 : (Q∃ ∪ Q∀) × Γ →
Q × Γ × {L, R} are transition functions. A configuration of M is a word c =
w1qw2 where w1, w2 ∈ Γ ∗ and q ∈ Q. An initial configuration is c0 = q0w0

where w0 ∈ Σ∗. The size |c| of a configuration c is the number of symbols in c.
The successor configurations δ1(c) and δ2(c) of a configuration c = w1qw2 with
q 6= qa, qr over the transition functions δ1 and δ2 are defined as for deterministic
Turing machines (see, e.g., [10]). The sets Cacc(M) of accepting configurations
and Crej(M) of rejecting configurations of M are the smallest sets such that (i)
c = w1qw2 ∈ Cacc(M) if either q = qa, or q ∈ Q∀ and δ1(c), δ2(c) ∈ Cacc(M),
or q ∈ Q∃ and δ1(c) ∈ Cacc(M) or δ2(c) ∈ Cacc(M), and (ii) c = w1qw2 ∈
Crej(M) if either q = qr, or q ∈ Q∃ and δ1(c), δ2(c) ∈ Crej(M), or q ∈ Q∀

and δ1(c) ∈ Crej(M) or δ2(c) ∈ Crej(M). The set of reachable configurations
from an initial configuration c0 in M is the smallest set M(c0) such that c0 ∈
M(c0) and δ1(c), δ2(c) ∈ M(c0) for every c ∈ M(c0). A word problem for an
ATM M is to decide given an initial configuration c0 whether c0 ∈ Cacc(M).
M is g(n) space bounded if for every initial configuration c0 we have: (i) c0 ∈
Cacc(M) ∪ Crej(M), and (ii) |c| ≤ g(|c0|) for every c ∈ M(c0). A classical result
AExpSpace = 2ExpTime [11] implies that there exists a 2n space bounded ATM
M for which the following decision problem is 2ExpTime-complete: given an
initial configuration c0 decide whether c0 ∈ Cacc(M).

We encode a computation of the ATM M in a binary tree (see Figure 1)
whereby the configurations of M are encoded on exponentially long chains that
grow from the nodes of the tree—the ith element of a chain represents the ith

element of the configuration. In our construction, we distinguish odd and even
configurations in the computation using concept names Odd and Even. Every
odd configuration has two even successor configurations reachable by roles r1

e

and r2
e respectively; likewise, every even configuration has two odd successor

configurations reachable by inverses of r1
o and r2

o . We further alternate between
the concepts P0, P1, and P2 within the levels of the binary tree. This allows
us to distinguish the predecessor and the successor configuration represented by
the exponentially long chains. We enforce these chains (see Figure 2) by using
the well know “integer counting” technique [12]. A counter cI(x) is an integer
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Fig. 1. The alternating binary tree structure for simulating a computation of the ATM
(left) and a detailed picture for the highlighted path (right)
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Fig. 2. Expressing exponentially long chains using a counter and binary encoding

between 0 and 2n − 1 that is assigned to an element x of the interpretation I
using n atomic concepts B1, . . . , Bn such that the ith bit of cI(x) is equal to 1 iff
x ∈ Bi

I . We first define the concept Z that can be used to initialize the counter
to zero, and the concept E to detect whether the counter has reached the final
value 2n − 1 and, thus, the end of the chain is reached:

Z ≡ ¬B1 ⊓ . . . ⊓ ¬Bn E ≡ B1 ⊓ . . . ⊓Bn (6)

Every element that is not the end of the chain has a v-successor:

¬E ⊑ ∃v.⊤ (7)

The lowest bit of the counter is always flipped over v, while any other bit of the
counter is flipped over v if and only if the previous bit is flipped from 1 to 0:

⊤ ≡ (B1 ⊓ ∀v.¬B1) ⊔ (¬B1 ⊓ ∀v.B1) (8)

Bk−1 ⊓ ∀v.¬Bk−1 ≡ (Bk ⊓ ∀v.¬Bk) ⊔ (¬Bk ⊓ ∀v.Bk) 1 < k ≤ n (9)

For convenience, let us denote by j[i]2 the ith bit of j in binary coding (the
lowest bit of j is j[1]2).

