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Abstract

Automated state-of-the-art theorem provers are typically optimised for par-
ticular strategies, and there are only limited number of options that can be
set by the user. Probably because of this, the general conditions on ap-
plicability of saturation-based calculi have not been thoroughly investigated.
However for some applications, e.g., for saturation-based decision procedures,
one would like to have more options in order to design flexible saturation
strategies.

In this report we revisit several well-known saturation-based calculi used
in automated deduction: Ordered Resolution, Ordered Paramodulation, Su-
perposition and Chaining calculi. We give a uniform account on completeness
proofs for these calculi using the standard model construction procedures of
Bachmair and Ganzinger. By careful inspection of these proofs, we formulate
some variations of inference rules and general conditions on orderings under
which the calculi remain refutationally complete. In particular, we consid-
erably generalise the known class of admissible orderings for the Chaining
calculi.

We also consider in details the standard notion of redundancy, estimate
the complexity for the steps of the clause normal form transformation, and
give a computational model of the saturation process.
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1 Introduction

In this report we revisit the general framework of saturation-based theorem proving
in its modern form, which is known after [Bachmair & Ganzinger, 1990, 1994].
Unfortunately, since this material is relatively new, there is almost no literature
on this topic that covers all known calculi in a systematic way and gives a detailed
account on model construction procedures and redundancy elimination techniques.
We recommend to look into the overview papers [Bachmair & Ganzinger, 1998a,
2001; Nieuwenhuis & Rubio, 2001]. In this report we try to present all standard
calculi and their completeness proofs in a uniform and detailed way.

Saturation-based calculi are mainly used in automated theorem provers like
Vampire [Riazanov & Voronkov, 2002] and Spass [Weidenbach, Brahm, Hillen-
brand, Keen, Theobalt & Topić, 2002]. These theorem provers are designed for
proving or disproving first-order formulas in a fully-automated manner without a
user interaction. To obtain the best performance, such provers employ particular
saturation strategies which are tightly connected with the indexing data structures
used in the provers. For example, many theorem provers support only few types
of orderings and use data structures which allow one to quickly retrieve maximal
elements w.r.t. these orderings.

Optimisations can considerably boost up the performance of a prover which
makes it useful for solving general first-order problems. However such optimisations
limit the flexibility of the prover: it is often not possible to alter the default strategy
significantly using, say, custom orderings and selection functions. But why should
one change these parameters if a prover performs well with the default ones? It
is often the case that one needs to apply a theorem prover for a rather restricted
class of problems, say for reasoning problems in description logics. Then it is
possible, at least theoretically, to tweak the strategy for this particular class of
problems. In many cases one can come up with a procedure that can decide the
given class of formulas, or even guarantee some complexity bounds for the memory
consumption and the running time of the procedure. Such procedures that use
theorem-proving calculi for deciding classes of formulas are called saturation-based
decision procedures.

Saturation-based decision procedures have been studied starting from works of
Joyner Jr. [1976] who described several saturation strategies that decide some well-
known fragments of first-order logics. Later, his technique has been extended to
many clause classes [Tammet, 1990; Fermüller, Leitsch, Tammet & Zamov, 1993;
Hustadt & Schmidt, 1999; de Nivelle, 2000], modal and description logics [Schmidt,
1997; Hustadt, 1999; Ganzinger, Hustadt, Meyer & Schmidt, 2001; Hustadt, Motik
& Sattler, 2004] and fragments of first-order logics [Bachmair, Ganzinger & Wald-
mann, 1993; Ganzinger & de Nivelle, 1999; de Nivelle & Pratt-Hartmann, 2001;
de Nivelle & de Rijke, 2003].
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Saturation-based decision procedures for expressive fragments of first-order log-
ics typically make use of several refinements of saturation-based calculi, such as
redundancy elimination techniques and basic strategies. Designing of powerful
saturation-based procedures is highly dependant on flexibility of the underlying
calculi. Hence the primary goal of this report is to study general conditions on
applicability of standard calculi, which we do by careful analysis of completeness
proofs of [Bachmair & Ganzinger, 1990, 1994]. Because most of the results in
this report have been obtained by using the standard techniques of Bachmair &
Ganzinger [1990, 1994], we do not claim novelty of the work presented here. Instead
of this, our work should be regarded as a reference to saturation-based calculi, in
particular, for saturation-based decision procedures. However, there are also some
new results in this report. These include some generalisations for the class of ad-
missible orderings for the chaining calculi introduced by [Bachmair & Ganzinger,
1995, 1998b]. These generalisations make it possible to obtain saturation-based
decision procedures for extensions of the guarded fragment with compositional
axioms [see Kazakov, 2005].

Another emphasis in this report is put on the notion of redundancy . In theo-
rem proving, redundancy is used to justify certain simplification techniques which
have a considerable impact on the performance of theorem provers. As has been
mentioned above, redundancy elimination techniques also play a significant rôle in
many saturation-based decision procedures, where it allows one to handle poten-
tially dangerous situations.

This report is organised as follows. We start with standard logical preliminaries
in section 2, where the relevant material about first-order logic and term rewriting
is given. In section 3 we introduce the resolution calculus, on which we demonstrate
the main theoretical aspects of refutational theorem proving: model construction,
refinements, redundancy and lifting. Then we show how this approach can be
extended to equational theories in section 4, and theories of transitive and com-
positional relations in section 5. After that we focus on complexity issues: In
section 6 we consider the clause normal form transformations in details, and, in
section 7 we formulate some useful simplification rules and give a computational
model of the saturation process.
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2 Logical Preliminaries

Before proceeding to preliminary material, we make several conventions about
abbreviations and notations used throughout this report.

We assume the usual notation for sets: {a, b, . . . } denotes a set consisting of
elements a, b,. . . , {} is the empty set , 2S denotes a powerset of S (the set of
subsets of S), {S|P} denotes a set of elements from S which have the property P ,
]S is the cardinality of S. The usual set-theoretic operations include: ∪ (union),
∩ (intersection), \ (difference), we also denote by S1 tS2 the disjoint union which
is the same as S1 ∪ S2, but additionally expresses that S1 ∩ S2 = {}. Here and
everywhere else = is the syntactic equality.

We also adopt some notation for recursively defined sets and functions from
functional programming (which could be better understood from examples than
explained here). Finally the following abbreviations should be expanded as:

w.r.t. ⇒ “with respect to”
w.l.o.g. ⇒ “without loss of generality”

iff ⇒ “if and only if”

2.1 First-Order Logic

In this section we give basic definitions and state important facts about the first-
order predicate logic. A more detailed introduction to some material in this section
can be found in standard logical textbooks, e.g., in [Fitting, 1996].

2.1.1 Syntax of first-order logic

A first-order signature is a triple Σ = (Pre, Fun, Var), where Pre is a set of first-
order predicate symbols, Fun is a set of first-order functional symbols and Var is a
set of first-order variables. Every predicate symbol p ∈ Pre and every functional
symbol f ∈ Fun is assigned with a unique integer ar(p) ≥ 0, ar(f) ≥ 0 called the
arity of a predicate/functional symbol. Functional symbols f with ar(f) = 0 are
usually called constants. A signature Σ = (Pre, Fun, Var) is relational , if Fun = {}.
Let us fix some signature Σ.

The set of first-order terms over a signature Σ is recursively defined using the
grammar:

TmΣ ::= x | f(t1,.., tn) . (1)

where x ∈ Var, f ∈ Fun, n = ar(f) and ti ∈ TmΣ for 1 ≤ i ≤ n are already
constructed terms. In other words, the set of first-order terms over Σ is the small-
est set containing all variables from Var and is closed under application of the
constructor f(·,.., ·) with ar(f) positions for terms. Similarly, the set of first-order
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atoms over a signature Σ is defined by the grammar:

AtΣ ::= p(t1,.., tm) . (2)

where p ∈ Pre is a predicate symbol with m = ar(p) and tj ∈ TmΣ for 1 ≤ j ≤ m.
The set of first-order formulas over Σ is defined recursively by the following

grammar:
FmΣ ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀y.F1 | ∃y.F1 . (3)

where A ∈ AtΣ, Fi ∈ FmΣ, i = 1, 2, and y ∈ Var. Symbols ∨,∧,¬ called respec-
tively the disjunction, the conjunction and the negation, are the boolean connec-
tives. The symbols ∀ and ∃ are called the universal quantifier and the existential
quantifier. We will make use of additional abbreviations: F1 → F2 stands for
¬F1 ∨ F2; ∧∨ stands for either conjunction or disjunction and Q stands for either
the universal or the existential quantifier. The vector x represents some sequence
of variables x1,.., xk for k ≥ 0, where xi ∈ Var, 1 ≤ i ≤ k. In such a case, the
formula ∃x.F (∀x.F ) is syntactical sugar for ∃x1.∃x2...∃xk.F (∀x1.∀x2...∀xk.F ).

We adopt the following notation for the introduced objects. We will usually
use the letters (perhaps with indices) x, y, z – for variables; f, g, h – for functional
symbols; c – for constants; a, b, p, q – for predicate symbols; r, s, t – for terms;
A, B, P, Q, R – for atoms; F, G, H – for formulas. In the form these symbols are
written here, they refer to a type of an element (meaning some functional symbol,
predicate symbol, atom etc.), rather than to a concrete element. So, in some
sense these letters are meta-variables of the respective types. We use this notation
in recursive definitions (like those given above) or for describing transformation
procedures. For instance, by writing p(x) ∨ q(y) we do not mean that p and q
are distinct predicate symbols and x and y are disjoint variables. When we use
typewriting font for these letters: x, f, a, A, F, etc., we refer to particular elements.
This will be usually used in examples, where, say x stands for a fixed variable name,
a – for a fixed predicate symbol and A – for some fixed atom.

We use the pairs of parenthesis (..) and [..] to indicate the order in which the
connectives are used in the construction of a first-order formula: ∀y.(a(x)→ [b(x)∧
c(y)]). However, for conciseness, we may omit some parenthesis. In such situations
we assume the following precedences on the first-order constructors from highest to
lowest: ∀, ∃,¬,∧,∨,→. In case of ambiguity, parenthesis are restored starting with
symbols with the higher precedence. For example the formula ∀x.¬A→B ∧ ¬C ∨ D

shorthands ([∀x.(¬A)]→ [(B ∧ [¬C]) ∨ D]). However, this example demonstrates a
rather pathological case, which would likely not appear in real formulas.

A signature Σ may contain a distinguished binary predicate symbol ' which
is called the equality predicate. In this case we deal with the first-order logic with
equality . We use the infix notation for equational atoms: s ' t, which is not
distinguished from t ' s. The negation of an equational atom is denoted by s 6' t.
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Throughout this theses we will usually omit the prefix “first-order” when speak-
ing about terms, atoms and formulas of first-order logic. We will often give recur-
sive definitions for functions and prove properties by induction over (1), (2) and
(3). Below we define some useful recursive functions and relations.

The size |t|, |A|, |F |, of a first-order term t, atom A and formula F are defined
recursively over definitions (1), (2) and (3) as follows:

|t| := |x| = 1 |

|f(t1,.., tn)| = 1 + |t1| +···+ |tn| .

|A| :=
|p(t1,.., tm)| = 1 + |t1| +···+ |tm| .

|F | := |A| = |A| |

|¬F1| = |F1| + 1 |

|F1 ∧∨ F2| = |F1| + |F2| + 1|

|Qy.F1| = |F1| + 1 .

(4)

The subterm relation s E t, s E F and subformula relation G E F for terms s,
t and formulas G and F are defined as follows:

s E t := s E s, always |

s E f(t1,.., tn), if s E t1 or .. or s E tn |

s E p(t1,.., tm), if s E t1 or .. or s E tm|

s E F1 ∧∨ F2, if s E F1 or s E F2 |

s E ¬F1, if s E F1 |

s E Qy.F1, if s E F1 .

G E F := G E G, always |

G E F1 ∧∨ F2, if G E F1,
or G E F2 |

G E ¬F1, if G E F1 |

G E Qy.F1, if G E F1 .

(5)

The relation C is the strict variant of E (i.e., C is E∩ 6=); the relations D and
B are the symmetric variants of respectively E and C.

An occurrence of a variable x is free in a formula F , if there is no subformula
of the form Qx.F ′ of F containing this occurrence. Otherwise the occurrence of x
is bounded . A variable x is free in F if x has a free occurrence in F . The set of free
variables of a formula of F is denoted by free[F ], whereas the set of all variables
of F is denoted by vars[F ] (note that free[F ] ⊆ vars[F ] but not the other way
around). The width width(F ) of a first-order formula F is the maximal number of
free variables in a subformula of F : width(F ) = max ]{free[G] | G E F}.

We write F [G] (F [s], h[s]) to denote a respective formula or a term with indi-
cated occurrences of its subformula G (or its subterm s). F [G/H] (F [s/t], h[s/t])
denotes the result of replacing all these occurrences by a formula H (term t).
When replaced occurrences are clear from the context, we shorten this to F [H]
(F [t], h[t]). The polarity pol(F [H]) of an occurrence of a formula H in F is a
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value from {1, 0} (1 – for positive, 0 – for negative, that is determined as follows:

pol(F [G]) := pol(G[G]) = 1 |

pol(F1[G] ∧∨ F2) = pol(F1[G]) |

pol(F1 ∧∨ F2[G]) = pol(F2[G]) |

pol(¬F1[G]) = 1 − pol(F1[G])|

pol(Qy.F1[G]) = pol(F1[G]) .

(6)

That is, (i) a formula has a positive occurrence in itself; (ii) polarity of occurrences
are not changed when applying conjunction, disjunction or quantification and (iii)
polarity is flipped if negation is applied.

2.1.2 Semantics of first-order logic

The semantics for first-order formulas is defined by means of first-order inter-
pretations. Given a signature Σ, a first-order interpretation (sometimes called a
Σ-structure) is a pair I = (D, ·I), where D is a non-empty set called the domain of
the interpretation, and ·I is a mapping that associates (i) to every functional sym-
bol f ∈ Fun with n = ar(f) a function f I : Dn → D; (ii) to every non-equality
predicate symbol p ∈ Pre \ {'} with m = ar(p) a relation pI ⊆ Dm.

Let Σ = (Pre, {}, Var) be a relational signature and I = (D, ·I) be a Σ-
interpretation. A restriction of the interpretation I to a non-empty subdomain
D′ ⊆ D, D′ 6= {} is a Σ-interpretation I ′ = I|D′ = (D′, ·I

′

) such that pI
′

=
pI ∩ D′m for every p ∈ Pre, where m = ar(p). In this case we say that I is an
extension of I ′.

A (variable) valuation is a mapping η : Var → D. For any x ∈ Var and d ∈ D,
let {x 7→ d}·η denote the valuation for which η′(x) = d and η′(y) = η(y) for x 6= y.
The value [t]Iη ∈ D of a term t ∈ TmΣ under an interpretation I with a valuation
η is defined recursively over the term structure (1):

[t]Iη := [x]Iη = η(x) |

[f(t1,.., tn)]Iη = fI([t1]
I
η ,.., [tn]Iη ) .

(7)

The truth value [F ]Iη ∈ {true, false} for a formula F ∈ FmΣ under I and η is
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defined recursively over the definitions for atoms (2) and for formulas (3):

[A]Iη := [p(t1,.., tm)]Iη = true iff ([t1]
I
η ,.., [tm]Iη ) ∈ pI |

[t1 ' t2]
I
η = true iff [t1]

I
η = [t2]

I
η .

[F ]Iη := [A]Iη = given |

[F1 ∨ F2]
I
η = true iff [F1]

I
η = true or [F2]

I
η = true |

[F1 ∧ F2]
I
η = true iff [F1]

I
η = true and [F2]

I
η = true |

[¬F1]
I
η = true iff [F1]

I
η = false |

[∀y.F1]
I
η = true iff [F1]

I
{y 7→d}·η = true for all d ∈ D |

[∃y.F1]
I
η = true iff [F1]

I
{y 7→d}·η = true for some d ∈ D .

(8)

A first-order formula F is satisfiable in an interpretation I, if there exists a val-
uation η such that [F ]Iη = true. In this case I is a model for F . We usually
denote models of formulas by the letter M, possibly with indices. A formula F
is satisfiable if it is satisfiable in some interpretation. The dual notion to satisfia-
bility is validity. A formula F is valid in an interpretation I (notation: I � F , if
[F ]Iη = true for every valuation η. A formula F is valid (in symbols: � F ) if F is
valid in every interpretation I. The following proposition expressing the duality
between the notions of satisfiability and validity can be easily proven by induction
over definition (8):

Proposition 2.1. For every first-order formula F , F is valid iff ¬F is not satis-
fiable.

A formula G is a logical consequence of a formula F (notation: F � G), if for
every interpretation I and valuation η, [F ]Iη = true implies that [G]Iη = true. A
formula G is (logically) equivalent to F (notation: G ≡ F ) if both formulas are
logical consequences of each other. Formulas F and G are equisatisfiable when F
is satisfiable iff G is satisfiable.

We will often extend signatures by adding new predicate or functional symbols.
This requires modification of interpretations in such a way that satisfiability of
formulas over the old signature is preserved.

Definition 2.2 (Conservative). A signature Σ′ = (Pre′, Fun′, Var′) is called an
extension of a signature Σ = (Pre, Fun, Var), if Pre ⊆ Pre′, Fun ⊆ Fun′ and
Var ⊆ Var′. In such a situation, we say that a Σ′-interpretation I ′ = (D′, ·I

′

) is
an expansion of a Σ-interpretation I = (D, ·I), if (i) D = D′ and (ii) fI′

= fI,
pI

′

= pI for every functional symbol f ∈ Fun ⊆ Fun′ and every predicate symbol
p ∈ Pre ⊆ Pre′.

We say that a formula F ′ is conservative over a formula F if (i) F is a logical
consequence of F ′ and (ii) every model of F can be expanded to a model of F ′. 33
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The following proposition is an easy consequence of the definitions above:

Proposition 2.3. Let F ′ be a formula that is conservative over a formula F . Then
(i) F ′ and F are equisatisfiable and (ii) for any formula F ′′, if F ′′ is conservative
over F ′, then F ′′ is conservative over F .

In other words, Proposition 2.3 says that the result of any conservative trans-
formation is always equisatisfiable with its input and that a composition of several
conservative transformations is again a conservative transformation. These prop-
erties shall be often used in transformation procedures for first-order formulas that
we consider later. A particularly useful transformation is a replacement of occur-
rences of a subformula by some other formula: F [G] ⇒ F [G/H]. Under certain
conditions one can show that the result of the transformation is a logical conse-
quence of its input:

Lemma 2.4 (Replacement Lemma). Let F [G] be a first-order formula with
indicated positive occurrences of a subformula G. Let M be a model for F [G] and
H be a formula such that M � G→H. Then M is also a model for the formula
F [G/H].

Proof. The lemma can be straightforwardly shown by induction over the structure
of the formula F [G] using definition (6) for polarity of a subformula. 22

2.2 First-Order Clause Logic

Most automated theorem provers (ATPs) for first-order logic do not operate di-
rectly with formulas, but with their simpler clause normal forms. A (first-order)
literal L is an atom A or a negation of an atom ¬A. Two literals A and ¬A are
said to be complementary. LtΣ denotes the set of all literals constructed over a
signature Σ. A clause is a disjunction of literals C = L1 ∨···∨ Lk. The set of
all clauses is denoted by ClΣ. A clause C is interpreted as the first-order formula
∀x.C, where x are all variables of C: x = vars[C]. In other words, all variables of a
clause C are implicitly universally quantified. Hence, C is true in an interpretation
I, if I � ∀x.C. A clause set N ⊆ ClΣ is true in an interpretation I if every clause
C from N is true in I.

It is possible to give an effective conservative transformation converting any
first-order formula to a clause set (this will be discussed in detail in section 6).
This conversion, together with Proposition 2.3 allows one to reduce the validity
problem �?F for a first-order formula F to the satisfiability problem for a clause
set: “Given a clause set N check if it is satisfiable in some interpretation”. With
this problem we are concerned in the rest of this section.

As long as we stay within clause logic, models can be restricted to those of a
very special form that are called Herbrand models.
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A term/atom/literal or a clause is called ground if it contains no variables.
We assume that a first-order signature Σ = (Pre, Fun, Var) contains at least one
constant (otherwise we add some fixed constant c0), so the set Tm0

Σ of ground
terms over Σ is not empty: {} 6= Tm0

Σ
⊆ TmΣ. The sets of ground atoms and

ground literals are denoted respectively by At0

Σ
and Lt0

Σ
.

First we restrict ourselves to the clause logic without equality. In such a
case, a Herbrand Σ-interpretation is an interpretation H = (Tm0

Σ
, ·H), where

fH(t0
1,.., t

0
n) = f(t0

1,.., t
0
n) ∈ Tm0

Σ for every f ∈ Fun and t0
i ∈ Tm0

Σ, i = 1, .., n.
That is, the domain of a Herbrand interpretation (also known as a Herbrand base
and a Herbrand universe) is the set of all ground terms over Σ, and functional
symbols are interpreted in a canonical way : the result of application of a function
to ground terms is a ground term constructed from these elements. In particu-
lar, this implies that for any ground term t0 ∈ Tm0

Σ
and any variable valuation

∗ : Var → Tm0

Σ, the value of [t0]H∗ = t0.

Remark 2.5. A Herbrand interpretation for a signature Σ without equality can be
uniquely represented by a subset I of ground atoms At0

Σ over Σ. Indeed, the only
parameter of a Herbrand interpretation H that is not fixed, is the interpretation of
predicate symbols, which can be represented using I as follows: (t0

1,.., t
0
m) ∈ pH iff

p(t0
1,.., t

0
m) ∈ I. Such representations of Herbrand models will be used in section 3,

where we prove completeness for the ordered resolution calculus. 33

The following is a variant of the fundamental Herbrand theorem formulated for
clause logic1:

Theorem 2.6 (Herbrand Theorem). Every satisfiable clause set N has a Her-
brand model.

Proof. We prove Theorem 2.6 for the clause logic without equality and later we
will show how to extend this proof for equality Herbrand interpretations (which
will be defined).

Let M = (D, ·M) be a model of N . We construct a Herbrand model H of N
from M. Let us fix some valuation ∗ : Var → D of variables. For every predicate
symbol p ∈ Pre and ground term t0

i ∈ Tm0

Σ
, 1 ≤ i ≤ m = ar(p), we define

(t0

1,.., t
0

m) ∈ pH iff ([t0

1]
M
∗ ,.., [t0

m]M∗ ) ∈ pM (9)

Note that this definition does not really depends on the choice of ∗, since all terms
are ground. To put this definition differently, H corresponds to the set of ground
atoms from AtΣ that are true in M (see Remark 2.5).

1The original Herbrand theorem was formulated for provability of first-order formulas. There
are many different variations of this theorem in literature [see e.g., Fitting, 1996]
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We claim that H is a model for N . More precisely, for every every valuation
η : Var → Tm0

Σ
we construct a valuation η′ : Var → D such that for every

clause C ∈ ClΣ, we have [C]Hη = [C]Mη′ . Since for every clause C ∈ N , we have
[C]Mη′ = true, this will imply that [C]Hη = true, which proves that H is a model
for N , since η is an arbitrary valuation.

Let the valuation η′ be defined from η as follows: η′(x) := [η(x)]M∗ . By induction
over definition (7) it is easy to show that for every term t ∈ TmΣ, we have [t]Mη′ =

[[t]Hη ]M∗ . Hence for every atom A = p(t1,.., tm) ∈ AtΣ, according to definition (8)
we have:

[A]Mη′ = true iff ([t1]
M
η′ ,.., [tm]Mη′ ) ∈ pM iff ([[t1]

H
η ]M∗ ,.., [[tm]Hη ]M∗ ) ∈ pM

(by (9)) iff ([t1]
H
η ,.., [tm]Hη ) ∈ pH iff [A]Hη = true. (10)

Property (10) is extended using (8) for every clause C ∈ ClΣ: [C]Mη′ = [C]Hη , which
was required to show. 22

There is a difficulty in extending Theorem 2.6 to the case with equality. The
construction given in the proof above does not go through, since, in particular the
property (10) fails for equational atoms. Sure, there might be a situation when
[s0]Mη = [t0]Mη for some different ground terms s0 6= t0, so [s0 ' t0]Mη = true, but
[s0 ' t0]Hη′ = false, since [s0]Hη′ = s0 6= t0 = [t0]Hη′ . The solution to this problem is
to modify the notion of Herbrand interpretation by unifying several ground terms
into a single domain element.

A equivalence relation ∼ ∈ D × D is any reflexive, symmetric and transitive
binary relation, i.e., satisfying the properties: (i) d1 ∼ d1 (reflexivity); (ii) d1 ∼ d2

implies d2 ∼ d1 (symmetry) and (iii) (d1 ∼ d2 and d2 ∼ d3) implies d1 ∼ d3

(transitivity) for every di ∈ D, i = 1, 2, 3. An ∼-equivalence class for an element
d ∈ D is the maximal subset d̃ ⊆ D containing d such that d1 ∼ d for every d1 ∈ d̃.
An equivalence class for an element is unique and can be represented by any of its
elements: d̃1 = d̃ for any d1 ∈ d̃. We assume that there is a function assigning to
every equivalence class d̃, one of its elements d̃↓ ∈ d̃ called the representative of d̃.

An equivalence relation on ground terms ≈ ∈ Tm0

Σ
×Tm0

Σ
is called a congruence

relation if it is compatible w.r.t. application of functional symbols, or, in other
words, it admits the following monotonicity axioms: for every functional symbol
f ∈ Fun, and ground terms s0

i , t0
i ∈ Tm0

Σ, 1 ≤ i ≤ n = ar(f), we have s0
1 ≈

t0
1, . . . , s

0
n ≈ t0

n implies that f(s0
1,.., s

0
n) ≈ f(t0

1,.., t
0
n). An equivalence class w.r.t. to

a congruence relation is called a congruence class. Now we are ready to define a
notion of Herbrand interpretation for the clause logic with equality.

Definition 2.7. An (equality) Herbrand interpretation is an interpretation H =

(T̃m0
Σ
, ·H), where (i) T̃m0

Σ
is the set of all congruence classes of ground terms w.r.t.

12



some congruence relation ≈ ⊆ Tm0

Σ
× Tm0

Σ
: T̃m0

Σ
= {t̃0 | t0 ∈ Tm0

Σ
} and (ii)

fH(t̃0
1,.., t̃

0
n) = t̃0 ∈ T̃m0

Σ
where t0 = f(t0

1,.., t
0
n) ∈ Tm0

Σ
. 33

We need to show that this definition is correct, i.e., the interpretation H does
not depend on the choice of representatives for equivalence classes in case (ii):

Proposition 2.8 (Correctness of Definition 2.7). Let s0 = f(s0
1,.., s

0
n), t0 =

f(t0
1,.., t

0
n) and s̃0

i = t̃0
i for all i with 1 ≤ i ≤ n. Then s̃0 = t̃0.

Proof. For every i with 1 ≤ i ≤ n, we have that s̃0
i = t̃0

i implies s0
i ≈ t0

i . So, by
monotonicity axiom (since ≈ is a congruence relation) we obtain s0 ≈ t0 which
implies s̃0 = t̃0. 22

Note that the notion of Herbrand interpretation for signatures without equality
is subsumed by Definition 2.7, when ≈ is the identity congruence relation “=” (that
is, the syntactic equality). Now the Herbrand Theorem can be also proven for the
case with equality:

Proof of Theorem 2.6 for clause logic with equality. We modify the construction of
Herbrand interpretation as follows. Given a model M = (D, ·M) for N , we de-
fine a congruence relation ≈ ⊆ Tm0

Σ
× Tm0

Σ
by setting s0 ≈ t0 iff [s0]M∗ = [t0]M∗

(again, the choice of a variable valuation ∗ is irrelevant since the terms s0 and t0 are
ground). Obviously ≈ is an equivalence relation, and by (8) it fulfills monotonicity
axioms, so ≈ is a congruence relation. The rest of Herbrand interpretation, i.e.,
the interpretation of non-equality predicate symbols can be defined analogously to
(9). One should simply replace ground terms with their equivalence classes:

(t̃0
1,.., t̃

0
m) ∈ pH iff ([t̃0

1↓]
M
∗ ,.., [t̃0

m↓]
M
∗ ) ∈ pM (11)

This definition is correct, i.e., it does not matter which representatives t̃0
i↓ for

equivalence classes t̃0
i we choose for 1 ≤ i ≤ m, since s̃0

i = t̃0
i implies si ≈ ti, and so

[s0
i ]
M
∗ = [t0

i ]
M
∗ according to the definition of ≈. The rest of the proof goes without

considerable modifications:
Given a valuation η : Var → T̃m0

Σ, we define a new valuation η′ : Var → D

by η′(x) := [η(x)↓]M∗ (which is again a correct definition). By induction over the
definition (7) one easily extends this property to arbitrary terms: [t]Mη′ = [[t]Hη ↓]

M
∗ ,

t ∈ TmΣ. For non-equational atoms A = p(t1,.., tm) this property together with
(11) implies the following analog of (10):

[A]Mη′ = true iff ([t1]
M
η′ ,.., [tm]Mη′ ) ∈ pM iff ([[t1]

H
η ↓]

M
∗ ,.., [[tm]Hη ↓]

M
∗ ) ∈ pM

(by (11)) iff ([t1]
H
η ,.., [tm]Hη ) ∈ pH iff [A]Hη = true. (12)

13



In addition, for equational atoms A = t ' s we have:

[A]Mη′ = true iff [s]Mη′ = [t]Mη′ iff [[s]Hη ↓]
M
∗ = [[t]Hη ↓]

M
∗

(by definition of ≈) iff [s]Hη ↓ ≈ [t]Hη ↓ iff [s]Hη = [t]Hη iff [A]Hη = true.

(13)

The property [A]Mη′ = [A]Hη proven for all atoms, can be extended using (8) to all
clauses C ∈ ClΣ: [C]Mη′ = [C]Hη . Hence, for every C ∈ N we have [C]Hη = [C]Mη′ =
true. 22

We are now concerned with the question of how to represent equality Herbrand
interpretations. It is easy to modify the representation described in Remark 2.5 to
take into account congruence relations. We extend any congruence relation ≈ on
ground terms to ground non-equational atoms as follows: p(s0

1,.., s
0
m) ≈ p′(t0

1,.., t
0
m′)

iff (i) p = p′ (and consequently m = m′), and (ii) s0
i ≈ t0

i for all i with 1 ≤ i ≤ m.
Let Ãt0

Σ
be the set of equivalence classes of At0

Σ
modulo ≈.

Remark 2.9. An equality Herbrand interpretation can be uniquely represented by
a pair (≈, Ĩ), where ≈ is a congruence relation on Tm0

Σ
and Ĩ ⊆ Ãt0

Σ
. Indeed, the

only parameter of an equality Herbrand interpretation H that is not fixed, is the
interpretation of non-equational predicate symbols, which can be represented using
Ĩ as follows: (t̃0

1,.., t̃
0
m) ∈ pH iff Ã ∈ Ĩ for A := p(t0

1,.., t
0
m). This definition can be

easily shown to be correct (i.e., does not depend on the choice of representatives
for equivalence classes). 33

Now the question is, how to represent a congruence relation and equivalence
classes induced by it? It seems to be not very efficient to enumerate all equivalent
pairs of ground terms to store a congruence relation, since many of these pairs
can be “derived” using the congruence axioms: reflexivity, symmetry, transitivity
and monotonicity. In subsection 2.3 we demonstrate how congruence relations and
congruence classes can be efficiently represented using so-called rewrite rules.

In the remaining part of this section we introduce additional terminology that
helps to characterize different types of clauses in saturation-based decision proce-
dures. By an expression E we mean a term or a literal. An expression symbol
e is either a functional symbol f or a predicate symbol p or a negated predicate
symbol ¬p. In the last two cases we deal with a literal symbol l. The arity ar(e)
(ar(l)) of an expression symbol e (or a literal symbol l) is the arity of the predicate
or the functional symbol it is produced from. Sometimes we will form expres-
sions by attaching a sequence of arguments (t1,.., tn) to an expression symbol e:
E = e(t1,.., tn), where ti ∈ TmΣ, 1 ≤ i ≤ n = ar(e). In this case we say also that
(t1,.., tn) are the arguments of E.

14



The size |E|, |C| of an expression E or a clause C is determined by treating
them as appropriate terms or formulas. The depth depth(E) and the variable depth
vardepth(E) of an expression E are determined as follows:

depth(E) := depth(x) = 1 |

depth(e(t1,.., tn)) = 1 + max{0, depth(t1),.., depth(tn)} .

vardepth(E) := vardepth(x) = 1 |

vardepth(E0) = 0 if E0 is ground |

vardepth(e(t1,.., tn)) = 1 + max{0, vardepth(t1),.., vardepth(tn)}

if some ti with 1 ≤ i ≤ n is not ground .

(14)

An expression E is shallow , if depth(E) ≤ 2, i.e., all arguments of the expression
are variables or constants. A literal L is simple if depth(L) ≤ 3, i.e., all its
arguments are shallow. An expression E or a clause C is functional if it contains
at least one functional symbol.

2.3 Term Rewrite Systems

Term rewriting is typically used to model changes in dynamical systems (for ex-
ample, for describing a model of computation for a programming language). In
the context of saturation-based theorem proving, rewrite systems often represent
a static information (models). The purpose of this section is to demonstrate the
usage of rewriting techniques for representing congruence relations and congruence
classes. A more detailed account of the material in this and the subsequent sec-
tions can be found in [Dershowitz, 1987; Baader & Nipkow, 1998; Dershowitz &
Plaisted, 2001].

A rewrite relation ⇒ is a monotone relation on ground terms: ⇒ ⊆ Tm0

Σ
×Tm0

Σ
,

i.e., satisfying the property: h0[s0]⇒ h0[t0] if s0 ⇒ t0 (monotonicity). By *⇒ we
denote transitive reflexive closure of ⇒, and by *⇔ we denote the equivalence closure
of ⇒ (i.e., *⇔ := (⇒∪⇐)∗ is the minimal equivalence relation containing ⇒).
Note that *⇔ is a congruence relation because the relation ⇒, and consequently
*⇔ are monotone.

A (ground) rewrite system R is a set of (ground) rewrite rules of the form
s0 ⇒ t0, where s0, t0 ∈ Tm0

Σ. The term s0 is called a redex of the rewrite rule
s0 ⇒ t0. A rewrite relation ⇒R induced by a ground rewrite system R is the smallest
rewrite relation containing all rules from R. A ground term s0 ∈ Tm0

Σ
is irreducible

(w.r.t. R) if s0 ⇒R t0 for no term t0 ∈ Tm0

Σ
. A term t0 is a normal form of s0 (w.r.t.

R) if s0 *⇒R t0 and t0 is irreducible. We denote by t0⇓R some normal form of a term
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t0 (in case it exists). A rewrite system R is terminating or well-founded if there is
no infinite sequence of terms s0

1 ⇒R s0
2 ⇒R···⇒R s0

i ⇒R··· .
Termination of a rewrite system guarantees the existence of a normal form for

every ground term, but not its uniqueness. Normal forms are unique if a rewrite
system is confluent (also called Church-Rosser): whenever s0 *⇒R t0

1 and s0 *⇒R t0
2,

then the terms t0
1 and t0

2 are R-joinable, i.e., there exists h0 ∈ Tm0

Σ
such that

t0
1

*⇒R h0 and t0
2

*⇒R h0. In this case we will also write t0
1 ⇓R t0

2 and say that the
equation t0

1 ' t0
2 converges, or has a rewrite proof in R. Similarly, confluence alone

does not suffice for existence of normal forms, but for their uniqueness: Indeed,
two different joinable terms cannot be both irreducible, so every ground term has
at most one R-normal form.

A terminating, confluent rewrite system is called convergent . It can be shown
that for convergent rewrite systems, s0 *⇔R t0 implies s0⇓R = t0⇓R. Thus, one could
effectively decide the equivalence problem s0 *⇔?

R t0 for any ground terms s0 and t0:
indeed, this amounts in checking whether s0 and t0 are R-joinable: s0 ⇓?

R t0, which
can be done by computing and comparing their normal forms s0⇓R and t0⇓R by
applying finitely many R-rewrite steps. These results can be summarized in the
following Proposition:

Proposition 2.10. Let R be a convergent rewrite system for ground terms Tm0

Σ
.

