
A Resolution Decision Procedure for the
Guarded Fragment with Transitive Guards

Yevgeny Kazakov and Hans de Nivelle

MPI für Informatik, Saarbrücken, Germany
{ykazakov|nivelle}@mpi-sb.mpg.de

Abstract. We show how well-known refinements of ordered resolution,
in particular redundancy elimination and ordering constraints in combi-
nation with a selection function, can be used to obtain a decision pro-
cedure for the guarded fragment with transitive guards. Another contri-
bution of the paper is a special scheme notation, that allows to describe
saturation strategies and show their correctness in a concise form.

1 Introduction

The guarded fragment GF of first order logic has been introduced by Andréka,
van Benthem & Németi (1998) to explain and generalize the good computational
properties of modal and temporal logics. This is achieved essentially by restrict-
ing quantifications in first order formulae to the following “bounded” forms:
∀x.[G → F] and ∃y.[G ∧ F], where G should be an atomic formula (so-called
guard) containing all free variables of F . The guarded fragment is decidable in
2EXPTIME (Grädel 1999) and inherits many other nice computational prop-
erties from the modal logics like the finite model property, the interpolation
property and invariance under an appropriate notion of bisimulation.

Many extensions of the guarded fragment have been found to capture the
known formalisms: the loosely guarded fragment has been introduced by van
Benthem (1997) to capture the until operator in temporal logics; Grädel &
Walukiewicz (1999) have extended the guarded fragment by fixed-point construc-
tors to capture the modal mu-calculus. All these extensions of the guarded frag-
ment, however, cannot express the transitivity axiom: ∀xyz.(xTy ∧ yTz→xTz).
Transitivity is important, since it is used to model discrete time (in temporal
verification) and ordered structures (in program shape analysis). The question
of whether transitivity can be safely integrated into the guarded fragment was
answered negatively by Grädel (1999). He proved that the guarded fragment
becomes undecidable as long as transitivity is allowed. This result was later
sharpened by Ganzinger, Meyer & Veanes (1999) who showed that even the two-
variable guarded fragment GF2 with transitivity is undecidable. The same paper,
however, presents the first restriction of the guarded fragment, where transitiv-
ity can be allowed without loss of decidability. In this, so-called monadic GF2,
binary relations are allowed to occur as guards only. The paper poses two natural
questions: (i) Does GF remain decidable if transitive predicates are admitted

D. Basin and M. Rusinowitch (Eds.): IJCAR 2004, LNAI 3097, pp. 122–136, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

A Resolution Decision Procedure for the Guarded Fragment 123

only as guards? (ii) What is the exact complexity of the monadic GF2? The
first question was answered positively in (Szwast & Tendera 2001) where using
a heavy model-theoretic construction, it was shown that the guarded fragment
with transitive guards GF [T G] is decidable in 2EXPTIME. Kieroński (2003) has
proved the matching 2EXPTIME lower bound for the monadic GF2 with tran-
sitivity, answering hereby the second question.

A practical disadvantage of procedures based on enumeration of structures,
like the one given for GF [T G] in (Szwast & Tendera 2001), is that without further
optimizations, those methods exhibit the full worst-case complexity. Resolution-
based approach, is a reasonable alternative to model-theoretic procedures, as
its goal-oriented nature and numerous refinements allow to scale well between
“easy” and “hard” instances of problems. In this paper we demonstrate the
practical power of resolution refinements, such as redundancy elimination and
usage of ordering constraints in combination with selection function. We present
a first resolution-based decision procedure for GF [T G]. Another aspect that is
demonstrated in our paper is the usage of resolution as a specification language
for decision procedures. We introduce a special scheme notation that allows
to describe resolution strategies in a concise form. This may provide a formal
foundation for using resolution for specifying decision procedures and proving
their correctness.

2 Preliminaries

We shall use a standard notation for first-order logic clause logic. An expression
is either a term or a literal. A literal symbol l is either a or ¬a, where a is a
predicate symbol. An expression symbol e is either a functional symbol f or
a literal symbol l. We write literals and expressions using literal symbols and
expression symbols as follows: L = l(t1,..., tn), E = e(t1,..., tn). As usual, a clause
is a disjunction of literals C = L1 ∨· · ·∨ Ln. The empty clause is denoted by �.
We use the shortcuts ∨∧ for conjunction or disjunction and x for some vector of
variables.

The depth of an expression dp(E) is recursively defined as follows: (i)
dp(x) := 0; (ii)dp(e(t1,..., tn)) := max{0, dp(t1), ..., dp(tn)} + 1. The depth of
the clause C = L1 ∨· · ·∨ Ln is dp(C) := max{0, dp(L1), ..., dp(Ln)}. The width
of a formula wd(F) is the maximal number of free variables in subformulas of
F .

2.1 The Framework of Resolution Theorem Proving

For describing the decision procedures we use the well-known ordered resolution
calculus with selection OR�

Sel enhanced with additional simplification rules. Our
presentation of the calculus is very close to (Bachmair & Ganzinger 2001). The
ordered resolution calculus OR�

Sel is parametrized by an admissible ordering �
and a selection function Sel . A partial ordering � on atoms is admissible (for
OR�

Sel) if (i) � is liftable: A1 � A2 implies A1σ � A2σ for any substitution σ

124 Y. Kazakov and H. de Nivelle

and (ii) � is a total reduction ordering on ground atoms. Although resolution
remains complete for a much wider class of orderings, admissible orderings are
better understood and widely used in existing theorem provers. Examples of
admissible orderings are the recursive path ordering with status RPOS and the
Knuth-Bendix ordering KBO.

The ordering � is extended on literals by comparing L = A as the multiset
{A} and L = ¬A as the multiset {A, A}. The ordering on clauses is the multiset
extension of the ordering on literals. Given a clause C, we say that a literal
L ∈ C, is maximal in C if there is no L′ in C, with L′ � L. A selection function
Sel assigns a set of negative literal to every clause, which we call selected literals.
A literal L is eligible in a clause C if it is either selected: L ∈ Sel(C), or otherwise
nothing is selected and L is maximal in C.

The ordered resolution calculus OR�
Sel consists of two inference rules below.