The tree-like structure in Figure 1 is induced by the following formulas. First,
we initialize the origin O of the tree by saying that it belongs to an odd row
labeled with P0 and, with the concept Z, we initialize an exponential chain:

O ⊑ Odd ⊓ P0 ⊓ Z (10)



Every initial element of an exponential chain has two successors alternating
between odd and even values:

Z ⊓Odd ⊑ ∃r1
e .Even ⊓ ∃r2

e .Even (11)

Z ⊓ Even ⊑ ∃r1
o

−
.Odd ⊓ ∃r2

o

−
.Odd (12)

For convenience, we introduce super-roles r1, r2 and r of the created roles to
keep track of the relations between the nodes and their successors:

r1
e ⊑ r1 r1

o ⊑ r1− r2
e ⊑ r2 r2

o ⊑ r2− r1 ⊑ r r2 ⊑ r (13)

The new roles are used to initialize the value Z for the successors and increment
Pj over r modulo 3 (we denote j + 1 mod 3 as [j + 1]3):

Z ⊑ ∀r.Z Pj ⊑ ∀r.P[j+1]3 0 ≤ j ≤ 2 (14)

In order to have the roles on the exponential chain correspond to the odd and
even rows, we replace axiom (7) with the following axioms:

¬E ⊓ Even ⊑ ∃ve.⊤ ¬E ⊓Odd ⊑ ∃v−o .⊤ (15)

vo ⊑ v− ve ⊑ v (16)

Odd ⊑ ∀v.Odd Even ⊑ ∀v.Even (17)

The values of Pj are copied across the elements of the same row:

Pj ⊑ ∀v.Pj ¬Pj ⊑ ∀v.¬Pj 0 ≤ j ≤ 2 (18)

If we take a look at Figure 1, we notice that the roles ri
o, ri

e, vo and ve

are directed in such a way that, from every element of an exponential chain,
only elements of the neighboring chains are reachable by a sequence of roles.
In other words, if we introduce a common transitive super-role t of these roles,
then every element of the chain will be connected via t to exactly all elements
of the parent chain and all elements of the successor chains. Unfortunately, this
is not sufficient to simulate a computation of the Turing machine, as we need
to connect exactly the corresponding elements of a chain and its two successor
chains to compute the successor configurations. In order to achieve this goal, we
will add auxiliary chains to the exponential chain that, using transitive super-
roles and role conjunctions, will allow us to restrict the reachability relation only
to the corresponding elements.

The detailed construction for the side chains of two successive configurations
is shown in Figure 3. Every element of the exponential v-chain has n additional
“side” successors reachable by roles hj

ke and hj
ko with j ∈ {0, 1} and 1 ≤ k ≤ n.

Intuitively, k corresponds to the counting concepts and j to the counter value.
We will also count the level in the h-chains using concepts Hk, 0 ≤ k ≤ n—all
elements of the v-chain belong to H0, and every h-successor of an element in
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Fig. 3. A zoom-in and extension of Figure 1, which illustrates the use of the aux-
iliary side chains to connect the elements of the exponentially long chains with the
corresponding elements in the successor chains

Hk−1 belongs to Hk. The following axioms initialize the side chains according
to this description:

O ⊑ H0 H0 ⊑ ∀r.H0 H0 ⊑ ∀v.H0 (19)

Hk−1 ⊓ ¬Bk ⊑ (¬Even ⊔ ∃h0
ke.Hk) ⊓ (¬Odd ⊔ ∃h0

ko

−
.Hk) 1 ≤ k ≤ n (20)

Hk−1 ⊓Bk ⊑ (¬Even ⊔ ∃h1
ke.Hk) ⊓ (¬Odd ⊔ ∃h1

ko

−
.Hk) 1 ≤ k ≤ n (21)

hj
ke ⊑ h hj

ko ⊑ h− j ∈ {0, 1}, 1 ≤ k ≤ n (22)