Then for every s0, t0 ∈ Tm0

Σ (i) there exist unique normal forms s0⇓R and t0⇓R

w.r.t. R and (ii) s0 *⇔R t0 iff s0⇓R = s0⇓R.

The algorithm for checking equivalence of ground terms given above, can be
used to represent the congruence closure ≈E induced by a finite set E of ground
equations of form s0 ' t0 (i.e., ≈E is the least congruence relation containing all
equations from E). For this purpose, one should find a convergent rewrite system
R, such that *⇔R coincides with ≈E. The last property can be achieved by taking
a rewrite system which consists of the oriented equations from E: s ≈E t orients
to s0 ⇒ t0. However, the resulted rewrite system may not be convergent.

Knuth & Bendix [1970] formulated a necessary and sufficient condition for a
terminating rewrite system to be convergent and presented a so-called comple-
tion procedure which computes a convergent rewrite system for a set of ground
equations.

We say that redexes s0
1, s0

2 of two rewrite rules s0
1 ⇒ t0

1 and s0
2 ⇒ t0

2 are overlap-
ping if s0

1 E s0
2 or s0

2 E s0
1, or in words, one redex is a subterm of the other redex.

We break the symmetry in this definition by assuming that s0
1 E s0

2 (w.l.o.g.), i.e.,
s0
2 = s0

2[s
0
1]. In this situation, the equation s0

2[t
0
1] ' t0

2 is called the critical pair
between these two rewrite rules and the term s0

2[s
0
1] is called the overlapped term.

The critical pair between rules of a confluent rewrite system R has a rewrite proof
in R, since the overlapped term is reducible to both terms in the critical pair:
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s0
2[s

0
1]⇒ s0

2[t
0
1] and s0

2[s
0
1]⇒ t0

2. The converse does not necessary hold for all rewrite
systems, but for terminating rewrite systems this can be shown:

Lemma 2.11 (Critical Pair Lemma, Knuth & Bendix [1970]). A termi-
nating rewrite system R is confluent iff every critical pair between the rules in R
converges.

Lemma 2.11 provides the basis for the following congruence closure procedure
that is called the (ground) Knuth-Bendix completion. Starting with a finite set
of ground equations E, we want to compute a convergent rewrite system R such
that ≈E is equal to *⇔R. This can be done by applying the inference rules from
System 1.

Orient Superpose

O :
s0 ' t0

s0⇓R ⇒ t0⇓R

S :
s0 ⇒ t0 w0[s0]⇒ v0

w0[t0] ' v0

if s0⇓R 6= t0⇓R.

System 1: Ground Knuth-Bendix completion KB0

System 1 describing the Knuth-Bendix completion procedure is a simple exam-
ple of inference systems we will deal with in this report. The procedure is given in
form of a calculus KB0 that consists of two inference rules: Orient and Superpose.
The short versions for the names of the inference rules O and S will be used in
applications of these rules. The premises of the rules are drawn above the sepa-
ration line and the conclusions of the rules are drawn below. The first rule has
one premise and the second rule is applied to two premises. The prerequisites for
applications of rules called the conditions of inference rules are written below each
rule (if there are any).

The rules can be applied in don’t care nondeterministic fashion, i.e., any plausi-
ble inference rule can be executed at every moment of time. However, we generally
assume that application of the rules is (i) sequential, i.e., several rules cannot be
applied simultaneously, and (ii) fair, i.e., no inference can be postponed infinitely
long. We shall see another type of nondeterminism, called don’t know nondeter-
minism, when we consider nondeterministic inference rules.

Starting with a finite set of equations E we apply inference rules from System 1
which produce rewrite rules of R and new equations. The condition of the first
inference rule Orient is verified w.r.t. the current rewrite system R. Note, that this
rule can be applied to an equation s0 ' t0 in two different ways, since equations are
treated symmetrically. One application introduces the rewrite rule s0 ⇒ t0, and the
other orients the equation to t0 ⇒ s0. Note that after an application of Orient, its
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premise converges, so the rule becomes inapplicable the second time. The second
inference rule Superpose is applied to overlapping rewrite rules and produces the
critical pair of these rewrite rules. After Orient is applied to this equation, the
critical pair of these rewrite rules converges.

If the inference procedure terminates, i.e., if no new equation or a rewrite rule
can be produced, then we have computed a set of rewrite rules R for E. Speaking
in general terms, we say that in this case, the set of equations and rewrite rules
is saturated w.r.t. KB0 and that we have computed a saturation for E. There
are several possible rewrite systems that can be computed for the same input
E, because of nondeterministic nature of the inference process. If a computed
rewrite system R is terminating, then by Lemma 2.11 it is convergent, since every
critical pair is derived by Superpose and converges by Orient. In this case we
have computed R such that *⇔R coincides with ≈E. Unfortunately, there are two
assumptions in this proposition that do not necessary hold for arbitrary derivations:
(i) termination of the inference procedure and (ii) termination of the computed
rewrite system. We demonstrate this in the following example:

Example 2.12. Let us compute a rewrite system for the set E consisting of equa-
tions 1. f(a) ' a and 2. g(f(a)) ' f(g(a)). The inference rules from KB0 can be
applied in several different ways:

Saturation A:
O[1]: 3. a⇒ f(a)
O[2]: 4. − n.t.−

Saturation B:
O[1] : 3. f(a)⇒ a

O[2] : 4. g(f(a))⇒ f(g(a))

S[3; 4]: 5. g(a) ' f(g(a))

O[5] : 6. g(a)⇒ f(g(a))

Saturation C:
O[1]: 3. f(a)⇒ a

O[2]: 4. f(g(a))⇒ g(f(a))

Saturation A is an example of non-termination of the procedure. Here we
have oriented the first equation f(a) ' a into the rewrite rule a⇒ f(a). This has
been a wrong decision, since now we cannot execute the rule Orient for the second
equations, since the normalization procedure for the terms g(f(a)) and f(g(a)) in
the condition of the rule does not terminate.

In Saturation B we have oriented the first equation in a right way: f(a)⇒ a

and have successfully computed all inferences (we have underlined the matched
terms). Although the computed rewrite system is confluent, it is not terminating
because of the last rewrite rule: 6. g(a)⇒ f(g(a)). If we had oriented equation 5
to the opposite direction, we would have obtained a convergent rewrite system.

In Saturation C we obtained a terminating rewrite system immediately, by
orienting the initial equations in such a way that no critical pair is produced. 33

Example 2.12 shows that orienting the equations in a right way is crucial for
termination of Knuth-Bendix completion and for producing a terminating rewrite
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system. It seems that the right way to orient equations is to make rewriting
from “larger” to “smaller” terms. In the next section we will see how to force the
completion procedure terminate for ground equations using certain orderings.

2.4 Orderings

Ordering restrictions were shown to be useful not only in the context of term
rewriting, but also as refinements in many saturation-based theorem proving pro-
cedures.

A (strict partial) ordering (or order) � on a set D is a transitive and irreflexive
binary relation on D. If � is a strict ordering then its reflexive closure is denoted
by �.

A quasi-ordering % on D is any reflexive and transitive relation on D. An
equivalence relation induced by a quasi-ordering % is the symmetrical part ∼ of
%: d1 ∼ d2 iff d1 % d2 and d2 % d2. A strict part � of a quasi-ordering % is the
difference between % and ∼: d1 � d2 iff d1 % d2 and d2 6% d1. Note that the strict
part � of % is the greatest ordering contained in %.

An ordering � is total or linear if every two different elements are comparable
by �, i.e., for every d1, d2 ∈ D, d1 6= d2 implies that either d1 � d2 or d2 � d1. An
ordering � is well-founded or Noetherian if there is no infinite descending chain
d1 � d2 � · · · of elements di ∈ D, i ≥ 1. A total well-founded order is called a
well-order .

2.4.1 Multiset and lexicographic extensions of orderings

A multiset of elements from D is a function M : D →
�

, where
�

is the set of
natural numbers. The number M(d) is called the multiplicity of an element d in
M , d ∈ D. We say that an element d belongs to a multiset M (in symbols d ∈ M)
if M(d) > 0. The size |M | of a multiset M is defined by |M | :=

∑
d∈D M(d). A

multiset M is finite if |M | < ∞.
Note that every subset D of D is uniquely represented by a multiset MD that is

the characteristic function of D: MD(d) = 1 iff d ∈ D. Conversely a multiset can
be seen as a set in which several occurrences of the same element are allowed. Given
this correspondence, it is not difficult to extend some set-theoretic operations to
multisets: the multiset union M1 ∪ M2 of two multisets M1 and M2 is defined by
(M1 ∪ M2)(d) := M1(d) + M2(d); the multiset intersection M1 ∩ M2 is given by
(M1∩M2)(d) := min(M1(d), M2(d)) and the multiset difference M1\M2 is defined
by (M1 \ M2)(d) = max(0, M1(d) − M2(d)) for all d ∈ D. We say that M1 is a
submultiset of M2 (notation M1 ⊆ M2), if M1 \ M2 = {}

m
, where the last is the

empty multiset, that is given by {}
m
(d) = 0 for every d ∈ D.
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Let � be an ordering on D and D be a multiset of elements from D. An
element d ∈ D is called maximal (strictly maximal) w.r.t. D if d′ � d (d′ � d)
for no d′ ∈ D. An element d ∈ D is greatest (strictly greatest) w.r.t. D if d � d′

(d � d′) for all elements d′ ∈ D. An element d ∈ D is (strictly) maximal or
(strictly) greatest in D, if it is respectively (strictly) maximal or (strictly) greatest
w.r.t. D \ {d}. The notions of (strictly) minimal and (strictly) least elements
w.r.t. D (in D) are defined analogously by inverting respective relations (� to ≺
and � to �).

Any ordering � on D can be extended to an ordering �
mul

on finite multisets
of D as follows: M1 �

mul
M2 iff (i) M1 6= M2 and (ii) for every element d ∈ D,

either M1(d) ≥ M2(d), or, otherwise there exists for some d′ � d, d′ ∈ D, such
that M1(d

′) > M2(d
′) . The ordering �

mul
is called the multiset extension of of

the ordering �.

Example 2.13. Let D = {a, b, c} and M1 = {a, b}
m
, M2 = {a, c, c}

m
, M3 = {b, b, b}

m

be multisets over D. Formally, this notation means that M1(a) = 1, M1(b) = 1,
M1(c) = 0; M2(a) = 1, M2(b) = 0, M2(c) = 2 and M3(a) = 0, M3(b) = 3, M3(c) = 0.
Then M1 ∪ M2 = {a, a, b, c, c}

m
, M1 ∩ M3 = {b}

m
, M2 \ M1 = {c, c}

m
. Let � be an

ordering on D such that a � b � c and �
mul

be the multiset extension of �. Then
M1 �mul

M2 �mul
M3. 33

The following proposition states that the multiset extension of an ordering
inherits many properties of the ordering it is based on:

Proposition 2.14. Let � be a strict partial ordering on D. Then its multiset
extension �

mul
is a strict partial ordering and:

(i) �
mul

is total iff � is total and
(ii) �

mul
is well-founded iff � is well-founded.

Any ordering � on D can be extended to an ordering �n

lex
on Dn called the

lexicographic extension of of � as follows: (d1,.., dn) �n

lex
(d′

1,.., d
′
n) iff there exists

i with 1 ≤ i ≤ n such that di � d′
i, and for all j with 1 ≤ j < i, we have

dj = d′
j. Continuing Example 2.13, it is easy to show by this definition that

(a, b, c) �3
lex

(b, c, c) �3
lex

(c, b, a) �3
lex

(c, b, b) �3
lex

(c, c, a). Often we omit the
index n in �n

lex
, when the number of elements in vectors is clear from the context.

The idea of the lexicographic extension of an ordering can be further extended
to combine several orderings. Let (D1,�1), (D2,�2),. . . (Dn,�n) be ordered
sets. We can define a lexicographic combination of orderings �1,�2,..,�n as a
binary relation �1..n

lex
(also denoted by (�1,..,�n)) on D1 × ···× Dn satisfying:

(d1, d2,.., dn) �1..n

lex
(d′

1, d
′
2,.., d

′
n) iff there exists i with 1 ≤ i ≤ n such that di �i d′

i,
and for all j with 1 ≤ j < i, we have dj = d′

j. Note that the lexicographic ex-
tension �n

lex
of an ordering � is a lexicographic combinations of n copies of �.
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The following is a variant of Proposition 2.14 for lexicographic combinations of
orderings:

Proposition 2.15. Let �i be strict partial orderings on Di for i with 1 ≤ i ≤ n
and let �1..n

lex
be its lexicographic combination. Then �1..n

lex
is a strict partial ordering

and:
(i) �1..n

lex
is total iff every �i with 1 ≤ i ≤ n is total and

(ii) �1..n

lex
is well-founded iff every �i with 1 ≤ i ≤ n is well-founded.

2.4.2 Reduction orders

In automated deduction, orders are used to constrain inferences and are applied to
syntactical objects of clause logic: terms, literals and clauses. For these domains,
additional classification of orders is possible.

Let � be an ordering on ground expressions over a signature Σ (i.e., on ground
terms and ground literals). We say that � is a rewrite ordering if � is a rewrite
relation, i.e., it admits the monotonicity property: for every ground terms s0, t0

and a ground expression E0 with s0 C E0, s0 � t0 implies E0[s0] � E0[t0/s0].
A reduction ordering is a well-founded rewrite ordering. An ordering � has the
subterm property if E0 � t0 for every t0 C E0. A simplification ordering is any
reduction ordering with the subterm property.

It is easy to show that every total reduction ordering must have the subterm
property for ground terms. Indeed, otherwise s0 � t0[s0] for some terms s0 C t0 and
by monotonicity we obtain an infinite descending chain: s0 � t0[s0] � t0[t0[s0]] �
· · · . It is not, however, true that a total reduction ordering must have the subterm
property: L0[t0] � t0 for a subterm t0 of a literal L0, because literals cannot
strictly occur in other expressions. In the remaining part of this section we restrict
ourselves to ground term orderings, i.e., orderings over the domain D = Tm0

Σ.
Most term orderings used in applications nowadays are variations of either

Knuth-Bendix ordering [Knuth & Bendix, 1970] or a lexicographic path ordering
[Kamin & Lévy, 1980]. Both orderings are based on a precedence �, which is a
strict order on functional symbols Fun of a signature Σ.

The Knuth-Bendix ordering A weight function is any function weight : Fun →
�

that assigns a non-negative integer2 to every functional symbol from Fun. A
weight function weight(·) is admissible for a precedence � iff (i) weight(c) > 0 for
every constant c and (ii) for every unary functional symbol f ∈ Fun, weight(f) = 0
implies that f is �-greatest element in Fun (i.e., for every for every g ∈ Fun\{f},
we have f � g). The weight function is recursively extended to the set of ground

2some definitions, e.g., in [Baader & Nipkow, 1998], allow for non-negative real weights, how-
ever the advantage of this is not very clear
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terms Tm0

Σ as follows: weight(f(t0
1,.., t

0
n)) := weight(f)+weight(t0

1)+···+weight(t0
n).

Note, that if weight(f) = 1 for every functional symbol f ∈ Fun, then weight(t) =
|t|, where |t| is the size of t.

Definition 2.16. The Knuth-Bendix ordering (short KBO), induced by a prece-
dence � and an admissible weight function weight(·) is defined as follows: For
every pair of ground terms s0 = f(s0

1,.., s
0
n) and t0 = g(t0

1,.., t
0
m) we have s0 �kbo t0

iff one of the following conditions holds:

(1) weight(s0) > weight(t0), or
(2) weight(s0) = weight(t0), but f � g, or
(3) weight(s0) = weight(t0), f = g (and hence m = n), and (s0

1,.., s
0
n) �kbo

lex

(t0
1,.., t

0
n),

where �kbo
lex

is the lexicographic extension of �kbo. 33

Note that the Knuth-Bendix ordering is, in some sense, a recursive lexicographic
combination of (i) the ordering > on integers, (ii) the ordering � on functional
symbols and (iii) the lexicographic extension �

lex
of the ordering itself. It can

be shown that for any precedence and admissible weight function, Knuth-Bendix
ordering is a simplification order:

Theorem 2.17 ([see Baader & Nipkow, 1998, Theorem 5.4.20]). Let �
be a precedence on functional symbols Fun of a signature Σ and weight(·) be an
admissible weight function for �. Then the Knuth-Bendix order �kbo induced by
� and weight(·) is a simplification ordering.

Note, that if the precedence � on functional symbols is total, then �kbo based
on this precedence is total as well. Indeed, by Definition 2.16, if s0 6�kbo t0 and
t0 6�kbo s0 for some ground terms s0 = f(s0

1,.., s
0
n) and t0 = g(t0

1,.., t
0
m), then (1)

weight(s0) = weight(t0); (2) f = g and (3) (s0
1,.., s

0
n) = (t0

1,.., t
0
n) (by induction

hypothesis, since the lexicographic extension of a total order is a total order by
Proposition 2.15).

Proposition 2.18. Let �kbo be the Knuth-Bendix order induced by a total prece-
dence � and a weight function weight(·). Then �kbo is a total ordering.

The lexicographic path ordering A reduction ordering can be defined based
on a precedence of functional symbols only:

Definition 2.19. The lexicographic path ordering (short LPO), induced by a prece-
dence � is defined as follows: For every pair of ground terms s0 = f(s0

1,.., s
0
n) and

t0 = g(t0
1,.., t

0
m) we have s0 �lpo t0 iff one of the following conditions holds:

(1) s0
i �lpo t0 for some i with 1 ≤ i ≤ n, or
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(2) f � g and s0 �lpo t0
j for all j with 1 ≤ j ≤ m, or

(3) f = g (and hence m = n), and (s0
1,.., s

0
n) �lpo

lex
(t0

1,.., t
0
n),

where �lpo
lex

is the lexicographic extension of �lpo.
33

Analogs of Theorem 2.17 and Proposition 2.18 can be shown for LPO-orderings:

Theorem 2.20 ([see Baader & Nipkow, 1998, Theorem 5.4.14]). For any
precedence � on functional symbols Fun, the ordering �lpo induced by � is a
simplification ordering on Tm0

Σ
.

Proposition 2.21. Let � be a total precedence on Fun, then the ordering �lpo

induced by � is a total ordering on Tm0

Σ.

Proof. The proof of this proposition is slightly more involved than for the case of
KBO-orderings. By induction on |s0|+|t0| we prove that either s0 = t0 or s0 �lpo t0

or t0 �lpo s0. Let s0 = f(s0
1,.., s

0
n) and t0 = g(t0

1,.., t
0
m).

We may assume that s0
i 6�lpo t0 and t0

j 6�lpo t0 for all i with 1 ≤ i ≤ n and all
j with 1 ≤ j ≤ m (otherwise s0 �lpo t0 or, respectively t0 �lpo s0 by condition (1)
from Definition 2.16). By induction hypothesis, we should have t0 �lpo s0

i and
s0 �lpo t0

j for all these pairs of terms since |t0| + |s0
i | < |s0| + |t0| and |s0| + |t0

j| <
|s0| + |t0| for all i with 1 ≤ i ≤ n and all j with 1 ≤ j ≤ m.

Consider first the case when f 6= g. Since � is total, then either f � g or
g � f . In this case, condition (2) from Definition 2.16 implies that s0 �lpo t0 or
t0 �lpo s0 respectively.

If f = g then condition (3) from Definition 2.16 is applied, by which the terms
t0 and s0 should be comparable, since the lexicographic extension of a total ordering
is a total ordering by Proposition 2.15. 22

There are variations of KBO and LPO-orderings, where the condition (3) is
extended for functional symbols with status (for LPO ordering this extension is
known as the recursive path ordering with status, or short RPOS [see Dershowitz,
1987]). A status status(f) of a functional symbol f ∈ Fun is an element from
{left, right, multiset}. Definition 2.16 and Definition 2.19 can be extended to
take the status of symbols into account by replacing the condition (3) with:

(3′) · · · f = g (and hence m = n), and either
(l) status(f) = left and (s0

1,.., s
0
n) �∗

lex
(t0

1,.., t
0
n), or

(r) status(f) = right and (s0
n,.., s0

1) �
∗
lex

(t0
n,.., t0

1), or
(m) status(f) = multiset and {s0

1,.., s
0
n}m

�∗
mul

{t0
1,.., t

0
n}m

,
where ∗ ∈ {kbo, lpo} and �∗

lex
, �∗

mul
are the lexicographic and the

multiset extensions for respective orderings.
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KBO and LPO orders can be used for ground expressions by treating predi-
cate symbols and negation as functional symbols (i.e., by defining precedence and
weight functions on them). In the following example, we demonstrate a differ-
ence between KBO and LPO-orderings, that is be important for saturation-based
decision procedures.

Example 2.22. Consider two atoms: p(t0, t0) and q(f(t0)), where p and q are pred-
icate symbols, f is a functional symbol and t0 is some ground term. Let � be a
precedence on predicate and functional symbols such that f � p and let �lpo be
the LPO-ordering induced by �. Then we have q(f(t0)) �lpo p(t0, t0). Indeed,
t0 �lpo t0, therefore by condition (1) from Definition 2.19 we have f(t0) �lpo t0.
Since f � p, by condition (2) we have f(t0) �lpo p(t0, t0) which yields again by
condition (1) that q(f(t0)) �lpo p(t0, t0). Note, that this holds for every ground
term t0.

However it is not possible to have q(f(t0)) �kbo p(t0, t0) for all terms t0 using
a KBO-ordering �kbo. Indeed, for every admissible weight function weight(·), one
can construct a term t0 with a large enough weight so that weight(p(t0, t0)) =
weight(p) + 2·weight(t0) > weight(q) + weight(f) + weight(t0) = weight(q(f(t0))).

33

2.4.3 The ordered Knuth-Bendix completion

Now we return to the congruence closure procedure described in subsection 2.3
and refine the calculus KB0 from System 1. The idea is to use a total reduction
ordering � to guide orientation of ground equations.

Orient Superpose

O :
s0 ' t0

s0⇓R ⇒ t0⇓R

S :
s0 ⇒ t0 w0[s0]⇒ v0

w0[t0] ' v0

if s0⇓R � t0⇓R.

Superposition

SP :
s0 ' t0 w0[s0] ' v0

w0[t0] ' v0

where (i) s0 � t0 and (ii) w0[s0] � v0

System 2: Ground ordered Knuth-Bendix completion KB0

� and Superposition

In System 2 we formulated two variants of ordered Knuth-Bendix completion.
The left variant is a refinement of KB0, where we have restricted applications of
the rule Orient to produce only rewrite rules from larger terms to smaller ones
(w.r.t. �).

Since a rewrite rule correspondent to an equation is completely determined by
an ordering, one could join the Orient and Superpose rules into a single Superposition
rule, shown in the right part of System 2. This rule is the main rule for equality
handling in almost all saturation-based calculi for equational clause logic.
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Application of Superposition always terminates for ground equalities when a
total reduction ordering � of ω-type is used. An ordering � on D is of ω-type,
if for every element d ∈ D there are at most finitely many smaller elements in
D w.r.t. �, i.e., the set {d′ ∈ D | d � d′} is finite. KBO-ordering with positive
weights (weight(f) > 0 for all f ∈ Fun) is an instance of such orderings as there
are only finitely many ground terms of a bounded weight. LPO is an example of a
simplification ordering which is not of ω-type. We shell see it in a moment below.

If an ordering is of ω-type, then Superposition can generate only finitely many
equations, since the greatest (w.r.t. �) term in the conclusion is strictly smaller
then the greatest term in the premise of this rule: w0[s0] � w0[t0], w0[s0] � v0,
because of the conditions (i) and (ii) of the rule respectively. Since there are only
finitely many terms that are smaller than a given term w.r.t. an ordering �, then
only finitely many equations can be generated by the procedure.

Unfortunately, the completion procedure, as it is given by the Superposition
rule, does not always terminate for ground equations if a total reduction order �
is not of ω-type. This is demonstrated in the following example:

Example 2.23. Let us perform completion for set E = {g(f(a)) ' f(a), f(a) ' a}
of equations, using an LPO-ordering �lpo based on a precedence f � g � a:

given : 1. g(f(a)) ' f(a)

given : 2. f(a) ' a

SP[2; 1]: 3. f(a) ' g(a)

SP[3; 1]: 4. f(a) ' g(g(a))

SP[3; 2]: 5. g(a) ' a

SP[4; 1]: 6. f(a) ' g(g(g(a)))

SP[4; 2]: 7. g(g(a)) ' a

SP[4; 3]: 8. g(g(a)) ' g(a)
SP[6; 1]: 9. f(a) ' g(g(g(g(a))))

SP[6; 2]: 10. g(g(g(a))) ' a

SP[6; 3]: 11. g(g(g(a))) ' g(a)
. . . etc . . .

It is easy to see that the inference procedure does not terminate. This is because
there are infinitely many ground terms smaller than f(a) w.r.t. �lpo (in particular,
all terms constructed from g and a only). Termination can be regained for arbi-
trary total reduction ordering [see Exercise 6.7 in Baader & Nipkow, 1998], when
deletion of unnecessary equations is applied. Note, that the right premise of the
Superposition rule is no longer needed after this rule is applied, since it follows from
the other two equations containing smaller terms. Speaking in general terms, such
an equation is redundant and can be deleted from the set. In the example above,
equation 1 becomes redundant after the step 3, thus, all inferences, except 5 are not
needed and the procedure terminates. The resulted rewrite system consists of the
rules obtained by orienting equations 2 and 5 into R := {f(a)⇒ a, g(a)⇒ a}. 33

2.5 Substitutions And Unification

In clause logic we deal with expressions that may possibly contain variables. In this
section we introduce some necessary notions and prove important facts regarding
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non-ground expressions.
A substitution is a function that maps variables to terms σ : Var → TmΣ,

which is denoted by σ = {x1/t1, x2/t2,.., xn/tn,..}, or, shortly σ = {x/t} (hereby
σ(xi) = ti). The domain of a substitution Dom(σ) := {xi ∈ Var | σ(xi) 6= xi}.
The range of a substitution Ran(σ) := {σ(xi) | xi ∈ Dom(σ)}. The identity
substitution is a substitution such that id(x) = x for every x ∈ Var. In other
terms, Dom(id) = {}. A substitution σ is a renaming , if (i) Ran(σ) ⊆ Var and
(ii) x 6= y implies σ(x) 6= σ(y). A substitution σ0 is ground iff σ(x) ∈ Tm0

Σ for
every x ∈ Var.3 Given a set of variables V ⊆ Var, a restriction of a substitution
σ to V is a substitution σ|V , that is defined as follows:

σ|V (x) :=

{
σ(x) if x ∈ V ;

x if x 6∈ V .
The application of a substitution to expressions and formulas is defined recursively
in Figure 1. A composition of substitutions σ1 and σ2 is a new substitution denoted

Figure 1 Application of a substitution
t·σ := x·σ = σ(x) |

f(t1, t2,.., tn)·σ = f(t1·σ, t2·σ,.., tn·σ) .

A·σ :=
a(t1, t2,.., tn)·σ = a(t1·σ, t2·σ,.., tn·σ) .

F ·σ := A·σ = A·σ |

(F1 ∧∨ F2)·σ = (F1·σ) ∧∨ (F2·σ) |

(¬F1)·σ = ¬(F1·σ) |

(Qy.F1)·σ = Qy.(F1·σ|Var\{y}
) .

by σ1·σ2 that is defined as follows: (σ1·σ2)(x) := (σ1(x))·σ2. It can be shown
by induction over the definitions of TmΣ and FmΣ that for every t ∈ TmΣ and
F ∈ FmΣ: t·(σ1·σ2) = (t·σ1)·σ2 and F ·(σ1·σ2) = (F ·σ1)·σ2. Hence, composition of
substitutions is an associative operation. Because of this, we will often omit braces
in sequences of substitution applications: F ·σ1·σ2· · · ·σn. Note that σ1·σ2 = id,
implies that both σ1 and σ2 are renamings.

An expression E2 is an instance of an expression E1 (notation: E2 &i E1

and, symmetrically E1 .i E2), iff there exists a substitution σ1 such that E2 =
E1·σ1. Without loss of generality, one can assume that Dom(σ1) ⊆ free[E1] since
otherwise, one can take σ1|free[E1]

instead of σ1. Note that &i is a quasi-ordering (see
subsection 2.4), since: (i) E = E·id implies reflexivity of &i and (ii) E2 = E1·σ1

and E3 = E2·σ2 imply E3 = E1·σ3, where σ3 = σ1·σ2, which implies transitivity of
&i.

Let ∼i denote the equivalence relation induced by &i (i.e., E1 ∼i E2 iff E1 &i E2

and E2 &i E1). Then E1 ∼i E2 if there exists a renaming σ1 such that E2 = E1·σ1.
Indeed, from E1 = E2·σ2 and E2 = E1·σ1 (w.l.o.g. Dom(σ1) = free[E1]), one implies

3It is generally assumed that every substitution has a finite domain, which we do not require
in this report, since otherwise it is more tricky to define the notion of a ground substitution
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that E1 = E1·σ1·σ2, so, σ1·σ2 = σ1|free[E1]
·σ2 = id|free[E1]

= id, which implies that
both σ1 and σ2 are renaming substitutions. The strict instance ordering >i is the
difference between &i and ∼i .

The instance ordering can be extended on substitutions by defining σ2 &i σ1

iff σ2 = σ1·σ for some substitution σ. In this case σ2 is called an instance of (or
more specific than) σ1, and σ1 is called more general than σ2. The relation &i is a
quasi-ordering on substitutions, which can be shown similarly to &i on expressions.
Note also that id is the greatest, i.e., the most specific element w.r.t. &i.

A unification problem4 is a set P = {E1=E ′
1,.., En=E ′

n} of equations between
expressions, n ≥ 0. A solution for a unification problem P, called a unifier is a
substitution σ such that Ei·σ = E ′

i·σ for every i with 1 ≤ i ≤ n. Note that any
substitution is a unifier for the empty unification problem (i.e., when n = 0). A
most general unifier (or, shortly mgu) for the unification problem P is a unifier σ
such that it is more general than any other unifier σ′, i.e., σ′ &i σ. Note that this
definition implies that a most general unifier is unique up to a renaming, i.e., if
σ1 and σ2 are two mgu’s for P, then σ1 ∼i σ2. Below we give an algorithm that
computes a most general unifier for a unification problem.

Figure 2 A unification procedure
mgu(P) := mgu({}) = id | (Empty)

mgu(P t {e(s1,.., sn)=e(t1,.., tn)}) = mgu(P t {s1=t1,.., sn=tn}) | (Decompose)

mgu(P t {e(s1,.., sn)=e′(t1,.., tm)}) = ⊥, if e 6= e′ | (Clash)

mgu(P t {x=t}) = ⊥, if x C t | (Occurs-Check)

mgu(P t {s=y}) = mgu(P t {y=s}), if s 6∈ Var | (Orient)

mgu(P t {x=t}) = {x/t}·mgu(P·{x/t}), if x 6C t . (Eliminate)

In Figure 2 we define by induction a unification function, that given a uni-
fication problem P, returns an mgu for it, if there exists one. We introduce a
special undefined substitution ⊥ for the case when no mgu exists for P to make
the function mgu(·) total. We adopt a convention, according to which ⊥ maps
every term to a special undefined constant ?. So, ⊥·σ = ⊥ for any substitution
σ and ⊥ is a unifier for every unification problem (the most specific unifier). For
a unification problem P = {E1=E ′

1,.., En=E ′
n} and a substitution σ, P·σ denotes

the unification problem {E1·σ=E ′
1·σ,.., En·σ=E ′

n·σ}. Throughout this report we
assume that mgu(P) is the most general unifier returned by the unification proce-
dure in Figure 2. When P consists of one equation P = {E=E ′}, we usually write
mgu(E, E ′) instead of mgu({E=E ′}).

Proposition 2.24. The unification procedure defined in Figure 2 terminates for
every input P and produces a substitution σ which is a most general unifier for P.

4In this report we are concerned only with the syntactic unification problems
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Proof. First we show that the unification procedure terminates. Let |P| be the size
of P and vars[P] be the set of variables in P for a unification problem P that are
defined in the following way:

|P| := |{}| = 0 |

|{s=t}| = |s| + |t|, if t 6∈ Var |

|{s=y}| = |s| + |y|+ 1 |

|P1 t P2| = |P1| + |P2| .

vars[P] := vars[{}] = {} |

vars[{s=t}] = vars[s] ∪ vars[t] |

vars[P1 t P2] = vars[P1] ∪ vars[P2] .

Note that in every recursion call of function mgu(·) in Figure 2, either the number
of variables ]vars[P] decreases, or ]vars[P] remains unchanged, but |P| decreases.
Therefore the function mgu(P) always terminates. Now we can use induction over
it to prove properties for its returned value. It is not difficult to show the following
properties for σ = mgu(P) by induction over mgu(·): (i) σ is a unifier for P and
(ii) for every unifier σ′ for P, σ′ &i σ. So, σ is a most general unifier for P. 22

Remark 2.25. The unification algorithm given in Figure 2 is not optimal for the
unification problem. There are examples [see Example 4.6.11 in Baader & Nipkow,
1998], where this algorithm requires an exponential space (and time). It is possible
to implement a unification procedure in almost linear time and in linear space [for
discussion of complexity issues for unification algorithms, please, refer to Baader
& Nipkow, 1998]. We use the simple unification algorithm above to study local
properties of unification for some classes of expressions that we define below. 33

2.6 Covering Expressions and Atomic Substitutions

The notion of covering expressions has been introduced by Fermüller et al. [1993]
to describe resolution decision procedures for certain clause classes. The following
notions and results originate from [Fermüller et al., 1993].

Definition 2.26 (Atomic). A term is atomic if it is either a constant or a variable.
A substitution σ is atomic on a set of variables V , if for every x ∈ V , σ(x) is atomic.
A substitution σ is atomic if σ is atomic on Var (equivalently on Dom(σ)). 33

The nice property of atomic substitutions is that they do not change the depth
of the expression when applied to it:

Proposition 2.27. Let E be an expression and σ be a substitution that is atomic
on vars[E]. Then depth(E·σ) = depth(E).

Definition 2.28 (Covering). An expression E covers a set of variables V (no-
tation: E ∝ V ) iff every non-atomic subterm t of E contains all variables form V
(V ⊆ vars[t]). An expression E1 covers an expression E2 (or a clause C) (notation:
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E1 ∝ E2, E1 ∝ C) iff E1 covers vars[E2] (vars[C]). An expression E is covering
iff E ∝ E. A clause C is covering iff all literals from C cover C. 33

Note that from Definition 2.28 it follows that for every expression E that covers
a set of variables V , every subterm t of E also covers V . In symbols: t E E ∝ V
implies t ∝ V . Note that every expression containing only atomic subterms covers
every set of variables and every expression. Hence the relation ∝ is not transitive
on expressions, since, in particular f(x) ∝ x ∝ f(y), but f(x) 6∝ f(y).

Example 2.29. The following expressions cover the set of variables V = {x, y}:
a(c, f(x, y)); a(h(x, x, c, y), y); a(h(x, x, f(x, y), f(y, x)), c); a(x, c); x; c;
z; a(x, z); a(c, h(x, z, c, y), y) and a(f(x, y), z).
All expressions in the first line cover each other. Every expression in the second
line covers every expression in the first line. The last expression covers none of the
expressions in the last line. The expression before, covers all expressions. All but
the last expressions are covering.

The following expressions do not cover V = {x, y}: a(g(x), x); a(c, f(y, c));
a(x, f(x, z)); a(f(x, y), g(z)); a(g(c), f(x, y)); and a(f(x, x), y).
However first three of them are covering. First two and last two expressions are
covered by every expression from the first group. 33

Covering expression often appear in the result of Skolemization for relational
first-order formulas. Skolemization is a transformation of first-order formulas that
introduces new functions for existential quantified variables of a formula accord-
ing to the Axiom of Choice which can be concisely formulated as follows: “If
∀x.∃y.F [x, y] holds then there exists a function f∃y.F (x) such that ∀x.F [x, f∃y.F (x)]
holds”. Skolemization procedure(s) shall be discussed in details in subsection 6.3.
Here we just note, that the function f∃y.F(x) (called the Skolem function) that re-
places existentially quantified variable, usually cover the subformula followed by
the existential quantifier for which it has been introduced (i.e., it contains all its
variables). This results in covering expressions.