We mark eligible literals with “star” and underline the expressions to be unified:

Ordered (Hyper-)Resolution

HR :
C1∨ A1

∗ . . . Cn ∨ An
∗ D ∨ ¬B1

∗ ∨...∨ ¬Bn
∗

C1σ∨...∨ Cnσ ∨ Dσ

where (i) σ = mgu(Ai, Bi), (ii) Ai

and ¬Bi are eligible (1 ≤ i ≤ n).

Ordered Factoring
OF :

C ∨ A∗ ∨ A′

Cσ ∨ Aσ

where (i) σ = mgu(A, A′), (ii) A
is eligible.

The conventional Ordered Resolution rule OR, is a partial case of the ordered
(hyper-)resolution rule when n = 1. The calculus OR�

Sel is refutationally com-
plete for any choice of an admissible ordering � and a selection function Sel .
Moreover, the calculus is compatible with a general notion of redundancy which
allows to make use of additional simplification rules.

A ground clause C is called redundant w.r.t. a set of the ground clauses
N if C follows from the set N≺C of the clauses from N that are smaller than
C. A non-ground clause C is redundant w.r.t. N if every ground instance Cσ
of C is redundant w.r.t. the set Ngr of all ground instances of N . A ground
inference S � C from the clause set S is called redundant w.r.t. a clause set N
if its conclusion C follows from the set Ngr

≺max(S), where max (S) is the maximal
clause from S. A non-ground inference S � C is redundant w.r.t. N if every
ground instance Sσ � Cσ of the inference is redundant w.r.t. N . A clause set N
is saturated up to redundancy if the conclusion of every non-redundant w.r.t. N
inference from N is contained in N .

Theorem 1. (Bachmair & Ganzinger 2001) Let N be a clause set that
is saturated up to redundancy in OR�

Sel . Then N is satisfiable iff N does not
contain the empty clause.

For our decision procedures we do not need the full power of redundancy
but rather additional simplification rules. A (non-deterministic) inference rule
S � S1 || S2 · · · || Sk producing one of the clause sets Si from the clause set S is
called sound if every model of S can be extended to a model for some Si with
1 ≤ i ≤ k. Additionally, if every set Si makes some clause from S redundant,
the rule is called a simplification rule.

A Resolution Decision Procedure for the Guarded Fragment 125

Given a set of clauses N , a theorem prover based on ordered resolution non-
deterministically computes a saturation of N by adding conclusions of inference
rules to N and marking1 redundant clauses as deleted so that they do not partic-
ipate in further inferences. If the process terminates without deriving the empty
clause �, then a set of the clauses OR�

Sel(N) is computed that is saturated in
OR�

Sel up to redundancy. Theorem 1 then implies that the clause set N is satis-
fiable, since only satisfiability preserving transformations N ⇒ · · · ⇒ OR�

Sel(N)
were applied to N . Note that termination of a saturation process is a key issue
of using resolution as a decision procedure. If any application of inference rules
is a priori guaranteed to terminate for a clause set N then satisfiability of N
can be decided in finite time by enumerating all possible saturations.

In our paper we use the following simplification rule:

Elimination of
Duplicate Literals ED :

[[C ∨ D ∨ D]]
C ∨ D

An additional simplification rule will be introduced later, when a certain class
of orderings is considered. We indicate redundant premises of rules by enclosing
them in double brackets. The simplification rules are applied eagerly, that is
before any resolution or factoring inference is made. In particular, in the sequel
we assume that no clause contain several occurrences of the same literal.

Constraint clauses. The ordered resolution calculus on non-ground level is a
directly lifted version of the calculus on the ground level: (i) each clause repre-
sents the set of its ground instances and (ii) whenever an inference is possible
from the ground instances of some clauses, there should be a corresponding
inference from the clauses themselves, that captures the result of the ground
inference. This is due to the fact that OR�

Sel is parametrized with a liftable
ordering � and does not use non-liftable conditions in inferences (like, say, in
the paramodulation calculus, when paramodulation to a variable is not allowed).
Therefore, in fact, any representation for sets of ground clauses can be admit-
ted as long as the condition (ii) above holds. In our decision procedure we use
constraint clauses of the form: C | R, where C is a (non-ground) clause and R
is a set of ordering constraints of the form: t � s or t � s. Constraint clause
C | R represent the set of ground instances Cσ of C such that every constraint
in Rσ is true. The ordered resolution calculus and all notions of redundancy
can be straightforwardly adopted to be used with constraint clauses: instead
of considering all substitutions (for determining a maximal literal, or showing
redundancy) one should consider only substitutions satisfying the constraints.
In particular, one could use different values for selection function for different
constraint variants of the same clause.

1 Clauses are not removed from the set to avoid repetition of generation/deletion of
the same redundant clauses.

126 Y. Kazakov and H. de Nivelle

2.2 Schemes of Expressions and Clauses

To describe resolution-based decision procedures we have to reason about sets of
clauses. We introduce a special notation that allows to represent sets of clauses in
a compact form. We extend our vocabulary with additional symbols called signa-
ture groups that represent sets of functional symbols: function groups, predicate
symbols: predicate groups or literal symbols: literal groups. We allow to use these
symbols in expressions as usual functional and literal symbols and to distinguish
them, we use small letters with a “hat” ĝ. For instance, if f̂all denotes the set of
all functional symbols, we write f̂all(t) meaning a term of the form f(t) where
f ∈ f̂all (the formal definition follows below). We adopt the following notation
for referring to arguments of expressions. By writing e〈!t1, ..., !tn, s1, ..., sm〉 we
mean an expression starting with the expression symbol e, having all arguments
t1, ..., tn and optional arguments s1, ..., sm (ordered in an arbitrary way). For-
mally, the set of term schemes, literal schemes and clause schemes are defined
as follows:

T̂m ::= x | f̂(t̂1,..., t̂n) | f̂〈!t̂1,..., !t̂n, ŝ1,..., ŝm〉, n ≥ 0, m ≥ 0.

L̂t ::= l̂(t̂1,..., t̂n) | l̂〈!t̂1,..., !t̂n, ŝ1,..., ŝm〉, n ≥ 0, m ≥ 0.