Even ⊑ ∀h.Even Odd ⊑ ∀h.Odd (23)

We use these roles to express that the elements within an h-chain have the same
values for Bk and Pj :

Bk ⊑ ∀h.Bk ¬Bk ⊑ ∀h.¬Bk 0 ≤ k ≤ n (24)

Pj ⊑ ∀h.Pj ¬Pj ⊑ ∀h.¬Pj 0 ≤ j ≤ 2 (25)

For the final elements of the h-chains, we introduce the special concepts Qi that
correlate with the concepts Pj :

Hn ⊑ (Pj ⊓Qj) ⊔ (¬Pj ⊓ ¬Qj) 0 ≤ j ≤ 2 (26)

These concepts will be used to connect the last elements of the h-chains with
the corresponding elements in the chains for the two successor configurations
using role conjunctions ρ1 and ρ2 introduced later on (see Figure 3). In order to
connect these elements, we introduce transitive super-roles tijk with i ∈ {1, 2},



j ∈ {0, 1}, and 1 ≤ k ≤ n:

ri
o ⊑ tijk ri

e ⊑ tijk (27)

vo ⊑ tijk ve ⊑ tijk (28)

hj
ko ⊑ tijk hj

ke ⊑ tijk (29)

hj
ko ⊑ tij

′

k′ hj
ke ⊑ tij

′

k′ j′ ∈ {0, 1}, 1 ≤ k′ ≤ n, k′ 6= k (30)

Intuitively, the index i in tijk is inherited from the roles ri
o and ri

e (27)—all role
implications hold for both values of i. Likewise, the index j is inherited from
hj

ko and hj
ke, but only when the values of the index k match (29)—otherwise

the role implications hold for both values of j (30). Roles vo and ve do not filter
any indexes and imply all roles tijk (28). Axioms (27)–(30) make sure that the
first and the last elements of every h-chain are connected with ti0k (ti1k ) iff the
kth bit of the counter is 0 (1). Thus, only the corresponding last elements of
the h-chains in the successor configurations are connected with tijk for all k with
1 ≤ k ≤ n and some i and j, because they have the same values for the counter.
To make use of this property we introduce roles si

k that are obtained from tijk
by abstracting from j and forgetting the direction:

tijk ⊑ si
k tijk

−
⊑ si

k i ∈ {1, 2}, j ∈ {0, 1}, 1 ≤ k ≤ n (31)

Now define the role conjunctions ρ1 = s1
1 ⊓ · · · ⊓ s1

n and ρ2 = s2
1 ⊓ · · · ⊓ s2

n that
connect the last elements of the h-chains iff they are the corresponding elements
for the r1 and r2 successors in our binary tree on Figure 1. Note that ρ1 and ρ2

are not simple.
We now specify how the created tree structure relates to an alternating Turing

machine. Let c0 be an initial configuration of an ATM M = (Γ, Σ, Q, q0, δ1, δ2)
and n = |c0| (w.l.o.g., we assume that n > 2). In order to decide whether
c0 ∈ Cacc(M), we try to build all the required accepting successor configurations
of c0 for M. We encode the configurations of M on the 2n-long v-chains. A chain
corresponding to a configuration c is connected via the roles r1 and r2 to two
chains that correspond to δ1(c) and δ2(c) respectively. We use an atomic concept
Aa for every symbol a that can occur in configurations and we make sure that
all elements of the same h-chain are assigned to the same symbol:

Aa ⊑ ∀h.Aa ¬Aa ⊑ ∀h.¬Aa (32)

It is a well-known property of the transition functions of Turing machines that
the symbols c1

i and c2
i at the position i of δ1(c) and δ2(c) are uniquely determined

by the symbols ci−1, ci, ci+1, and ci+2 of c at the positions i−1, i, i+1, and i+2.1

We assume that this correspondence is given by the (partial) functions λ1 and
λ2 such that λ1(ci−1, ci, ci+1, ci+2) = c1

i and λ2(ci−1, ci, ci+1, ci+2) = c2
i . We

use this property in our encoding as follows: for every quadruple of symbols

1 If any of the indexes i− 1, i + 1, or i + 2 are out of range for the configuration c, we
assume that the corresponding symbols ci−1, ci+1, and ci+2 are the blank symbol ⊡.