The class of covering expressions can be extended to so-called weakly covering
expressions. This notion has been used for defining many decidable clause classes,
including E+ [Fermüller et al., 1993] and a clause class for the guarded fragment
[de Nivelle, 1998b; de Nivelle & de Rijke, 2003]. We will not make use of weakly
covering expressions in our proofs, but we include their definition for the sake of
completeness.

Definition 2.30 (Weakly Covering). An expression E weakly covers a set of
variables V , iff every non-ground subterm t of E contains all variables from V
(V ⊆ vars[t]). An expression E1 weakly covers an expression E2 (or a clause C),
iff E1 weakly covers vars[E2] (vars[C]). An expression E is weakly covering iff E
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weakly covers E. A clause C is weakly covering iff all literals in C weakly cover
C. 33

Every covering expression is obviously, a weakly covering expression. The con-
verse does not hold in general: the expression a(x, f(c)) is weakly covering, but
not covering. Weakly covering expressions have similar properties to covering ex-
pressions, if one think of ground subterms (such as f(c)) as new constant names.

The following simple property relates covering expressions and atomic substi-
tutions, and can bee seen a s a converse of Proposition 2.27:

Proposition 2.31. Let E be an expression that is covering for a set of variables
V (E ∝ V ). Then for any substitution σ, depth(E·σ) = depth(E) implies that σ
is atomic on V .

Proof. The property can be shown by a simple induction on depth(E). 22

Now we are going to give a lemma that plays an important rôle for proving
decidability of some clause classes by resolution.

Lemma 2.32. Let E1 and E2 be covering expressions such that depth(E1) ≥
depth(E2). Let σ = mgu(E1=E2). Then σ is atomic on vars[E1].

The lemma essentially says that unification of covering expressions does not en-
large their maximal depth, since by Proposition 2.27, depth(E2·σ) = depth(E1·σ) =
depth(E1). This argument can be used in saturation-based decision procedures for
showing that the depth of generated clauses does not grow beyond a certain limit.
To give a more concise proof of Lemma 2.32, we extend the covering relation and
formulate a more general result for unification problems, which will be proven by
induction over the function mgu(P) given in Figure 2.

Definition 2.33 (Variable Superset). A variable superset V is a set of variable
sets which is denoted by V = {V1, .., Vp}, where p ≥ 0 and Vi with 1 ≤ i ≤ p
are sets of variables (Vi ⊆ Var, it is not required that Vi ∩ Vj = {} for i 6= j).
We say that an expression E covers a variable superset V (notation: E ∝ V ), if
every non-atomic subterm t of E contains all variables from some V ∈ V . We say
that a unification problem P := {E1=E ′

1,.., En=E ′
n} covers a variable superset V

(notation: P ∝ V ), if Ei ∝ V and E ′
i ∝ V for every i with 1 ≤ i ≤ n. 33

Example 2.34. Consider a variable superset V := {{x, y}, {y, z}}. The following
expressions cover V :
a(f(x, y), f(y, z)); a(c, f(y, x)); a(y, z); a(x, z); a(c, y); x.

The following expressions do not cover V :
a(c, f(c, c)); a(z, f(y, c)); a(f(x, y), f(x, z)). 33
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Proposition 2.35. Let E be an expression and V be a variable superset. Then
E ∝ V iff t ∝ V for every term t E E.

Let V be a variable superset, and x be a variable. We denote by V \\x a variable
superset obtained from V by removing all sets V ∈ V that contain the variable x:
V \\x := {V ∈ V | x 6∈ V }.

Proposition 2.36. Let E1 be an expression, t be a non-atomic term and V 1, V 2

be variable supersets such that E1 ∝ V 1 and t ∝ V 2. Then for every x ∈ Var,
E1·{x/t} ∝ ((V1\\x) ∪ V2).

Proof. Consider any non-atomic subterm t′ of E1·{x/t}. Clearly, there are two
cases possible:

(i) t′ = t′1·{x/t}, where t′1 is a subterm of E1. If x 6∈ vars[t′1] then t′ = t′1 ∝ V 1\\x
and there exists V1 ∈ (V 1\\x) such that V1 ⊆ vars[t′1] = vars[t′]. If x ∈ vars[t′1] then
t is a subterm of t′, hence there exists V2 ∈ V 2 such that V2 ⊆ vars[t] ⊆ vars[t′].
(ii) t′ is a subterm of t. Then V2 ⊆ vars[t′] for some V2 ∈ V 2. 22

Lemma 2.37 (Covering Lemma). Let P be a unification problem and V be a
variable superset such that P ∝ V . Let σ := mgu(P). Then σ is atomic on some
V ∈ V .

Proof. We prove the lemma by induction over the definition of the function mgu(P)
given in Figure 2. For the base case (Empty), the lemma holds, since id is an atomic
substitution. For the cases (Clash) and (Occurs-Check), the lemma also holds,
since ⊥ is an atomic substitution as well (it maps every variable to the undefined
constant). The transformations of the unification problem in cases (Decompose)
and (Orient) preserve the conditions of the lemma (see Proposition 2.35), and do
not change the mgu that is returned, so these cases are trivial. The only non-trivial
step is (Eliminate) which we consider in more detail. Assume that the conditions
of the lemma holds for the unification problem P ∪ {x=t}. Consider two cases:

(i) If t is not an atomic term, then x 6∈ vars[t] (otherwise x C t), thus t ∝ (V \\x).
By Proposition 2.36, P·{x/t} ∝ ((V \\x) ∪ (V \\x)) = (V \\x). So, we can apply the
induction hypothesis, by which we obtain that σ′ = mgu(P·{x/t}) is atomic on
some V ∈ (V \\x). Since x 6∈ V , the substitution σ = {x/t}·σ′ is atomic on V .
(ii) If t is atomic, then P·{x/t} ∝ V

′
, where V

′
:= {((V \{x})∪vars[t]) | V ∈ V }.

By induction hypothesis, σ′ = mgu(P·{x/t}) is atomic on some V ′ = ((V \ {x}) ∪

vars[t]) ∈ V
′
. Thus σ = {x/t}·σ′ is atomic on V . 22

Proof of Lemma 2.32. Given a unification problem P = {E1=E2}, we apply
Lemma 2.37 for variable superset V := {vars[E1], vars[E2]}. As a conclusion,
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we obtain that σ = mgu(P) is atomic on either vars[E1] or on vars[E2]. Sup-
pose σ is not atomic on vars[E1]. Then σ is atomic on vars[E2] and depth(E2) =
depth(E2·σ) = depth(E1·σ) > depth(E1) (see Propositions 2.27 and Theorem 2.31),
which contradicts the assumption depth(E1) ≥ depth(E2). 22

At the end, we prove one more useful property for the covering relation that
describes its monotonicity w.r.t. substitutions.

Proposition 2.38. Let E1, E2 be expressions such that E1 ∝ E2 and vars[E2] ⊆
vars[E1]. Then for every substitution σ:

(a) depth(E1) > depth(E2) implies depth(E1·σ) > depth(E2·σ);

(b) depth(E1) = depth(E2) implies depth(E1·σ) ≥ depth(E2·σ);

Proof. The proposition can be easily proven by induction on depth(E1). 22

2.7 Saturation-Based Theorem Proving

A saturation-based (= refutational) theorem prover works with a set of clauses
by applying inference rules from a certain parametrised inference system called
a calculus. We have already seen examples of calculi in subsection 2.3 and sub-
section 2.4 which describe the Knuth-Bendix completion. Finding a completion
which we call a saturation w.r.t. an inference system is not the primary goal of
calculi used in theorem provers. Their objective is to find a refutation of an input
clause set which is a derivation of a basic contradiction, and thereof to establish
unsatisfiability of the input clause set. On the other hand, (finite) saturations can
be used as an effective witness for satisfiability of an input clause set.

Starting from this section, we refer to a clause C = L1∨···∨Lk as to the multiset
consisting of its literals L = {L1, .., Lk}m

. In other words, we do not distinguish
clauses that differ only in permutation of literals. We could have represented a
clause by a set of literals, however, as will be seen later, the multiset representation
is more suitable for completeness proofs. The empty clause, i.e., the disjunction
of no literals is denoted by �. Semantically, the empty clause is a neutral element
w.r.t. disjunction and hence is always false. The empty clause plays the rôle of a
basic contradiction that one needs to derive to establish unsatisfiability of a clause
set.

Definition 2.39 (Inference, Inference System, Derivation). An inference
(from k clauses) is an element π ∈ Clk+1

Σ
which is written in the form C1,.., Ck ` C,

where k ≥ 0 and Ci ∈ ClΣ, C ∈ ClΣ are first-order clauses for 1 ≤ i ≤ k. The set
of all inferences (with k premises) for a signature Σ is denoted by InfΣ (Infk

Σ
). An

inference rule (with k premises) is a subset Rk ⊆ Infk
Σ

of inferences with k premises.
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We will write Rk : C1,.., Ck ` C or R[C1,.., Ck] :C instead of (C1,.., Ck ` C) ∈ R.
An inference system S is a finite set of inference rules.

Given an inference π = (C1,.., Ck ` C) ∈ InfΣ, we write N π̀ C if {C1,.., Ck} ⊆
N . In this case we say that the clause C is π-derived in one step from N . This
relation is straightforwardly extended to inference rules and inference systems:
N R̀ C if N π̀ C for some π ∈ R; N S̀ C if N R̀ C for some R ∈ S. 33

We often refer to an inference system S as to the set of its inferences: {π ∈
InfΣ | R : π ∈ S}. For a set of inferences S ⊆ InfΣ we denote S(N) := {C ∈
ClΣ | N π̀ C, π ∈ S} to be the set of all clauses that are S-derivable from N
in one step. Similar notation is applied to any inference π, inference rule R and
inference system S, where π(N), R(N) and S(N) denote the set of clauses that
are respectively π-derivable, R-derivable or S-derivable from N in one step.

Definition 2.40 (Saturation, Soundness and Completeness). A clause set
N is called S-saturated if S(N) ⊆ N . The S-saturation of a clause set N0 is the
smallest saturated set S∗(N0) containing N0. For a clause C ∈ S∗(N0) we also say
that C is derivable from N0 (in several steps).

An inference system S is sound if � /∈ S∗(N0) for no satisfiable clause set N0.
An inference system S is (refutationally) complete for a clauses set N ⊆ ClΣ if
� ∈ S∗(N0) for every unsatisfiable clause set N0 ⊆ N . 33

Remark 2.41. Note that the saturation of a clause set N0 is the minimal fixed-
point w.r.t. the operator N 7→ N ∪ S(N). Hence, by the fixed-point theorem,
for every N0 ⊆ ClΣ, its saturation S∗(N0) always exists and unique. Moreover,
every C ∈ S∗(N0) belongs to the result of some finite iteration of this operator:
N ′

0 ∪ S(N ′
0 ∪ · · · ∪ S(N ′

0)), where N ′
0 is a finite subset of N0, i.e., C ∈ S∗(N ′

0). In
other words, every clause that is S-derivable from N0 can be derived from some
finite subset of N0 in finitely many steps. 33

In most inference systems that we introduce, conclusion of every rule is a logical
consequences of the premises of this rule.5 Therefore, soundness of such inference
system is trivial. Although any sound inference systems can be used for proof
search, calculi that are refutationally complete are especially useful in automated
deduction, since they (theoretically) allow one to find a proof for every provable
first-order formula. Therefore a considerable effort is put towards finding efficient
refutationally complete saturation strategies.

Every non-ground clause can be essentially seen as a representation for the set
of all its ground instances. Indeed, the Herbrand theorem (Theorem 2.6) implies
the following:

5However in section 7 we introduce inference rules that do not have this property
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Lemma 2.42 (Lifting Lemma). Let N be a clause set over a signature Σ con-
taining at least one constant symbol and let N gr be the set of all ground instances
of N . Then N is satisfiable iff N gr is satisfiable.

Lemma 2.42 provides a main theoretical foundation for saturation-based the-
orem proving. It allows one to design a calculus operating on the ground level ,
i.e., with ground clauses only, and then, to apply the lifting lemma for obtaining
a calculus for non-ground clauses. For the last step, unification is often employed
as an effective means of computing a representation for the set of common ground
instances of expressions.

The most commonly used technique nowadays for proving completeness of
saturation-based calculi is the model generation method developed by Bachmair &
Ganzinger [1990, 1994]. Using this method, simple completeness proofs for many
calculi can be obtained in a uniform way. Moreover, this method allows one to
formulate a quite general notion of redundancy that gives rise to numerous refine-
ments of saturation procedures.
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3 The Ordered Resolution Calculus

Resolution calculus was invented by Robinson [1965] and later became the most
successful method for automated deduction in first-order logic. The Resolution
calculus in its basic form is given in System 3. This calculus consists of two

(Binary) Resolution (Positive) Factoring

R :
C ∨ A D ∨ ¬B

Cσ ∨ Dσ
F :

C ∨ B ∨ A

Cσ ∨ Aσ

where σ = mgu(A, B). where σ = mgu(A, B).

System 3: The Resolution calculus R

inference rules: Resolution and Factoring. These rules are applied to first-order
clauses and produce new clauses using a unifier for a pair of its literals. We
underline expressions that are to be unified in inference rules to improve their
readability.

In this section we demonstrate the main principles of saturation-based calculi
and the model generation method. We give a completeness proof for the resolution
calculus by showing that it admits a so-called reduction property for counterexam-
ples. We see how this completeness proof allows one to restrict the calculus and
to formulate a notion of redundancy which potentially improves efficiency of the
saturation procedure.

Remark 3.1. The resolution calculus R is a sound inference system. More gener-
ally, the conclusion of every inference rule is a logical consequences of its premises.
Indeed, since all variables in clauses are implicitly universally quantified, every in-
stance of a clause is a logical consequence of this clause. Hence, for the Resolution
rule we have: C ∨ A �Cσ ∨ Aσ, D ∨ ¬B � Dσ ∨ ¬Bσ. Since Aσ = Bσ, this gives
us C ∨ A, D ∨ ¬B �(Cσ ∨ Aσ) ∧ (Dσ ∨ ¬Aσ) ≡ Cσ ∨ Dσ. For the Factoring rule,
similarly C ∨ A ∨ B � Cσ ∨ Aσ ∨ Bσ ≡ Cσ ∨ Aσ since Aσ = Bσ. 33

Recall, that a calculus is refutationally complete if every unsatisfiable clause
set has a refutation, that is a derivation of the empty clause. Dually, if there is
no way to derive the empty clause from a clause set, then this clause set must
be satisfiable. In other words, a calculus is complete if every clause set whose
saturation does not contain the empty clause is satisfiable. Since the saturation of
any clause set is a superset of this set, refutational completeness for the resolution
calculus R can be equivalently formulated as follows:

Theorem 3.2 (Completeness of R). Let N be a clause set that is saturated
in inference system of R. Then N is satisfiable iff N does not contain the empty
clause �.
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3.1 Refutational Completeness for the Ground Version

In this section we prove completeness for the ground (also called propositional)
version of resolution calculus R0, which is given in System 4. This calculus is

Resolution Factoring

R :
C ∨ A D ∨ ¬A

C ∨ D
F :

C ∨ A ∨ A

C ∨ A

System 4: The propositional resolution calculus R0

applied to a set of ground clauses Cl0
Σ
, thus unification is replaced here by identity

checking (two unifiable ground expressions are equal). Unless stated otherwise,
all clauses and expressions in this section are ground. The following theorem is a
restriction of Theorem 3.2 to ground clauses:

Theorem 3.3 (Completeness of R0). Let N be a set of ground clauses that is
saturated w.r.t. R0. Then N is satisfiable iff N does not contain the empty clause
�.

Proof. The “only if” part of this theorem is trivial, since every clause set containing
the empty clause is unsatisfiable. The non-trivial part of the theorem is the “if”
direction.

Let N be a clause set saturated w.r.t. R0 and not containing the empty clause
�. We assume this set to be fixed in this proof. We are going to construct a model
for N inductively over subsets of N .

Let � be an ordering on ground literals. We extend � to an ordering on ground
clauses by taking the multiset extension of � (which shall be also denoted by �).
Note that the empty clause � is the least clause w.r.t. �. We introduce additional
notation: NC := {C ′ ∈ N | C ′ ≺ C}, NC := {C ′ ∈ N | C ′ � C ′} denote the set of
clauses from N that are smaller, respectively smaller or equal then the clause C.

We describe a procedure that assigns to every subset NC and NC of N a
Herbrand model IC and IC respectively. The Herbrand models IC and IC are
viewed as sets consisting of ground atoms (see Remark 2.5). The models are
constructed by induction over C ∈ Cl0

Σ
w.r.t. the ordering �. In order to make

induction work, this ordering should be well-founded. Since � is initially defined
on ground literals, we require that this ordering enjoys the following properties:

Definition 3.4 (Admissible Order). An ordering � is admissible for resolution
if:

(W) � is a well-order on ground literals;
(R1) ¬A � A for every ground atom A. 33
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Admissible orders do exist. By the well-ordering theorem, every set can be well-
ordered.6 It suffices to take a well-order on all negative literals and a well-order on
all positive literals and set every negative literal greater then every positive one.

Definition 3.5 (Productive Clause). A clause C is called productive w.r.t. an
interpretation I if (i) I 2 C and (ii) C = C ′ ∨ A, where A is a positive literal
which is strictly greatest element w.r.t. C ′. In this case we say that C produces
the atom A w.r.t. I and we assign ∆IC := {A}. If C is not productive we assign
∆IC := {}. 33

Definition 3.6 (Candidate Models). Let N ⊆ Cl0
Σ

and C ∈ Cl0
Σ
. The candidate

models IN for N , IC for NC and IC for NC are defined inductively as follows:
IN :=

⋃
C∈N

IC ; IC :=
⋃

C′∈NC

IC′

, and IC := IC ∪ ∆ICC. 33

Note that if C is a minimal clause w.r.t. N then IC = {} (the empty set is
the neutral element w.r.t. the set union operation). Since � is a well-founded
ordering on Cl0Σ, the candidate model IN is well-defined for every clause set N . So
Definition 3.6 is correct.

We usually check productiveness of a clause C w.r.t. the model IC . For this
special case we shorten ∆ICC to ∆C and say that C produces ∆C. We use the
notation C = C ′ ∨ A? to indicate that A ∈ ∆C.

The candidate models are not necessarily models for respective clause sets (they
are only “candidates” to be so). This shall be demonstrated in the next example.
However, for saturated sets it is indeed the case, which we are going to show in
the rest of the proof.

Example 3.7. Let us find the candidate model for the clause set N0 in Figure 3.
We fix an admissible ordering � such that¬A � A � ¬B � B � C. So the clauses
in this table are listed in ascending order w.r.t. �. Clause 3 is the least clause,
hence I3 = {}. Since I3 �¬B, then clause 3 is true in I3. So it produces no
atom, which is indicated in the last column of the table. Continuing, we have
I2 = I3 = I3 ∪ ∆3 = {}. Clause 2 is false in I2, so it produces its greatest atom
A. Finally, I1 = I2 ∪ I3 = {A}. Although clause 1 is false in I1, it may not be
productive, since its greatest literal ¬A is negative. Therefore, no atom is produced.
We have obtained a candidate model IN0 = I1 ∪ I2 ∪ I3 = {A} for clause set N0

which is not a model of N0, since the clause 1 is false in IN0 .
The reason why the candidate model for N0 is not a model for N0 is hidden

in the “conflict” between clauses 1 and 2 which have complementary literals ¬A

6This theorem is equivalent to Axiom of Choice. However for Herbrand universes over a finite
signature, that are used for lifting of calculi, one can use KBO or LPO-orderings and not rely
on Axiom of Choice
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Figure 3 Candidate models for clause sets

N0 Clauses C ∆C

1. B ∨ ¬A −
2. C ∨ B ∨ AA? A

3. C ∨ ¬B −

⇓

N1 Clauses C ∆C

1. B ∨ ¬A −
2. C ∨ B ∨ A −
3. C ∨ ¬B −

R[2; 1]: 4. C ∨ B ∨ B −
F[4]: 5. C ∨ BB? B

=⇒

N2 Clauses C ∆C

1. B ∨ ¬A −
R[1; 3]: 8. C ∨ ¬A −

2. C ∨ B ∨ A −
R[2; 3]: 9. C ∨ C ∨ A −
F[9]: 10. C ∨ A −

3. C ∨ ¬B −
R[2; 1]: 4. C ∨ B ∨ B −
R[4; 3]: 11. C ∨ C ∨ B −

F[4]: 5. C ∨ BB? B

R[11; 3]: 12. C ∨ C ∨ C −
F[12],
R[5; 3]: 6. C ∨ C −
F[6]: 7. CC? C

and A respectively. Consider the clause set N1, where we have added the resolvent
R[2; 1]: 4 between these clauses and its factor F[4]: 5. In this new clause set, the
clause 2 yielding a conflict before, is not productive anymore, since the clause 5
produces the atom B which makes clause 2 true in I2. However again, the candidate
model IN1 = {B} for N1 is not a model for N1 (neither is for N0) since clause 3
is false in IN1. The reason is again in that clauses 3 and 5 have complementary
literals.

Finally, consider a clause set N2 which is obtained from N1 by producing all
remaining resolution and factoring inferences between the clauses, i.e., N2 is a
saturation of N0 w.r.t. R. The candidate model IN2 = {B, C} for this clause set is
indeed a model for N2 and hence for N0. 33

We confirm our conjecture and prove that the candidate model for every satu-
rated clause set is a model for this set. This result is a consequence of the following
two lemmas. The proofs of these lemmas are supplied with small tables similar
to those given in Example 3.7. These tables demonstrate situations for different
cases that we consider.

Lemma 3.8 (Properties of Candidate Models). Let N be a clause set for
which candidate models are constructed according to Definition 3.6. Then for every
C ∈ N (i) IC⇓� C implies that IN⇓�C and (ii) If C = (C ′ ∨ A?) is productive
w.r.t. IC then IN⇓2 C ′.
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N Clauses C ∆C

D D′ ∨ A? A
g

C C ′ ∨ ¬A ?

Proof. (i) If IC⇓� A for some positive atom A in C, then
IN⇓� A �C. Otherwise, there should be a clause D = (D′ ∨
A?) � C producing an atom A that occurs negatively in C. But
this situation is not possible, since otherwise C � ¬A � A � D
(here we have used condition (R1) for admissible orderings from Definition 3.4).
This contradicts the assumption D � C.

N Clauses C ∆C

C1 C ′
1 ∨ B? B

g g

C

C ′︷ ︷
C ′′ ∨ B ∨ A? A

(ii) Assume that IN � C ′. First, note that IC 2 C ′ since
C is a productive clause. Hence there should be a clause
C1 � C that produces some atom B which occurs positively
in C ′. But this situation is not possible, since, otherwise
B � A � C ′ � B. 22

Note that Lemma 3.8 holds for arbitrary clause sets, not only for saturated
ones. The fact that N is saturated is used in the next lemma which is the main
ingredient of the model generation method. If IN is not a model for a clause set N
then there must be a counterexample for IN , that is a clause D ∈ N which is false
in IN . The lemma claims that if N is saturated, then any counterexample D for
IN , except for the empty clause �, can be reduced, i.e., there must be an inference
rule from D that produces a smaller counterexample D1 ∈ N than D.

Lemma 3.9 (Counterexample-Reduction Lemma). Let N be a set of ground
clauses which is saturated w.r.t. OR0�

Sel
. Then for every D ∈ N with IN 2 D 6= �

there exists D1 ∈ N such that D1 ≺ D and IN 2 D1.

Proof. Let IN⇓2 D for some clause D ∈ N . Then ID⇓2 D, since otherwise by
Lemma 3.8 (i) we would have IN⇓�D. In particular, clause D cannot be pro-
ductive. So, we have ID⇓ = ID⇓2 D. According to the definition of productive
clauses (see Definition 3.5), this situation is possible only in the following cases:
either (1) D has at least one negative literal and for every such literal L = ¬A we
have ID � A, or (2) the maximal literal in D is positive, but not strictly maximal
(these cases are not mutually exclusive).

N Clauses C ∆C

D D′ ∨ ¬A −
g
D1 C ′ ∨ D′ ?
C C ′ ∨ A? A

In case (1), D = (D′ ∨ ¬A), where ID �A so there exists
a clause C = (C ′ ∨ A?) ∈ N that produces the atom A. This
means that the Resolution rule can be applied to the clauses C
and D which yields the clause R[C; D]: D1 = (C ′ ∨ D′) ∈ N .
The conclusion of this inference D1 is smaller than the clause
D, since ¬A � A � C ′. Moreover, IN 2 D1, since IN 2 D′ (from IN 2 D) and
IN 2 C ′ (by Lemma 3.8 (ii)). Thus, we have found a smaller counterexample D1

for IN .
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N Clauses C ∆C

D D′ ∨ A ∨ A −
g

D1 D′ ∨ A ?

In case (2), D = (D′ ∨ A ∨ A), where A is the greatest
literal in D. In this case, the Factoring rule can be applied
to D which produces the clause F[D]: D1 = (D′ ∨ A) ∈ N .
Obviously, D � D1 and IN 2 D1, since IN 2 D. So D1 is a
smaller counterexample for IN than D. 22

The proof of Theorem 3.3 now can be concluded as follows. Suppose IN is not
a model for N . Then the set X = {D | IN 2 D} of counterexamples for IN is not
empty. Since � is a well-order on N , there is a least element D0 ∈ X w.r.t. � (i.e.,
D � D0 for every D ∈ X). But this is not possible, since by Lemma 3.9 there
exists a smaller counterexample than D0. Hence IN is a model for N and N is a
satisfiable clause set. 22

Theorem 3.3 has the following rather unexpected consequence:

Corollary 3.10 (Compactness for Propositional Clause Logic). Let N0 be
a set of ground clauses. Then N0 is unsatisfiable iff some finite subset of N0 is
unsatisfiable.

Proof. The “if” part of the corollary is trivial. To prove the “only if” part, assume
that N0 is an unsatisfiable clause set. Let N be the saturation of N0 under R0, i.e.,
N := R0∗(N0). By Theorem 3.3, N must contain the empty clause �. This clause
is derivable from a finite subset of N0 (see Remark 2.41) using a sound inference
system. Therefore this finite subset of clauses is unsatisfiable. 22

3.2 Refinements of the Resolution Calculus

Let us analyze the proof of Theorem 3.3, in particular, arguments used in Coun-
terexample -Reduction Lemma (Lemma 3.9). Note that in this proof we have used
that the set N is closed only w.r.t. restricted forms of the Resolution and Factoring
inferences:

• the resolved atom in the left premise of the Resolution rule is a strictly max-
imal in this clause and

• the factored atom in the premise of the Factoring rule is maximal in this
clause.

Moreover, note that cases (1) and (2) in the proof of Lemma 3.9 are not mutu-
ally exclusive, and any negative literal ¬A of the clause D can be chosen in case
(1) to reduce the counterexample. This freedom can be restricted using so-called
selection strategies.
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Definition 3.11 (Selection Function, Eligible Literals). A selection function
is a mapping Sel that assigns to every clause C a (possibly empty) sub-multiset
Sel(C) of negative literals from C. These literals are then called the selected literals
in C. A literal L is maximal w.r.t. C, if L′ � L for no literal L′ ∈ C. Additionally,
if L /∈ C, then L is strictly maximal w.r.t. C. A literal L is called eligible w.r.t.
C (or eligible in C ∨L) if either L ∈ Sel(C ∨L), or otherwise Sel(C ∨L) = {} and
L is maximal w.r.t. C. 33

It can be shown that applications of the Resolution and Factoring rules can
be restricted to eligible literals w.r.t. any selection function Sel. The resulted
restricted inference system is called Ordered Resolution with Selection. The ground
version of this calculus OR0�

Sel
is formulated in System 5. The Ordered Resolution

Calculus OR0� is an instance of OR0�
Sel

for the trivial selection function Sel = Sel0,
that assigns the empty multiset of literals to every clause.

Ordered Resolution Ordered Factoring

OR :
C ∨ A? D ∨ ¬A

C ∨ D
OF :

C ∨ A ∨ A

C ∨ A

where (i) A is eligible strictly maximal w.r.t.
C and (ii) ¬A is eligible w.r.t. D.

where (i) A is eligible w.r.t. C.

System 5: The propositional version of the ordered resolution calculus with se-
lection OR0�

Sel

Remark 3.12. In System 5 we have used a new notation. When formulating in-
ference rules, we indicate eligible literals in clauses by writing them in boldface
type. That does not mean that these are the only eligible literals in clauses. For
instance, both literals A in the premise of the Ordered Factoring rule are eligible.
Additionally, by writing C = C ′ ∨ A?, we indicate that the eligible atom A is
strictly maximal in clause C. A clause C of this form is called reductive (for A).
Intuitively C is a candidate for a productive clause in model construction. Given
this notation, we will not duplicate its meaning in the conditions of rules starting
from now on. 33

The inference system OR0�
Sel, has an additional property that did not have the

system R0, namely monotonicity. We say that an inference π is monotone (w.r.t.
�), if some premise C ′ of π is greater then the conclusion C of π: C ′ � C. An
inference system S is monotone (w.r.t. �), if every inference π ∈ S is monotone
w.r.t. �. It can be shown that OR0�

Sel
is monotone:

Lemma 3.13 (Monotonicity for OR0�
Sel

). OR0�
Sel is monotone w.r.t. every ad-

missible ordering �.
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Proof. We must show that the conclusion of the Ordered Resolution and Ordered
Factoring rules from ground clauses are smaller then some premise of these rules:

(1) OR : C ∨ A?, D ∨ ¬A ` C ∨ D (Ordered Resolution):
We show that the conclusion of the Ordered Resolution rule is always smaller than its
right premise. Indeed, by condition (R1) of admissible ordering (see Definition 3.4),
we must have ¬A � A. Additionally, by condition (i) of this inference rule, we
have A � C. This implies (D ∨ ¬A) � (C ∨ D), what was required to show.

(2) OF : C ∨ A ∨ A ` C ∨ A (Ordered Factoring):
Monotonicity of the Ordered Factoring rule is obvious, since � is monotone w.r.t.
multiset inclusion of clauses: (C ∨ A ∨ A) � (C ∨ A). 22

Theorem 3.14 (Completeness of OR0�
Sel

). Let N be a set of ground clauses that
is saturated in the inference system OR0�

Sel
based on an admissible ordering � and

a selection function Sel. Then N is satisfiable iff N does not contain the empty
clause �.

Proof. The proof of this theorem goes in the same way as for Theorem 3.3, except
for a couple of moments below.

(a) We need to modify the notion of a productive clause (see Definition 3.5).
A clause C ∈ N is productive w.r.t. an interpretation I if (i) I 2 C and (ii)
C = C ′ ∨ A?, i.e., A is an eligible literal which is �-strictly greatest w.r.t. C ′. In
this case, C produces A.

(b) If I 2 D but D is not productive w.r.t. I, then this is only possible if either D
is the empty clause, or (1) D = D′∨¬A (i.e., ¬A is eligible in D) for some A such
that I �A, or there are no negative eligible literals and hence (2) D = D′ ∨A∨A
(i.e., A is eligible in D but not strictly maximal). The proof of Counterexample-
Reduction Lemma (Lemma 3.9). must be adjusted accordingly for these cases. In
both cases either the Ordered Resolution rule or the Ordered Factoring rule can be
applied which reduces a counterexample. 22

In fact, ordered resolution is complete for a larger class of orderings than or-
derings admissible according to Definition 3.4. Condition (W) (well-foundedness
and totality) can be dropped without affecting refutational completeness. The re-
sulted class of orderings is called A-orderings [Kowalski & Hayes, 1968], [see also
Chapter 5 in Fermüller et al., 1993]. We define an extension of A-orderings for
ground literals called L-orderings:

Definition 3.15 (L-ordering). An ordering � on ground literals is called L-
ordering if:

(R1) ¬A � A for every ground atom A. 33
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Corollary 3.16 (Completeness of OR0�
Sel

for L-orderings). Let N be a set of
ground clauses that is saturated in OR0�

Sel
based on a selection function Sel and an

L-ordering �. Then N is satisfiable iff N does not contain the empty clause �.

Proof. Again, the “if” direction is the only non-trivial part of this corollary. In
order to show refutational completeness, suppose N is an unsatisfiable clause set.
Then by compactness of propositional clause logic (Corollary 3.10), there is a finite
subset N0 of N that is unsatisfiable. Let �|N0

be the restriction of the ordering �
on literals from N0 and let �0 be a total well-founded extension of �|N0

such that
¬A �0 A for every atom A. Such an extension always exists since N0 contains only
finitely many atoms. Hence �0 is an admissible ordering according to Definition 3.4.

Let N ′ be the saturation of N0 under OR0�
Sel based on the ordering �0. Then

N ′ is a subset of N since all inferences involving literals from N0 that are possible
in w.r.t. �0 are also possible w.r.t. �. Since N ′ is unsatisfiable (because N0 is
unsatisfiable), by Theorem 3.14 applied to OR0�

Sel based on �0, we conclude that
N ′ and hence N contain the empty clause. 22

There is a freedom left in what eligible negative literal to choose in case (1)
of Counterexample-Reduction Lemma if there are several of those. Instead of
choosing one negative eligible literal, one can apply an inference on all of them
simultaneously to produce a smaller counterexample. This justifies an extension
of the Ordered Resolution rule called the Ordered Hyper-resolution rule. For the
purpose of this rule, we say that a multiset D′ = {¬B1,..,¬Bn}m

of negative literals
is eligible w.r.t. D (for hyper-resolution) if either (1) D′ = Sel(D ∨ D′) 6= {}

m
, or

otherwise (2) Sel(D∨D′) = {}
m
, n = 1 and ¬B1 is maximal w.r.t. D. The Ordered

Hyper-resolution rule is given in Figure 4. This inference rule can be simulated

Figure 4 The hyper-resolution rule for ground clauses

Ordered Hyper-resolution

HR :
C1 ∨ A1

? . . . Cn ∨ An
? ¬A1∨· · · ∨¬An∨ D

C1 ∨· · · ∨D

where (i) Ai are eligible strictly maximal literals w.r.t. Ci, i = 1,.., n, and
(ii) {¬A1,..,¬An}m

is eligible w.r.t. D.

by an application of n ordered resolution inferences. However, the advantage of
a simultaneous inference is that the intermediate clauses are not retained in the
clause set.
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3.3 Redundancy: the Static View

Ordering restrictions, selection functions and hyper-inferences are especially useful
for theorem proving since in practice they lead to a huge decrease in the number of
generated clauses. If we reconsider the inferences in the set N2 from Example 3.7,
we notice that most of the inferences violate the ordering restrictions in OR0� and
therefore can be eliminated. Indeed, the clauses 8− 12 can be deleted from the set
N2 without any change in candidate models.

The inferences producing the clauses 8 − 12 are not needed because they are
not used for reduction of counterexamples. This observation is extended to the
general notion of redundancy introduced by Bachmair & Ganzinger [1990, 1994].
The idea is to identify clauses that may never be minimal counterexamples, and
inferences that may be not used for reduction of counterexamples. These are so-
called redundant clauses and redundant inferences.

Definition 3.17 (Standard Redundancy for the Ground Case). Let � be
a total order on ground clauses, N be a subset of ground clauses and NC :=
{C ′ | C ′ ≺ C} be defined like in the proof of Theorem 3.2. A ground clause
C ∈ Cl0

Σ
is called redundant w.r.t. N if NC �C. A ground inference π ∈ Inf0

Σ
with

the maximal premise C ′ and the conclusion C is redundant w.r.t. N in an inference
system S, if π ∈ S implies that NC′ �C. 33

In words, a ground clause C is redundant if it follows logically from some smaller
clauses from N . An inference π ∈ S is redundant if its conclusion follows from
clauses in N that are smaller than its maximal premise. Note that it is neither
required that C ∈ N , nor that the inference π is applicable to the clause set N .
Note also that every inference outside S is redundant (these inferences are not
needed for refutation). Definition 3.17 in particular implies that tautologies are
redundant w.r.t. every clause set (since they follow from no clauses) and monotone
inferences whose conclusion is in N or is redundant w.r.t. N , are redundant.

Continuing Example 3.7, we can notice that the clauses 2 and 4 are redundant
w.r.t. the clause sets N1 and N2 since they follow form the smaller clause 5. The
inference R[1, 3] is redundant w.r.t. both N1 and N2 in S := R, since its conclusion
(the clause 8) follows logically from the smaller clauses 3 and 5.