Ĉl ::= L̂ | !L̂ | Ĉ1 ∨ Ĉ2.

where f̂ is a functional group, l̂ is a literal group, t̂i, ŝj with 1 ≤ i ≤ n, 1 ≤ j ≤ m

are term schemes, L̂ is a literal scheme and Ĉ1, Ĉ2 are clause schemes. For con-
venience, we assume that every functional and literal symbol acts as a singleton
group consisting of itself, so usual terms and clauses are term schemes and clause
schemes as well.

Each term scheme t̂, literal scheme L̂ and clause scheme Ĉ represents a set
〈t̂〉, 〈L̂〉 and 〈Ĉ〉 of terms, literals and clauses respectively, as defined below:

〈T̂m〉, 〈L̂t〉 : = 〈x〉: {x} |
〈ĝ(t̂1,..., t̂n)〉: {g(t1,..., tn) | g ∈ ĝ, ti ∈ 〈t̂i〉, 1≤ i≤n} |

〈ĝ〈!t̂1,..., !t̂n, ŝ1,..., ŝm〉〉: {g(h1,..., hk) | g ∈ ĝ, {h1,..., hk} ∩ 〈t̂i〉 �= ∅, 1≤ i≤n,

{h1,..., hk} ⊆ ∪n
i=1〈t̂i〉 ∪m

j=1 〈ŝj〉}.

〈Ĉl〉 = 〈L̂〉: {L1 ∨ · · · ∨ Lk | k ≥ 0, Li ∈ 〈L̂〉, 1 ≤ i ≤ k} |
〈!L̂〉: {L1 ∨ · · · ∨ Lk | k ≥ 1, Li ∈ 〈L̂〉, 1 ≤ i ≤ k} |

〈Ĉ1 ∨ Ĉ2〉: {C1 ∨ C2 | C1 ∈ 〈Ĉ1〉, C2 ∈ 〈Ĉ2〉}.

We use the shortcuts ê(., x,.), ê〈., x,.〉 and ê〈., !x,.〉 where x is a vector x1,..., xn,
to stand for ê(., x1,..., xn,.), ê〈., x1,..., xn,.〉 and ê〈., !x1,..., !xn,.〉 respectively. We
write ..∨ ¬!Â ∨.. in clause schemes instead of ..∨ !¬Â ∨.., where Â is either of
the form â(...) or â〈...〉. In fact we use variable vectors x and functional symbols
without “hat” f as parameters of clause schemes. A clause scheme Ĉ(x, f, ...)
with parameters x, f,... represents the union 〈Ĉ〉 := ∪η〈Cη〉 for all substitutions
η of vectors x1,..., xn for x, function symbols for f , etc.

Example 1. Suppose â is a predicate group consisting of all predicate sym-
bols and α̂ := {â,¬â} is a literal group consisting of all literal symbols.

A Resolution Decision Procedure for the Guarded Fragment 127

Then the clause scheme Ĉ = ¬!â〈!x〉 ∨ α̂〈!f(x), x〉 has two parameters: x
and f . Any clause C ∈ 〈Ĉ〉 corresponds to some choice of these parameters
x = x1, ..., xn, f = f ′. The clause C should have a nonempty subset of nega-
tive literals containing all variables x1, ..., xn and no other arguments. Other
literals of C should contain the subterm f ′(x1, ..., xn) as an argument and
possibly some variables from x1, ..., xn. In particular, 〈Ĉ〉 contains the clauses
¬a(x, y, x)∨b(y, f ′(x, y)), ¬b(x, y)∨¬b(y, x) and ¬p∨¬q(c, c), but not the clauses
¬a(x, y, x) ∨ b(f ′(x, y), f ′(y, x)) or ¬b(y, f ′(x, y)).

3 Deciding the Guarded Fragment by Resolution

In this section we demonstrate our technique by revisiting a resolution decision
procedure for the guarded fragment without equality. The original procedure is
due to (de Nivelle & de Rijke 2003). Resolution-based decision procedures (for
an overview see Fermüller, Leitsch, Hustadt & Tammet 2001) usually consist of
several main steps. First, a clause normal form transformation is applied to a
formula of a fragment that produce initial clauses. Then a clause set containing
the initial clauses is defined, that is shown later to be closed under inferences
of the calculus. Decidability and complexity results follow from the fact that
the defined clause class contains only finitely many different clauses over a fixed
signature.

3.1 Clause Normal Form Translation

In order to describe the transformation to a clause normal form (CNF), it is
convenient to use the recursive definition for the guarded fragment:

GF ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀x.(G→F1) | ∃x.(G ∧ F1).

where A is an atom, Fi, i = 1, 2 are guarded formulas, and G is an atom called the
guard containing all free variables of F1. The translation of a guarded formula
into CNF is done in two steps. First, the formula is transformed into negation
normal form (NNF) in the standard way. Guarded formulas in NNF are defined
by the following recursive definition:

[GF]nnf ::= (¬)A | F1 ∨ F2 | F1 ∧ F2 | ∀y.(G→F1) | ∃y.(G ∧ F1).

Second, a so-called structural transformation is applied, that decomposes the
formula by introducing definitions for all of its subformulae. We assume that
to each subformula F′ of F, a unique predicate PF′ = pF′(x) is assigned. Each
predicate PF′ has the arity equal to the number of free variables x of F′. Using
the new predicates, the structural transformation can be defined as ∃x.PF∨ [F]st,
where [F]st is given below. In each row, x are the free variables of F.