a1, a2, a3, a4 ∈ Q ∪ Γ , we introduce a concept name Sa1a2a3a4
which expresses

that the current element of the v-chain is assigned with the symbol a2, its v-
predecessor with a1 and its next two v-successors with respectively a3 and a4

(a1, a3, and a4 are ⊡ if there are no such elements):

Z ⊓Aa2
⊓ ∃v.(Aa3

⊓ ∃v.Aa4
) ⊑ S⊡a2a3a4

a2, a3, a4 ∈ Q ∪ Γ (33)

Aa1
⊓ ∃v.(Aa2

⊓ ∃v.(Aa3
⊓ ∃v.Aa4

)) ⊑ ∀v.Sa1a2a3a4
a1, a2, a3, a4 ∈ Q ∪ Γ (34)

Aa1
⊓ ∃v.(Aa2

⊓ ∃v.(Aa3
⊓ E)) ⊑ ∀v.Sa1a2a3⊡ a1, a2, a3 ∈ Q ∪ Γ (35)

Aa1
⊓ ∃v.(Aa2

⊓ E) ⊑ ∀v.Sa1a2⊡⊡ a1, a2 ∈ Q ∪ Γ (36)

Furthermore, all elements of the same h-chain have the same values of Sa1a2a3a4
:

Sa1a2a3a4
⊑ ∀h.Sa1a2a3a4

¬Sa1a2a3a4
⊑ ∀h.¬Sa1a2a3a4

(37)

Finally, the properties of the transition functions are expressed using the follow-
ing axioms, where, as previously defined ρ1 = s1

1⊓· · ·⊓s1
n and ρ2 = s2

1⊓· · ·⊓s2
n:

Sa1a2a3a4
⊓Qj ⊑ ∀ρ

1.[¬Q[j+1]3 ⊔Aλ1(a1,a2,a3,a4)] 0 ≤ i ≤ 2 (38)

Sa1a2a3a4
⊓Qj ⊑ ∀ρ

2.[¬Q[j+1]3 ⊔Aλ2(a1,a2,a3,a4)] 0 ≤ i ≤ 2 (39)

Intuitively, these axioms say that whenever Sa1a2a3a4
holds at the end of an h-

chain where Qj holds, then Aλ1(a1,a2,a3,a4) should hold for every ρ1 (ρ2) successor
for which Q[j+1]3 holds. As noted before, only the corresponding last elements
of the h-chains can be connected by ρ1 and ρ2. The concepts Qj and Q[j+1]3

restrict the attention to the last elements of the h-chains and make sure that
the information is propagated to the successor configuration and not to the
predecessor configuration.

We now make sure that the elements in the root chain of our tree correspond
to the initial configuration c0:

O ⊑ Ac0

1

⊓ ∀v.(Ac0

2

⊓ · · · ∀v.(Ac0
n

⊓ ∀v.O⊡) · · · ) (40)

O⊡ ⊑ A⊡ ⊓ ∀v.O⊡ (41)

In order to distinguish between the configurations with existential and uni-
versal states, we introduce two concepts S∀ and S∃, which are implied by the
corresponding states and propagated to the first elements of the configuration:

Aq ⊑ S∃ q ∈ Q∃ Aq ⊑ S∀ q ∈ Q∀ (42)

∃v.S∃ ⊑ S∃ ∃v.S∀ ⊑ S∀ (43)

Now instead of always creating two successor configurations, we create only
configurations that are required for acceptance. Thus, we replace axioms (11)
and (12) with the axioms (44)–(46) below:

Z ⊓Odd ⊓ S∀ ⊑ ∃r
1
e .⊤ ⊓ ∃r2

e .⊤ Z ⊓ Even ⊓ S∀ ⊑ ∃r
1
o

−
.⊤ ⊓ ∃r2

o

−
.⊤ (44)