Remark 3.18. A clause C ∈ N that is redundant w.r.t. N may not be a minimal
counterexample w.r.t. IN , even if N is not saturated, since otherwise IN 2 NC , so
there must be some C ′ ∈ NC such that IN 2 C ′ which is then a smaller counter-
example than C. Similarly, a redundant inference may be not used for reducing
counterexamples in N : If a counterexample C ′ may be reduced to C via a redun-
dant inference C1,.., Ck ` C, where C ′ is maximal in {C1,..,Ck}, then C ′ � C,
NC′ �C, and hence there is a counterexample in NC′ that is smaller than C ′. So,
the counterexample C ′ can be reduced in N without having C in N . 33
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Redundancy notions allow one to weaken the conditions of Theorem 3.14, so
that the conclusion of this theorem still holds. We say that a clause set N is
saturated up to redundancy w.r.t. an inference system S, if every S-inference π =
C1,.., Ck ` C from N (i.e. when π ∈ S and Ci ∈ N , i = 1,.., k) is redundant w.r.t.
N . The following is a stronger version of Theorem 3.14:

Theorem 3.19 (Completeness for OR0�
Sel

-Saturated Sets up to Redun-
dancy).
Let N be a set of ground clauses that is saturated up to redundancy in OR0�

Sel
based

on an admissible ordering � and a selection function Sel. Then N is satisfiable iff
N does not contain the empty clause �.

Proof. The proof of this theorem proceeds in the same way as for Theorem 3.14.
The only modification that has to be done, is the case in Counterexample-Reduction
Lemma, when an inference reducing a counterexample is possible but has not been
made because of redundancy. In this case one applies the argument given in Re-
mark 3.18 to find a smaller counterexample. 22

3.4 Redundancy: the Dynamic View

In order to use Theorem 3.19 effectively, one should come up with a derivation
strategy such that for every clause set N either (i) the empty clause is eventually
derived and hence N is unsatisfiable, or otherwise, (ii) the process can be continued
(forever) and a saturated set is obtained (“in the limit”). Modern saturation-based
theorem provers implement a combination of two interleaving processes:

1. Deduction, during which conclusions of (non-redundant) inferences are
produced and

2. Deletion, during which unnecessary (redundant) clauses are removed from
a clause set.

The precise definition of this process can be given using an abstract notion of
redundancy:

Definition 3.20 (Redundancy Criterion).
An (abstract) redundancy criterion is a pair R = (RCl(·), RInf (·)) of functions, that
assign for every clause set N ⊆ ClΣ, a set RCl(N) ⊆ ClΣ of R-redundant clauses
w.r.t. N and a set RInf (N) ⊆ InfΣ of R-redundant inferences w.r.t. N , such that
for all sets of clauses N ′ and N with N \ N ′ ⊆ RCl(N) the following properties
hold:

(R1) if N is unsatisfiable, then N ′ is unsatisfiable;
(R2) RCl(N) ⊆ RCl(N

′);
(R3) RInf (N) ⊆ RInf (N

′);
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A redundancy criterion R is effective, if in addition:

(R4) for every inference π ∈ InfΣ such that π(N) ⊆ N , we have π ∈ RInf (N).
33

Conditions (R1) – (R4) for a redundancy criterion R have the following mean-
ing: If a clause set N ′ is obtained from a clause set N by removing some redundant
clauses and adding some other clauses, then this transformation preserves (R1):
unsatisfiability of clause sets as well (R2): redundancy of clauses and (R3): re-
dundancy of inferences. Finally, condition (R4) implies that an inference becomes
redundant as long as its conclusion has been added to a clause set.

The trivial but effective redundancy criterion is the “smallest” R
0 = (R0

Cl(·), R
0
Inf (·))

that admits all properties (R1) – (R4), which can be defined as follows: R
0
Cl(N) := {};

R
0
Inf (N) := {(C1,.., Ck ` C) ∈ InfΣ | C ∈ N}.

The redundancy criterion given in Definition 3.17 is called the standard redun-
dancy criterion (for ground clauses) R

S�
gr = (R�

Cl0(·), R
S�
Inf0(·)) w.r.t. an inference

system S parametrized by an ordering �. When we speak about redundancy
without mentioning R, we usually refer to this notion. We show that this redun-
dancy criterion admits all properties of Definition 3.20.

Lemma 3.21 (Standard Redundancy Criterion). The notion of standard
redundancy R

S�
gr = (R�

Cl0(·), R
S�
Inf0(·)) is a redundancy criterion for ground clauses.

If in addition the inference system S is monotone, then R
S�
gr is effective.

Proof. For showing the properties (R1) – (R3) for R
S�
gr , it suffices to prove that

for every sets N , N ′ of ground clauses and a ground clause C we have that
N \ N ′ ⊆ R

�
Cl0(N) implies N ′ �N and N ′

C �NC . Indeed, N ′ �N guarantees the
property (R1). Since C ∈ R

�
Cl0(N) iff NC �C, we have that N ′

C � NC implies (R2):
R
�
Cl0(N) ⊆ R

�
Cl0(N

′). Similarly, π ∈ R
S�
Inf0(N) iff NC′ �C for the maximal premise

C ′ of π ∈ S, so N ′
C �NC implies (R3): R

S�
Inf0(N) ⊆ R

S�
Inf0(N

′).
Note that NC \ N ′

C ⊆ R
�
Cl0(N) ∩ NC ⊆ R

�
Cl0(NC), so it suffices to show that

N \ N ′ ⊆ R
�
Cl0(N) implies N ′ � N . This can be done as follows. Suppose this

property does not hold and let C be a minimal w.r.t. � clause in N such that
N ′ 2 C, so N ′ �NC . Then C ∈ N \ N ′ ⊆ R

�
Cl0(N), hence NC �C and we have

obtained a contradiction N ′ � Nc � C with N ′ 2 C.
To show (R4), let π ∈ S. Since S is monotone, we have C ′ � C for some

premise C ′ and the conclusion C of π. If C ∈ N or C ∈ R
�
Cl0(N) then NC′ � NC �C,

and so π ∈ R
S�
Inf0(N). 22

Remark 3.22. The proof of Lemma 3.21 uses the fact that the ordering � is well-
founded, when we claim existence of a minimal w.r.t. � clause C satisfying certain
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properties. Actually, this lemma does not hold for general L-orderings. For ex-
ample, in the clause set N = {A1,¬A1, A2,¬A2, . . . , Ai,¬Ai, . . . } with ¬A1 � A1 �
¬A2 � A2 � · · · , all clauses are redundant w.r.t. N (i.e., N ⊆ RCl(N)). Indeed,
every clause Ai or ¬Ai with i ≥ 1, follows from the pair of smaller clauses Aj,¬Aj

with j = i + 1. So, N \ {} ⊆ RCl(N) but {}2 N , since N is inconsistent. This
example shows that the notion of standard redundancy is not fully compatible
with L-orderings. However, some redundancy elimination techniques, in particu-
lar, tautology deletion can be justified also for L-orderings [see Kowalski & Hayes,
1968]. 33

An abstract model of a saturation procedure can be defined using the binary
relation ⇒ on clause sets called the (theorem-proving) derivation relation ⇒, that
is defined in Figure 5 using two rules. The Deduction rule allows one to extend

Figure 5 Theorem-proving derivations “⇒” for S and R

Deduction
N ⇒ N ∪ N ′ if N ′ ⊆ [S \ RInf (N)](N)

Deletion
N ⇒ N \ N ′ if N ′ ⊆ RCl(N)

a clause set by adding conclusions of non-R-redundant S-inferences. Using the
Deletion rule a clause set can be filtered by removing R-redundant clauses. A
(finite or countably infinite) sequence N0 ⇒ N1 ⇒ N2 ⇒ · · · is called a (theorem-
proving) derivation from N0 (based on S and R). The set N∞ :=

⋃
i≥0

⋂
j≥i Nj of

all persisting clauses is called the limit of the derivation. Sometimes we say that
N∞ is an (S,R)-saturation of N0 for the reasons that will be clear in a moment.

Lemma 3.23 (Properties of the Limit Set). Let N0 ⇒ N1 ⇒ · · · be a deriva-
tion based on S and R. Then (i) if N0 is unsatisfiable then N∞ is unsatisfiable;
(ii) RCl(

⋃
i≥0 Ni) ⊆ RCl(N∞) and (iii) RInf (

⋃
i≥0 Ni) ⊆ RInf (N∞).

Proof. Let N ′ := (
⋃

i≥0 Ni). For every clause C ∈ N ′ \ N∞ there exists some
i ≥ 0 such that C ∈ Ni \ Ni+1 ⊆ RCl(Ni). Indeed, otherwise either C /∈ N ′, or
C ∈

⋂
i≥j Nj ∈ N∞ for some j ≥ 0. By condition (R2) of redundancy criterion (see

Definition 3.20), C ∈ Ni \ Ni+1 ⊆ RCl(Ni) ⊆ RCl(N
′) and so N ′ \ N∞ ⊆ RCl(N

′).
Now claim (i) of the lemma follows from condition (R1) of redundancy criterion,

since N0 \ N∞ ⊆ N ′ \ N∞ ⊆ RCl(N
′). Claims (ii) and (iii) follow respectively

from conditions (R2) and (R3) of redundancy criterion. 22

Definition 3.24 (Fair Derivation). A theorem-proving derivation N0 ⇒ N1 ⇒
· · · based on S and R is called fairsaturation, if for every inference π ∈ S from
N∞ (i.e., when π(N∞) 6= {}), there exists some j ≥ 0 such that π is redundant
w.r.t. Nj. 33
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In other words, a derivation is fair if every inference that can be applied to all
clause sets Nj, j ≥ i starting from some i ≥ 0, must become redundant eventually
(for instance, by adding the conclusion of the inference to a clause set). The
following lemma claims that a fair derivation from every clause set exists for every
effective redundancy criterion.

Proposition 3.25 (Existence of a Fair Derivation). Let S be an inference
system and R be an effective redundancy criterion. Then from every clause set N0

there exists a fair derivation based on S and R.

Proof. Consider the derivation N0 ⇒ N1 ⇒ · · · ⇒ Ni ⇒ · · · , where Ni+1 =
Ni ∪S(Ni), i ≥ 0. We claim that this is a fair derivation. Indeed, otherwise there
exists an inference π ∈ S and an infinite sequence Nj ⇒ Nj+1 ⇒ · · · for some
j ≥ 0 such that for all i ≥ j we have π(Ni) 6= {} and π /∈ RInf (Ni) . But this is
not possible since, in particular, π(Nj) ⊆ Nj+1 and by condition (R4) of effective
redundancy criterion (see Definition 3.20), π ∈ RInf (Nj+1). 22

The notion of a saturated set up to redundancy can be extended to arbitrary
redundancy criteria. Using this definition one can show that the limit of every
theorem proving derivation is a saturated set up to redundancy:

Definition 3.26 (Saturation up to Redundancy, Completeness). A set of
clauses N is called saturated up to redundancy w.r.t. an inference system S and a
redundancy criterion R (or, shortly (S,R)-saturated), if every S-inference π from
N (i.e., when π ∈ S and π(N) 6= {}) is redundant w.r.t. N : π ∈ RInf (N).

An inference system S with a redundancy criterion R is (refutationally) com-
plete (or short, (S,R) is complete) for a set N ⊆ ClΣ of clauses, if every fair
derivation based on S and R from an unsatisfiable clause set N0 ⊆ N contains the
empty clause �. 33

Lemma 3.27 (Limit of a Fair Derivation). Let N0 ⇒ N1 ⇒ · · · be a fair
derivation based on S and R. Then the limit N∞ of this derivation is (S,R)-
saturated.

Proof. Let π be an inference from N∞ (i.e., π(N∞) 6= {}). We need to show that
π ∈ RInf (N∞). Since the derivation is fair, by Definition 3.24 there is some j ≥ 0
such that π ∈ RInf (Nj). By condition (R3) of redundancy criterion, RInf (Nj) ⊆
RInf (

⋃
i≥0 Ni). By Lemma 3.23 (iii), RInf (

⋃
i≥0 Ni) ⊆ RInf (N∞). So, we conclude

that π ∈ RInf (N∞). 22

Corollary 3.28 (Completeness Criterion). Let S be an inference system, R

be a redundancy criterion and N ⊆ ClΣ be a clause set such that S(N ) ⊆ N .
Then (S,R) is complete for N , iff every unsatisfiable (S,R)-saturated clause set
N ⊆ N contains the empty clause �.
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Proof. The “only if ” part of the corollary is simple: If (S,R) is complete for N and
N ⊆ N is an unsatisfiable (S,R)-saturated clause set, then the trivial derivation
consisting only of N is fair: all S-inferences from N are R-redundant w.r.t. N .
Hence, from completeness of (S,R), we obtain that N contains the empty clause
�.

To prove the “if ” part, suppose that (S,R) is not complete. Then there exists a
fair derivation N0 ⇒ N1 ⇒ · · · from an unsatisfiable clause set N0 ⊆ N based on S
and R such that � /∈ Ni for every i ≥ 0. Note that for every i ≥ 0, we have Ni ⊆ N .
Hence the limit N∞ of the derivation is a subset of N . By Lemma 3.23 (i), N∞ is
unsatisfiable, since N0 is unsatisfiable. Moreover, N∞ ⊆

⋃
i≥0 Ni, hence � /∈ N∞.

But this is not possible, since by Lemma 3.27, N∞ is (S,R)-saturated, and by our
assumption, � ∈ N∞. 22

Remark 3.29. Note that the “only if ” part of Corollary 3.28, holds without the
assumption that S(N ) ⊆ N . 33

Corollary 3.30 (Completeness for OR0�
Sel

with Redundancy). (OR0�
Sel

, RS�
gr )

is complete for the set Cl0
Σ

of ground clauses.

Proof. By Theorem 3.19, every (OR0�
Sel, R

S�
gr )-saturated unsatisfiable subset N ⊆

Cl0
Σ

of ground clauses contains the empty clause �. Hence the corollary is a conse-
quence of Corollary 3.28 because OR0�

Sel(Cl0Σ) ⊆ Cl0Σ. 22

Note 3.31. Definitions of redundancy criteria and fair derivations vary in literature.
Our definition of redundancy criteria is equivalent to the one given in [Bachmair
& Ganzinger, 2001]. This definition can be weaken, in particular condition (R2)
can be replaced with condition (R2)′: “N ⊆ N ′ implies RCl(N) ⊆ RCl(N

′)”, so that
Lemma 3.27 still holds. For an even weaker definition of redundancy criterion see
[Bachmair, Ganzinger & Waldmann, 1994].

We have also strengthened the definition of fair derivation, compared to the one
given in [Bachmair & Ganzinger, 2001; Bachmair et al., 1994], since it appears to
be more handy for showing fairness of saturation strategies that we describe in sec-
tion 7). In this form it is more close to the definition of fairness given in [Nieuwen-
huis & Rubio, 2001]. The weakest, although completely useless definition would
be to say that a derivation is fair if N∞ is (S,R)-saturated. 33

A limit of a theorem proving derivation for a given clause set N0 is not unique
in general. Even a finite clause set may have several different minimal satura-
tions w.r.t. the standard redundancy criterion, as demonstrates the example below.
However for the trivial redundancy criterion R

0, the saturation is always unique
and consists of all clauses S∗(N0) that are derivable from the initial clause set, as
no deletion step takes place.
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Example 3.32. Let � be an admissible ordering such that ¬A � A � ¬B � B �
¬C � C. Consider the clause set N0 := {¬AA?, AA?∨ C, BB ∨ BB, BB?∨ ¬C}. This clause
set has two derivations based on OR0� and R

S�
gr that produce different minimal

saturated set up to redundancy given in Figure 6. The (non-redundant) inferences
that can be applied to N0 are OR[2; 1] and OF[3]. Depending on the order in which
these inferences are applied we obtain two different derivations.

Figure 6 Computing saturated sets with redundancy

N0 : {
①

¬AA?,
②

AA?∨ C,
③

BB ∨ BB,
④

BB?∨ ¬C}
⇓ OR[2;1]

N1 : {
①

¬AA?,
②

AA?∨ C,
③

BB ∨ BB,
④

BB?∨ ¬C,
⑤

CC?}
⇓ DelRed

N2 : {
①

¬AA?,
④

BB?∨ ¬C,
⑤

CC?}

N0 : {
①

¬AA?,
②

AA?∨ C,
③

BB ∨ BB,
④

BB?∨ ¬C}
⇓ OF[3]

N ′
1 : {

①

¬AA?,
②

AA?∨ C,
③

BB ∨ BB,
④

BB?∨ ¬C,
⑥

BB?}
⇓ DelRed

N ′
2 : {

①

¬AA?,
②

AA?∨ C,
⑥

BB?}
⇓ OR[2;1]

N ′
3 : {

①

¬AA?,
②

AA?∨ C,
⑥

BB?,
⑤

CC?}
⇓ DelRed

N ′
4 : {

①

¬AA?,
⑥

BB?,
⑤

CC?}

In the first derivation, we have applied inference OR[2; 1] which produced clause
5. CC?. This clause renders clause 2 redundant since the last clause contains literal
C. Moreover, clause 3 and hence inference OF[3] become redundant w.r.t. N1 since
clause 3 follows from the smaller clauses 4 and 5. After we delete all redundant
clauses in N1 (2 and 3 are the only clauses in N1 that are redundant w.r.t. N1),
we obtain a clause set N2 which is saturated in OR0� (up to redundancy), since
no further inferences apply.

If we apply inference OF[3] first (see the right derivation in Figure 6), we obtain
clause 6. BB?, which renders clauses 3 and 4 redundant. After the deletion step,
inference OR[2; 1] remains possible, and at the end, a different saturated set N ′

4 is
produced. 33

One can argue that the set N ′
4 is a “better” saturated set than the set N2, since

N2 \N ′
4 ⊆ RCl(N

′
4) but not vice versa. Note that the clause 6 can be obtained from

the clauses 4 and 5 by applying an (unordered) resolution inference. The result of
this inference, i.e., the clause 6 makes the clause 4 redundant. This inference is
an instance of a so-called Subsumption Resolution inference rule [see Bachmair &
Ganzinger, 2001]. To allow such useful inferences, a calculus is usually enhanced
with additional simplification rules. We return to this point in section 7.
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3.5 Lifting

By Lifting Lemma (Lemma 2.42), every clause set N represents the set of its
ground instances N gr (here represents means “is equisatisfiable with”). Hence, for
lifting a refutationally complete calculus from ground clauses it suffices to find
a sound inference system for general clauses such that for every set N that is
saturated w.r.t. this system, the set of its ground instances N gr is saturated w.r.t.
the ground calculus.

In this section we describe the lifted version OR� of the ordered resolution
calculus, and in the next section, we show how selection functions can be integrated
into this model. To describe OR�, we need to “lift” the ordering restrictions from
the ground calculus OR0�.

Definition 3.33 (Liftable Orders, Lifting). An order � on expressions is called
liftable if there exists an order �0 on ground expressions such that E1 � E2 implies
that E1σ�0 E2σ for every ground substitution σ. The lifting of an order � defined
on ground expressions is a liftable order containing � (which we denote by the
same letter) that is defined as follows: E1 � E2 iff for every ground substitution
σ it holds that E1σ � E2σ. 33

Note that the lifting of a total order on ground expressions may not be a to-
tal order: two unifiable different expressions (e.g., p(x, c) and p(c, x)) may not
be comparable by �, since they have a common instance. To give another ex-
ample, consider an LPO-ordering based on the precedence f � p � q � c (see
Definition 2.19). The atoms p(x, x) and q(y) are not comparable by �lpo, since
p(c, c) �lpo q(c), but q(f(c)) �lpo p(c, c). On the other hand, p(x, y) �lpo q(y) and
q(f(x)) �lpo p(x, x). From Example 2.22, it also follows that q(f(x)) �kbo p(x, x)
never holds.

An order � on atoms is usually extended to literals by setting ¬A � A �
¬B � B for all atoms A � B. By LPO (or KBO) order on literals we mean this
extension of the respective lifted orders from ground clauses.

Definition 3.34 (Admissible Orders for Ordered Resolution). An order �
on literals is called admissible for resolution, if (i) � is liftable and (ii) � is
admissible for ground literals according to Definition 3.4. 33

Note that by this definition, an admissible order should be total on ground
literals. Recall, that a literal L is maximal w.r.t. a clause C, if L′ � L for no
literal L′ ∈ C. If in addition L /∈ C, then L is called strictly maximal w.r.t. C.
The lifted version of the Ordered Resolution calculus OR� (without selection) is
given in System 6. The inference rules are applied to clauses whose variables are
renamed apart , so that they do not have variables in common. This can be always
done, since all variables in clauses are implicitly universally quantified. The ordered
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Ordered Resolution Ordered Factoring

OR :
C ∨ A? D ∨ ¬B

Cσ ∨ Dσ
OF :

C ∨ B ∨ A

Cσ ∨ Aσ

where (i) σ = mgu(A, B); (ii) Aσ is strictly maximal
w.r.t. Cσ and (iii) ¬Bσ is maximal w.r.t. Dσ

where (i) σ = mgu(A, B); (ii) Aσ is
maximal w.r.t. Cσ ∨ Bσ.

System 6: The ordered resolution calculus OR�

resolution calculus OR� defines a sound inference system, since it is a restriction
of resolution calculus R, which is sound (see Remark 3.1).

Inference rules of System 6 are organized in such a way that, if an ordered
resolution inference is possible from some ground instances of clauses, then the
inference should be possible from these (non-ground) clauses that captures the
result of the ground inference (see Figure 7).

Figure 7 The lifting diagram for OR�

OR�:

OR0�:

C ∨ A?, D ∨ ¬B Cσ ∨ Dσ

C0 ∨ A0?
, D0 ∨ ¬A0 C0 ∨ D0

__

gr
��

__

gr

��

OR
+3

OR +3

C ∨ B ∨ A Cσ ∨ Aσ

C0 ∨ A0 ∨ A0

C0 ∨ A0

__

gr

��

__

gr

��

OF
+3

OF +3

The way how the ordering restrictions (ii) and (iii) are applied in the conditions
of OR�-inference rules in System 6, is called a-posteriori , i.e., after an inference
is made. This way the inferences are more restrictive than with a-priori ordering
restrictions, i.e., for σ = id. The a-priori ordering restrictions for the inference
rules of OR� are indicated by our notation for (strictly maximal) eligible literals
(see Remark 3.12).

Remark 3.35. Note that even a-posteriori ordering restrictions do not guarantee
that there is always a ground instance of the respective inference that satisfies the
ordering restrictions. For example, a simple inference:

OR :
a(x, x) ∨ cc(xx, yy)? ¬cc(uu, vv) ∨ ¬b(v, v)

a(x, x) ∨ ¬b(y, y)
(15)

with the unifier σ := {u/x, v/y}, satisfies all a-posteriori (and a-priori) ordering
restrictions of the ordered resolution rule for KBO-ordering �kbo based on a prece-
dence with a � b � c. However, for any inference from ground instances of the
premises of (15):

OR :
a(s0, s0) ∨ cc(s0, t0)? ¬cc(s0, t0) ∨ ¬b(t0, t0)

a(s0, s0) ∨ ¬b(t0, t0)
(16)
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we must have weight(t0) > weight(s0) from the ordering restrictions for the left
premise, and weight(s0) > weight(t0)weight from the restrictions for the right
premise, which is not possible. Hence, the inference rule (15) has no ground in-
stances. 33

The problem spotted in Example 3.35 can be addressed using an extension of
the standard redundancy criterion (see Definition 3.17) for general clauses:

Definition 3.36 (Standard Redundancy). Let � be an admissible order ac-
cording to Definition 3.34. A clause C is redundant w.r.t. N (notation: C ∈
R
�
Cl(N)), if every ground instance Cσ of C is redundant w.r.t. N gr (according to

Definition 3.17). An inference π = C1,.., Ck ` C is redundant w.r.t. N (in S)
(notation: π ∈ R

S�
Inf (N)), if every ground instance πσ := C1σ,.., Ckσ ` Cσ (i.e.,

when all Ciσ with i = 1,.., k and Cσ are ground), is redundant w.r.t. N gr in S 0,
where S 0 is the restriction of S to ground clauses. 33

Note that an instance πσ may be not an inference of S 0 even if π ∈ S, since
the unified expressions might not match, or ordering restrictions may be violated.
For example, the inference (15) in Remark 3.35 has no valid ground instances. In
this case the inference π is vacuously redundant, since all its ground inferences are
not in S 0 and hence redundant (see remark after Definition 3.17). Inferences that
are outside S are redundant as well, since according to the lifting diagram (see
Figure 7) they may not have valid ground instances.

Lemma 3.37 (Standard Redundancy Criterion). The notion of standard re-
dundancy R

S� = (R�
Cl(·), R

S�
Inf (·)) given in Definition 3.36 is a redundancy criterion

for general clauses ClΣ. In addition, if S 0 is monotone, then R
S� is effective.

Proof. Lemma 3.37 is a consequence of Lemma 3.21 since by Definition 3.36, for
every clause sets N ′ and N , we have N ⊆ R

�
Cl(N) iff Ngr ⊆ R

�
Cl0(N

gr), and for

every set of inferences S, we have S ⊆ R
S�
Inf (N) iff Sgr ⊆ R

S0�
Inf0 (Ngr), where Sgr is

the set of all ground instances of inferences in S. 22

To demonstrate a non-trivial case of redundant inferences, we consider an ex-
ample from [Nieuwenhuis & Rubio, 2001], that shows how resolution inferences
between transitivity axioms can be avoided.

Example 3.38. Consider the set consisting of the single clause T : ¬p(x, y) ∨
¬p(y, z) ∨ p(x, z) that expresses the transitivity axiom for p: “p(x, y) and p(y, z)
implies p(x, z)”. Let � be some admissible ordering that is a rewrite ordering for
ground expressions (see subsection 2.4, p. 21), say KBO or LPO ordering.

Every negative literal of T is maximal in T, since it is maximal in its instance
where all variables are replaced by the same ground term. For many orderings �
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(again, in particular for KBO or LPO), the positive literal is also maximal, hence
the Ordered Resolution rule can be applied to (two copies of) T:

OR :
¬p(x, y) ∨ ¬p(y, z) ∨ pp(xx, zz)? ¬pp(uu, vv) ∨ ¬p(v, w) ∨ p(u, w)

¬p(x, y) ∨ ¬p(y, z) ∨ ¬p(z, w) ∨ p(x, w)
(17)

with the unifier is σ := {u/x, v/z}. The conclusion of this inference is the clause:

OR[T; T] : T′. ¬p(x, y) ∨ ¬p(y, z) ∨ ¬p(z, w) ∨ p(x, w);

which can be seen as a weak transitivity axiom. For similar reasons as for T, the
clause T′ can be further resolved with T producing even longer clauses:

OR[T′ ; T] : T′′ . ¬p(x, y) ∨ ¬p(y, z) ∨ ¬p(z, u) ∨ ¬p(u, w) ∨ p(x, w);
OR[T′′; T] : T′′′. ¬p(x, y) ∨ ¬p(y, z) ∨ ¬p(z, u) ∨ ¬p(u, v) ∨ ¬p(v, w) ∨ p(x, w);

. . . etc.
Now we show how the notion of redundancy can be used to avoid all these

dangerous inferences. First we show that the clause T′ is not always redundant
w.r.t. the clause set {T} when the inferences above are possible.

Consider any LPO ordering �lpo and suppose that the clause T′ is redundant
w.r.t. {T}. By Definition 3.36, this in particular means that the following ground
instance of T′ :

T′0. ¬p(s
0, r0) ∨ ¬pp(r0, t0)?∨ ¬p(t0, h0) ∨ p(s0, h0) (18)

with r0 �lpo s0 �lpo t0 �lpo h0, follows from the set {T′}gr
T′0

of smaller ground
instances of T. We claim that {T′}gr

T′0
contains either the left clause from (19) or

the left clause from (20) below:

¬p(s0, r0) ∨ ¬p(r0, t0) ∨ p(s0, t0); ¬p(s0, t0) ∨ ¬p(t0, h0) ∨ p(s0, h0); (19)

¬p(r0, t0) ∨ ¬p(t0, h0) ∨ p(r0, h0); ¬p(s0, r0) ∨ ¬p(r0, h0) ∨ p(s0, h0). (20)

Indeed, otherwise I0 := {p(s0, r0), p(r0, t0), p(t0, h0)} is a model of {T′}gr
T′0

: the only
instances of T in which both negative literals are false are the left clauses from (19)
and (20), which we assume to be not in {T′}gr

T′0
. But I0 is not a model of T′0, hence

T′0 does not follow from {T′}gr
T′0

.
On the other hand, none of these left clauses may be in {T′}gr

T′0
, because they

are �lpo-greater than T′0, since p(s0, t0) �lpo ¬p(t
0, h0)∨ p(s0, h0) and p(r0, h0) �lpo

¬p(s0, r0)∨p(s0, h0). Hence T′0 does not follow from {T′}gr
T′0

and so T′ is not redundant
w.r.t. {T}.

Although the clause T′ is not redundant w.r.t. {T}, it is possible to show that
inference (17) that has produced T′, is redundant w.r.t. {T} for every monotone
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admissible ordering � that is total on ground terms.7 To show redundancy, ac-
cording to Definition 3.36, we should consider arbitrary ground instance (19) of
the Ordered Resolution inference (17) that produces instance (18) of the conclusion
of this inference (we discard the LPO-ordering considered before). We need to
demonstrate that clause (18) follows from some instances of T that are smaller
than the maximal premise of this ground inference, namely the right clause from
(19). We show that the clauses from (20) are those instances that we need.

Obviously, clause (18) is a consequence of (20). What remains to be shown, is
that both clauses from (20) are smaller than the right clause from (19). To prove
this, we use the conditions of the Ordered Resolution rule that is applied to (19).
The ordering restrictions for the left premise yield: p(, t0) � ¬p(, r0) � p(, r0) and
p(, t0) � ¬p(r0, t0) � p(r0, t0). By monotonicity and totality of � on ground terms,
we obtain that t0 � r0 and � r0. This together with the ordering restrictions for
the right premise yield ¬p(, t0) � ¬p(t0, h0) � ¬p(r0, h0) � p(r0, h0). Now it is
easy to check that the right clause from (19) is �-larger than both clauses from
(20). Hence, the inference (17) is redundant w.r.t. {T}.

Similarly, it can be shown that the resolution inference with the second negative
literal of T is redundant. Here we need to consider an arbitrary instance (20) of the
ordered resolution inference and, using the ordering restrictions demonstrate, that
the conclusion of this inference can be obtained by (unordered) resolution from the
smaller clauses (19). 33

It is hard to come up with a general algorithm using which redundancy of
clauses and inferences can be shown. In the Saturate system [Ganzinger, Nieuwen-
huis & Nivela, 2002], some concrete techniques for proving redundancy are imple-
mented. For the particular example above with �=�lpo, this prover finds redun-
dancy automatically by employing clausal rewriting combined with LPO constraint
solving. In [Kazakov, 2005] we demonstrate how the proof model described in Ex-
ample 3.38 can be adapted to obtain decision procedures for variety of non-trivial
fragments of first-order logic with transitive predicates and related theories.

The notion of saturation up to redundancy (see Definition 3.26) can be applied
to the ordered resolution calculus OR� with the (extended) standard redundancy
criterion from Definition 3.36. Our goal now is to show refutational completeness
of this calculus.

Theorem 3.39 (Completeness of OR� with Redundancy). (OR�, RS�) is
refutationally complete for ClΣ.

Proof. Since R
S� is a redundancy criterion (see Lemma 3.37), by the completeness

criterion (see Corollary 3.28), it suffices to show that every unsatisfiable set N that

7In [Nieuwenhuis & Rubio, 2001] redundancy of this inference has been shown only for LPO
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is saturated in OR� up to redundancy, contains the empty clause �. Furthermore,
it suffices to prove that (i) if N is (OR�, RS�)-saturated then N gr is (OR0�, RS�

gr )-
saturated. Indeed, this together with (ii) N is unsatisfiable implies that N gr is
unsatisfiable and (iii) � /∈ N implies that � /∈ N gr, yield a contradiction if � /∈ N ,
since (OR0�, RS�

gr ) is complete (see Corollary 3.30).
The fact (i) is a consequence of the following two lemmas that follow directly

from the introduced definitions:

Lemma 3.40. For every clause C 0 ∈ Ngr, there exists a clause in C ∈ N such
that C 0 is a ground instance of C and for every literal L0 that is (strictly) maximal
in C 0, the correspondent literal L in C is (strictly) maximal in C.

Lemma 3.41. For every inference π0 = C 0
1 ,.., C

0
k ` C 0 ∈ OR0� from Ngr there

exists an inference π = C1,.., Ck ` C ∈ OR� from N , such that π0 is an instance
of π. Moreover, if π is redundant w.r.t. N then π0 is redundant w.r.t. N gr. 22

3.6 Selection Functions for General Clauses

Selection functions can be extended to clauses with variables in the same way
as given in Definition 3.11, that is a selection function Sel selects a sub-multiset
Sel(C) of negative literals in every clause C. To integrate selection functions
into OR� as it is done for OR0�

Sel
, we extend the notion of eligible literals (see

Definition 3.11) as follows: Given a clause C and a substitution σ, we say that a
literal L is eligible (strictly maximal) w.r.t. C and σ if either L ∈ Sel(C ∨ L), or
otherwise Sel(C ∨ L) = {} and Lσ is (strictly) maximal w.r.t. Cσ. The Ordered
Resolution calculus with selection OR�

Sel parametrized by a selection function Sel
and an admissible ordering � is given in System 7.

Ordered Resolution Ordered Factoring

OR :
C ∨ A? D ∨ ¬B

Cσ ∨ Dσ
OF :

C ∨ B ∨ A

Cσ ∨ Aσ

where (i) σ = mgu(A, B); (ii) A is eligible strictly
maximal w.r.t. C and σ and (iii) ¬B is eligible
w.r.t. D and σ.

where (i) σ = mgu(A, B); (ii) A is
eligible w.r.t. C and σ.

System 7: The ordered resolution calculus with selection OR�
Sel

There are some technical difficulties in proving refutational completeness of the
ordered resolution with selection functions. In particular, the calculus in System 7
is no longer compatible with the lifting diagram in Figure 7, since the selected
literals in a clause and its ground instances may not correspond. It is possible to
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fix this problem by allowing only “liftable” selection functions in similar way how
it is done for orderings. However this is not desirable in practice, where a selection
functions are used to control the behaviour of a saturation procedure, like in the
example below.

Example 3.42. To demonstrate the problems that arise with arbitrary selection
functions, consider the clause set

N0 = {pp(xx, ff(xx))?, qq(xx, ff(xx))?, ¬p(x, y) ∨ ¬qq(xx, xx)], ¬pp(xx, xx)]∨ ¬q(x, y)}.

First, it is reasonable to set the selection function Sel to select the negative literals
with one variable in the last two clauses, since this ensures that no inferences can
be drawn between the clauses (here and further we mark selected literals by ]).
Now, the question is, what should be selected in clause ¬p(c, c) ∨ ¬q(c, c), which
is a common ground instance of the last two clauses? Regardless which selection
function we choose, the lifting diagram in Figure 7 will not work: If literal ¬p(c, c)
becomes eligible in this ground instance, then the inference between clauses p(x, x)
and ¬p(x, y)∨¬qq(xx, xx)] is not possible, although it is possible between its ground
instances p(c, c) and ¬pp(cc, cc) ∨ ¬q(c, c). The situation when literal ¬q(c, c) is
eligible in clause ¬p(c, c) ∨ ¬q(c, c) is symmetric.

However for the fixed clause set N , it is always possible to extend the selection
function to ground literals such that every inference between clauses from N gr

will correspond to some inferences between clauses from N . This idea is used for
proving completeness of OR�

Sel with non-liftable selection functions. Please find in
Appendix A.1 the details of the proof. 33

There are other related technical problems with general selection functions, in
particular, how to define the notion of redundant inferences. This is also discussed
in Appendix A.1. Using techniques discuss in this appendix, it is possible to justify
so-called subsumption deletion:

Definition 3.43 (Subsumption). A clause C subsumes a clause D (or D is
subsumed by C) if Cσ ⊆ D for some substitution σ (the inclusion between clauses
is the inclusion between their multisets of literals). A clause C strictly subsumes a
clause D (D is strictly subsumed by C) if C subsumes D but D does not subsume
C. 33

For example, the clause a(x) ∨ a(y) subsumes the clauses a(x) ∨ a(x), a(y) ∨
a(x)∨a(c), a(f(x))∨a(c), but not, say the clause a(x) or the clause a(f(x)). Note
also that clauses which subsume each other are variants of each other.