[F]st
g :=[(¬)A]st

g : ∀x.(PF→(¬)A) | ¬pF(x) ∨ (¬)a〈x〉
[F1∨∧F2]st

g : ∀x.(PF→ [PF1∨∧PF2])∧[F1]st
g ∧[F2]st

g | ¬pF(x) ∨ pFi〈x〉 [∨ pFj 〈x〉]
[∀y.(G→F1)]st

g : ∀x.(PF→∀y.[G→PF1]) ∧ [F1]st
g | ¬g〈!x, !y〉 ∨ ¬pF(x) ∨ pF1〈x, y〉

[∃y.F1]st
g : ∀x.(PF→∃y.PF1) ∧ [F1]st

g . ¬pF(x) ∨ pF1〈f(x), !x〉

128 Y. Kazakov and H. de Nivelle

The transformation unfolds a guarded formula according to its construction and
introduces predicates and definitions for its guarded subformulae. A guarded
formula F in negation normal form is satisfiable whenever ∃x.PF ∧ [F]st is: one
can extend the model of F by interpreting the new predicate symbols according to
their definitions. Every recursive call of the transformation contributes to a result
with a conjunct describing a definition for an introduced predicate. Performing
the usual skolemization and writing the result in a clause form, we obtain the
clauses shown to the right of the definition for [F]st

g . It is easy to see that the
clauses for PF ∧ [F]st

g fall into the set of clauses described by the following clause
schemes:

1. α̂〈ĉ〉;
2. ¬!â〈!x〉 ∨ α̂〈f(x), x〉. (G)

where the predicate group â consists of all (initial and introduced) predicate
symbols and the literal group α̂ consists of all literal symbols.

3.2 Saturation of the Clause Set

The resolution calculus has two parameters that can be chosen: an admissible
ordering and a selection function. These parameters should prevent clauses from
growing during the inferences. We will set the ordering and selection function in
such a way, that eligible literals would be (i) of maximal depth and (ii) contain
all variables of the clause.

We assume that the ordering � enjoys L � K for L ∈ 〈â〈!f(x), x〉〉 and
K ∈ 〈â〈x〉〉, that is, any literal containing the functional symbol with all variables
is greater then any other literal in the clause without functional subterms. This
can be achieved by taking, say, any recursive path ordering �rpos on expressions
with the precedence >P enjoying f >P p for any functional symbol f and
predicate symbol p. We define the selection function Sel for the clauses without
functional symbols to select a negative literal containing all variables of the
clause if there is one.

We prove that the clause class from (G) is closed under the ordered resolution
by making case analysis of possible inferences between clauses of this class. The
complete case analysis is given below:
1 α̂∗

1.1 α̂〈ĉ〉 ∨ â〈ĉ〉∗ :OR.1
1.2 α̂〈ĉ〉 ∨ ¬â〈ĉ〉∗ :OR.2
1.3 α̂〈ĉ〉 ∨ â〈ĉ〉∗ ∨ â〈ĉ〉 :OF
OR[1.1; 1.2]: α̂〈ĉ〉 :1
OF[1.3] : α̂〈ĉ〉 ∨ â〈ĉ〉:1

2 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉
2.1 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ α̂〈!f(x), x〉∗

2.1.1 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ â〈!f(x), x〉∗ :OR.1
2.1.2 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ ¬â〈!f(x), x〉∗ :OR.2
2.1.3 ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ â〈!f(x), x〉∗ ∨ â〈f(x), x〉 :OF
OR[2.1.1; 2.1.2]: ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 :2
OF[2.1.3] : ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ â〈!f(x), x〉:2
2.2 ¬ĝ〈!x〉∗ ∨ ¬ĝ〈!x〉 ∨ α̂〈x〉 :OR.2
OR[1.1; 2.2] : α̂ :1
OR[2.1.1; 2.2]: ¬!ĝ〈!x〉 ∨ α̂〈f(x), x〉 ∨ α̂〈f(x), x〉:2

The table is organized as follows. The clause schemes from (G) are spread in
the table on different levels of precision. On the first level the schemes are given

A Resolution Decision Procedure for the Guarded Fragment 129

themselves. On the second level, different possibilities for eligible literals (marked
by the asterisk) are considered. On the last level, possible inference rules that
can be applied for a clause are identified and the expressions to be unified are
underlined. For example, OR.1 marked to the right of the clause scheme 1.1
means that a clause represented by this scheme may act as a first premise of the
ordered resolution rule. Below the last level, inferences between preceding clauses
are drawn and their conclusions are identified as instances of clause schemes.

We have used the special form of literals in the clauses when the unifiers
has been computed. For instance, the reason of why the resolution inference
OR[2.1.1; 2.1.2] has produced the clause of the same depth is because the so-
called covering expressions have been unified. An expression E is called covering
if all functional subterms of E contain all variables of E. It is well known that
the unifier for the two covering expressions is the renaming for the deepest of
them:

Theorem 2. (Fermüller, Leitsch, Tammet & Zamov 1993) Let E1 and
E2 be two covering expressions with dp(E1) ≥ dp(E2) and let σ = mgu(E1, E2).
If x = free(E1) then σ : x → u for some vector of variables u. As a conclusion
dp(E2σ) = dp(E1σ) = dp(E1).

Theorem 3. (de Nivelle & de Rijke 2003) Ordered resolution decides the
guarded fragment in double exponential time.

Proof. Given a formula F ∈ GF of size n, the structural transformation intro-
duces at most linear number of new predicate symbols of arity not greater than
n. Since every non-ground clause from (G) has a guard, the number of variables
in such a clause does not exceed n. It can be shown that most c = 22O(n log n)

different clauses from (G) over the initial and introduced signature can be con-
structed. A saturation of the size c can be computed in time O(c2). So the
resolution decision procedure for GF can be implemented in 2EXPTIME. ��

4 Deciding the Guarded Fragment with Transitivity

Some binary predicates of Σ, which we call transitive predicates have a special
status. We usually denote them by the letters T , S and use the infix notation
(t1Tt2) rather than the postfix notation a(t1, t2), as for the other predicates.
For any group of transitive predicates T̂ = {T1, . . . , Tn}, the shortcuts (xT̂ y)
and ¬(xT̂ y) represent respectively the disjunctions (xT1y) ∨ · · · ∨ (xTny) and
¬(xT1y) ∨ · · · ∨ ¬(xTny). We assume that every set of clauses N contains the
transitivity clause: ¬(xTy) ∨ ¬(yTz) ∨ xTz for every transitive predicate T .