Z ⊓Odd ⊓ S∃ ⊑ ∃r
1
e .⊤ ⊔ ∃r2

e .⊤ Z ⊓ Even ⊓ S∃ ⊑ ∃r
1
o

−
.⊤ ⊔ ∃r2

o

−
.⊤ (45)

Odd ⊑ ∀r.Even Even ⊑ ∀r.Odd (46)



Finally we forbid configurations with rejecting states in our model:

Aqr
⊑ ⊥ (47)

To summarize, our construction proves the following theorem:

Theorem 2. Let c0 be an initial configuration for the ATM M and K a knowl-
edge base consisting of the axioms (6)–(10) and (13)–(47). Then c0 ∈ Cacc(M)
if and only if O is (finitely) satisfiable in K.

When analyzing the number of introduced axioms and their size, we see that
their number is polynomial in n and their size is linear in n, where n is the size
of the initial configuration. Hence, we get the following result.

Corollary 2. The problem of (finite) concept satisfiability in the DL SHI⊓ is
2ExpTime-hard (and so are all the standard reasoning problems).

The corresponding upper bound from [3] gives us the following result.

Corollary 3. The problem of concept satisfiability in SHI⊓ and SHIQ⊓ is
2ExpTime-complete (and so are all the standard reasoning problems).

Since the problem of KB satiafiability in SHI⊓ can be polynomially reduced
to non-entailment of a union of conjunctive queries with at most two variables
[5], we also get the following result.

Corollary 4. The problem of entailment for unions of conjunctive queries in
SHI is 2ExpTime-complete already for queries with at most two variables.

5 SHOIF
⊓ is N2ExpTime-hard

For proving the lower bound of reasoning in SHOIF⊓, we use a reduction from
the double exponential domino tiling problem. We demonstrate how, by using
SHOIF⊓ formulas, one can encode a 22n

× 22n

grid-like structure illustrated
in Figure 4. As in our tree-like structure in Figure 1 we will use four roles r1

o ,
r1
2 , r2

o , and r2
e with alternating directions to create the grid. Roles r1

o and r1
e

induce horizontal edges and roles r2
o and r2

e induce vertical edges. The nodes of
the grid are also partitioned on even and odd in a similar way as before: the
odd nodes have only outgoing r-edges and the even nodes have only incoming
r-edges. In fact our grid structure in Figure 4 is obtained from the tree structure
in Figure 1 by merging the nodes that are reachable with the same number of
horizontal and vertical edges up to a certain level; that is the nodes having the
same “coordinates”. The key idea of our construction is that in SHOIF⊓ it is
possible to express doubly exponential counters for encoding the coordinates—a
similar technique has been recently used in [2] for proving N2ExpTime-hardness
of SROIQ. We use a pair of counters to encode the coordinates of the grid: the
counters are initialized in the origin O of the grid; the first counter is incremented
across horizontal edges and the second counter is incremented across the vertical
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Fig. 4. A doubly exponential grid structure (left) and a detailed picture corresponding
to the selected vertical slice in the grid (right)

edges. We use nominals and inverse functional roles as in the hardness prove for
SHOIQ [6] to enforce the uniqueness of the nodes with the same coordinates.

To store the values of the counters we will use exponentially long v-chains
that grow from the nodes of the grid. The ith element of the chain encodes the
ith bit of the horizontal counter using concept X and the ith bit of the vertical
counter using concept Y (see the right part of Figure 1). We will use auxiliary
side h-chains like in our construction for SHI⊓ to connect the corresponding
elements of the v-chains, which allows a proper incrementation of the counters.