It is possible to extend the notion of redundancy in such a way that clauses
that are strictly subsumed by C are redundant w.r.t. C and hence can be deleted
during a saturation process. For details, please see Appendix A.2.
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3.7 Hyper-Resolution Strategies

The extension of ground resolution calculus with the hyper-inference given in
Figure 4 can be lifted in a similar way. To formulate the resulted inference system,
we say that a multiset D′ = {¬B1,..,¬Bn}m

of negative literals is eligible w.r.t. D
and σ (for hyper-resolution) if either (a) D′ = Sel(D ∨ D′) 6= {}

m
, or, otherwise

(b) Sel(D ∨ D′) = {}
m
, n = 1 and ¬B1σ is maximal w.r.t. Dσ. Now the Ordered

Hyper-Resolution calculus with selection HR�
Sel

is defined by replacing the Ordered
Resolution rule with the Ordered Hyper-resolution rule given in Figure 8.

Figure 8 The hyper-resolution rule

Ordered Hyper-resolution

HR :
C1 ∨ A1

? . . . Cn ∨ An
? ¬B1∨· · · ∨¬Bn∨ D

C1σ ∨· · · ∨Dσ

where (i) σ = mgu({A1=B1, . . . , An=Bn}); (ii) Aiσ are eligible strictly maximal w.r.t. Ci

and σ, i = 1,.., n and (iii) {¬B1,..,¬Bn}m
is eligible w.r.t. D and σ.

The hyper-resolution rule can be further extended to a more powerful rule with
a-posteriori selection strategy, which has been employed in [de Nivelle & de Ri-
jke, 2003] for deciding the loosely guarded fragment. This rule can be described
using the a-posteriori selection function Sela that assigns to a unification problem
P = {A1=B1,.., An=Bn} between first-order atoms, its non-empty subproblem:
Sela(P) ⊆ P, Sela(P) 6= {}. The extended Ordered Hyper-resolution is given in
Figure 9.

Figure 9 The hyper-resolution rule with a-posteriori selection

Ordered Hyper-resolution

HR :
C1 ∨ A1

? . . . Ck ∨ Ak
? . . . Cn ∨ An

? ¬B1∨· · · ∨¬Bk ∨· · · ∨¬Bn ∨ D

C1τ ∨· · · ∨¬Bk+1τ ∨· · · ∨¬Bnτ ∨ Dτ

where (i) σ = mgu({A1=B1, . . . , An=Bn}); (ii) Ai are eligible strictly maximal w.r.t. Ci and
σ, 1 ≤ i ≤ n; (iii) {¬B1,..,¬Bn}m

is eligible w.r.t. D and σ; (iv) Sela({A1=B1,.., An=Bn}) =
{A1=B1,.., Ak=Bk} and (v) τ = mgu({A1=B1,.., Ak=Bk}).
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4 Equational Reasoning

Reasoning with equality plays fundamental rôle in many applications of formal
methods in mathematics and computer science. Hence, integration of equality
into saturation-based theorem proving, became one of the central and hot topics
of research in automated deduction shortly after introduction of the resolution
calculus.

It is well-known that the theory of equality can be axiomatised in first-order
logic using axioms of congruence relations (see subsection 2.1 on p. 12). How-
ever, resolution with congruence axioms appears to be highly inefficient. Problems
arise already with the transitivity axiom, which produces many unnecessary infer-
ences as has been demonstrated in Example 3.38. An alternative to the axiomatic
approach have been found by Robinson & Wos [1969], who proposed a special
inference rule called Paramodulation to handle equality. They proved that reso-
lution augmented with the Paramodulation rule and special Functional Reflexivity
axioms form a complete inference system for the first-order logic with equality (see
System 8). Intuitively, the Paramodulation rule corresponds to transitivity and

Paramodulation Functional Reflexivity

P :
C ∨ s ' t D ∨ L[s′]

Cσ ∨ Dσ ∨ L[t]σ
FR :

f(x1, . . . , xn) ' f(x1, . . . , xn)

where (i) σ = mgu(s, s′).

System 8: The Robinson & Wos’s [1969] paramodulation calculus P

monotonicity axioms for equality and the Functional Reflexivity axiom scheme, as
can be guessed, corresponds to the reflexivity axiom for equality. Brand [1975] has
proved later that the Functional Reflexivity axioms can be replaced with a more
restricted Reflexivity Resolution rule and that paramodulation into variables, i.e.,
when s′ is a variable is not necessary.

The basic paramodulation calculus evolved along with the resolution calcu-
lus: ordering restriction, selection strategies and redundancy criteria enhanced
efficiency and flexibility of the calculus.8 The completeness of the paramodulation
calculus in its modern form, called the ordered paramodulation calculus, has been
first demonstrated by Hsiang & Rusinowitch [1991] using a proof technique based
on transfinite semantic trees. A refinement of the ordered paramodulation calcu-
lus called the superposition calculus [Bachmair & Ganzinger, 1990] is nowadays
a standard method for equational reasoning and has been implemented in many

8See [Bachmair & Ganzinger, 1998a; Nieuwenhuis & Rubio, 2001; Degtyarev & Voronkov,
2001] for a historical exposition and comparison of techniques for equational reasoning
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systems such as Vampire [Riazanov & Voronkov, 2002], Spass [Weidenbach et
al., 2002], E [Schulz, 2002] and Bliksem [de Nivelle, 1998a].

In this section we review the ordered paramodulation calculus OP�
Sel and the

superposition calculus SP�
Sel

. We present completeness proofs for these calculi ac-
cording to the general model construction schema demonstrated for the resolution
calculus. Although the superposition calculus is more restrictive than the para-
modulation calculus, the last can be still used for deciding certain shallow clause
classes, for example the one for the guarded fragment [see Kazakov, 2005].

4.1 The Ordered Paramodulation Calculus

The ordered paramodulation calculus OP�
Sel is an extension of the ordered resolution

calculus OR�
Sel

with two rules given in System 9. Like ordered resolution, this
calculus is parametrized by an ordering � on literals and a selection function
Sel, but the ordering � is now extended also to terms. In order to simplify the

Ordered Paramodulation Reflexivity Resolution

OP :
C ∨ s ' t? D ∨ L[s′]

Cσ ∨ Dσ ∨ L[t]σ
RR :

C ∨ s 6' s′

Cσ

where (i) σ = mgu(s, s′); (ii) s ' t is eligible strictly
maximal w.r.t. C and σ; (iii) L[s′] is eligible (strictly
maximal if positive) w.r.t. D and σ; (iv) (sσ ' tσ) 6�
L[s′]σ; (v) tσ 6� sσ and (vi) s′ is not a variable.

where (i) σ = mgu(s, s′) and (ii) s 6'
s′ is eligible w.r.t. C and σ.

System 9: The ordered paramodulation calculus OP�
Sel

exposition of calculi with equality, we identify every non-equational atom A ∈ At−
Σ

with the equation A ' T (and its negation with A 6' T), where T is some fixed
constant, which intuitively stands for “True”. This allows us to deal only with
equational atoms of the form E1 ' E2 over two sorts of expressions E1, E2 ∈
At−Σ t TmΣ.

Definition 4.1 (Admissible Order). An ordering � is admissible for parmodu-
lation if � is admissible for resolution (see Definition 3.34) and additionally:

(T) � is total on ground terms with the least element T;
(E1) t ≺ s C L implies L[s] � L[t] (monotonicity);
(E2) t ≺ s C E1 implies (E1[s] ' E2) � (s ' t); 33

Condition (T) and (E1) of admissible ordering together with (L) from Defi-
nition 3.4 imply that � is a total reduction ordering on ground expressions (see
p. 21). Condition (E2) ensures that an equational atom s ' t used in a paramo-
dulation inference is always smaller than the atom into which paramodulation is
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performed, except, perhaps, for equational atoms of the form s ' h with s � t � h.
In this case the last atom can be paramodulated into the first. Note that since �
is liftable, it suffices to require conditions (E1) – (E2) for ground expressions only.

An admissible ordering for paramodulation can be obtained, for example, by
taking the lifting of any total reduction ordering � on ground terms and non-
equational ground atoms, like KBO or LPO, extended to equational literals by
treating every positive literal E1 ' E2 as the multiset {E1, E2}m

and every negative
literal E1 6' E2 as the multiset {E1, E1, E2, E2}m

.
It is easy to show that Ordered Paramodulation and Reflexivity Resolution are

sound and that the restriction of OP�
Sel

to ground clauses forms a monotone infer-
ence system:

Lemma 4.2 (Monotonicity for OP�
Sel

). OP�
Sel

is monotone for ground clauses
w.r.t. every admissible ordering �.

Proof. Monotonicity of the Ordered Resolution and Ordered Factoring rules has been
already shown in Lemma 3.13 (recall that every ordering � that is admissible for
paramodulation is also admissible for resolution). It remains to show monotonicity
of the Ordered Paramodulation and Reflexivity Resolution rules:

(1) OP : C ∨ s ' t?, D ∨ L[s] ` C ∨ D ∨ L[t] (Ordered Paramodulation):
We show that the conclusion of the Ordered Paramodulation rule is always smaller
than the right premise of this rule. Indeed, by conditions (iv) and (ii) of this rule,
we must have L[s] � (s ' t) � C. By condition (v) of this rule and condition (E1)
of admissible ordering, we have L[s] � L[t]. Hence, D∨L[s] � (C ∨D∨L[t]) what
was required to show.

(2) RR : C ∨ s 6' s ` C (Reflexivity Resolution):
This inference rule is obviously monotone since � is monotone w.r.t. multiset
inclusion. 22

The standard redundancy criterion R
S� = (R�

Cl(·), R
S�
Inf (·)) is extended to equa-

tional calculi without new surprises. As usual, we say that a ground clause C 0 is
redundant w.r.t. a set of ground clauses N 0, if C 0 follows from N 0

C0 . A ground
inference π0 is redundant w.r.t. N 0 in OP 0�

Sel
′ if either π0 /∈ OP 0�

Sel
′ or, otherwise,

the conclusion of π0 follows from N 0
C0

i
for some premise C 0

i of π0. Note, that “fol-
lows” here means in the theory of equality. We will often say that such redundancy
criterion is based on semantical entailment , in this case in equational theory.

A (general) clause C is redundant w.r.t. a clause set N if every ground instance
C 0 ∈ {C}gr of C is redundant w.r.t. N gr. An inference π is redundant w.r.t. N in
OP�

Sel
, if every ground instance π0 of π is redundant w.r.t. N gr in OP0�

Sel
′ for every

projection Sel′ of Sel from the premises of π.
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4.1.1 Refutational completeness for the ground clauses

In this section we consider the restriction OP 0�
Sel of the ordered paramodulation

calculus OP�
Sel

to the ground clauses Cl0
Σ
. Unless stated otherwise, all terms and

clauses in this section are ground.
We extend the model construction given in subsection 3.1 to the paramodula-

tion calculus. Given a set of ground clauses N that is saturated (up to redundancy),
we are going to construct a candidate model IN for N . Every model that we con-
struct in our procedure is represented by a set of oriented ground equational atoms
I, which form a rewrite system: E1 ' E2 with E1 � E2 is read as E1 ⇒E2. The
(rewrite) model induced by I is denoted by I⇓ and is defined by setting an atom
A = (E1 ' E2) to be true in I⇓ (notation: I⇓�A) iff the equation E1 ' E2

converges w.r.t. ⇒I , i.e., the expressions E1 and E2 are I-joinable: E1 ⇓I E2 (recall
the notations and definitions from subsection 2.3). In particular, a non-equational
atom A ∈ At−Σ is true in I⇓, iff A⇓I = T.

The interpretation I⇓ is equational only if the underlying rewrite system is
convergent. By Critical Pair Lemma (Lemma 2.11), a rewrite system is convergent
if and only if it is terminating and confluent. Termination of I is guaranteed by
the ordering �, since every admissible ordering is well-founded. Confluence of I
will be implied from a stronger property:

Definition 4.3 (Canonical Rewrite System). Given an atom A and a set of
atoms I, let IA (IA) denote a set of atoms from I that are smaller (resp. smaller
or equal) than A. We say that an atom A = (E1 ' E2) is irreducible w.r.t. I if
both E1 and E2 are irreducible w.r.t. I. A rewrite system (= set of atoms) I is
canonical (for paramodulation) if every atom A from I is irreducible w.r.t. IA. 33

It will be shown below that every canonical rewrite system is confluent. In
addition, canonical rewrite systems admit a nice property, namely that for proving
an equation E1 ' E2, it suffices to use only those rewrite rules that are not greater
than this equation:

Lemma 4.4 (Canonical Proofs). Let I be a canonical rewrite system. Then
(i) I is confluent and (ii) for every atom A := (E1 ' E2), we have I⇓�A iff
IA⇓�A.

Proof. (i) In order to show that I is confluent, let A = (E1 ⇒ E2) and A′ =

(E ′
1 ⇒E ′

2) be two different overlapping rewrite rules from I with E ′
1 E E1, then

either (a) E ′
1 C E1 and hence A � A′ (by condition (E2) of admissible ordering),

which means that A is reducible w.r.t. IA, or (b) E1 = E ′
1 and either A is reducible

w.r.t. IA (if A � A′), or A′ is reducible w.r.t. IA′ (if A′ � A). Both cases are not
possible since I is canonical.
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(ii) The “if ” part of this case is trivial since IA ⊆ I. To show the “only
if ” part, we employ induction on A over the well-ordered set (At0

Σ
,�). Recall,

that I⇓�(E1 ' E2) iff E1 ⇓I E2. If both expressions in E1 and E2 from A are
irreducible w.r.t. I, then E1 = E2, and the lemma is trivial, which provides the
basis of induction.

W.l.o.g. assume that expression E1 is reducible by some rewrite rule (E ′
1 ⇒ E ′

2) ∈

I. If A � (E ′
1 ⇒ E ′

2), then by the induction hypothesis, the equation (E1[E
′
1/E

′
2] '

E2) ≺ A (by condition (E1)) is true in IA⇓, and so IA⇓� A, which was required
to show.

Now suppose that A ≺ (E ′
1 ⇒E ′

2). Since E ′
1 E E1, this is only possible if

E ′
1 = E1, because of condition (E2) for admissible orderings. For similar reasons,

E ′
2 � E2 and E ′

2 is irreducible w.r.t. I (otherwise it is reducible by some rewrite
rule that is smaller than E ′

1 ⇒ E ′
2, which is not possible since I is canonical). Hence

E1⇓I = E ′
2 � E2 and the equation E1 ' E2 cannot converge. Therefore this case

is not possible. 22

Now we describe a model construction for the paramodulation calculus.

Definition 4.5 (Productive Clause). A clause C is productive w.r.t. a set of
atoms I, if (i) I⇓2 C; (ii) C = C ′ ∨A, where A = (E1 ' E2) is an eligible strictly
greatest atom w.r.t. C ′ and E1 � E2,9 and (iii) A is irreducible w.r.t. I. In this
case we say that C produces a rewrite rule ∆IC := (E1 ⇒ E2) w.r.t. I. If C is not
productive, we assign ∆IC := {}. 33

Definition 4.6 (Candidate Models). Let N ⊆ Cl0
Σ

and C ∈ Cl0
Σ
. The candidate

models for N , NC and NC are induced respectively by the sets IN , IC and IC that
are defined as follows:
IN :=

⋃
C∈N

IC ; IC :=
⋃

C′∈NC

IC′

, and IC := IC ∪ ∆C, where ∆C := ∆ICC. 33

Lemma 4.7 (Properties of Candidate Models). Let N be a clause set for
which candidate models are constructed according to Definition 4.6. Then for every
C ∈ N , (i) IC⇓�C implies that IN⇓�C and (ii) If C = (C ′ ∨ A?) is productive
w.r.t. IC then IN⇓2 C ′.

N Clauses C ∆C

C C ′ ∨ ¬B ?

Proof. (i) If IC⇓� A for some positive atom A in C, then
IN⇓� A �C. Otherwise, C should contain negatively some
atom B such that IC⇓2 B, but IN⇓�B. This situation is
not possible, since by Lemma 4.4, IB⇓� B, but IB ⊆ IC 2 B, since B ≺ ¬B � C
(by condition (R1) of admissible ordering).

9Note that E1 = E2 is already not possible by condition (i), hence the maximal atom in C
can be always oriented

63



N Clauses C ∆C

C

C ′︷ ︷
C ′′ ∨ B ∨ A? A

(ii) Assume that for some productive clause C = (C ′ ∨ A?),
we have IN⇓� C ′. First, note that IC⇓2 C ′ since C is a
productive clause. Hence there exists an atom B which
occurs positively in C ′, and becomes true in IN⇓. Since
IN forms a canonical rewrite system (by condition (iii) of productive clause), by
Lemma 4.4 (ii), IB⇓�B. Since C � A � B, we have IC⇓� IB⇓�B �C ′. A
contradiction. 22

Lemma 4.8 (Counterexample-Reduction Lemma). Let N be a set of ground
clauses which is saturated w.r.t. OP�

Sel up to redundancy. Then for every clause
D ∈ N with IN⇓2 D 6= �, there exists D1 ∈ N such that D1 ≺ D and IN⇓2 D1.

Proof. Let IN⇓2 D for some clause D ∈ N . Then ID⇓2 D, since otherwise by
Lemma 4.7 (i) we would have IN⇓�D. In particular, clause D cannot be pro-
ductive. So, we have ID⇓ = ID⇓2 D. According to the definition of productive
clauses (see Definition 4.14), this situation is possible only in the following cases:

N Clauses C ∆C

D D′ ∨ s 6' s −
g
D1 D′ ?

(1) D = (D′∨¬A) for some eligible literal ¬A in D, and ID⇓� A = (E1 ' E2).
W.l.o.g. assume that E1 � E2. Then either (1.1) E1 = E2 =
s for some ground term s ∈ Tm0

Σ
, or (1.2) the atom A is

reducible w.r.t. ID.
In case (1.1), the Reflexivity Resolution rule can be applied

to D that produces a smaller clause RR[D]: D1 = D′ ∈ N
than D which is false in IN⇓.

N Clauses C ∆C

D D′ ∨ ¬A[s] −
g

D1 C ′ ∨ D′ ∨ ¬A[t] ?

C C ′ ∨ s ' t? s⇒ t

In case (1.2), A must be reducible by some rewrite
rule produced by a clause C = (C ′ ∨ B) ≺ D. If this is a
term rewrite rule B = (s⇒ t), then the Ordered Paramo-
dulation rule can be applied to C and D that produces
a clause OP[C, D]: D1 = (C ′ ∨ D′ ∨ ¬A[t]) ∈ N which
is smaller counterexample than D. If B = (P ⇒ T), where P is a non-equational
atom, then A = (P ⇒ T), hence the Ordered Resolution rule can be applied to C
and D that produces a clause OR[C, D]: D1 = (C ′ ∨ D′) ∈ N which is again a
smaller counterexample than D.

(2) D = (D′ ∨A∨A), where A is an eligible greatest literal in D. In this case,
the Ordered Factoring rule is applied to D that produces a clause OF[D]: D1 =
(D′ ∨ A) ∈ N which is a smaller counterexample than D. 22

Counterexample-Reduction Lemma implies completeness of the ground ordered
paramodulation calculus:

Theorem 4.9 (Completeness of OP0�

Sel
with Redundancy).

(OP 0�
Sel

, RS�) is complete for the set Cl0
Σ

of ground clauses.
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Proof. Let N ⊆ Cl0Σ be an (OP0�
Sel, R

S�)-saturated set of clauses that does not
contain the empty clause �. We show that N is true in IN⇓. Indeed, otherwise
there exists a minimal w.r.t. � counterexample D0 ∈ N for IN⇓, i.e., such that
IN⇓2 D0. By Counterexample-Reduction Lemma (Lemma 4.8), this may be only
if D0 = �, which is not possible since � /∈ N . Hence IN⇓ is a model for N and by
Completeness Criterion (Corollary 3.28), (OP 0�

Sel, R
S�) is complete. 22

4.1.2 Lifting

Completeness of the full paramodulation calculus OP�
Sel can be shown by a similar

lifting argument that has been employed for the ordered resolution calculus OR�
Sel

.
Given a clause set N that is saturated up to redundancy in OP�

Sel one can show
that the set of its ground instances N gr is saturated up to redundancy in OP 0�

Sel
′ for

every projection Sel′ of Sel from N . This property follows from the lifting diagram
for the ordered paramodulation calculus that is illustrated in Figure 10. According

Figure 10 The lifting diagram for OP�
Sel

OP�
Sel

:

OP0�
Sel′

:

C ∨ s ' t?, D ∨ L[s′] Cσ ∨ Dσ ∨ L[t]σ

C0 ∨ s0 ' t0?, D0 ∨ L0[s0] C0 ∨ D0 ∨ L0[t0]

__

gr
��

__

gr
��

OP
+3

OP +3

C ∨ s 6' s′ Cσ

C0 ∨ s0 6' s0 C0

__

gr

��

__

gr

��

RR
+3

RR +3

to this lifting diagram, for every non-redundant inference from N gr there exists a
correspondent inference from N that captures the result of the ground inference.
The only case when there is no correspondent inference from non-ground clauses
is caused by a non-liftable condition (v) of the Ordered Paramodulation rule. This
situation is illustrated in Figure 11. However, in this situation, it is possible to

Figure 11 A non-liftable paramodulation inference

N :

Ngr:

Ngr:

ooooooo OOOOOOO
C ∨ s ' t?, D[x] ∨ L[x] C ∨ D[h[s]] ∨ L[h[t]]

C0 ∨ s0 ' t0?, D0[h0[s0]] ∨ L0[h0[s0]] C0 ∨ D0[h0[s0]] ∨ L0[h0[t0]]

C0 ∨ s0 ' t0?, D0[h0[t0]] ∨ L0[h0[t0]] C0 ∨ D0[h0[s0]] ∨ L0[h0[t0]]

g

�

__

gr
��

__

gr
��

OP
+3

OP +3

show that this ground inference is redundant w.r.t. N gr. Indeed, Ngr must contain a
ground instance D0[h0[t0]]∨L0[h0[t0]] of clause D[x]∨L[x] which together with the
left premise C 0 ∨ s0 ' t0 of the ground Ordered Paramodulation inference implies
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the conclusion of this inference. Since both of these clauses are smaller then
the maximal clause D0[h0[s0]] ∨ L0[h0[s0]] of the inference (because s0 � t0), this
inference is redundant according to the standard redundancy criterion. Hence the
lifting diagram in Figure 10 holds (recall, that correspondence must be established
only for non-redundant inferences).

Theorem 4.10 (Completeness of OP�

Sel
with Redundancy). (OP�

Sel, R
S�)

is complete.

Similar usage of redundancy can also justify a very useful refinement of the
Ordered Paramodulation rule with simultaneous paramodulation: see Figure 12. In

Figure 12 The simultaneous ordered paramodulation rule

(Simulteneous) Ordered Paramodulation

OP :
C ∨ s ' t? D[s′] ∨ L[s′]

Cσ ∨ D[t]σ ∨ L[t]σ

where (i) σ = mgu(s, s′); (ii) s ' t is eligible strictly maximal w.r.t. C and σ; (iii) L[s′] is
eligible (strictly maximal if positive) w.r.t. D and σ; (iv) (sσ ' tσ) 6� L[s′]σ; (v) tσ 6� sσ
and (vi) s′ is not a variable.

this rule, paramodulation is simultaneously performed into several occurrences of
the term s′ in the right premise. It can be shown that the usual paramodula-
tion inference becomes redundant as long as the conclusion of the simultaneous
paramodulation inference has been drawn:

ooooooo OOOOOOO
C ∨ s ' t?, D[s] ∨ L[s] C ∨ D[s] ∨ L[t]

C ∨ s ' t?, C ∨ D[t] ∨ L[t] C ∨ D[s] ∨ L[t]�

OP +3

OP (Simult.) g
��

(21)

The simulteneous paramodulation inference rule can be realized through an ad-
ditional selection function, that given a clause, its literal and a subterm in this
literal, selects some other occurrences of this subterm in this clause. The rule
must be applied on all selected subterms in the clause. For the purpose of our
decision procedures, we will use the full selection, i.e., we will apply simultaneous
paramodulation rule on all subterms s′ in the right premise.

4.2 The Superposition Calculus

We can notice some similarity between the ordered paramodulation calculus and
the ordered Knuth-Bendix completion procedure described in subsection 2.3 in
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System 2. Both saturation procedures result in an equational model that is rep-
resented by a convergent rewrite system. However the Superposition rule is more
restricted then the Ordered Paramodulation rule in that the former rewrites only
the largest term of an equational atom. The ideas behind the Knuth-Bendix com-
pletion and the paramodulation calculus have been joined into the superposition
calculus that has been first introduced in [Bachmair & Ganzinger, 1990]. The su-
perposition calculus SP�

Sel
is an extension of the ordered resolution calculus OR�

Sel

with inference rules given in System 10. Instead of a single Ordered Paramodula-

Ordered Paramodulation

OP :
C ∨ s ' t? D ∨ L[s′]

Cσ ∨ Dσ ∨ L[t]σ

where (i) σ = mgu(s, s′); (ii) s ' t is eligible strictly maximal w.r.t. C and σ; (iii) L[s′] is
eligible (strictly maximal if positive) w.r.t. D and σ; (iv) L[s′] is a non-equational literal;
(v) tσ 6� sσ and (vi) s′ is not a variable.

Positive Superposition Negative Superposition

PS :
C ∨ s ' t? D ∨ r[s′] ' h

?

Cσ ∨ Dσ ∨ r[t]σ ' hσ
NS :

C ∨ s ' t? D ∨ r[s′] 6' h
?

Cσ ∨ Dσ ∨ r[t]σ 6' hσ

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C and σ; (iii) r ' h
is eligible strictly maximal w.r.t. D and σ;
(iv) (sσ ' tσ) 6� (rσ ' hσ); (v) tσ 6� sσ;
(vi) hσ 6� rσ and (vii) s′ is not a variable.

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C and σ; (iii) r 6' h
is eligible strictly maximal w.r.t. D and σ;
(iv) tσ 6� sσ; (v) hσ 6� rσ and (vi) s′ is not a
variable.

Reflexivity Resolution Equality Factoring

RR :
C ∨ s 6' s′

Cσ
EF :

C ∨ s′ ' h ∨ s ' t?

Cσ ∨ tσ 6' hσ ∨ s′σ ' hσ

where (i) σ = mgu(s, s′) and (ii) s 6' s′ is
eligible w.r.t. C and σ.

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C ∨ s′ ' h and σ, and
(iii) tσ 6� sσ.

System 10: The superposition calculus SP�
Sel

tion rule now we have three inference rules: the Ordered Paramodulation rule into
non-equational literals, the Positive Superposition rule for paramodulation into the
maximal term of positive equations and the Negative Superposition rule for para-
modulation into the maximal term of negative equations.10 Additionally we have
a new inference rule Equality Factoring whose rôle will be revealed in a moment.

10Ordered Paramodulation into non-equational literals is often described as an instance of Pos-
itive Superposition or Negative Superposition when atoms are viewed as equations over two sorts
of expressions
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Note that a restriction of the superposition calculus to positive unit equational
atoms is our well-known ordered Knuth-Bendix completion procedure.

In order to prove refutational completeness for the superposition calculus SP�
Sel,

we modify the model construction given for the paramodulation calculus OP�
Sel

. It
seems like we only need to relax the condition (iii) from the definition of productive
clause (see Definition 4.5), such that the maximal non-equational expression of the
maximal atom A in a clause C is irreducible w.r.t. a current rewrite system. If we
accept this definition, we obtain a rewrite system which has the following property:

Definition 4.11 (Canonical Rewrite System). A rewrite system I is canonical

(for superposition) if for every rule A = (E1 ⇒E2) ∈ I, the expression E1 is
irreducible w.r.t. IA. 33

An analog of Lemma 4.4 can be proven for rewrite systems that are canonical
for superposition. For this we need to introduce additional notation. Given an
expression E, let IE denote the set of atoms from I whose expressions are not
greater than E: IE := {(E1 ' E2) ∈ I | E1 � E, E2 � E}. Then the following
property holds:

Lemma 4.12 (Canonical Proofs). Let I be a canonical rewrite system. Then
(i) I is confluent and (ii) for every atom A := (E1 ' E2) with E1 � E2, we have
I⇓�A iff IE1⇓�A.

Proof. The proof for case (i) of this lemma is identical to the one for Lemma 4.4.
Case (ii) follows from the fact that every expression involved in a rewrite proof for
A := (E1 ' E2) is not greater then the maximal expression from {E1, E2}. 22

Unfortunately an analog of Lemma 4.7 does not hold if candidate models are
constructed according to the modified procedure above. This is demonstrated in
the following example:

N Clauses C ∆C

1. a 6' c ∨ aa 6' bb −

2. a ' c ∨ aa ' bb? a⇒ b
:::::

3. bb ' cc? b⇒ c

Example 4.13. Let � be an ordering such that a �
b � c. Consider a clause set N shown in the table
to the right. Clauses 1 – 3 from N are arranged in
decreasing order w.r.t. �. Clause 3 produces a rewrite
rule b⇒ c. Although the maximal atom a ' b of
clause 2 is reducible w.r.t. to this rewrite rule, its
maximal term a is not. Hence, clause 2 produces a rewrite rule a⇒ b. But now
the remaining literal a ' c of this clause becomes true in I2 and consequently in
IN . Hence, the important property (ii) of candidate models (see Lemma 4.7) is
violated (if this property does not hold, then an inference between a productive
clause and a counterexample might produce a clause that is true in a candidate
model).
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This example also demonstrates why the Equality Factoring rule is needed. It is
easy to see that the clause set N is unsatisfiable. Indeed, the empty clause can be
derived from N in the paramodulation calculus: clauses 2, 3 produce a ' c and
clauses 1, 3 produce a 6' c ∨ a 6' c by applying Ordered Paramodulation inferences
into b and the Ordered Factoring rule. The rest inferences are straightforward.
However the only possible superposition inferences from N are Negative Superpo-
sition between clause 2 and 1 and Equality Factoring from 2. The first inference
produces a tautology. Hence, an empty clause cannot be derived from N without
the Equality Factoring rule if deletion of tautoloties is allowed.11 33

In order to retain the properties of productive clauses, we modify the notion of
productive clause such that the situation described in Example 4.13 becomes not
possible:

Definition 4.14 (Productive Clause). A clause C is productive clause w.r.t.
set of atoms I, if (i) I⇓2 C; (ii) C = C ′ ∨ A, where A = (E1 ' E2) is an
eligible strictly greatest atom w.r.t. C ′ with E1 � E2; (iii) E1 is irreducible w.r.t.
I and (iv) (I ∪ {E1 ⇒ E2})⇓2 C ′. In this case C produces a rewrite rule ∆IC :=

(E1 ⇒E2) w.r.t. I. If C is not productive, then we assign ∆IC := {}. 33

For proving remaining technical lemmas, we need two additional requirements
for orderings which may be used in the superposition calculus.

Definition 4.15 (Admissible Order). An ordering � is admissible for superpo-
sition if � is admissible for paramodulation (see Definition 4.1) and addittionally:

(E3) s � t � h implies (s 6' h) � (s ' t), and
(E4) s � t � h implies (s ' t) � (t 6' h). 33

Condition (E3) for equational atoms plays a similar role as condition (R1) for
non-equational atoms. Condition (E4) is needed to ensure monotonicity of the
Equality Factoring rule:

Lemma 4.16 (Monotonicity for SP�

Sel
). SP�

Sel is monotone for ground clauses
w.r.t. every admissible ordering �.

Proof. Ordered Paramodulation, Positive Superposition and Negative Superposition
are restrictions of the Ordered Paramodulation rule from the paramodulation cal-
culus, which is proved to be monotone. The Reflexivity Resolution rule is left un-
changed. It remains to show monotonicity of the Equality Factoring rule.

11However, this example does not imply that the Equality Factoring rule is strictly necessary
when tautologies are not deleted. In fact, Bachmair & Ganzinger [1997] proved that a variant of
superpostion calculus without Equality Factoring called the strict superposition calculus , remains
complete. To prove this, they formulated a waker notion of redundancy and used basic strategies
in order to avoid superposition into variables
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(1) EF : C ∨ s ' h ∨ s ' t? ` C ∨ t 6' h ∨ s ' h (Equality Factoring):
From conditions (ii) and (iii) of this rule, we have (s ' t) � (s ' h), and s � t,
which implies (by totality and monotonicity of �) that t � h. Using condition
(E4) of admissible orderings (see Definition 4.15), we obtain: (s ' t) � (t 6' h).
Hence, (C ∨ s ' h ∨ s ' t) � (C ∨ t 6' h ∨ s ' h) what was required to show. 22

Lemma 4.17 (Properties of Candidate Models). Let N be a set of ground
clauses. Then for every C ∈ N , (i) IC⇓�C implies that IN⇓�C and (ii) If
C = (C ′ ∨ A?) is productive w.r.t. IC then IN⇓2 C ′.

N Clauses C ∆C

C C ′ ∨ ¬B ?

Proof. (i) If IC⇓� A for some positive atom A in C, then
IN⇓� A �C. Otherwise, C should contain negatively some
atom B = (E ' E ′) such that IC⇓2 B, but IN⇓�B. Since
E 6= E ′, w.l.o.g. we can assume that E � E ′. Then by Lemma 4.12, IE⇓�B.
But for every atom (E1 ⇒ E2) ∈ IE, we have E � E1 � E2, and so C � ¬B =
(E 6' E ′) � (E1 ' E2) by conditions (E1) and (E3) of admissible orderings. Hence
IE⇓� IC⇓2 B, which contradicts to IE⇓�B.

N Clauses C ∆C

C

C ′︷ ︷
C ′′ ∨ B ∨ A? A

(ii) Assume that for some productive clause C = (C ′ ∨ A?),
we have IN⇓� C ′. Since IC⇓2 C ′, there must be some pos-
itive atom B in C ′ that is true in IN⇓. Since IN⇓ is
canonical for superposition, then by Lemma 4.12 we have
IE � B, where E is the maximal non-equational expression in B. If B is a non-
equational atom, then this situation is not possible, since IE⇓ = IB⇓ ⊆ IC⇓2 C ′.
So B = (s ' h) for some ground terms s � h (s 6= h, since IC⇓2 B).

N Clauses C ∆C

D1 D′ ∨ s ' t? s⇒ t
g

C C ′′ ∨
B︷ ︷

s ' h ∨

A︷ ︷
s ' t′ ? s⇒ t′

Since Is⇓� B but IC⇓2 B, there is a minimal
productive clause of the form D1 = (D′

1 ∨ (s '
t)) � C such that ID

1 ⇓� B. Since B = (s '
h) ≺ A � (s ' t), then A must be an atom of
the form (s ' t′), with s � t′. But the term s
in (s ' t) must be irreducible w.r.t. ID1 by condition (iii) of productive clause
(see Definition 4.14). This is only possible when D1 = C. So, IC⇓ = (IC ∪

{s⇒ t′})⇓�B = (s ' h) �C ′. This situation is not possible by condition (iv) of
productive clause from Definition 4.14. 22

Lemma 4.18 (Counterexample-Reduction Lemma). Let N be a set of ground
clauses which is saturated w.r.t. SP�

Sel up to redundancy. Then for every clause
D ∈ N with IN⇓2 D 6= �, there exists D1 ∈ N such that D1 ≺ D and IN⇓2 D1.

Proof. Let IN⇓2 D for some clause D ∈ N . Then ID⇓2 D, since otherwise by
Lemma 4.17 (i) we would have IN⇓�D. In particular, clause D cannot be pro-
ductive. So, we have ID⇓ = ID⇓2 D. According to the definition of productive
clauses (see Definition 4.14), this situation is possible only in the following cases:
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(1) D = (D′∨¬A) for some eligible literal ¬A in D, and ID⇓� A = (E1 ' E2).
W.l.o.g. assume that E1 � E2. Then either (1.1) E1 = E2 = s for some ground
term s, or (1.2) A = (P ' T) is a non-equational atom and P is reducible by some
rewrite rule (E ′

1 ⇒ E ′
2) ∈ ID, or (1.3) E1 = r[s], E2 = h and there is a rewrite rule

(s⇒ t) ∈ ID produced by some clause C = (C ′ ∨ s ' t).
In case (1.1), it is possible to reduce counterexample D by applying the Re-

flexivity Resolution rule, in case (1.2) an Ordered Resolution inference or an Ordered
Paramodulation inference is possible similarly as for the paramodulation calculus.