The guarded fragment with transitive guards GF [T G] is defined by:
GF [T G] ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀x.(G→F1) | ∃x.(G ∧ F1).

where Fi, i = 1, 2 are from GF [T G], A is a non-transitive atom and G is a (pos-
sibly transitive) guard for F1. Note that GF can be seen as a sub-fragment of
GF [T G], when there are no transitive predicates. It is easy to see from the CNF

130 Y. Kazakov and H. de Nivelle

transformation for guarded formulas that transitive predicates can appear only
in initial clauses of the form: ¬xTy ∨ α̂〈x, y〉, ¬xTx∨ α̂〈x〉 or ¬g(x)∨T 〈x, f(x)〉.
We present a resolution decision procedure for GF [T G] as an extension of the
one for GF by carefully analyzing and blocking the cases when resolution with
transitivity predicates can lead to unbounded generation of clauses.

4.1 Obstacles for Deciding the Guarded Fragment with Transitivity

The transitivity clauses do not behave well when they resolve with each other
because the number of variables increases. The simple solution is to block the
inferences between the transitivity axioms by setting the selection function Sel
such that it selects one of the negative literals. However this is only a partial
solution to the problem since saturation with other clauses, in which positive
transitive literals “should” be maximal, generate arbitrary large clauses as shown
on the example below (left part):
1. ¬(xTy)∗ ∨ ¬(yTz) ∨ xTz;
2. α(x) ∨ f(x)Tx∗;
OR[2; 1]: 3. α(x) ∨ ¬(xTz) ∨ f(x)Tz∗;
OR[3; 1]: 4. α(x) ∨ ¬(xTz) ∨ ¬(zTz1) ∨ f(x)Tz1

∗;
. : .

1. ¬(xTy)∗ ∨ ¬(yTz)∗ ∨ xTz;
2. α(x) ∨ f(x)Tx∗;
HR[2, 2; 1]: 3. α(x) ∨ ff(x)Tx∗;
HR[3, 2; 1]: 4. α(x) ∨ fff(x)Tx∗;
. : .

The reason for the growth of the clause size is that the atoms which were resolved
in the inferences do not contain all variables of the clause. To keep the number of
variables from growing it is possible to use the hyperresolution, namely to select
both negative literals of the transitivity clause and resolve them simultaneously.
However, this strategy may result in increase of the clause depth, as shown on
the right part of the example. Note that the variable depth in hyperresolution
inference with the transitivity clause grows only if for the terms h, t and s which
where simultaneously unified with x, y and z respectively, either h � max (t, s)
or s � max (t, h). In all other cases, say, when h = t � s like in the inference
below, neither variable depth nor the number of variables grows:
1. ¬(xTy)∗ ∨ ¬(yTz)∗ ∨ xTz; 2. α(x) ∨ xTx∗; 3. β(x) ∨ f(x)Tx

∗;
HR[2, 3; 1]: 4. α(f(x)) ∨ β(x) ∨ f(x)Tx;

We are going to distinguish these cases of using the transitivity clauses by
using ordering constraints in combination with a selection function. We split the
transitivity clause into the constraint clauses of forms:

T TTxyz¬(xTy) ∨ ¬(yTz) ∨ xTz;
T.1. ¬(xTy)∗ ∨ ¬(yTz) ∨ xTz | x � max (y, z);
T.2. ¬(xTy) ∨ ¬(yTz)∗ ∨ xTz | z � max (y, x);
T.3. ¬(xTy)∗ ∨ ¬(yTx)∗ ∨ xTx | x � y;
T.4. ¬(xTy)∗ ∨ ¬(yTz)∗ ∨ xTz | y � max (x, z);

(T)

where selected literals are indicated with the asterisk. In the sequel, assume that
every set of clauses contains transitivity clauses T.1 – T.4 from (T) for every
transitive predicate T .

A Resolution Decision Procedure for the Guarded Fragment 131

4.2 Redundancy of Inferences Involving Transitive Relations

In this section we prove the main technical lemmas that allow to gain a control
over the saturation process in presence of transitivity clauses. We show that
many inferences involving transitive predicates are redundant. It is not very
convenient to show redundancy of inferences “by definition”. We proof auxiliary
lemmas using which redundancy of inferences can be shown in a much simpler
way.

Lemma 1 (Four Clauses). Let N be a clause set containing the ground
clauses:
C1. C ∨ C ′ ∨ A∗; C2. D ∨ D′ ∨ ¬A∗; C3. C ∨ D ∨ B; C4. C ′ ∨ D′ ∨ ¬B;
Then the following ordered resolution inference:
OR[C1; C2]: P. C ∨ C ′ ∨ D ∨ D′; is redundant provided that A � B.

Proof. Obviously, the conclusion of the inference OR[C1; C2] follows from the
clauses C3 and C4. It remains to show that both C3 and C4 are smaller than
the maximum of the clauses C1 and C2. We use the fact that the conclu-
sion of the ordered resolution inference is always smaller than the premise
with the negative eligible literal. Therefore, C ∨ D ≺ P ≺ C2 and since
B ≺ ¬A ≺ C2, C3 = C ∨ D ∨ B ≺ C2. Similarly, C4 ≺ C2. We have shown that
max (C3, C4) ≺ max (C1, C2), thus the inference OR[C1; C2] is redundant. ��

Lemma 1 can be generalized to show redundancy of hyperresolution infer-
ences as follows:

Lemma 2. Let N be a clause set containing the ground clauses:
C1. C1 ∨ A1

∗; · · · Cn. Cn ∨ An
∗;

C. C ∨ ¬A1
∗ ∨ · · · ∨ ¬An

∗;
D1. C ′

1 ∨ D′
1; · · · Dm. C ′

m ∨ D′
m;

for n, m > 1 such that: (i) C1∨· · ·∨Cn∨C = C ′
1∨· · ·∨C ′

m, (ii) D′
1∧· · ·∧D′

m � ⊥
and (iii) max (A1, . . . , An) � max (D′

1, . . . , D
′
m). Then the (hyper-)resolution

inference: HR[C1, C2, . . . , Cn; C]: P. C1 ∨ C2 ∨ · · · ∨ Cn ∨ C; is redundant.