In order to express the grid-like structure in Figure 4, we reuse all axioms
(6)–(31) that define r-, v-, and h-chains, and add axioms to deal with the new
counters and to merge the nodes with equal coordinates. First, we initialize both
counters for the origin of our grid using auxiliary concepts Z1 and Z2:

O ⊑ Z1 ⊓ Z2 Z1 ⊑ ¬X ⊓ ∀v.Z1 Z2 ⊑ ¬Y ⊓ ∀v.Z2 (48)

Next, we introduce two concepts Xf and Y f which express that the correspond-
ing bit of the counter needs to be flipped in the successor value. Thus, the ending
bit of the counter should always be flipped, while any other bit of the counter
should be flipped if and only if the lower bit of the counter (accessible via v) is



flipped from 1 to 0:

E ⊑ Xf ⊓ Y f (49)

∃v.(X ⊓Xf ) ⊑ Xf ∃v.¬(X ⊓Xf) ⊑ ¬Xf (50)

∃v.(Y ⊓ Y f ) ⊑ Y f ∃v.¬(Y ⊓ Y f ) ⊑ ¬Y f (51)

Additionally, we express that the values of X , Y , Xf , and Y f agree across all
elements of the same h-chain:

X ⊑ ∀h.X ¬X ⊑ ∀h.¬X Y ⊑ ∀h.Y ¬Y ⊑ ∀h.¬Y (52)

Xf ⊑ ∀h.Xf ¬Xf ⊑ ∀h.¬Xf Y f ⊑ ∀h.Y f ¬Y f ⊑ ∀h.¬Y f (53)

Finally, we express when the bits are flipped and when they are not flipped
for the successor configurations using the property that the end elements of h-
chains are related to exactly the corresponding elements of the successor chains
via the roles ρ1 and ρ2. The axioms are analogous to axioms (38) and (39) that
propagate the information to the successor configurations:

Qi ⊓Xf ⊑ (X ⊓ ∀ρ1.[¬Q[i+1]3 ⊔ ¬X ]) ⊔ (¬X ⊓ ∀ρ1.[¬Q[i+1]3 ⊔X ]) (54)

Qi ⊓ ¬X
f ⊑ (X ⊓ ∀ρ1.[¬Q[i+1]3 ⊔X ]) ⊔ (¬X ⊓ ∀ρ1.[¬Q[i+1]3 ⊔ ¬X ]) (55)

Qi ⊓ Y f ⊑ (Y ⊓ ∀ρ2.[¬Q[i+1]3 ⊔ ¬Y ]) ⊔ (¬Y ⊓ ∀ρ2.[¬Q[i+1]3 ⊔ Y ]) (56)

Qi ⊓ ¬Y
f ⊑ (Y ⊓ ∀ρ2.[¬Q[i+1]3 ⊔ Y ]) ⊔ (¬Y ⊓ ∀ρ2.[¬Q[i+1]3 ⊔ ¬Y ]) (57)

The following formulas express that the counters are copied for other directions:

Qi ⊑ (X ⊓ ∀ρ2.[¬Q[i+1]3 ⊔X ]) ⊓ (¬X ⊓ ∀ρ2.[¬Q[i+1]3 ⊔ ¬X ]) (58)

Qi ⊑ (Y ⊓ ∀ρ1.[¬Q[i+1]3 ⊔ Y ]) ⊓ (¬Y ⊓ ∀ρ1.[¬Q[i+1]3 ⊔ ¬Y ]) (59)

In order to determine whether the counters have reached the maximal value
22n

− 1, we use concepts E1 and E2 that hold on the elements of v-chains if and
only if X , respectively Y , hold for all v-successors until the end of the chain:

X ⊓ (E ⊔ ∃v.E1) ⊑ E1 E1 ⊑ X ⊓ (E ⊔ ∀v.E1) (60)

Y ⊓ (E ⊔ ∃v.E2) ⊑ E2 E1 ⊑ X ⊓ (E ⊔ ∀v.E1) (61)

In order to avoid creating r-successors after the maximal values of the counters
are reached, we replace axioms (11) and (12) with (62) and (63):

Z ⊓Odd ⊑ (E1 ⊔ ∃r1
e .Even) ⊓ (E2 ⊔ ∃r2

e .Even) (62)

Z ⊓ Even ⊑ (E1 ⊔ ∃r1
o

−
.Odd) ⊓ (E2 ⊔ ∃r2

o

−
.Odd) (63)

In order to merge the elements with the same coordinates, we first merge the
elements that have the maximal values for both counters:

Z ⊓ E1 ⊓ E2 ⊑ {o} (64)



The preceding elements with the same coordinates are then merged by asserting
functionality of the roles r1 and r2 that are respective superroles of r1

e , r1
o

−
, r2

e ,

and r2
o

−
according to (13):

Func(r1) Func(r2) (65)

Our complexity result for SHOIF⊓ is now obtained by a reduction from
the bounded domino tiling problem. A domino system is a triple D = (T, H, V ),
where T = {1, . . . , k} is a finite set of tiles and H, V ⊆ T ×T are horizontal and
vertical matching relations. A tiling of m×m for a domino system D with initial
condition c0 = 〈t01, . . . , t

0
n〉, t0i ∈ T, 1 ≤ i ≤ n, is a mapping t : {1, . . . , m} ×

{1, . . . , m} → T such that 〈t(i − 1, j), t(i, j)〉 ∈ H, 1 < i ≤ m, 1 ≤ j ≤ m,
〈t(i, j − 1), t(i, j)〉 ∈ V, 1 ≤ i ≤ m, 1 < j ≤ m, and t(i, 1) = t0i , 1 ≤ i ≤ n. It
is well known [13] that there exists a domino system D0 that is N2ExpTime-
complete for the following decision problem: given an initial condition c0 of the
size n, check if D0 admits the tiling of 22n

× 22n

for c0.
In order to encode the domino problem on our grid, we use new atomic

concepts T1, . . . , Tk for the tiles of the domino system D0. The following axioms
express that every element in our structure is assigned with a unique tile and
that it is not possible to have horizontal and vertical successors that do not agree
with the matching relations

⊤ ⊑ T1 ⊔ · · · ⊔ Tk (66)

Ti ⊓ Tj ⊑ ⊥ 1 ≤ i < j ≤ k (67)

Ti ⊓ ∃r
1.Tj ⊑ ⊥ 〈i, j〉 /∈ H (68)

Ti ⊓ ∃r
2.Tj ⊑ ⊥ 〈i, j〉 /∈ V (69)

Finally, we express the initial condition of the grid:

O ⊑ Tt0
1
⊓ ∀r1.(Tt0

2
⊓ ∀r1.(Tt0

3
⊓ ∀r1.(Tt0

4
⊓ . . . ∀r1.Tt0

n

. . .))) (70)

Note that the size and the number of formulas that we have constructed is
polynomial in the size of c0. Since D0 is fixed, we obtain a polynomial reduction
from the doubly exponential domino tiling problem to the problem of SHOIF⊓

knowledge base satisfiability.

Theorem 3. Let c0 be an initial condition of size n for the domino system D0

and K a knowledge base consisting of axioms (6)–(10), (13)–(31), and (48)–
(70). Then D0 admits the tiling of 22n

× 22n

for c0 if and only if O is (finitely)
satisfiable in K.

Corollary 5. The problem of (finite) concept satisfiability in the DL SHOIF⊓

is N2ExpTime-hard (and so are all the standard reasoning problems).

6 Conclusions

Our investigation of the computational complexity of DLs with role conjunctions
is motivated by the facts that (i) role constructors recently gained attention since



the upcoming OWL2 standard supports a much richer set of role constructors
and (ii) conjunctive query answering in a DL L is often reducible to the knowl-
edge base satisfiability problem for L with role conjunctions (e.g., for SHIQ
and SHOQ this is the case). We have shown that role conjunctions cause an
exponential blowup for the DLs SHI⊓ and SHOIF⊓. The main culprit for this
are inverse roles, which we show by proving ExpTime-completeness of SHQ⊓.
Our results imply that conjunctive query entailment for SHI is 2ExpTime-hard
already for a bounded number of variables in the query. The previously known
proof for 2ExpTime-hardness [14] has unbounded number of variables in queries.

It remains an open question whether SHOIF⊓ is N2ExpTime-complete and
so far even decidability is unknown. We think that the answer to this question can
shed some light on the problem of decidability of conjunctive query entailment
in SHOIN and, thus, OWL DL, which is a long-standing open problem.
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