N Clauses C ∆C

D D′ ∨ r[s] 6' h
?

−
g

D1 C ′ ∨ D′ ∨ r[t] 6' h ?

C C ′ ∨ s ' t? s⇒ t

In case (1.3) it is possible to apply the Negative
Superposition rule to clauses C and D that produces
a clause NS[C, D]: D1 = (C ′ ∨ D′ ∨ r[t] 6' h) ≺ D.
We must show that IN⇓2 D1. Indeed, IN⇓2 D′ since
IN⇓2 D and IN⇓2 C ′ by Lemma 4.17 (ii). If IN⇓�

(r[t] ' h), then IN⇓�(r[s] ' h), which is also not possible.
(2) D = (D′ ∨ A), where A = (E1 ' E2) is an eligible greatest literal w.r.t.

D′, E1 � E2 and (ID ∪ {E1 ⇒E2})⇓� D′. Then there exists an atom B = (E ′
1 '

E ′
2) from D′ whose rewrite proof uses E1 ⇒E2. W.l.o.g., assume that E ′

1 � E ′
2.

Then E ′
1 = E1, since otherwise, by Lemma 4.12 (ii), ID⇓� IE′

1⇓�B. Then either
(2.1) A = B are non-equational atoms, or (2.2) A = (s ' t) and B = (s ' h) for
some ground terms s � t and s � h and ID⇓�(t ' h).

N Clauses C ∆C

D D′ ∨ s ' h ∨ s ' t? −
g
D1 D′ ∨ t 6' h ∨ s ' h ?

In case (2.1) the Ordered Factoring rule can be ap-
plied to D which reduces this counterexample. In
case (2.2) the Equality Factoring rule can be applied
to D which produces a clause EF[D]: D1 = (D′ ∨ t 6'
h ∨ s ' h) ≺ D. It remains to show that IN⇓2 D1. Indeed, IN⇓2(t 6' h), since
IN⇓� ID⇓�(t ' h), and IN⇓2(D′ ∨ s ' h) since IN⇓2 D. 22

Remark 4.19. Note that the Equality Factoring rule is applied in case (2.1) only
if ID⇓�(t ' h). Since t � h, then the term t must be reducible in ID⇓. In
this situation it can be shown that the counterexample can be reduced using an
alternative inference rule called Merging Paramodulation [Bachmair & Ganzinger,
1990, 1994] formulated in Figure 13. 33

Lifting of the superposition calculus to general clauses is analogous to the para-
modulation calculus. Summarising, we have proved completeness of the superposi-
tion calculus SP�

Sel
(both with Equality Factoring or with Merging Paramodulation):

Theorem 4.20 (Completeness of SP�

Sel
with Redundancy). (SP�

Sel, R
S�) is

complete.

An extension of superposition rules with simultaneous inferences can be justi-
fied similarly as for the paramodulation calculus: see Figure 14.
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Figure 13 The merging paramodulation rule

Merging Paramodulation

MP :
C ∨ s ' t? D ∨ u ' v ∨ r ' h[s′]

?

Cσ ∨ Dσ ∨ rσ ' h[t]σ ∨ uσ ' vσ

where (i) σ = mgu({s=s′, r=u}); (ii) s ' t is eligible strictly maximal w.r.t. C and σ;
(iii) r ' h is eligible strictly maximal w.r.t. D ∨ u ' v and σ; (iv) tσ 6� sσ; (v) hσ 6� rσ
and (vi) s′ is not a variable.

Figure 14 The simultaneous superposition rules

(Simulteneous) Positive Superposition (Simulteneous) Negative Superposition

PS :
C ∨ s ' t? D[s′] ∨ r[s′] ' h[s′]

?

Cσ ∨ D[t]σ ∨ r[t]σ ' h[t]σ
NS :

C ∨ s ' t? D[s′] ∨ r[s′] 6' h[s′]
?

Cσ ∨ D[t]σ ∨ r[t]σ 6' h[t]σ

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C and σ; (iii) r ' h
is eligible strictly maximal w.r.t. D and σ;
(iv) (sσ ' tσ) 6� (rσ ' hσ); (v) tσ 6� sσ;
(vi) hσ 6� rσ and (vii) s′ is not a variable.

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C and σ; (iii) r 6' h
is eligible strictly maximal w.r.t. D and σ;
(iv) tσ 6� sσ; (v) hσ 6� rσ and (vi) s′ is not a
variable.

5 Chaining Calculi

The ordered paramodulation and ordered resolution calculi are examples of calculi
modulo theory, in these cases – the theory of equality. The advantage of calculi
with built-in equality over direct treatment of equational axioms, is that the proof
search for the first is restricted to a relatively narrow class of proofs, namely the
rewrite proofs. This basic idea can be further extended to capture some theories
that are weaker than equational theories. Below, we revisit specialised chaining
calculi for transitive and compositional binary relations that have been introduced
by Bachmair & Ganzinger [1995, 1998b]. Using an extension of the model construc-
tion method from the previous sections, we prove completeness of these calculi for
a quite general class of orderings, which will play essential rôle in the decision pro-
cedures that we are going to present. Among other things, we will discuss necessity
for special Transitivity Factoring and Compositional Resolution rules in chaining cal-
culi which can be seen as non-symmetric analogs of the Equality Factoring rule.
We also describe a particular hyper-inference strategy, and extend the standard
redundancy criterion to suit a larger class of compositional theories.
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5.1 Reasoning with Transitive Relations

In calculi with built-in theory, we have two types of signature elements: the in-
terpreted (or special) symbols whose interpretation is restricted in a theory, and
the remaining free symbols. In chaining calculi we will have only binary predicate
symbols as special symbols. We have already used one special predicate symbol,
namely equality ', which can be easily distinguished from others because of its
infix notation s ' t, i.e., when the predicate symbol is situated between the ar-
guments. We continue this tradition, and will use the infix notation sSt for all
special binary predicate symbols S. We say special atoms or special literals for
those atoms or literals that contain special predicate symbols.

Since we will talk about calculi with build-in theories, we will do all logical
reasoning modulo theory as well. We say that a clause (set) is T -satisfiable (here
T denotes a theory), if it has a T -model , i.e., a model which admits all axioms of
T . The entailment relation modulo theory is denoted by T�. The notion of standard
redundancy based on semantical entailment is also extended to theories. We say
that a ground clause C 0 (or a ground inference π0) is T -redundant w.r.t. a set of
ground clauses N 0, if N 0

C0 T� C 0 (respectively, N 0
C0

1
T�C 0, where C 0

1 is the maximal
premise of π0). Redundancy of non-ground clauses and inferences is defined as
usual, by considering their eligible ground instances. It will be usually the case
that a theory is known from the context, so we will often say “redundant” instead
of “T -redundant”.

In this section we consider a theory of transitivity T in which some special
predicates T are restricted to admit the transitivity property:

xTy ∧ yTz→xTz (Transitivity) (22)

Equality is a transitive symmetric reflexive relation that admits monotonicity prop-
erty. A transitive relation should behave similar to equality, except that it is neither
symmetric, nor reflexive or monotone. Using this observation, we try to obtain a
specialised calculus for transitive relation from the superposition calculus, by re-
moving symmetry, reflexivity and monotonicity of the equality predicate ' from
this calculus.

By modifying the Positive Superposition and Negative Superposition inference
rules we arrive to the inference rules given in Figure 15. The Ordered Chaining rule
is obtained from the Positive Superposition rule, by removing symmetry and mono-
tonicity of equality, so that a sound inference rule for transitive relations remains.
The Negative Chaining rule is similarly obtained from the Negative Superposition
rule, however, now we have two variants of rules since the transitive relation might
not be symmetric and we must distinguish chaining into the left argument from
the chaining into the right argument.

73



Figure 15 Ordered chaining rules for transitive relations

Ordered Chaining

OC :
C ∨ tTs? D ∨ s′Tt′?

Cσ ∨ Dσ ∨ tσT t′σ

where (i) σ = mgu(s, s′); (ii) tT s is eligible strictly maximal w.r.t. C and σ; (iii) s′T t′ is
eligible strictly maximal w.r.t. D and σ; (iv) tσ 6� sσ and (v) t′σ 6� s′σ.

Negative Chaining

NC :
C ∨ sT t? ¬(s′Th) ∨ D

Cσ ∨ ¬(tσThσ) ∨ Dσ

C ∨ tTs? ¬(hTs′) ∨ D

Cσ ∨ ¬(hσT tσ) ∨ Dσ

where (i) σ = mgu(s, s′); (ii) sT t is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(s′Th)
is eligible w.r.t. D and σ; (iv) tσ 6� sσ and
(v) hσ 6� s′σ.

where (i) σ = mgu(s, s′); (ii) tT s is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(hTs′)
is eligible w.r.t. D and σ; (iv) tσ 6� sσ and
(v) hσ 6� s′σ.

The Reflexivity Resolution rule does not have any counterpart for transitive
relation, since they are not necessary reflexive. The Equality Factoring rule can
be easily modified into a Transitivity Factoring rule for transitive relations: see
Figure 16. The chaining calculus in this form has been considered, for instance

Figure 16 The chaining calculus with the Transitivity Factoring rule is incomplete

Transitivity Factoring

TF :
C ∨ sT t ∨ s′Th

Cσ ∨ ¬(hσT tσ) ∨ sσT tσ

C ∨ tT s ∨ hTs′

Cσ ∨ ¬(tσThσ) ∨ tσTsσ

where (i) σ = mgu(s, s′); (ii) sT t is eligible
strictly maximal w.r.t. C∨¬(s′Th) and σ, and
(iii) tσ 6� sσ.

where (i) σ = mgu(s, s′); (ii) tT s is eligible
strictly maximal w.r.t. C∨¬(hTs′) and σ, and
(iii) tσ 6� sσ.

in [Struth, 2001], where this calculus has been derived syntactically by analysing
resolution proofs involving transitivity axioms. Unfortunately this calculus is not
compatible with tautology deletion12 (it seems to be that this was not known
before):

N : 1. aTb3 ∨ aaTTbb4
?

2. aTb2 ∨ aaTTbb3
?

3. aTb1 ∨ aaTTbb2
?

4. ¬(aTb3) ∨ ¬(aaTTbb4)
?

5. ¬(aTb2) ∨ ¬(aaTTbb3)
?

6. ¬(aTb1) ∨ ¬(aaTTbb2)
?

7. bb1TTbb4
?

8. bb4TTbb1
?

Example 5.1. Consider a set
N consisting of clauses 1 – 8,
where T is a transitive pred-
icate symbol and a � b4 �
b3 � b2 � b1.

12Contrary to what has been claimed in [Ganzinger et al., 2001], possibly by a mistake
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1. aTb3 ∨ aTb4

2. aTb2 ∨ aTb3

3. aTb1 ∨ aTb2

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O BB

���
�

�
�

�
�

First note that this clause set is unsatisfiable. Indeed, suppose
there exists a T -model M for N (i.e., where T is interpreted by a
transitive relation). Then at least one literal from each clause 1 –
3 must be true in M. Since all atoms 7 and 8 are also true in M,
then we have M T� aTb1 iff M T� aTb4. By simple combinatorial
analysis, one can observe that for some clause from 1 – 3, both literals must be
true in M (the figure to the right shows which literals should be simultaneously
true or false in M). However this is not possible because of clauses 4 – 6.

9. ¬(bb4TTbb3)
?

10. ¬(bb4TTbb2)
?

11. ¬(bb3TTbb2)
?

12. ¬(bb3TTbb1)
?

13. ¬(bb2TTbb1)
?

14. ¬(bb3TTbb4)
?

15. ¬(bb2TTbb4)
?

16. ¬(bb2TTbb3)
?

17. ¬(bb1TTbb3)
?

18. ¬(bb1TTbb2)
?

Although the clause set N is unsatisfiable, a con-
tradiction cannot be derived in the chaining calculus
with the Transitivity Factoring rule. To demonstrate
it in a simple way, we add clauses 9 – 18 to N that
express that the remaining pairs of constants b1 – b4

are not related to each other by the transitive relation (see the table to the right).
Obviously, after we add these clauses, the clause set N remains unsatisfiable.

OC[7, 8]: 19. bb1TTbb1
?The Ordered Chaining rule can be applied only to clauses 7

and 8 which produces a new clause 19. The Negative Chaining
rule is possible between clauses 1 – 3 and clauses 4 – 6, between clause 8 and
clauses 9, 10, and between clause 7 and clauses 14, 15. It is easy to see that the
conclusion of every such inference is either a tautology (for inferences NC[1, 4],
NC[2, 5] and NC[3, 6]), or is subsumed by (and redundant w.r.t.) some clause from
9 – 18. The only possible Ordered Resolution inferences are OR[1, 4], OR[2, 5] and
OR[3, 6] that produce tautologies as well. The Ordered Factoring rule cannot be
applied to N . It is possible to apply the Transitivity Factoring rule to clauses 1 – 3,
but its conclusions will be also subsumed by clauses 9 – 18. Hence, the empty clause
cannot be derived from N using the inference rules listed above, when deletion of
tautologies and subsumed clauses is allowed.

We stress, that the reason of incompleteness is caused here only by tautology
deletion as an instance of redundancy elimination techniques13, since it was shown
in [Bachmair & Ganzinger, 1997] that the chaining calculus with a weaker notion
of redundancy is complete even without the Transitivity Factoring rule. 33

Note that Example 5.1 does not work, if the relation T is additionally symmetric
(like equality). In this case, additional chaining inferences between clauses 1 – 3
are possible, which allow one to derive the empty clause. In fact, chaining with
the Transitivity Factoring rule is complete with the standard redundancy criterion
for partial equivalences, i.e., for transitive and symmetric relations.

13It is possible to show that a slightly longer saturation of clauses 1 – 8 does not contain the
empty clause when only tautologies are deleted. So subsumption deletion is not the reason of
incompleteness for the chaining calculus with Transitivity Factoring
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Refutational completeness for the chaining calculus with the standard redun-
dancy criterion can be restored using the Transitivity Resolution rule proposed in
[Bachmair & Ganzinger, 1995, 1998b], which is given in Figure 17. Transitivity

Figure 17 The Transitivity Resolution rule

Transitivity Resolution

TR :
C ∨ sTh ∨ s′′Tt′? D ∨ s′Tt

?

Dσ ∨ ¬(tσThσ) ∨ sσThσ

C ∨ hTs ∨ t′Ts′′? D ∨ tTs′?

Dσ ∨ ¬(hσT tσ) ∨ hσTsσ

where (i) σ = mgu({s=s′, s=s′′}); (ii) s′′T t′

is eligible strictly maximal w.r.t. C ∨ sTh and
σ; (iii) s′T t is eligible strictly maximal w.r.t.
D and σ; (iv) s′′σT t′σ 6� s′σT tσ; (v) tσ 6� s′σ
and (vi) hσ 6� sσ.

where (i) σ = mgu({s=s′, s=s′′}); (ii) t′Ts′′

is eligible strictly maximal w.r.t. C ∨hTs and
σ; (iii) tT s′ is eligible strictly maximal w.r.t.
D and σ; (iv) t′σTs′′σ 6� tσTs′σ; (v) tσ 6� s′σ
and (vi) hσ 6� sσ.

Resolution rule is a sound inference rule that represents a controlled application
of resolution between the second premise of the rule D ∨ s′T t

? and a transitivity
clause ¬(sT t)∨¬(tTh)∨sTh (the right variant of this rule is obtained by swapping
the arguments of T ). Note that the conclusion of the rule is a T -consequence of
the right premise of this rule only. Note also, that an application of the Transitivity
Factoring rule to clause C = (C ∨ sT t ∨ s′Th) can be simulated a self-application
of the Transitivity Resolution rule (when both premises are C) followed by deletion
of the duplicate literal sσThσ.

Continuing Example 5.1, the empty clause from clauses 1 – 8 can be now derived
using the Transitivity Resolution rule as follows:

TR[3, 1] : 9. ¬(b4Tb1) ∨ aTb1 ∨ aaTTbb3
?

OR[9, 5] : 10. ¬(b4Tb1) ∨ aTb1 ∨ ¬(aaTTbb2)
OR[3, 10]: 11. ¬(b4Tb1) ∨ aTb1 ∨ aaTTbb1

OF[11] : 12. ¬(b4Tb1) ∨ aaTTbb1
?

NC[12, 4]: 13. ¬(b4Tb1) ∨ ¬(b1Tb4) ∨ ¬(aaTTbb3)
OR[2, 13]: 14. ¬(b4Tb1) ∨ ¬(b1Tb4) ∨ aaTTbb2

?

OR[14, 6] : 15. ¬(b4Tb1) ∨ ¬(b1Tb4) ∨ ¬(aaTTbb1)
OR[12, 15]: 16. ¬(b4Tb1) ∨ ¬(b4Tb1) ∨ ¬(bb1TTbb4)
OR[7, 16] : 17. ¬(b4Tb1) ∨ ¬(bb4TTbb1)
OR[8, 17] : 18. ¬(bb4TTbb1)
OR[8, 18] : 19. �

For proving completeness of chaining calculus, we adapt the model construction
given for superposition calculus. Given a set of ground clauses N that is saturated
under chaining calculus, we construct a model, which is represented by a set IN

of ground atoms, including those with transitive predicates. Similar to equality,
we will read atoms involving transitive predicates as rewrite rules, however now
they will be (i) labelled (or sorted), since we might possibly have several transitive
predicates, and (ii) oriented, since now transitive predicates are not necessarily
symmetric. Following [Bachmair & Ganzinger, 1995, 1998b], we say that each
transitive atom sT t induces either a left-to-right rewrite rule s

T
⇒ t when s � t, or

a right-to-left rewrite rule s
T
⇐ t when s ≺ t, or a two-way rewrite rule s

T
⇔ t, when
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s = t. Note that (s
T
⇐ t) 6= (t

T
⇒ s). This correspondence is one-to-one between

transitive atoms and rewrite proofs. From now on, we do not distinguish special
atoms from the rewrite rules that they induce.

Given a set of atoms I, we say that an atom sT t has a rewrite proof in I (in
symbols: s ⇓T

I t) if either (i) s
T
⇔ t ∈ I, or (ii) there exists a non-empty sequence

of rewrite steps based on I of the form s = s0
T
⇒ s1

T
⇒ · · ·

T
⇒ sk

T
⇐ · · ·

T
⇐ sn = t,

where 0 ≤ k ≤ n. A rewrite model I⇓ induced by a set of atoms I consists of all
atoms from I and all atoms that have a rewrite proof in I. The rewrite model I⇓
does not necessarily satisfy transitivity axioms. Indeed, consider I := {tT s, sTh}

with s � t and s � h, i.e., I = {t
T
⇐ s, s

T
⇒ h}. Then I⇓� tT s, I⇓� sTh but

I⇓2 tTh. A minimal T -model in which all atoms from I are true must contain
all atoms sT t that have a chain proof in I, i.e., a non-empty sequence of atoms
s0Ts1, s1Ts2, . . . , sn−1Tsn from I, where s = s0 and s = sn. A rewrite proof is a
chain proof that either consists of one two-way rewrite step, or is composed from
left-to-right rewrite steps followed by right-to-left rewrite steps.

Obviously, not every chain proof is a rewrite proof. In the example above, the
atom tTh has a chain proof t

T
⇐ s

T
⇒ h in I, which is not a rewrite proof. Note that

for this set I, it is possible to apply the Ordered Chaining rule to atoms tT s and
sTh from I. If we augment I with the conclusion tTh of this inference, we obtain
a rewrite proof for tTh.

a

b

c

d

e

f

g

??���

��/
//

//
/ GG������

��?
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��?
?? ??���''O
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A fragment of a chain proof of the form t
T
⇐ s

T
⇒ h is called

a peak . The peaks in chain proofs can be eliminated by re-
placing them with the conclusion of the Ordered Chaining rule.
If all peaks in a chain proof are eliminated then we obtain a rewrite proof. Hence a
saturation with the Ordered Chaining rule can be seen as an analog of Knuth-Bendix
Completion procedure for transitive relations. It is easy to see that a variant of
the Critical Pair Lemma holds for this ordered chaining completion, namely, if I
is a set of atoms that is closed under the Ordered Chaining rule then every atom
that has a chain proof in I, has a rewrite proof in I. In other words, if I is a set
of atoms that is saturated in ordered chaining, then I⇓ is a minimal T -model in
which all atoms from I are true.

5.2 Reasoning with Compositional Binary Relations

Before giving a formal proof for refutational completeness of the chaining calculus,
we discuss a possibility of its extension to more general theories than the theory of
transitivity. Transitivity axiom (22) can be seen as a compositional law for binary
relations of form (23).

S ◦ T ⊆ H = xSy ∧ yTz→xHz (23)
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If C is a set of compositional laws, one can consider a compositional theory (which
we denote with the same latter), that satisfies all compositional axioms from C.
We write (S ◦T ⊆ H) ∈ C (or simply S ◦T ⊆ H when C is clear from the context)
for compositional laws that belong to C. As usual, predicate symbols that are not
free in the theory (i.e., they are involved in compositional axioms) are called special
predicate symbols. Below we are concerned with the question: to which extend the
rewrite techniques can be adopted for such compositional theories?

S ◦ T⊆S

T ◦ S⊆T

S ◦ S⊆T

T ◦ T⊆S

Example 5.2. Let C be a theory induced by a set of compositional
axioms given in the right table. Consider a set of ground atoms I =
{aSb, bTc, cSd}. By applying compositional axioms, it is easy to see that
I C� aSc, I C� bTd, and so I C� aSd and I C� aTd (where C� denotes entailment
in C). Hence the sequence aSb, bTc, cSd can be seen as a chain proof for aSd and
aTd.

a

b

c

d
S ��?

??
??

??
T

??�������

S

��?
??

??
??

S //

T //______

Now suppose that we have an ordering � in which a � b

and c � b � d. Then the chain proof given above has a peak
b

T
⇐ c

S
⇒ d: see the figure to the right. When we eliminate this

peak by applying the correspondent compositional axiom, we
obtain a rewrite proof a

S
⇒ b

T
⇒ d. However, the last rewrite rule entails only atom

aSd. Hence after eliminating of peaks from the chain proof, we have lost the proof
for atom aTd. 33

The reason for the failure of the completion procedure demonstrated in Ex-
ample 5.2, is that the chain proof given in this example does not admit the as-
sociativity property : the result of composition of atoms in this proof depends on
the order in which these atoms are composed. The sequence of relations S ◦ T ◦ S
can be composed in two different ways: if we start from the first two relations we
obtain (S ◦ T) ◦ S = S ◦ S = T, if we start from the last two relations, we obtain
S ◦ (T ◦ S) = S ◦ T = S. For obtaining a correct result after eliminating peaks from
chain proofs we require additional property to hold for compositional axioms for
C:

(S ◦ T ) ◦ H = S ◦ (T ◦ H) (Associativity Of Composition) (24)

which formally means that whenever (S ◦ T ⊆ U) ∈ C and (U ◦ H ⊆ W ) ∈ C
then there exists a special predicate symbol V such that (T ◦ H ⊆ V ) ∈ C and
(S ◦ V ⊆ W ) ∈ C.

Most compositional theories are associative. The theory of transitivity is an
associative compositional theory. Bachmair & Ganzinger [1995, 1998b] give an
example of useful associative compositional axioms which go beyond transitivity:

� ◦ � ⊆ �; % ◦ % ⊆ %; ∼ ◦ ∼ ⊆ ∼;
� ◦ % ⊆ �; � ◦ ∼ ⊆ �; % ◦ ∼ ⊆ %;
% ◦ � ⊆ �; ∼ ◦ � ⊆ �; ∼ ◦ % ⊆ %.

(25)
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For the particular axioms above it is especially easy to check the associativity
property. Let � be a precedence on special predicate symbols such that � �
% � ∼. Then the compositional axioms above can be characterised as follows:

Definition 5.3. Given a precedence � on special predicate symbols, we say that a
compositional theory C is induced by � if C = {S◦T ⊆ H | H = max�(S, T )}. 33

All compositional axioms in (25) are induced by the precedence � given above.
Every compositional theory that is induced by a precedence �, is evidently asso-
ciative, and composition of several special relations can be computed as follows:

S1 ◦ · · · ◦ Sn ⊆ S iff S = max�(S1,.., Sn).

Bachmair & Ganzinger [1998b] have restricted the class of allowed composi-
tional axioms to those induced by a total precedence on special predicates. The
model construction and redundancy elimination will work if one imposes a weaker
restrictions on compositional axioms:

Definition 5.4. We say that a set C of compositional axioms is compatible with
a precedence � on special predicates if (S ◦ T ⊆ H) ∈ C implies that S ≥≥ H or
T ≥≥ H. 33

However, in this report we do not impose any of these restrictions, since there
are many interesting compositional theories that do not enjoy this property, like
the one given in the example below. Unfortunately, this will require certain mod-
ification of standard redundancy for the chaining calculus.

Example 5.5. Consider a theory consisting of special binary predicate symbols Pi

for every natural i with 0 ≤ i < p which admit the following compositional axioms:

Pn ◦ Pm ⊆ P(n+m mod p) (26)

for every n and m with 0 ≤ n < p and 0 ≤ m < p. It is easy to check that this
compositional theory is associative. Indeed, Pn1

◦ · · · ◦ Pnk
⊆ P(n1+···+nk mod p) does

not depend on the order in which these compositional axioms are applied.
However, if p > 1, then there is no total precedence � on special predicate

symbols that is compatible with all compositional axioms. Indeed, assume that
� is such a precedence and Pm is the maximal special predicate symbol w.r.t.
to this precedence. Then P(m−1 mod p) ◦ P(m+1 mod p) ⊆ Pm, hence it is not possible
that P(m−1 mod p) ≥≥ Pm or P(m+1 mod p) ≥≥ Pm unless either (m − 1 = m mod p), or
(m + 1 = m mod p), which is only possible when p = 1. 33

The ordered chaining calculus for compositional binary relations OC�
Sel

is for-
mulated in System 11. In all inference rules we assume that S, T and H are special
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Ordered Chaining

OC :
C ∨ tSs? D ∨ s′Tt′?

Cσ ∨ Dσ ∨ tσHt′σ

where (i) σ = mgu(s, s′); (ii) tSs is eligible strictly maximal w.r.t. C and σ; (iii) s′T t′ is
eligible strictly maximal w.r.t. D and σ; (iv) tσ 6� sσ; (iv)′ tσ 6= sσ if H = T ; (v) t′σ 6� s′σ
and (v)′ t′σ 6= s′σ if H = S.

Negative Chaining

NC :
C ∨ sSt? ¬(s′Hh) ∨ D

Cσ ∨ ¬(tσThσ) ∨ Dσ

C ∨ tTs? ¬(hHs′) ∨ D

Cσ ∨ ¬(hσStσ) ∨ Dσ

where (i) σ = mgu(s, s′); (ii) sSt is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(s′Hh)
is eligible w.r.t. D and σ; (iv) tσ 6� sσ and
(v) hσ 6� s′σ.

where (i) σ = mgu(s, s′); (ii) tT s is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(hHs′)
is eligible w.r.t. D and σ; (iv) tσ 6� sσ and
(v) hσ 6� s′σ.

Compositional Resolution

CR :
C ∨ sHh ∨ s′′S′t′? D ∨ s′St

?

Dσ ∨ ¬(tσThσ) ∨ sσHhσ

C ∨ hHs ∨ t′S′s′′? D ∨ tTs′?

Dσ ∨ ¬(hσStσ) ∨ hσHsσ

where (i) σ = mgu({s=s′, s=s′′}); (ii) s′′S′t′

is eligible strictly maximal w.r.t. C∨sHh and
σ; (iii) s′St is eligible strictly maximal w.r.t.
D and σ; (iv) s′′σS′t′σ 6� s′σStσ; (v) tσ 6�
s′σ and (vi) hσ 6� sσ.

where (i) σ = mgu({s=s′, s=s′′}); (ii) t′S′s′′

is eligible strictly maximal w.r.t. C∨hHs and
σ; (iii) tT s′ is eligible strictly maximal w.r.t.
D and σ; (iv) s′′σS′t′σ 6� tσTs′σ; (v) tσ 6�
s′σ and (vi) hσ 6� sσ.

System 11: The ordered chaining calculus for compositional binary relations
OC�

Sel

predicate symbols such that (S ◦ T ⊆ H) ∈ C, where C is an associative composi-
tional theory. The calculus is parametrised, as usual, with an admissible ordering
� (specified below) and a selection function Sel for negative literals. Note that in
the Ordered Chaining rule we can “chain” compositional relations even if they have
equal arguments, but only if the resulting compositional relation differs from those
that have been used in the premises (otherwise the conclusion is subsumed by the
corresponding premise): see conditions (iv)′ and (v)′ of this rule. This, however,
never happens if compositional axioms are induced by some total precedence. Note
also that a conclusion of every inference rule from System 11 might not be unique,
since it is neither excluded that both (S ◦ T ⊆ H1) ∈ C and (S ◦ T ⊆ H2) ∈ C for
some H1 6= H2, nor that both (S ◦ T1 ⊆ H) ∈ C and (S ◦ T2 ⊆ H) ∈ C for some
T1 6= T2 or both (S1 ◦ T ⊆ H) ∈ C and (S2 ◦ T ⊆ H) ∈ C for some S1 6= S2. In
other terms, all these inference rules are multi-conclusion.

Definition 5.6 (Admissible Order). The ordering � on expressions is called
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admissible for chaining if � is admissible for resolution (see Definition 3.34) and
additional:

(T) � is total on ground terms,

and for every compositional axiom S ◦T ⊆ H and terms s � t, s � h, the following
hold:

(C1) ¬(sHh) � (sSt); ¬(hHs) � (tT s); ¬(sHs) � (tT s);
(C2) ¬(sHh) � ¬(tTh); ¬(hHs) � ¬(hSt); ¬(sHs) � ¬(sSt);
(C3) (sSt) � ¬(tTh); (tT s) � ¬(hSt); (sHs) � (sSt) 33

Conditions (C1) and (C2) are needed to ensure monotonicity of the Negative
Chaining rule and condition (C3) guarantees monotonicity of the Compositional
Resolution rule:

Lemma 5.7 (Monotonicity for OC�
Sel

). All rules except the Ordered Chaining

rule from OC�
Sel

are monotone for ground clauses w.r.t. every admissible ordering.

Proof. (1) Negative Chaining:
We show that the conclusion of this rule is always smaller than its right premise:

(1.a) NC : C ∨sSt?, ¬(sHh)∨D ` C ∨¬(tTh)∨D (Negative Chaining, left):
By conditions (iv) and (v) of this rule we must have s � t and s � h (we use
totality condition (T) for ordering � here). Since S ◦ T ⊆ H, by conditions (C1)
and (C2) of admissible orderings (see Definition 5.8), we have ¬(sHh) � (sSt)
and ¬(sHh) � ¬(tTh). By condition (ii) of the rule we have (sSt) � C. Hence
¬(sHh) � C. An so, (¬(sHh) ∨ D) � (C ∨ ¬(tTh) ∨ D).

(1.b) NC : C∨tT s?, ¬(hHs)∨D ` C∨¬(hSt)∨D (Negative Chaining, right):
By condition (v) of this rule we must have s � h. If s � h, then the situation is
fully symmetric to the left version of this rule. If s = h, then we should use the
last properties from conditions (C1) and (C2): ¬(hHs) = ¬(sHs) � (tT s) and
¬(hHs) = ¬(sHs) � ¬(sSt). Again, since (tT s) � C by condition (ii) of the rule,
we obtain (¬(hHs) ∨ D) � (C ∨ ¬(hSt) ∨ D).

(2) Compositional Resolution:
We show that the conclusion of this rule is smaller that its right premise:

(2.a) CR : C ∨ sHh ∨ sS′t′?, D ∨ sSt? ` D ∨ ¬(tTh) ∨ sHh (Compositional
Resolution, left):
By conditions (iv) and (ii) of this rule, we have (sSt) � (sS ′t) � (sHh). Addition-
ally, by condition (C3) of admissible orderings, we have (sSt) � ¬(tTh). Hence
(D ∨ sSt) � (D ∨ ¬(tTh) ∨ sHh).

(2.b) CR : C ∨ hHs ∨ t′S′s
?, D ∨ tT s? ` D ∨ ¬(hSt) ∨ hHs (Compositional

Resolution, right):
This case is completely symmetric to case (2.a). 22
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Unfortunately the Ordered Chaining rule might not be monotone if the underly-
ing compositional axioms are not compatible with any total precedence on special
predicate symbols (see Definition 5.4 and Example 5.5). Indeed, for every ordering
� that is monotone for the Ordered Chaining rule, one can define such a prece-
dence � by setting S � T iff cSc � cT c, where c is some fixed constant. Then
monotonicity of the Ordered Chaining rule would imply that max�(cSc, cT c) � cHc
for every compositional axiom S ◦ T ⊆ H, hence S ≥≥ H or T ≥≥ H and so all
compositional axiom would have been admissible with �.

5.3 The Subterm Chaining Calculus

It is possible to combine the chaining calculus and the superposition calculus to
handle compositional theories with equality. One could simply use the Ordered
Paramodulation rule to perform paramodulation into non-equational literals (in-
cluding all special non-equational literals) as before. However it is possible to
use the advantage of compositional theory and perform paramodulation inferences
only into the largest argument of special literals. Essentially, we treat the equality
predicate ' as a part of a compositional theory. We assume that every composi-
tional theory C contains all axioms ' ◦ S ⊆ S and S ◦ ' ⊆ S for every special
predicate symbol S. However we do not allow the equational predicate to be the
result of composition of non-equational predicates, i.e., S ◦ T ⊆ ' implies S = '
and T = '. This is done to avoid problems with monotonicity.

Applying these modifications, we obtain a so-called subterm chaining calculus
that is an extension of the ordered chaining calculus from System 11 with infer-
ence rules given in System 12, where now equality can be used as a compositional
predicate symbol. Note that the Positive Superposition and the Negative Superposi-
tion rules are instances of the Ordered Subterm Chaining and the Negative Subterm
Chaining rules respectively, when S = ' (in the left variants). The right variants
of these rules are not needed for equational literals, since we treat equality sym-
metrically. The Equality Factoring rule is simulated by a self-application of the
Compositional Resolution rule for equational atoms.

Definition 5.8 (Admissible Order). The ordering � on expressions is called
admissible (for subterm chaining) if � is admissible for chaining (see Definition 5.8)
and superposition (see Definition 4.15). 33

Lemma 5.9 (Monotonicity for SC�
Sel

). All rules except the Ordered Chaining

rule from SC�
Sel are monotone for ground clauses w.r.t. every admissible ordering.

Proof. Monotonicity of the Negative Chaining, Compositional Resolution, Reflexivity
Resolution and Equality Factoring rules has been already shown (see Lemma 5.7
and Lemma 4.16). The remaining rules Ordered Subterm Chaining and Negative
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Ordered Paramodulation Reflexivity Resolution

OP :
C ∨ s ' t? D ∨ L[s′]

Cσ ∨ Dσ ∨ L[t]σ
RR :

C ∨ s 6' s′

Cσ

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C and σ; (iii) L[s′]
is eligible (strictly maximal if positive) w.r.t.
D and σ; (iv) L[s′] is a non-special literal;
(v) tσ 6� sσ and (vi) s′ is not a variable.

where (i) σ = mgu(s, s′) and (ii) s 6' s′ is
eligible w.r.t. C and σ.

Ordered Subterm Chaining

OSC :
C ∨ s ' t? r[s′]Sh

?
∨ D

Cσ ∨ r[t]σShσ ∨ Dσ

C ∨ s ' t? hSr[s′]
?
∨ D

Cσ ∨ hσSr[t]σ ∨ Dσ

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C and σ; (iii) rSh
is eligible strictly maximal w.r.t. D and σ;
(iv) (sσ ' tσ) 6� (rσShσ); (v) tσ 6� sσ;
(vi) hσ 6� rσ and (vii) s′ is not a variable.