Proof. The conclusion C1 ∨ · · · ∨ Cn ∨ C = C ′
1 ∨ · · · ∨ C ′

n of the inference
logically follows from the clauses D1, . . . , Dm because of the condition (ii). More-
over, max (D1, . . . , Dm) ≺ max (C1, . . . , Cn, C) = C since for any i with 1 ≤ i ≤ m,
C ′

i ≺ P ≺ C (condition (i)) and D′
i ≺ ¬A1∨· · ·∨¬An (condition (iii)). Therefore,

the inference HR[C1, C2, . . . , Cn; C] is redundant. ��
For proving redundancy of inferences involving transitive relations, we need

to make additional assumption about the the ordering � used in OR�
Sel . We

say that the ordering � is T-argument monotone if: (i) {t1, t2} �mul {s1, s2}
implies (t1Tt2) � (s1Ts2), and (ii) b(t1, t2) � (t1Tt2) � u(t1) for any non-
transitive predicate b and unary predicate u. From now on we assume that
the ordering � is T-argument monotone. The intended ordering can be easily
obtained from the ordering �rpos, that has been used for deciding the guarded
fragment, by requiring that all transitive predicates have the multiset status and
b >P T >P u for any non-transitive predicate b whose arity is greater than two,
transitive predicate T and unary predicate u.

132 Y. Kazakov and H. de Nivelle

Lemma 3. Let N be a clause set containing the clause:
1. C ∨ t1Tt2

∗; together with the result of the inference:
(a) OR[1; T.1]: 2. C ∨ ¬(t2Tz) ∨ t1Tz∗ | t1 � max (t2, z); or
(b) OR[1; T.2] : 2. C ∨ ¬(xTt1) ∨ xTt2

∗ | t2 � max (t1, x);
Then the following inferences are redundant respectively:
(a) OR[2; T.1]:C ∨ ¬(t2Tz) ∨ ¬(zTz1) ∨ t1Tz1 | t1 � max (t2, z, z1);
(b) OR[2; T.2] :C ∨ ¬(x1Tx) ∨ ¬(xTt1) ∨ x1Tt2 | t2 � max (t1, x, x1).

Proof. (a) The result of any instance of the inference OR[2; T.1]:
2a. C ∨ ¬(t2Ts) ∨ t1Ts∗ | t1 � max (t2, s);
T.1a. ¬(t1Ts)∗ ∨ ¬(sTh) ∨ t1Th | t1 � max (s, h);
OR[2a; T.1a]:C ∨ ¬(t2Ts) ∨ ¬(sTh) ∨ t1Th | t1 � max (t2, s, h);
can be obtained from other instances of the constraint clauses 2 and T:
2b. C ∨ ¬(t2Th) ∨ t1Th | t1 � max (t2, h);
Tb. ¬(t2Ts) ∨ ¬(sTh) ∨ t2Th;
by resolving on the smaller atom: t2Th ≺ t1Ts. Therefore, by Lemma 1 the
inference is redundant. The case (b) is proven symmetrically to (a). ��

Lemma 4. Let N be a clause set containing the clauses:
1. C ∨ t1Tt2

∗;
2. D ∨ t2Tt3

∗;
OR[1; T.2] : 3. C ∨ ¬(xTt1) ∨ xTt2

∗ | t2 � max (t1, x);
OR[2; T.1] : 4. D ∨ ¬(t3Tz) ∨ t2Tz∗ | t2 � max (t3, z);
HR[1, 2; T.4]: 5. C ∨ D ∨ t1Tt3 | t2 � max (t1, t3);
HR[2, 3; T.3]: 6. D ∨ C ∨ ¬(t3Tt1) ∨ t2Tt2 | t2 � t3;
Then the following inferences are redundant:
(a) HR[1, 4; T.4]:C ∨ D ∨ ¬(t3Tz) ∨ t1Tz | t2 � max (t3, z); t2 � t1
(b) HR[3, 2; T.4] :C ∨ D ∨ ¬(xTt1) ∨ xTt3 | t2 � max (t1, x); t2 � t3
(c) HR[3, 4; T.4] :C ∨ D ∨ ¬(xTt1) ∨ ¬(t3Tz) ∨ xTz | t2 � max (t1, t3, x, z);
(d) HR[4, 3; T.3]:D ∨ C ∨ ¬(t3Tx) ∨ ¬(xTt1) ∨ t2Tt2 | t2 � max (t1, t3, x).

Proof. The proof is analogous to Lemma 4. The complete proof can be found in
the extended version of the paper (de Nivelle & Kazakov 2004). ��

We have shown that redundancy and ordering constraints help to avoid many
inferences involving transitivity. However, certain inferences may still result in
increasing the number of variables in clauses as in the situation shown below:
1. α(x) ∨ f(x)Tx∗;
2. ¬(xTy)∗ ∨ a(x) ∨ β(y);
3. ¬(xTy)∗ ∨ ¬a(x) ∨ β′(y);
OR[1; T.1]: 5. α(x) ∨ ¬(xTz) ∨ f(x)Tz∗ | f(x) � max(x, z);
OR[5; 2] : 6. α(x) ∨ ¬(xTz) ∨ a(f(x))∗ ∨ β(z) | f(x) � max(x, z);
OR[5; 3] : 7. α(x) ∨ ¬(xTz1) ∨ ¬a(f(x))∗ ∨ β′(z1) | f(x) � max(x, z1);
OR[6; 7] : 8. α(x) ∨ α(x) ∨ ¬(xTz) ∨ ¬(xTz1) ∨ β(z) ∨ β′(z1) | f(x) � max(x, z, z1);
. : .

A Resolution Decision Procedure for the Guarded Fragment 133

The problem here is that the functional term f(x) which does not contain all
variables of the clause appears as an argument of a non-transitive predicate.
That has happened as result of resolution inferences OR[5; 2] and OR[5; 3]. To
resolve this problem we introduce an additional inference rule:

Transitive Recursion

TR :
¬(xT̂ y)∗ ∨ α(x) ∨ β(y)

¬(xT̂ y) ∨ α(x) ∨ uT̂
α(·)(y)

¬(xT̂ y) ∨ ¬uT̂
α(·)(x) ∨ uT̂

α(·)(y)
¬uT̂

α(·)(y) ∨ β(y)

where (i) T̂ is a not empty set of
transitive predicates (ii) uT̂

α is a
special unary predicate indexed by
α and T̂ .

The inference rule extends the signature by introducing new unary predicate
symbols uT̂

α , whose intended interpretation is “the set of elements that are T -
reachable from the ones where α is false”.