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C and σ; (iii) hSr
is eligible strictly maximal w.r.t. D and σ;
(iv) (sσ ' tσ) 6� (hσSrσ); (v) tσ 6� sσ;
(vi) hσ 6� rσ; (vi)′ S 6= ', and (vii) s′ is
not a variable.

Negative Subterm Chaining

NSC :
C ∨ s ' t? ¬(r[s′]Sh) ∨ D

Cσ ∨ ¬(r[t]σShσ) ∨ Dσ

C ∨ s ' t? ¬(hSr[s′]) ∨ D

Cσ ∨ ¬(hσSr[t]σ) ∨ Dσ

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(rSh)
is eligible w.r.t. D and σ; (iv) tσ 6� sσ;
(v) hσ 6� rσ and (vi) s′ is not a variable.

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C and σ; (iii) ¬(hSr)
is eligible w.r.t. D and σ; (iv) tσ 6� sσ;
(v) hσ 6� rσ; (v)′ S 6= ', and (vi) s′ is not a
variable.

System 12: The subterm chaining calculus SC�
Sel

Subterm Chaining are monotone since they are restricted versions of the Ordered
Paramodulation rule. 22

Admissible orderings for the chaining calculi can be obtained by taking any total
reduction ordering � on ground terms and non-special atoms (say, KBO or LPO)
and associating with every ground literal L = (E1 S E2) (or L = ¬(E1 S E2))14 a
complexity measure:

c(L) := ( max(L) , 1−pol(L) , min(L) , S(L) , o(L) ) (27)

where max(L) and min(L) are respectively the maximal and the minimal expres-
sions from {E1, E2}; pol(L) is the polarity of the literal, (recall, that pol(L) = 1

14We use equational representation for non-special literals as described in subsection 4.1
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if L is positive and pol(L) = 0 if L is negative, see p. 7); S(L) = S is the special
predicate symbol of L (if L is non-special literal then we have S(L) := ') and o(L)
is the orientation of L: o(L) = 1 if S is non-symmetric and E1 � E2, and o(L) = 0
otherwise. Now, the literals are compared according to this vector representation,
i.e., by the lexicographic combination (�, >,�,�, >) of orderings (recall the def-
inition and properties from p. 20), where � is an ordering on ground terms and
non-special expressions, > is the standard ordering on natural numbers and � is
a precedence on special predicate symbols. It is relatively straightforward to verify
all conditions of admissible orderings for the lifting of the ordering defined by this
complexity measure.

Note 5.10. In [Bachmair & Ganzinger, 1998b] the class of admissible orders �
has been restricted to those induced by a complexity measure similar to (27) (in
this paper these orderings are called strongly admissible). In this report we have
analysed the completeness proof and formulated more general conditions (C1) –
(C3) for admissible orderings. This will allow us to tailor specific orderings for
deciding certain fragments of first-order logic over compositional theories, which
would not be possible within the class of strongly admissible orderings. 33

5.4 Refutational Completeness

In this section we give a formal proof of refutational completeness for the subterm
chaining calculus SC�

Sel
which is the most general chaining calculus from those

we have described. The completeness proof goes as usual, by model construction
which associates with each clause set N a candidate model IN⇓ induced by a set
of atoms IN , which we view as a labelled rewrite system.

Let I be a set of ground atoms. A (labelled) rewrite relation induced by a set
of atoms I is defined by E1

S
⇒I E2 (E1

S
⇐I E2, E1

S
⇔I E2) if (i) E1

S
⇒E2 ∈ I (resp.

E1
S
⇐E2 ∈ I, E1

S
⇔E2 ∈ I) or (ii) S = ', E1 = E1[E

′
1] and E2 = E2[E

′
2] for some

(E ′
1 ⇒E ′

2) ∈ I. In other words, a rewrite relation induced by I is a minimal set of
labelled rewrite rules that contains I and monotone w.r.t. equality.

Definition 5.11 (Rewrite Proofs). An atom A := (E S E ′) has a rewrite
proof in I (in symbols: E ⇓S

I E ′), if there exists a sequence of expressions
E = E0, E1,.., Ek, Ek+1,.., En = E ′ for 0 ≤ k ≤ n, and a sequence of special predi-
cate symbols S1, S2,.., Sn such that: (i) S1 ◦ S2 ◦ · · · ◦ Sn ⊆ S; (ii) Ei−1

Si⇒I Ei for
1 ≤ i ≤ k − 1; (iii) Ei−1

Si⇐I Ei for k + 1 ≤ i ≤ n and (iv)15 either Ek−1
Sk⇒I Ek or

Ek−1
Sk⇔I Ek (see the left part of Figure 18). 33

15This condition is not needed if k = 0
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Figure 18 Rewrite and non-rewrite proofs for ordered chaining
valleys: elementary non-valleys:

or
E0

S︷ ︷
S1⇒ E1 · · ·

Sk-1⇒ Ek−1
Sk⇒ Ek

Sk+1

⇐ · · ·
Sn⇐ En

E0
S1⇒ E1 · · ·

Sk-1⇒ Ek−1
Sk⇔ Ek

Sk+1

⇐ · · ·
Sn⇐ En

E0
S1⇐ E1

S2⇒ E2 (peak)

E0
S1⇔ E1

S2⇒ E2, E0
S1⇐ E1

S2⇔ E2 (plateau)

E0
S1⇔ E1

S2⇔ E2 (plane)

In other words, a rewrite proof is a chain consisting of let-to-right rewrite
steps followed by at most one two-way rewrite step and a sequence of right-to-left
rewrite steps. These rewrite proofs are called valleys in [Bachmair & Ganzinger,
1998b]. The elementary non-valley chains of length 2 can be classified as follows:
(i) E0

S1⇐E1
S2⇒E2 is a peak ; (ii) E0

S1⇔E1
S2⇒E2 or E0

S1⇐E1
S2⇔ E2 is a plateau and

(iii) E0
S1⇔E1

S2⇔ E2 is a plain. In all these chains it must be that E1 � E0 and
E1 � E2. A valley can be seen as a chain that do not contain any peaks, plateaus
or plains.

A (rewrite) model I⇓ induced by a set of atoms (= labelled rewrite rules) I is
defined by I⇓�A = (E1 S E2) iff A has a rewrite proof in I. Given an expression
E, let IE denotes the set of atoms from I whose non-special expressions are not
greater than E: IE := {(E0 S1 E2) ∈ I | E0 � E, E1 � E}. Then the following
property can be shown:

Lemma 5.12 (Properties of Rewrite Proofs). Let I be a set of atoms and A be
an atom whose maximal non-special expression is E. Then I⇓� A iff IE⇓�A
iff I(¬A)⇓�A.

Proof. Every rewrite proof in IE or I(¬A) is also a rewrite proof in I. Hence
from IE⇓�A or I(¬A)⇓� A it follows that I⇓� A. To prove “only if” parts of
this lemma, suppose the atom A = (E S E ′) has a rewrite proof P := (E =
E0 S1 E1 · · · Sn En = E ′). W.l.o.g., assume that E � E ′ (the remaining case is
considered symmetrically). It follows from the definition of a rewrite proof that
every expression Ei with 0 ≤ i ≤ n involved in P , is not greater than E. Hence
IE⇓� A.

It remains to show that I(¬A) � A as well. For this we need to use the condi-
tions of admissible ordering from Definition 5.6. We demonstrate that every atom
Ei−1 Si Ei from P , is smaller than ¬A. If both Ei−1 and Ei are smaller then E =
E0, then ¬A = ¬(E0 S En) � (E0 S ′

i Ei), where S1◦. . .◦Si ⊆ S ′
i (by condition (C1)

of admissible orderings). And finally, (E0 S ′
i Ei) � ¬(Ei−1 Si Ei) � (Ei−1 Si Ei)

(by conditions (C3) and (R1) of admissible orderings). If either Ei−1 or Ei is equal
to E = E0, then Ei−1 Si Ei is either the first or the last step in P . Hence, the
following cases can be distinguished: (a) i = 1 and E = E0 = Ei−1 � Ei 6= En, or
(b) i = n and E = E0 6= Ei−1 ≺ Ei = En, or (c) i = n = 1, i.e., A = (Ei−1 Si−1 Ei).
In case (a), we have ¬A � (Ei−1 Si−1 Ei) by condition (C1) of admissible ordering.
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Case (b) is symmetric to case (a). In case (c), ¬A � (Ei−1 Si−1 Ei) by condition
(R1) of admissible ordering. 22

It is not always true that a rewrite model induced by a set of atoms admits
compositional and/or equational axioms. This is however true if the set of atoms
I is complete in the following sense:

Definition 5.13 (Canonical Rewrite System). We say that a plateau, peak
or a plain E0 S1 E1 S2 E2 commutes in I if S1 ◦S2 ⊆ S implies that E0 S E2 has a
rewrite proof in I. A rewrite system I is canonical (for chaining) if every plateau,
peak or a plain in I commutes. 33

Below we establish an analog of Critical Pair Lemma for labelled rewrite sys-
tems:

Lemma 5.14 (Canonical Proofs). Let I be a canonical rewrite system for or-
dered chaining and A be an atom. Then I T� A iff I⇓�A.

Proof. The “if” part of this lemma is trivial, since every rewrite proof in I is a
chain in I. In order to show the remaining part of the lemma, let P := (E0 S1

E1 S2 E2 · · · Sn En) be a chain for A = (E0 S En) based on I with S1◦· · ·◦Sn ⊆ S.
We show by induction on multiset {E0, E1,.., En}m

(w.r.t. the multiset extension
of the ordering � on expressions) that I⇓� A.

Suppose the chain P is not a rewrite proof. Then there should be a peak,
a plateau or a plain Ei−1 Si Ei Si+1 Ei+1 in P , i.e., with Ei � Ei−1 and Ei �
Ei+1. Since I is canonical, then I⇓� Ei−1 S ′

i+1 Ei+1, where Si ◦ Si+1 ⊆ S ′
i+1,

i.e., there is a valley Ei−1 S1
i E1

i S2
i E2

i · · · Sk
i Ei+1 with S1

i ◦ S2
i ◦ · · ·Sk

i ⊆ S ′
i+1

based on I. Note, that in particular Ei � Ej
i for all j with 1 ≤ j < k, and so,

{Ei−1, Ei, Ei+1}m
� {Ei−1, E

1
i ,.., E

k−1
i , Ei+1}m

. Hence, we found a new chain for A
with a smaller complexity. By induction hypothesis, we obtain that I⇓�A. 22

Definition 5.15 (Candidate Models, Productive Clauses). Let N ⊆ Cl0Σ
and C ∈ Cl0

Σ
. The candidate models IN⇓ for N , IC⇓ for NC and IC⇓ for NC are

induced respectively by the sets IN , IC and IC that are defined as follows:
IN :=

⋃
C∈N IC ; IC =

⋃
C′∈NC

IC′

, and IC := IC ∪ ∆C, where ∆C := {A} if:

(i) IC⇓2 C;

(ii) C = (C ′ ∨ A) where A is an eligible maximal atom w.r.t. C ′, and

(iii) for every C1 = (C ′
1 ∨A1) ∈ NC with ∆C1 = {A1}, we have (IC ∪ {A})⇓2 C ′

1.

If there is no atom A satisfying conditions (i) – (iii), we assign ∆C = {}. If
∆C 6= {}, we call clause C productive w.r.t. N and say that C produces ∆C. 33
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Lemma 5.16 (Properties of Candidate Models). Let the candidate models
and productive clauses for a set N of ground clauses be defined like in Defini-
tion 5.15. Then for every C ∈ N , (i) IC⇓� C implies that IN⇓� C, and (ii) if
C = C ′ ∨ A? is a productive clause, then IN⇓2 C ′.

Proof. (i) In order to show the first property, assume that IC⇓� C, but IN⇓2 C.
This is only possible if for some atom B = (E1 S E2) occurring negatively in C,
we have IC⇓2 B but IN⇓� B. Then by Lemma 5.12, I(¬B)⇓�B, which is not
possible since ¬B � C.

Part (ii) of this lemma is guaranteed by the case (iii) of the definition for
productive clauses (see Definition 5.15). 22

Lemma 5.17 (Counterexample-Reduction Lemma). Let N be a set of ground
clauses which is saturated w.r.t. SC�

Sel
. Then for every clause D ∈ N with IN⇓2 D 6=

�, there exists a clause D1 ∈ N such that D1 ≺ D and IN⇓2 D1.

Proof. If D is a counterexample for IN⇓, i.e., IN⇓2 D, then ID⇓ = ID⇓2 D (here
we use Lemma 5.16 (i)). By Lemma 5.16 (ii), D cannot be a productive clause,
so Definition 5.15 leaves us only the following possibilities:

(1) D = (D′ ∨ ¬A), where ¬A is an eligible literal in D, and ID⇓� A =
(E1 H E2) for some special predicate symbol H. For definiteness, assume that
E1 � E2 (the remaining case E2 � E1 is considered symmetrically). Then either
(1.1) H = ' and E1 = E2 = s for some ground term s, or (1.2) A = (P ' T)

is a non-special atom and P is reducible by some rewrite rule (E ′
1 ⇒E ′

2) ∈ IC ,16

or (1.3) E1 = s, E2 = h and the first step in the rewrite proof of A = (sHh) is
s

S
⇒ t for some S 6= ' and a ground term t ≺ s, or (1.4) E1 = r[s], E2 = h and

the first step in the rewrite proof of A = (r[s]Hh) is done by (s⇒ t) ∈ ID. The
cases (1.1) and (1.2) are identical to those considered for the paramodulation and
superposition calculi. The principally new cases for the chaining calculus are (1.3)
and (1.4).

N Clauses C ∆C

D D′ ∨ ¬(sHh) −
g

D1 C ′ ∨ D′ ∨ ¬(tTh) ?

C C ′ ∨ sSt? s
S
⇒ t

In case (1.3) the rewrite rule s
S
⇒ t must be pro-

duced by some productive clause C = (C ′∨sSt?) ≺ D.
Moreover, there exists a special predicate symbol T
such that S ◦T ⊆ H and IN⇓�(tTh). Then a Negative
Chaining inference with the conclusion NC[C, D]: D1 =
(C ′ ∨D′ ∨¬(tTh)) ∈ N is possible which is a smaller clause than D. D1 is a coun-
terexample for IN⇓, since IN⇓2 D′, IN⇓�(tTh) and IN⇓2 C ′ by Lemma 5.16 (ii).

16Note that no labeled rewrite rule can be used in a rewrite proof for A, since P is not a term
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N Clauses C ∆C

D D′ ∨ ¬(r[s]Hh) −
g

D1 C ′ ∨ D′ ∨ ¬(r[t]Hh) ?

C C ′ ∨ s ' t? s⇒ t

In case (1.4) the rewrite rule s⇒ t is produced
by some productive clause C = (C ′ ∨ s ' t?). Then
the Negative Subterm Chaining rule can be applied to
C and D which produces a clause NSC[C, D]: D1 =
(C ′ ∨ D′ ∨ ¬(r[t]Hh)) ∈ N which is a smaller coun-
terexample for IN⇓ than D.

N Clauses C ∆C

D D′ ∨ (E1 S E2)︸ ︸
A

−

g

C C ′′ ∨

B︷ ︷
(E′

1 H E′
2) ∨ A1

? A1

(2) D = (D′∨A), where A = (E1 S E2) is an el-
igible maximal literal in D, but D is not productive
because condition (iii) from Definition 5.15 is vio-
lated. In this case, there exists a productive clause
C = (C ′ ∨ A1

?) � D, such that (ID ∪ A)⇓� C ′,
i.e., C ′ = (C ′′ ∨ B) where (ID ∪ A)⇓� B = (E ′

1 H E ′
2). Assume that E1 � E2

(the case E2 � E1 is considered symmetrically). Then E1 � E ′
1 and E1 � E ′

2,
since otherwise for E ′ := max{E ′

1, E
′
2}, we have IN⇓� IE′

⇓ = (ID ∪A)E′

⇓�B (by
Lemma 5.12) which is not possible by Lemma 5.16 (ii). Since atom A is used in
the rewrite proof of B, then E1 = E ′

1 and either (2.1) it is a one-step rewrite proof,
i.e., A = B, or (2.2) A 6= B and E1 � E2: see the definition of rewrite proofs
(Definition 5.11). In case (2.1) A � A1 � B = A hence C = D, A1 = B and the
counterexample can be reduced using the Ordered Factoring rule.

N Clauses C ∆C

D D′ ∨ sSt? −
g

D1 D′ ∨ ¬(tTh) ∨ sHh ?
C C ′ ∨ sHh ∨ sS′t′? A

In case (2.2), A and B must be special atoms: A =
(sSt) and B = (sHh) for some ground terms s � t
and s � h. The case s = h is not possible because
otherwise by the last property from condition (C3) of
admissible orderings (see Definition 5.8), we have B =

(sHs) � (sSt) = A. Since (IN ∪ {s
S
⇒ t})⇓� sHh then IN⇓� tTh for some special

predicate symbol T such that S ◦ T ⊆ H. Then the conclusion CR[C, D]: D1 =
(D′∨¬(tTh)∨sHh) a Compositional Resolution inference, which is a smaller clause
than D1, must belong to N . Since IN⇓2 D′, IN⇓�(tTh) and IN⇓2 sHh (the last
is by Lemma 5.16 (ii) applied to C), we have obtained a smaller counterexample
than D. 22

Remark 5.18. It is possible to dramatically restrict the Compositional Resolution
rule when the maximal literal s′′S ′t′ in the left premise is equality. We show that in
the correspondent case of Counterexample-Reduction Lemma (Lemma 5.17, case
(2.2)) a counterexample can be reduced using the Ordered Subterm Chaining or
the following extension of the Equality Factoring rule for other special predicate
symbols: see Figure 19.
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Figure 19 An extension of the Equality Factoring rule for compositional theories

Equality Factoring

EF :
C ∨ s′Hh ∨ s ' t?

Cσ ∨ ¬(tσHhσ) ∨ s′σHhσ

C ∨ hHs′ ∨ s ' t?

Cσ ∨ ¬(hσHtσ) ∨ hσHs′σ

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C ∨ s′Hh and σ, and
(iii) tσ 6� sσ.

where (i) σ = mgu(s, s′); (ii) s ' t is eligible
strictly maximal w.r.t. C ∨ hHs′ and σ, and
(iii) tσ 6� sσ.

N Clauses C ∆C

D D′ ∨ sSt? −
g

D2 C ′ ∨ sHh ∨ t′St ∨ D′ ?

C C ′ ∨ sHh ∨ s ' t′? s⇒ t′

g
D1 C ′ ∨ ¬(t′Hh) ∨ sHh ?

Indeed, if in case (2.2) of Lemma 5.17 S ′ = ' ,
then there are only two following cases possible:

Case (a) IN⇓�(t′St). Since IN⇓� tTh, then
IN⇓�(t′Hh) and the conclusion EF[C]: D1 = (C ′∨
¬(t′Hh) ∨ sHh) ∈ N of an Equality Factoring in-
ference from C is a smaller counterexample than
D.

Case (b) IN⇓2(t′St). Then the conclusion OSC[C, D]: D2 = (C ′ ∨ sHh∨ t′St∨
D′) ∈ N of an Ordered Subterm Chaining inference from C and D is a smaller
counterexample than D. 33

Note 5.19. In the original completeness proofs for ordered chaining calculi, Bach-
mair & Ganzinger [1995, 1998b] used a slightly different model construction. Given
a saturated set of clauses N they have showed by induction over a well ordering
� that IC⇓� C. So the counterexamples in their sense are those clauses C that
are false in IC⇓ (not in IN⇓ like here). The advantage of the model construction
that we have presented here is twofold. First, the structure and philosophy of our
proof goes along with the completeness proofs for the ordered resolution and the
superposition calculi. Second, we clearly separate properties of candidate models
for arbitrary clause sets (in Lemma 5.16) from those for saturated sets of clauses
(in Lemma 5.17).

Going slightly deeper into details, condition (iii) of productive clauses (see Def-
inition 5.15) is missing in [Bachmair & Ganzinger, 1995, 1998b] which clearly gives
problems with the property (ii) from Lemma 5.16. Without this condition, the
properties of productive clauses and counterexample reduction have to be demon-
strated together in one inductive proof, which can be carried out only for saturated
clause sets. 33

5.5 Hyper-Inferences

It is possible to define hyper-inferences for the chaining calculi in similar fashion as
it has been done for the resolution calculus (see Figure 8 and Figure 9 on p.58). A
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counterexample having several selected negative literals can be reduced by apply-
ing appropriate inferences to all of them simultaneously. However it is difficult to
describe such a hyper-combination of counterexample-reducing inferences, since in
the chaining calculus there are many of those: Ordered Resolution, Ordered Paramo-
dulation, Reflexivity Resolution and Negative Subterm Chaining. Every combination
of these inferences might be applied to different negative literals simultaneously.

In decision procedures it is often important to control the application of the
Negative Chaining rule into variables (i.e., when the unified term in the negative
literal is a variable). To reduce possible negative effect of the Negative Chaining rule
(such as increase in the number of variables in the conclusion on the inference), we
introduce a particular hyper-inference strategy which can be implemented using an
a-posteriori selection function (see Figure 9). Given a clause with several selected
literals, we allow either (i) a simultaneous application of the negative chaining rule
on all of these literals, or (ii) any other inference with any of selected literals. In
Figure 20 (the upper part) we have formulated a special Negative Hyper-Chaining
inference rule that formalises the first part of this strategy. This rule is applied to a

Figure 20 A hyper- extension of the Negative Chaining rule

Negative Hyper-Chaining

HC :

{
Ci ∨ siSiti

?, Cj ∨ tjTjsj
? | i ∈ I, j ∈ J

} ∨

i∈I

¬(s′
iHihi)

]
∨

∨

j∈J

¬(hjHjs
′
j)

]
∨ D

∨

i∈I

[Ciσ ∨ ¬(tiσTihiσ)] ∨ Dσ

where (i) Sk ◦Tk ⊆ Hk for all k ∈ I ∪ J ; (ii) σ = mgu({sk=s′k | k ∈ I ∪ J}); and there is a
ground substitution σ0 = στ 0 such that for all i ∈ I, j ∈ J : (iii) siSiti (tjSjsj) are eligible

strictly maximal w.r.t. Ci (Cj) and σ0; (iv) {¬(s′iH1hi), ¬(hjH̃ns′j) | i ∈ I, j ∈ J}
m

is
eligible w.r.t. D and σ0; (v) tiσ

0 6� siσ
0, tjσ

0 6� sjσ
0 and (vi) hiσ

0 6� s′iσ
0, hjσ

0 6� s′jσ
0.

Negative Hyper-Chaining

HC :
Ci ∨ s1S̃1t1

?
. . . Cj ∨ snS̃ntn

?
¬(s′

1
H̃1h1)

]
∨···∨¬(s′

nH̃nhn)
]
∨ D

Ciσ ∨ ¬(t1σT̃1h1σ) ∨ Dσ

where (i) S̃i ◦ T̃i ⊆ H̃i for all 1 ≤ i ≤ n; (ii) σ = mgu({si=s′i | 1 ≤ i ≤ n}); and there
is a ground substitution σ0 = στ 0 such for all i with 1 ≤ i ≤ n: (iii) siSiti is eligible
strictly maximal w.r.t. Ci and σ0; (iv) {¬(s′1H1h1),..,¬(s′nH̃nhn)}

m
is eligible w.r.t. D and

σ0; (v) tiσ
0 6� siσ

0 and (vi) hiσ
0 6� s′iσ

0.

clause whose all selected literals are special and for each of them a Negative Chaining
inference with the same clause is possible. Then all these inferences are applied at
once. Note that the ordering restriction for all negative chaining inferences must
be simultaneously satisfied for some ground instance of the unifier σ. In this form
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the rule is more restrictive than if the ordering restrictions are verified separately
for σ, as is usually done (recall the discussion from Example 3.35). This helps to
filter-out many unnecessary chaining inferences:

Example 5.20. Consider a clause D := (¬xxTTyy ∨ ¬yyTTxx), where T is a transitive
predicate symbol. Both negative literals in this clause are maximal, since they
differ only by permutation of variables. Hence it is possible to apply the Ordered
Chaining rule to both of them, e.g., with a clause C := f(x)Tx. However the
Negative Hyper-Chaining rule with (two copies of) C cannot be applied to both
literals of D simultaneously, since condition (vi) of this rule is violated. Indeed,
there is no ground substitution σ0 such that yσ0 6� xσ0 and xσ0 6� yσ0. Note, that
this condition can be possibly satisfied for a non-ground substitution σ. 33

To simplify the exposition and usage of the Negative Hyper-Chaining rule (in
particular the annoying distinction between “left” and “right” arguments of special
predicate symbols), we introduce additional notation. For every binary predicate
symbol S, we introduce a shortcut S` that denotes the inverse of S, i.e., (xS`t) :=
(tSx). According to this notation, every compositional axiom S ◦ T ⊆ H induces
a compositional axiom T ` ◦S` ⊆ H` on inverse relations. Finally, let S̃ stand for
S or S`. Using this notation, the Negative Hyper-Chaining can be formulated more
compactly (although with condition (vi) relaxed) in the lower part of Figure 20.

5.6 Redundancy

The standard redundancy criterion based on semantical entailment cannot be di-
rectly adapted for the chaining calculus. The problem is caused by the Ordered
Chaining rule which might be not monotone. Note that monotonicity of this
rule has not been used in our model construction, in particular in the proof of
Counterexample-Reduction Lemma (Lemma 5.17), since this rule may not reduce
counterexamples. The sole purpose of this rule is to guarantee that the candidate
model IN⇓ constructed for a saturated clause set N is a C-model.

To show why the standard redundancy does not work, suppose, that we have
a compositional axiom (S ◦ T ⊆ H) ∈ C with H 6= S, H 6= T and tHt � tSt,
tHt � tT t for some ground term t. That is, we have a situation when the Ordered
Chaining inference from clauses tSt and tHt is possible but not monotone. Using
the standard redundancy criterion based on semantical entailment (w.r.t. a theory
C), it is easy to see that clause C := tHt is redundant w.r.t. an unsatisfiable clause
set N := {tSt, tT t, tHt, ¬(tHt)}, since NC := {tSt, tT t} C� tHt. However, the
empty clause could not be derived from N if we delete clause C permanently . If
we analyse the model construction given in Counterexample Reduction Lemma
(Lemma 5.17), we notice that although NC C� C, this does not suffices to establish
that IC⇓� C, since IC⇓ is not necessarily a C-model. In the particular example
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above, we cannot delete C, because it is a productive clause that should reduce
the minimal counterexample in N .

Let us review the arguments used to justify the standard redundancy criterion.
A ground clause C ∈ N might not be considered in the model construction, if
we know a-priory that either IN⇓2 NC (which is by Lemma 5.16 (i) equivalent
to IC⇓2 NC), or IC⇓� C (hence C is not a productive clause and not a coun-
terexample). In both cases C may neither be a minimal counterexample nor a
productive clause that reduces the minimal counterexample. To put it simple, a
clause C is redundant if IC⇓�NC implies IC⇓� C. However, contrary to paramo-
dulation or superposition calculi, the set NC is not necessary saturated under the
chaining inference rules even if N is saturated. Hence, IC might not be canonical,
and so IC⇓ is might not be a C-model, which means that NC C�C is not sufficient
to establish redundancy.

It is possible to characterise redundancy by means of rewrite proofs, similarly
as it is done for instance in [Bachmair & Ganzinger, 1997], by noticing that ev-
ery set IC must be closed under monotone Ordered Chaining inferences. However,
demonstrating entailment via rewrite proofs is less convenient than by semantical
arguments, therefore we formulate redundancy using a sufficient semantical ap-
proximation. Note that in order to establish redundancy for C, it suffices to show
that IC1⇓� NC1 implies IC1⇓� C for some C1 ≺ C. If the last property holds
then either there exists a counterexample in NC1 , which is smaller than C, or the
clause C is not productive, hence C might not be considered. Although IC is not
closed under the Ordered Chaining rule, the set IC1 might be closed. This idea is
formalised using the following notion:

Definition 5.21 (Redundancy Ordering). A redundancy ordering for an ad-
missible ordering � (for chaining calculi) is a partial ordering �· on ground literals
such that the following conditions hold:

(CRO1) �· ⊆ �, � ◦ �· ⊆ �, �· ◦ � ⊆ �;
(CRO2) S ◦ T ⊆ H, L �· tSs, L �· sTh and s � t, s � h

imply that L �· tHh 33

Using a redundancy ordering we can express a property for inference systems
which is weaker than monotonicity. An inference π (an inference system S) is
weakly monotone w.r.t. �· , if for every ground clause C 0 the set of the clauses
that are ≺· -smaller than C 0, is closed under π (respectively S). Note that if π is
monotone w.r.t. � for ground clauses, then it is weakly monotone w.r.t. �.

Condition (CRO1) from Definition 5.21 expresses that �· is a partial sub-
ordering of � which is closed under composition with �. This is needed to insure
that every inference that is monotone w.r.t. � remains weakly monotone w.r.t. �· .
Note that if � is well-founded, then �· is also well-founded. Condition (CRO2) is
needed to ensure that the Ordered Chaining rule is weakly monotone w.r.t. �· .
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Lemma 5.22 (Weak Monotonicity for SC�
Sel

). The subterm chaining calculus
SC�

Sel
is weakly monotone w.r.t. every redundancy ordering �· for any admissible

ordering �.

For example, given an admissible ordering � defined by (27), a redundancy
ordering �· for � can be induced by the following complexity measure on literals:

ċ(L) := ( max(L) , 1−pol(L) , min(L) ) (28)

It is easy to see that this ordering fulfils both conditions from Definition 5.21 w.r.t.
� from (27).

Now, the standard redundancy criterion is defined as usual, but w.r.t. a redun-
dancy ordering �· instead of an admissible ordering �:

Definition 5.23 (Standard Redundancy). Given a set of ground clauses N 0,
and a ground clause C 0, let N 0

≺·C0 := {C 0
1 ∈ N 0 | C 0

1 ≺· C 0} be the set of ground
clauses from N 0 that are ≺· -smaller than C 0.

A ground clause C 0 is redundant w.r.t. a set of ground clauses N 0, if C 0 follows
in C from the set N 0

≺·C0 . A ground inference π0 is redundant w.r.t. N 0 in SC�
Sel

′ if
either π0 /∈ SC�

Sel
′ or, otherwise, the conclusion of π0 follows in C from N 0

≺·C0
i

for
some premise C 0

i of π0.
A (general) clause C is redundant w.r.t. a clause set N if every ground instance

C 0 ∈ {C}gr of C follows in C from N gr. An inference π is redundant w.r.t. N in
SC�

Sel
, if for every projection Sel′ of Sel from the premises of π, the ground instance

π0 of π is redundant w.r.t. N gr in SC�
Sel

′ .
We denote this redundancy criterion by R

S �· = (R�·
Cl(·), R

S �·
Inf (·)). 33

It is easy to show that this notion of redundancy is a redundancy criterion
indeed according to Definition 3.20: the proof of this fact is just a repetition of the
proof for Lemma 3.21 (for this we only need to use that �· is well founded). Finally,
we establish completeness for the subterm chaining calculus with redundancy:

Theorem 5.24 (Completeness of SC�

Sel
with Redundancy).

(SC�
Sel

, RS �· ) is complete for every selection function Sel, admissible ordering �
and every redundancy ordering �· for �.

Proof. Let N be saturated up to redundancy and N gr be the set of ground in-
stances of N . We need to consider a situation, when an inference π reducing a
counterexample D in N gr is redundant w.r.t. N gr, i.e., the conclusion D1 of π from
Ngr follows from clauses N≺·D in theory C. Since the subterm chaining calculus
is weakly monotone w.r.t. �· , then N≺·D is saturated under SC�

Sel
. By induction

hypothesis, I≺·D⇓ is a C-model for N≺·D and consequently for D1. Thus, I≺·D⇓� D1

which means that D1 is not a counterexample. So redundant inferences might not
be used for reduction of counterexamples. 22
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6 Clause Normal Form Transformation

Saturation-based theorem provers operate not with first-order formulas but with
sets of clauses. To use provers for full first-order logic, it is required to transform
formulas into a clause normal form (CNF). It is well-known that the quality of the
CNF- transformation has a great impact on efficiency and success of the overall
theorem proving attempt. There are examples, where (naïve) textbook procedures
produce exponentially large CNF’s in the size of the input first-order formula,
which makes them not very useful in practice.

For saturation-based decision procedures the CNF-transformation plays even
more important rôle, since the transformation has to map a decidable first-order
fragment into a decidable clause class. Thus, essential properties, that contribute
to decidability of a particular first-order fragment should be inherited into their
clause representations.

CNF-transformation has been thoroughly studied in literature [for the overview
see Nonnengart & Weidenbach, 2001; Baaz, Egly & Leitsch, 2001]. The traditional
way of producing CNF’s for decidable first-order fragments consists of three main
steps. First, a formula is translated into a negation normal form by pushing nega-
tion inwards as far as possible. Second, a so-called structural transformation is
applied to a formula, that splits the formula into a conjunction of simple formu-
las. In the last step, skolemization is employed that introduces Skolem functions
for existentially quantified variables. After this step the universal quantifiers are
dropped and the result is written in a clause form.

Below we present all these transformations in their general form and later we
give their variants for considered first-order fragments. In our presentation we make
a special emphasis on complexity issues of transformations. We estimate a worst
time complexity of transformations and the size of their results. Some material
presented in this section belongs to a logical folklore (especially transformation
procedures and complexity calculations), therefore it is hard to give any reference
or historical remarks about them. For the same reason, many proofs may seem too
sketchy. This section does not aim in giving comprehensive account of techniques
and results about CNF transformation. For those, the reader is forwarded to the
overview articles [Nonnengart & Weidenbach, 2001; Baaz et al., 2001] where many
aspects of doing CNF-transformation in efficient way are presented and further
links to literature are provided.

6.1 Negation Normal Form

A first-order formula (involving conjunction, disjunction and negation as the only
boolean connectives) is in negation normal form (or shortly NNF) if negation
symbol appears only in front of atoms in this formula. A transformation that puts
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a first-order formula into NNF is probably the simplest normalization step. Given
a first-order formula, one has to distribute negation over other boolean connectives
and quantifiers using the usual de-Morgan’s lows:

¬(A ∧ B) ⇒ ¬A ∨ ¬B
¬(A ∨ B) ⇒ ¬A ∧ ¬B

¬¬A ⇒ A
¬∀x.A ⇒ ∃x.¬A
¬∃x.A ⇒ ∀x.¬A

(29)

Figure 21 Negation normal form transformation for first-order formulas

FO ::= A | F1 ∨ F2 | F1 ∧ F2 | ¬F1 | ∀y.F1 | ∃y.F1.

[F ]nnf := [A]nnf = A |

[F1 ∧ F2]
nnf = [F1]

nnf ∧ [F2]
nnf |

[F1 ∨ F2]
nnf = [F1]

nnf ∨ [F2]
nnf |

[¬F1]
nnf = [F1]

nnf
¬ |

[∀y.F1]
nnf = ∀y.[F1]

nnf |

[∃y.F1]
nnf = ∃y.[F1]

nnf .

[F ]nnf
¬ := [A]nnf = ¬A |

[F1 ∧ F2]
nnf
¬ = [F1]

nnf
¬ ∨ [F2]

nnf
¬ |

[F1 ∨ F2]
nnf
¬ = [F1]

nnf
¬ ∧ [F2]

nnf
¬ |

[¬F1]
nnf
¬ = [F1]

nnf |

[∀y.F1]
nnf
¬ = ∃y.[F1]

nnf
¬ |

[∃y.F1]
nnf
¬ = ∀y.[F1]

nnf
¬ .

Formally, we define a NNF-transformation for the set of first-order formu-
las assuming that they are constructed according to the grammar FO given in
Figure 21, where A is an atom A = a(x), and F1, F2 ∈ FO. As usual, we think of
formulas involving other connectives: A→B and A ↔ B as abbreviations standing
for ¬A ∨ B and (¬A ∨ B) ∧ (¬B ∨ A) respectively. Negation normal form [F ]nnf

of a formula F is obtained by applying the function [·]nnf that is defined recur-
sively over the definition of FO and using additional auxiliary function [·]nnf

¬ (see
Figure 21). We have used an additional function [·]nnf

¬ for computing a negation
normal form of a negated formula. Defining NNF-transformation in this way
makes it more obvious that recursion terminates [compare, for instance, our trans-
formation with the one defined in Baaz et al., 2001]. Moreover the functions are
defined by a proper recursion over the grammar definition of FO. We will see
later, that normal forms and clause sets for different fragments can be found much
more easily given recursive definitions for the fragments.