Lemma 5. The transitive recursion rule is a sound inference rule.

Proof. Let M be a model for the premise of the rule, such that all predicates
T1, . . . , Tn from T̂ are interpreted by transitive relations and let xT ′y := xT1y ∧
· · ·∧xTny. Obviously, T ′ is interpreted in M by a transitive relation. We extend
M to a the model M′ by interpreting the new predicate uT̂

α(x) as the formula
∃x′.(¬α(x′) ∧ x′T ′x). In particular, M′ |= ∀y.([∃x.(¬α(x) ∧ xT ′y)]→uT̂

α(y)), so
the first conclusion of the inference rule is true in M′. The following sequence
of implications: uT̂

α(x) ∧ xT ′y ≡ ∃x′.[¬α(x′) ∧ x′T ′x ∧ xT ′y] ⇒ (transitivity of
T ′) ⇒ ∃x′.[¬α(x′) ∧ x′T ′y] ≡ uT̂

α(y) shows that the second conclusion is true
in M′. Finally, the last conclusion is a consequence of the premise of the rule:
uT̂

α(y) ≡ ∃x′.(¬α(x′) ∧ x′T ′y) ⇒ ∃x′.β(y) ≡ β(y). ��

Note that the transitive recursion rule is not a reduction rule, although the
premise logically follows from the conclusion (the premise may be smaller than
a clause in the conclusion, say, when β(y) is empty). However, the rule helps to
avoid dangerous inferences involving transitive predicates, like in the example
above, by making them redundant:

Lemma 6. Let T̂ = {T1, . . . , Tn} with n ≥ 1 be the set of transitive predicates
and N be a clause set containing the clauses:

D. ¬(xT̂ z)∗ ∨ α(x) ∨ β(z);
D1. ¬(xT̂ z)∗ ∨ α(x) ∨ u(z);
D2. ¬(xT̂ z)∗ ∨ ¬u(x) ∨ u(z);
D3. ¬u(z) ∨ β(z);

1i. Ci ∨ tTih
∗ with one of the following clauses:

OR[1i; T.1]: 2i
a.Ci ∨ ¬(hTiz) ∨ tTiz

∗|t � max (h, z);
OR[1i; T.2]: 2i

b.Ci ∨ ¬(xTit) ∨ xTih
∗|h � max (t, x);

HR[11, . . . , 1n; D1]: 3. C1∨∨Cn ∨ α(t) ∨ u(h).

for 1 ≤ i ≤ n. Then the following inferences are redundant respectively:

(a) HR[21
a, . . . , 2n

a ; D]: ∨∨n
i=1{Ci ∨ ¬hTiz} ∨ α(t) ∨ β(z)

(b) HR[21
b , . . . , 2

n
b ; D] : ∨∨n

i=1{Ci ∨ ¬xTit} ∨ α(x) ∨ β(h)

Proof. Consider the case (a) (case (b) is proven symmetrically). For any instance
of the inference HR[21

a, . . . , 2n
a ; D] satisfying the constraints:

134 Y. Kazakov and H. de Nivelle

2i
a. Ci ∨ ¬(hTis) ∨ tTis

∗ | t � max (h, s);
D. ¬(tT̂ s)∗ ∨ α(t) ∨ β(s);
HR[21

a, . . . , 2n
a ; D]: ∨∨n

i=1{Ci ∨ ¬hTis} ∨ α(t) ∨ β(s)
the conclusion can be derived from the clause 3 and instances of D2 and D3:
3. C1∨∨Cn ∨ α(t) ∨ u(h).
Da
2 . ¬(hT̂ s) ∨ ¬u(h) ∨ u(s);
Da
3 . ¬u(s) ∨ β(s);

by resolving on u(h) and u(s), both of which are smaller than each tTis used in
the inference. Therefore the inference is redundant by Lemma 2. ��

Remark 1. Note that the inferences HR[21
a, . . . , 2n

a ; D1] and HR[21
a, . . . , 2n

a ; D2]
(HR[21

b , . . . , 2
n
b ; D1] and HR[21

b , . . . , 2
n
b ; D2]) are redundant as well, since we can

apply Lemma 6 for β(z) := u(z); and α(x) := ¬u(x), β(z) := u(z) respectively.

4.3 Saturation of the Clause Set

We have prepared the ground for describing a resolution decision procedure
for GF [T G]. However, to simplify the upcoming case analysis, we introduce an
additional inference rule:

Literal Projection
LP :

[[C ∨ L]]

pL(x) ∨ C
¬pL(x) ∨ L

where (i) L is non-unary literal with
free[L]={x}; (ii) C contains x in
non-unary literal or in functional
subterm and (iii) pL is a unary
predicate for L.

The literal projection rule is a variant of the general splitting rule, which allows
to split a clause by introducing a new predicate over shared variables of its parts.
The purpose of this rule is to avoid clauses with several positive transitive literals
that can be produced, for instance, with the inference:
1. ¬a(f(x))∗ ∨ xT1x; 2. ¬b(x) ∨ a(f(x))∗ ∨ xT2x;
OR[1; 2]: ¬b(x) ∨ xT1x ∨ xT2x;
Instead of producing the inference above, one can alternatively simplify the
clauses 1 and 2 using the literal projection rule:
1a. pT1(x) ∨ ¬a(f(x))∗ 2a. pT2(x) ∨ ¬b(x) ∨ a(f(x))∗;
1b. ¬pT1(x) ∨ xT1x; 2b. ¬pT2(x) ∨ xT2x;
OR[1a; 2a]: pT1(x) ∨ pT2(x) ∨ ¬b(x);
Note that the literal projection rule cannot be applied to literals containing a new
predicate symbol since they are unary, therefore, only finitely many predicates
pL can be introduced.

We show the decidability of GF [T G] in similar way as for GF by describ-
ing a clause class containing the input clauses for GF [T G]-formulae and closed
under the ordered resolution inferences up to redundancy. This clause class is
represented by the set of the clause schemes below:

A Resolution Decision Procedure for the Guarded Fragment 135

1: [¬T̂ , γ̂]〈ĉ〉;
2: [¬!d̂, γ̂]〈!x〉 ∨ [¬T̂ , γ̂]〈!f(x), x〉 ∨ β̂〈f(x), x〉;
3: ¬!p̂1(!x) ∨ ¬p̂1(f(x)) ∨ T̂ 〈f(x), x〉;
T: ¬(xTy) ∨ ¬(yTz) ∨ xTz;
4: ¬!p̂1(x) ∨ ¬(xTz) ∨ f(x)Tz | f(x) � z;
5: ¬!p̂1(x) ∨ ¬(zTx) ∨ zTf(x) | f(x) � z;
R: ¬(x!T̂ y) ∨ γ̂(x) ∨ γ̂(y);

α̂ := {â,¬â};
T̂ := {T̂ , ¬T̂};
b̂ := {â, pα̂, pT̂ (·)};
β̂ := {b̂, ¬b̂};
p̂ := {b̂, uτ

β}; γ̂ := {p̂, ¬p̂};
d̂ := {p̂, T̂}; δ̂ := {d̂, ¬d̂}.

(GT)

Where â consists of initial non-transitive predicate symbols and T̂ consists of all
transitive predicate symbols.

Theorem 4. There is a strategy based on OR�
Sel with ordering constraints and

additional inference rules such that given a formula F ∈ GF [T G] a finite clause
set N containing the CNF transformation for F is produced such that: (i) N is
closed under rules of OR�

Sel up to redundancy and (ii) N is a subset of (GT).

Proof. The limited space does not allow us to present the complete case analysis
of possible inferences between the clauses of (GT). The proof can be found in
(de Nivelle & Kazakov 2004), where the extended version of the paper is given.

��

Corollary 1. (Szwast & Tendera 2001) GF [T G] is decidable in double ex-
ponential time.

Proof. Given a formula F ∈ GF [T G], it could be seen from construction of
(GT) that clauses generated in the saturation for F contain at most linear num-
ber of initial predicate and functional symbols and at most exponential number
of introduced (by inferences extending the signature) unary predicates. Simple
calculations show that the number of clauses from (GT) that can be constructed
from them is at most double exponential. Therefore the saturation can be com-
puted in double exponential time. ��

5 Conclusions and Future Work

The resolution decision procedure for GF [T G] presented in the paper can shed
light on the reasons why this fragment is so fragile with respect to decidability
and which decidable extensions it may have. Note, that we in fact have already
shown the decidability of a larger fragment: it is possible to admit non-empty
conjunctions of transitive relations xT̂ y as guards since the CNF-transformation
maps them to the same decidable fragment. This might help to find a decidable
counterpart for the interval-based temporal logics à-la Halpern Shoham (Halpern
& Shoham 1986) because the relation between intervals can be expressed as a
conjunction of (transitive) relations between their endpoints. As a future work,
we try to extend our approach to the case with equality, as well as to other
theories like theories of general compositional axioms: ∀xyz.(xSy ∧ yTz→xHz)
and theories of linear, branching and dense partial orderings without endpoints.

136 Y. Kazakov and H. de Nivelle

References

Andréka, H., van Benthem, J. & Németi, I. (1998), ‘Modal languages and bounded
fragments of predicate logic’, Journal of Philosophical Logic 27, 217–274.

Bachmair, L. & Ganzinger, H. (2001), Resolution theorem proving, in A. Robinson &
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. I, Elsevier Science,
chapter 2, pp. 19–99.

de Nivelle, H. & de Rijke, M. (2003), ‘Deciding the guarded fragments by resolution’,
Journal of Symbolic Computation 35, 21–58.

de Nivelle, H. & Kazakov, Y. (2004), Resolution decision procedures for the guarded
fragment with transitive guards, Research Report MPI-I-2004-2-001, Max-Planck-
Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.

Fermüller, C., Leitsch, A., Hustadt, U. & Tammet, T. (2001), Resolution decision proce-
dures, in A. Robinson & A. Voronkov, eds, ‘Handbook of Automated Reasoning’,
Vol. II, Elsevier Science, chapter 25, pp. 1791–1849.

Fermüller, C., Leitsch, A., Tammet, T. & Zamov, N. (1993), Resolution Methods for
the Decision Problem, Vol. 679 of LNAI, Springer, Berlin, Heidelberg.

Ganzinger, H., Meyer, C. & Veanes, M. (1999), The two-variable guarded fragment
with transitive relations, in ‘Proc. 14th IEEE Symposium on Logic in Computer
Science’, IEEE Computer Society Press, pp. 24–34.

Grädel, E. (1999), ‘On the restraining power of guards’, Journal of Symbolic Logic
64(4), 1719–1742.

Grädel, E. & Walukiewicz, I. (1999), Guarded fixed point logic, in ‘Proceedings of 14th
IEEE Symposium on Logic in Computer Science LICS ‘99, Trento’, pp. 45–54.

Halpern, J. Y. & Shoham, Y. (1986), A propositional modal logic of time intervals,
in ‘Proceedings 1st Annual IEEE Symp. on Logic in Computer Science, LICS’86,
Cambridge, MA, USA, 16–18 June 1986’, IEEE Computer Society Press, Wash-
ington, DC, pp. 279–292.

Kieroński, E. (2003), The two-variable guarded fragment with transitive guards is
2EXPTIME-hard, in A. D. Gordon, ed., ‘FoSSaCS’, Vol. 2620 of Lecture Notes
in Computer Science, Springer, pp. 299–312.

Szwast, W. & Tendera, L. (2001), On the decision problem for the guarded fragment
with transitivity, in ‘Proc. 16th IEEE Symposium on Logic in Computer Science’,
pp. 147–156.

van Benthem, J. (1997), Dynamic bits and pieces, Technical Report LP-97-01, ILLC,
University of Amsterdam.

	Introduction
	Preliminaries
	The Framework of Resolution Theorem Proving
	Schemes of Expressions and Clauses

	Deciding the Guarded Fragment by Resolution
	Clause Normal Form Translation
	Saturation of the Clause Set

	Deciding the Guarded Fragment with Transitivity
	Obstacles for Deciding the Guarded Fragment with Transitivity
	Redundancy of Inferences Involving Transitive Relations
	Saturation of the Clause Set

	Conclusions and Future Work