Proposition 6.1. For every formula F ∈ FO the result G = [F ]nnf of NNF-
transformation can be computed in polynomial time in |F | and produces a formula
G in negation normal form such that (i) G is equivalent to F and (ii) |G| ≤ 2·|F |.

Proof. Given a formula F ∈ FO, the result of NNF-transformation [F ]nnf is
computed according to the definition in Figure 21 using at most |F | recursive
calls (ones for every subformula). Every recursion call takes a polynomial time
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(depends on a data structure used to manipulate with formulas), so the result can
be computed in polynomial time in the size of the input formula.

By induction over the construction of F ∈ FO it is easy to show that [F ]nnf ≡ F ,
[F ]nnf

¬ ≡ ¬F , |[F ]nnf | ≤ 2·|F | and |[F ]nnf
¬ | ≤ 2·|F |. 22

The goal of NNF-transformation is to produce an equivalent formula having
only positive occurances of non-atomic subformulas. This is needed for the subse-
quent structural transformation step. Note that the set of first-order formulas in
negation normal form can be defined by the grammar:

[FO]nnf ::= A | ¬A | F1 ∨ F2 | F1 ∧ F2 | ∀y.F1 | ∃y.F1. (30)

where A is an atom and F1, F2 ∈ [FO]nnf .

Example 6.2. Let us compute negation normal form for the formula:

F := (∀y.(a(x) ∧ b(y))→∃z.c(x, z)) ≡def (¬∀y.(a(x) ∧ b(y)) ∨ ∃z.c(x, z)).

Applying the function [·]nnf according to the definition in Figure 21, we obtain:

[F ]nnf = [¬∀y.(a(x) ∧ b(y)) ∨ ∃z.c(x, z)]nnf

= ([¬∀y.(a(x) ∧ b(y))]nnf ∨ [∃z.c(x, z)]nnf )

= ([∀y.(a(x) ∧ b(y))]nnf
¬ ∨ ∃z.[c(x, z)]nnf )

= (∃y.[a(x) ∧ b(y)]nnf
¬ ∨ ∃z.c(x, z))

= (∃y.([a(x)]nnf
¬ ∨ [b(y)]nnf

¬ ) ∨ ∃z.c(x, z))

= (∃y.(¬a(x) ∨ ¬b(y)) ∨ ∃z.c(x, z)) ∈ [FO]nnf .

33

6.2 The Structural Transformation

The structural transformation plays important rôle not only for obtaining resolu-
tion decision procedures, but in automated reasoning in general, where it is more
known as formula renaming [see Nonnengart & Weidenbach, 2001]. The basic prin-
ciple of the structural transformation can be formulated as follows. Let F [G] be
a first-order formula with positive occurances of a subformula G. Then F [G] can
be replaced with the formula F [G/PG] ∧ ∀x.(PG→G), where PG = pG(x) is a fresh
predicate (not occurring in F [G]) with free[G] ⊆ x, which is a satisfiability pre-
serving transformation. In other words, if one replaces a positive subformula by a
predicate containing all variables of this formula and adds a universally closed con-
junct expressing that the predicate implies the replaced formula, then one obtains
an equisatisfiable formula. The conjunct that is added is also called a definition
for the subformula G, and the predicate pG(x) is called a definitional predicate
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(sometimes called a label) for G. One also says that the subformula G is being
renamed with the predicate PG.

Proposition 6.3. Let F [G] be a first-order formula with positive occurances of a
subformula G. Let PG = pG(x) be a (fresh) definitional predicate for G such that
free[G] ⊆ x. Then F [G/PG] ∧ ∀x.(PG→G) is conservative over F [G].

Proof. For proving this proposition, we need to show that (i) F [G] is a logical
consequence of F [G/PG]∧∀x.(PG→G) and (ii) any model of F [G] can be expanded
to a model of F [G/PG] ∧ ∀x.(PG →G) (see Definition 2.2). The point (i) follows
from Replacement Lemma 2.4. To prove the point (ii), let M be a model for F [G].
We expand the model M to a model M′ by interpreting the new predicate symbol
pG such that pM

′

G
(x) :≡ GM. This is always possible, since free[G] ⊆ x. Obviously,

this expanded interpretation M′ is a model of F [G/PG] ∧ ∀x.(PG→G). 22

The structural transformation has been initially used for propositional CNF
transformation. Using additional (introduced) propositional symbols it was possi-
ble to avoid exponential blow-up for the situations, where there is no polynomial
CNF’s over the initial signature. The simple example of such situation is the
formula:

Pn = (A1 ∧ A′1) ∨ (A2 ∧ A′2) ∨ · · · ∨ (An ∧ A′n), n > 0 (31)

which has a CNF, consisting of 2n clauses. If one introduces a new propositional
symbol Bi, for every conjunct Ai ∧ A′i, 1 ≤ i ≤ n the formula Pn can be represented
by 2n + 1 clauses:

B1 ∨ B2 ∨ · · · ∨ Bn;
¬B1 ∨ A1; ¬B2 ∨ A2; · · · ¬Bn ∨ An;
¬B1 ∨ A′1; ¬B2 ∨ A′2; · · · ¬Bn ∨ A′n;

Note that Pn is not equivalent to the conjunction of these clauses: in an interpreta-
tion where all Bi are false the conjunction is false, but Pn can be either false or true
independently from the values of Bi, 1 ≤ i ≤ n. However, the sets of the clauses
above is conservative over Pn: (i) the formula Pn is a logical consequence of these
clauses and (ii) every model of Pn can be expanded to a model for the clauses by
interpreting Bi as Ai ∧ A′i, 1 ≤ i ≤ n.

The structural transformation is even more useful for first-order formulas. The
repeated application of renaming for quantified subformulas of a first-order for-
mula can lower the quantifier alternation degree of the formula, which results in
smaller and simpler clauses. Formula renaming techniques have other advantages
for proof search [see Nonnengart & Weidenbach, 2001], however, the most impor-
tant advantage of the structural transformation is that it preserves in some sense
the structure of the input first-order formula [for a related discussion see Baaz et
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Figure 22 The structural transformation for a recursively defined set of formulas

F ::= B1 | B2 | · · · | Bn | R1[F1,.., Fk1
] | R2[F1,.., Fk2

] | · · · | Rm[F1,.., Fkm
]

[F ]str := PF ∧ [F ]def ;

[F ]def := [Bi]
def = ∀x.(PF →Bi), | 1 ≤ i ≤ n,

[Rj [F1,.., Fkj
]]def = ∀x.(PF →Rj [PF1

,.., PFkj
]) ∧ [F1]

def ∧···∧ [Fkj
]def | 1 ≤ j ≤ m.

al., 2001]. The structural transformation makes it possible to inherit the properties
of formulas from decidable fragments to their clause normal forms.

The structural transformation can be defined recursively over a sets of formulas
F represented by a general grammar in Figure 22, where Bi, 1 ≤ i ≤ n are first-
order formulas for base cases of the definition, and Rj[F1,.., Fkj

], 1 ≤ j ≤ m are
recursive constructors of new formulas from old ones. Hereby we assume that
every Fi with 1 ≤ i ≤ kj occurs positively in Rj[F1,.., Fkj

].17 The definition (30)
for first-order formulas in negation normal form is an example of such recursive
construction. The result of structural transformation for a formula F ∈ F is
defined by [F ]str := PF ∧[F ]def , where PF is a definitional predicate for F and [F ]def

is a conjunction of formulas expressing definitions for the introduced predicates.
[F ]def is defined recursively over F (see Figure 22). According to this definition, a
formula F is matched to one of the cases of the recursive definition for F and the
result is computed accordingly. Here PF = pF (x) is a (fresh) definitional predicate
for F and x = free[F ]. For example, the function [·]def for the set of first-order
formulas in negation normal form defined by (30) has the following form:

[F ]def := [A]def = ∀x.(PF →A) |

[¬A]def = ∀x.(PF →¬A) |

[F1 ∨ F2]
def = ∀x.(PF →PF1

∨ PF2
) ∧ [F1]

def ∧ [F2]
def |

[F1 ∧ F2]
def = ∀x.(PF →PF1

∧ PF2
) ∧ [F1]

def ∧ [F2]
def |

[∀y.F1]
def = ∀x.(PF →∀y.PF1

) ∧ [F1]
def |

[∃y.F1]
def = ∀x.(PF →∃y.PF1

) ∧ [F1]
def .

(32)

Remark 6.4. Please note that the structural transformation is defined not for a
formula, but for its recursive definition. A formula might be represented by many
different recursive definitions, and consequently might have several different results
of the structural transformation. Note also that the structural transformation
(32) applied to a formula in NNF produces a formula in NNF (according to our
convention A→B is a shortcut for ¬A ∨ B). 33

17The structural transformation can be also defined for negative occurances of subformulas,
however we do not need this since we put formulas into negation normal form first
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Note that the result [G]str of the structural transformation for a formula G ∈ F
computed according to the definitions in Figure 22, can be written as follows:

[G]str = PG ∧
∧

F=Bi

∀x.(PF →Bi) ∧
∧

F = Rj [F1,.., Fkj
]

∀x.(PF →Rj[PF1
,.., PFkj

]), (33)

where the conjunctions are taken over subformulas F of G. In particular, the total
number of conjuncts is at most |G|. Now we give some other properties for the
structural transformation.

Lemma 6.5. Let a formula set F and a function [·]def be defined like in Figure 22.
Let F [G] be a first-order formula with positive occurrences of a subformula G ∈ F .
Then F [G/PG] ∧ [G]def is conservative over F [G].

Proof. We prove Lemma by induction over the construction of G ∈ F . For a base
case G = Bi, 1 ≤ i ≤ n by Proposition 6.3, F [PG] ∧ ∀x.(PG →G) = F [PG] ∧ [G]def

is conservative over F [G].
To prove Lemma for the induction step corresponding to a constructor Rj with

1 ≤ j ≤ m, i.e. for G = Rj[G1,.., Gkj
] (see Figure 22), assume by induction hypoth-

esis that Lemma holds for the formulas G1, . . . , Gkj
. That is, for any F [Gi] with

positive occurrences of Gi, F [PGi
] ∧ [Gi]

def is conservative over F [Gi], 1 ≤ i ≤ kj .
Then of the following sequence of formulas, each formula is conservative over the
previous one:

F [G] = F [Rj[G1,.., Gkj
]] (⇒ by Proposition 6.3)

F [PG] ∧ ∀x.(PG→Rj[G1,.., Gkj
]) (⇒ by induction hypothesis)

F [PG] ∧ ∀x.(PG→Rj[PG1
,.., PGkj

]) ∧ [G1]
def ∧···∧ [Gkj

]def = F [PG] ∧ [G]def .
22

Proposition 6.6. Let a formula set F and a function [·]str be defined like in
Figure 22. Then the result H := [G]str of structural transformation for G ∈ F can
be computed in polynomial time in |G| and produces a formula H such that (i) H
is conservative over G and (ii) |H| = O(w·|G|), where w := width(G).

Proof. Given a formula G ∈ F , the function [G]str is computed with at most |G|
recursive calls. By induction on G it is easy to show that every recursion step can
be done in polynomial time (the polynomial depends on the data structure used
to represent formulas).

The property (i) follows from Lemma 6.5, when we take F [G] := G. To show
the property (ii), note that every conjunct in (33) has the size at most O(w),
where w := width(G), since formulas Ei with 1 ≤ i ≤ n and operators Rj with
1 ≤ j ≤ m are fixed for the formula set F and the size of every definitional
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predicate |PF | ≤ w + 1 (which is the number of variables in the subformula F of G
plus the size of the predicate symbol pF ). Since the number of such conjuncts is
at most |G|, we conclude that |[G]str| = O(w·|G|). 22

Example 6.7. Let us now perform the structural transformation for the result of
NNF- transformation G := [F ]nnf = (∃y.(¬a(x) ∨ ¬b(y))∨ ∃z.c(x, z)) ∈ [FO]nnf

computed in Example 6.2. The result of structural transformation for G is the
formula [G]str = PG ∧ [G]def , where PG = p0(x) (p0 is a fresh predicate symbol in-
troduced for G), and [G]def is computed according to the definition (32) as follows:

[G]def = [∃y.(¬a(x) ∨ ¬b(y)) ∨ ∃z.c(x, z)]def

= ∀x.(p0(x)→(p1(x) ∨ p2(x))) ∧ [∃y.(¬a(x) ∨ ¬b(y))]def ∧ [∃z.c(x, z)]def ;

( p1(x) is introduced for ∃y.(¬a(x) ∨ ¬b(y)); p2(x) is introduced for ∃z.c(x, z) )

[∃y.(¬a(x) ∨ ¬b(y))]def = ∀x.(p1(x)→∃y.p3(x, y)) ∧ [¬a(x) ∨ ¬b(y)]def ;

( p3(x, y) is introduced for ¬a(x) ∨ ¬b(y) )

[¬a(x) ∨ ¬b(y)]def = ∀xy.(p3(x, y)→p4(x) ∨ p5(y)) ∧ [¬a(x)]def ∧ [¬b(y)]def

= ∀xy.(p3(x, y)→p4(x) ∨ p5(y)) ∧ ∀x.(p4(x)→¬a(x))

∧∀y.(p5(y)→¬b(y))

( p4(x) is introduced for ¬a(x); p5(y) is introduced for ¬b(y) )

[∃z.c(x, z)]def = ∀x.(p2(x)→∃z.p6(x, z)) ∧ [c(x, z)]def

= ∀x.(p2(x)→∃z.p6(x, z)) ∧ ∀xz.(p6(x, z)→c(x, z))

( p6(x, z) is introduced for c(x, z) ).

The result of the structural transformation for G is the conjunction of the under-
lined formulas:

[G]str = p0(x) ∧ ∀x.[p0(x)→(p1(x) ∨ p2(x))] ∧ ∀x.[p1(x)→∃y.p3(x, y)]∧

∀xy.[p3(x, y)→p4(x) ∨ p5(y)] ∧ ∀x.[p4(x)→¬a(x)] ∧ ∀y.[p5(y)→¬b(y)]∧

∀x.[p2(x)→∃z.p6(x, z)] ∧ ∀xz.[p6(x, z)→c(x, z)]. (34)

which is of the form (33).
Although the result looks more complicated to a human eye than the input

formula, it is more easy to process by a theorem prover since every conjunct now
has a very simple form. 33
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6.3 Skolemization

In the next step of CNF-transformation the existentially quantified variables of
a formula are skolemized. For the purpose of obtaining saturation-based deci-
sion procedures one usually uses the standard outermost Skolemization. Given a
formula F in negation normal (30), the result [F ]ski /[F ]sko of applying the inner-
most/outermost Skolemization to F is recursively defined in subsection 6.3, where

Figure 23 Skolemization for first-order formulas in NNF

[F ]sk
∗ := [A]sk

∗ = A |

[¬A]sk
∗ = ¬A |

[F1 ∨ F2]
sk
∗ = [F1]

sk
∗ ∨ [F2]

sk
∗ |

[F1 ∧ F2]
sk
∗ = [F1]

sk
∗ ∧ [F2]

sk
∗ |

[∀y.F1]
sk
∗ = ∀y.[F1]

sk
∗ | ∗ ∈ {i, o}

[∃y.F1]
sk
i = [F1]

sk
i ·{y/fF (x)} . (innermost Skolemization)

or

[∃y.F1]
sk
o = [F1·{y/fF (x)}]sk

o . (outermost Skolemization)

[F ]sk
m := [A]sk

m = A |

[¬A]sk
m = ¬A |

[F1 ∨ F2]
sk
m = [F1]

sk
m ∨ [F2]

sk
m |

[F1 ∧ F2]
sk
m = [F1]

sk
m ∧ [F2]

sk
m |

[∀y.F1]
sk
m = ∀y.[F1]

sk
m |

[∃y.F1]
sk
m = [F1]

sk
m ·{y/fF(x)} | [F1·{y/fF (x)}]sk

m .

(mixed Skolemization)

A is an atom, F1, F2 ∈ [FO]nnf and fF (x) is a Skolem function introduced for
the existentially quantified formula F = ∃y.F1 over its free variables x = free[F ].
According to this definition, Skolemization replaces every occurrence of an exis-
tentially quantified variable y in F1 by a Skolem function fF (x). The difference
between innermost and outermost Skolemizations, is that the first method per-
forms Skolemization “from inside out”: skolemizes a subformula and then performs
a substitution, whereas the second method applies a substitution immediately and
then proceed skolemizing subformulas. In the second case one usually obtains
smaller Skolem functions, since the number of free variables in a subformula de-
creases. This is, however, not always the case as can be demonstrated in the
following example:

Example 6.8. Let us skolemize the formula F = ∃z.(a(x,y,z) ∧ ∃u.b(z,u)) in the
innermost and outermost way:

[F ]sk
i =

=[∃z.(a(x,y,z)∧∃u.b(z,u))]sk
i

=[a(x,y,z)∧∃u.b(z,u)]sk
i ·{z/f1(x,y)}

=a(x,y,z)∧[∃u.b(z,u)]sk
i ·{z/f1(x,y)}

=a(x,y,z)∧[b(z,u)]sk
i ·{u/f2(z)}·{z/f1(x,y)}

=a(x,y,z)∧b(z,u)·{u/f2(z)}·{z/f1(x,y)}

=a(x,y,z)∧b(z, f2(z))·{z/f1(x,y)}

=a(x,y, f1(x,y))∧b(f1(x,y), f2(f1(x,y)))

[F ]sk
o =

=[∃z.(a(x,y,z)∧∃u.b(z,u))]sk
o

=[(a(x,y,z)∧∃u.b(z,u))·{z/f1(x,y)}]sk
o

=[a(x,y, f1(x,y)∧∃u.b(f1(x,y), u)]sk
o

=a(x,y, f1(x,y))∧[∃u.b(f1(x,y), u)]sk
o

=a(x,y, f1(x,y))∧[b(f1(x,y), u)]sk
o ·{u/f3(x, y)}

=a(x,y, f1(x,y))∧[b(f1(x,y), f3(x, y))]sk
o

=a(x,y, f1(x,y))∧b(f1(x,y), f3(x, y))
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where f1(x, y) is a Skolem function introduced for the formula F ; f2(z) is a Skolem
function introduced for the subformula ∃u.b(z, u) and f3(x, y) is a Skolem function
introduced for the formula ∃u.b(f1(x, y), u). Note that the results of innermost and
outermost Skolemizations differ in underlined terms f2(f1(x, y)) and f3(x, y), which
semantically denote the same function. 33

Innermost Skolemization, can lead to exponentially large results in worst case
which is demonstrated in a simple example below. Therefore, without usage of
special data-structures, that allow for shearing of terms, innermost Skolemization
is not very useful in practice, except for situations where it allows one to reuse
Skolem functions (see Remark 6.12 below).

Example 6.9. Let us find the results of innermost and outermost Skolemizations
for the formula A = ∃x1.∃x2...∃xn.a(x1, x2,.., xn). The outermost Skolemization
yields the formula

a(c1, c2,.., cn),

where for each i with 1 ≤ i ≤ n, the Skolem constant ci is introduced for the
formula

∃xi...∃xn.a(c1,.., ci−1, xi,.., xn).

The innermost Skolemization is computed as follows:

[A]sk
i =[∃x2...∃xn.a(x1, x2,.., xn)]sk

i ·{x1/c1}

=[∃x3...∃xn.a(x1, x2,.., xn)]sk
i ·{x2/f2(x1)}·{x1/c1}

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

=[∃xi+1...∃xn.a(x1, x2,.., xn)]sk
i ·{xi/fi(x1,.., xi−1)} · · · ·{x2/f2(x1)}·{x1/c1}

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

=a(x1, x2,.., xn)·{xn/fn(x1,.., xn−1)} · · · ·{xi/fi(x1,.., xi−1)} · · · ·{x2/f2(x1)}·{x1/c1}

where for each i with 1 < i ≤ n, the Skolem function fi(xi−1,.., x1) is introduced
for the formula ∃xi...∃xn.a(x1, x2,.., xn). After computing the last sequence of
substitutions we obtain a formula of exponential size in n. Indeed, by induction on
i with 1 ≤ i ≤ n, it can be shown that after performing the i-th substitution (for the
variable xn−i+1), the number of occurrences for each variable xj with 1 ≤ j ≤ (n−i)
becomes 2i (after applying the substitution for xn−i+1 the number of occurrences
for the remaining variables gets doubled). In particular the constant c1 occurs in
the result of the Skolemization 2n times. So, the innermost Skolemization produces
an exponentially large formula. 33

Because of this dramatical difference in complexity between innermost and out-
ermost Skolemizations (that will be made precise in Proposition 6.10), we will re-
frain from using innermost Skolemization. Unless stated otherwise, every Skolem-
ization that we use [F ]sk is outermost.
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Innermost and outermost Skolemizations can be mixed (some quantifiers can
be skolemized in innermost others in outermost way). This hybrid Skolemization is
denoted by [F ]skm (see the definition in subsection 6.3). The result of Skolemization
is not logically equivalent to the input formula, but preserves its (un)satisfiability.

Proposition 6.10. For any formula F ∈ [FO]nnf the result of mixed Skolemiza-
tion [F ]skm (outermost Skolemization [F ]sko ) can be computed in exponential (poly-
nomial) time in |F | such that the following holds: (i) [F ]skm is conservative over F
and (ii) |[F ]skm | ≤ (w + 1)e·|F |; |[F ]sko | ≤ (w + 1)·|F |, where w = width(F ) and e
is the number of existential quantifiers in F .

Proof. In every computation of the function [F ]skm there are at most |F | recursive
call (exactly one for every logical connective in F , since a substitution does not
change any of those). Therefore the recursive function [·]skm always terminates.
Since there are at most linear number of recursion calls, the computation time for
Skolemization is mainly influenced by the (intermediate) sizes of formulas, which
we estimate below.

To estimate the size of [F ]skm , note that during its computation exactly e substi-
tutions have been applied to a formula (one for every existential quantifier). Every
substitution increases the size of the formula in at most w +1 times (every Skolem
function contains at most w variables). Therefore, the size of the result |[F ]skm | is
bounded by (w + 1)e·|F |. For the outermost Skolemization, we can obtain a much
lower bound, since one could notice that Skolem functions cannot be nested in the
result [F ]sko . Indeed, according to the definition of [·]sko given in Figure 23, Skolem
functions that are substituted for variables do not contain variables that will be
instantiated afterwards. So, the size of the result |[F ]sko | cannot exceed the value
(w + 1)·|F |, which is polynomial in |F |. Hereby, we have proven the point (ii) of
Proposition.

The bounds on the sizes of skolemized formulas imply that the procedure com-
puting mixed (outermost) Skolemization can be implemented in exponential (re-
spectively polynomial) time in the size of the input. It remains to show the point
(i) of Proposition which we do by induction over [·]skm .

First, it can be shown that F is a logical consequence of [F ]skm . The base case
and induction steps for conjunction and disjunction is trivial. For the case with
a universal quantifier, ∀y.F1 is a logical consequence of [∀x.F1]

sk
m = ∀x.[F1]

sk
m by

Replacement Lemma (see Lemma 2.4), since F1 is a logical consequence of [F1]
sk
m

by induction hypothesis. For the case with an existential quantifier, ∃y.F1 is a
logical consequence of the formula F1·{y/fF(x)}, which by induction hypothesis is
a logical consequence of both [F1]

sk
m ·{y/fF(x)} and [F1·{y/fF (x)}]skm .

Now we prove that any model M of F can be expanded to a model M′ of
[F ]skm . We expand any interpretation M by defining the interpretation of new
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Skolem functions as follows:

fM
′

∃y.F1
(d1, d2,.., dn) :=

{
some d s.t. M � F1·{y/d, x1/d1,.., xn/dn}
d1 if M � F1·{y/d, x1/d1,.., xn/dn} for no d ∈ D

where x1, x2,.., xn are all free variables of F1. Note, that this definition relied on
Axiom of Choice [for a related discussion concerning the rôle of Axiom of Choice
and Skolemization in saturation-based theorem proving see de Nivelle, 2003]. Us-
ing the above definition, by induction over [·]skm , it is straightforward to show that
for any first-order interpretation M and a valuation of variables η, there exists an
expansion M′ of M such that M, η � F implies M′, η � [F ]skm . 22

Before applying Skolemization we make one more step, which is the existential
closure of a formula. We replace a formula G ∈ [FO]nnf with ∃x.G, where x =
free[G]. For example, the formula F in Example 6.8 should have been existentially
closed to ∃xy.F . This step also preserves (un)satisfiability of a formula. From now
on we assume that the formula to be skolemized is a sentence (that is, it does not
contain free variables).

Example 6.11. Let us perform existential closure and Skolemization for the result
H := [G]str (34) computed in Example 6.7. The existential closure yields the
formula ∃x.H, since {x} = free[H], skolemizing which we obtain the formula:

[H]sk = p0(c1) ∧ ∀x.[p0(x)→(p1(x) ∨ p2(x))] ∧ ∀x.[p1(x)→p3(x, f1(x))]∧

∀xy.[p3(x, y)→p4(x) ∨ p5(y)] ∧ ∀x.[p4(x)→¬a(x)] ∧ ∀y.[p5(y)→¬b(y)]∧

∀x.[p2(x)→p6(x, f2(x))] ∧ ∀xz.[p6(x, z)→c(x, z)]. (35)

where the Skolem constant c1 is introduced for the formula ∃x.H, the Skolem
function f1(x) is introduced for the subformula ∃y.p3(x, y) of H and the Skolem
function f2(x) is introduced for the subformula ∃z.p6(x, z) of H. 33

Remark 6.12. Both in structural transformation and in Skolemization the intro-
duced predicate symbols, respectively Skolem functions can be reused, if the for-
mulas for which they are introduce are equivalent (modulo variable renaming). For
example, given the formula:
F = ∀x.∃y.a(x, y)∧ ∃z.∃y.a(z, y), one can introduce a definitional predicate p1(x)
for the subformula ∃y.a(x, y) and reuse it for the subformula ∃y.a(z, y) as follows:

[F ]str = ∀x.p1(x) ∧ ∃z.p1(z) ∧ ∀x.[p1(x)→∃y.a(x, y)].

Alternatively one can introduce a Skolem function f1(x) for the subformula ∃y.a(x, y)
and reuse it for the subformula ∃y.a(z, y) as follows (we have used the innermost
Skolemization):

[F ]sk = ∀x.a(x, f1(x)) ∧ a(c1, f1(c1))
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where the Skolem constant c1 is introduced for the subformula ∃z.∃y.a(z, y). This
re-usage technique can further refine the structural transformation and Skolemiza-
tion which yield smaller CNF’s in many situations [see Nonnengart & Weidenbach,
2001]. 33

6.4 Clausification

Clausification is probably the most expensive transformation in computation of a
clause normal form. Like Skolemization it can produce exponentially large results,
if not used carefully.

After Skolemization step we may assume that all existentially quantified vari-
ables are eliminated and only universally quantified variables left (remember that
our formula is closed). We drop the universal quantifiers (first, renaming all
bounded variables apart), since they do not carry any information anymore. Thus,
we assume that all variables of the resulted expression are implicitly universally
quantified. The obtained formula has the following simple form:

P ::= L | F1 ∨ F2 | F1 ∧ F2 . (36)

where L ::= a(t1, t2,.., tn) | ¬a(t1, t2,.., tn) is a literal, that is, an atom or its nega-
tion, whose arguments are first-order terms. Now an expression of the form (36) is
translated to a set of clauses using a clausification transformation. A quantifier-
free first order formula F in negation normal form is in conjunction normal form
(also denoted CNF since there is not much difference with clause normal form) if
any subformula of the form F1 ∨ F2 of F does not contain conjunctions. During
the clausification step, the conjunctions are repeatedly distributed over disjunc-
tions using the following rewrite rules applied to subformulas of a formula:

A ∨ (B ∧ C) ⇒ (A ∨ B) ∧ (A ∨ C) and (A ∧ B) ∨ C ⇒ (A ∨ C) ∧ (B ∨ C)

There are different ways to show that this transformation terminates. The trans-
formation rules above can be oriented using an LPO-ordering [see Bachmair &
Ganzinger, 2001], however this does not give one any complexity bounds for the
transformation. In order to estimate the time spent on clausification and the size of
the result, we compute the result [F ]cnf of CNF transformation using the function
[· | ·]cnf defined in Figure 24. The function [· | ·]cnf is defined recursively over the
first argument F ∈ P of the form (36). The second argument is used for bookkeep-
ing a disjunction of literals that are cut from the formula F while decomposing it.

The main difficulty in proving termination of this function (and estimating its
computational cost) arises in the last recursion step, which normalizes a formula
modulo associativity of disjunction. For this purpose we introduce a new weight
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Figure 24 Clausification for quantifier-free first-order formulas

[F ]cnf := [F | ⊥]cnf ;

[F |C]cnf := [L |C]cnf = C ∨ L |

[F1 ∨ L |C]cnf = [C ∨ L]cnfF1 |

[F1 ∧ F2 |C]cnf = [F1 |C]cnf ∧ [F2 |C]cnf |

[F1 ∨ (F2 ∧ F3) |C]cnf = [F1 ∨ F2 |C]cnf ∧ [F1 ∨ F3 |C]cnf |

[F1 ∨ (F2 ∨ F3) |C]cnf = [(F1 ∨ F2) ∨ F3 |C]cnf .

|F |cnf := |L|cnf = 1 |

|F1 ∨ F2|cnf = |F1|cnf + |F2|
1

cnf + 1 |

|F1 ∧ F2|cnf = |F1|cnf + |F2|cnf + 1 .

|F |1cnf := |L|1cnf = 1 |

|F1 ∨ F2|
1
cnf = |F1|

1
cnf + |F2|

1
cnf + 2 |

|F1 ∧ F2|
1
cnf = |F1|

1
cnf + |F2|

1
cnf + 1 .

function | · |cnf that is defined in Figure 24. The weight function |F |cnf sums the
weights literals, conjunction and disjunction symbols in F . All these symbols have
a weight 1 unless it is a disjunction symbol that appears inside the right disjunct
F2 of some subformula F1 ∨ F2 of F . In this case the weight of the disjunction
symbol is 2 (additional penalty is added for the occurrence in a right disjunct).
For example, |(L1 ∨ L2) ∨ L3|cnf = 5, but |L1 ∨ (L2 ∨ L3)|cnf = 6, which makes it
possible to orient the last recursion step (associativity of disjunction). Using the
weight function | · |cnf we show that clausification terminates in exponential time
and produces at most exponentially large CNF.

Proposition 6.13. For any formula F ∈ P defined according to (36), the result of
clausification S := [F ]cnf can be computed in polynomial time in 2|F | and produces
a formula S in CNF such that (i) S ≡ F and (ii) |S| ≤ 2|F |.

Proof. First we show that for any formula F ∈ P there are at most 22·|F | recursive
calls of the function [· | ·]cnf possible during the computation of [F ]cnf . Observe
that in every recursion call the weight of the first parameter strictly decreases:

|F1 ∨ L|cnf = |F1|cnf + |L|1cnf + 1 > |F1|cnf ;

|F1 ∧ F2|cnf = |F1|cnf + |F2|cnf + 1 > max(|F1|cnf , |F2|cnf);

|F1 ∨ (F2 ∧ F3)|cnf = |F1|cnf + (|F2|
1
cnf + |F3|

1
cnf + 1) + 1 >

> |F1|cnf + max(|F2|
1
cnf , |F3|

1
cnf) + 1 =

= max(|F1 ∨ F2|cnf , |F1 ∨ F3|cnf);

|F1 ∨ (F2 ∨ F3)|cnf = |F1|cnf + (|F2|
1
cnf + |F3|

1
cnf + 2) + 1 >

> (|F1|cnf + |F2|
1
cnf + 1) + |F3|

1
cnf + 1 = |(F1 ∨ F2) ∨ F3|cnf .

Note also that |F |cnf < 2·|F | for every F ∈ P.
The computation tree for [F | ·]cnf is a binary tree: every recursion step fires at

most two recursive calls of the function [· | ·]cnf . On every branch of this tree there
are at most |F |cnf < 2·|F | recursion calls (the weight function cannot decrease
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more than |F |cnf times). Therefore, the size of the recursion tree and the total
number of recursion calls used in computation of [F ]cnf is bounded by 22·|F |. Below
we will show that the function produces the output of the size at most 2|F |. This
will imply that clausification can be computed in polynomial time in 2|F | (the
polynomial overhead is caused by manipulations with intermediate results, that
depend on a data structure implementation).

Since we have proved that the function [· | ·]cnf terminates, we may use induction
over it. By such an induction now it is easy to show that the result of clausification
is equivalent to the input formula and has at most exponential size in the input
formula. More precisely, (i) [F |C]cnf ≡ C ∨F and (ii) |[F |C]cnf | < (|C|+2)·2|F |.
This respectively imply the parts (i) and (ii) of Proposition. 22

Clausification of a formula F ∈ P produces a conjunction of disjunctions. We
drop the conjunctions between disjunctions and view the result as sets of clauses.
All clauses have implicitly disjoint variables (which are implicitly universally quan-
tified), so we can reuse variable names.

Example 6.14. By applying clausification for the formula computed in Exam-
ple 6.11, we obtain the following set of clauses:

p0(c1);
¬p0(x) ∨ p1(x) ∨ p2(x);
¬p1(x) ∨ p3(x, f1(x));
¬p3(x, y) ∨ p4(x) ∨ p5(y);

¬p4(x) ∨ ¬a(x);
¬p5(y) ∨ ¬b(y);
¬p2(x) ∨ p6(x, f2(x));
¬p6(x, z) ∨ c(x, z).

33

Remark 6.15. Although clausification is exponential in worst case (see example
(31)), most translations that we give for fragments are polynomial. This is mainly
because of the structural transformation step which is applied before clausification.
Since the structural transformation produces a formula of the form (33), we need to
perform clausification only for conjuncts of these formula, which have a fixed form
for a fragment. Therefore, every conjunct is translated into CNF with a linear
overhead in the size and clausification can be computed in polynomial time. 33

6.5 Summary for CNF-Transformations

Complexity estimations for the steps of CNF-transformation are summarized in
Table 1. As seen from the table, the most expensive steps of the transformation
are Skolemization and clausification, which are exponential in worst case. Note
that this does not really imply that CNF-transformation is doubly exponential in
worst case, since Skolemization produces possibly exponentially large literals, but
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Table 1 Summary for complexity of CNF transformations
\Transformation NNF Structural Ex. Closure Skolemization Clausification

Complexity\ 99K [ ]nnf99K 99K [ ]str99K F 99K∃x.F 99K [ ]sk99K 99K [ ]cnf99K

Size 2·|F | O(w·|F |) w + |F |
(w + 1)e·|F |

(w + 1) · |F |∗
2|F |

O(|F |)†

Time p(|F |) p(|F |) p(|F |)
p((w + 1)e·|F |)

p(|F |)∗
p(2|F |)
p(|F |)†

where w = width(F ); ∗for outermost Skolemization
e = the number of existential quantifiers in F ; †in combination with structural
p(·) is a polynomial function. transformation

leaves the number of boolean connectives polynomial, whereas clausification expo-
nentially increases the number of boolean connectives leaving literals unchanged.
Thus, the result of CNF-transformation is at most exponential in the size of the
input formula.

In decision procedures one typically employs polynomial CNF-transformation.
This is achieved by (i) using the outermost skolemization and (ii) applying the
structural transformation before clausification step (see Remark 6.15). In fact,
in most procedures, CNF-transformation produces a result of the size O(w·|F |),
where w is the width of the input formula F .
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7 The Theorem Proving Process

In this section we revisit the saturation process considered in subsection 3.4. So far,
saturation process has been described from an abstract viewpoint (see Figure 5),
now we address it from pragmatic side. We discuss how a saturation-based strategy
can be implemented. Here we mainly address the following two questions: (1) how
redundancy can be practically used in theorem provers and (2) how deduction
of clauses can be organised in a fair way? In order to answer these and other
questions, we consider a simple model of a saturation-based theorem prover. This
model will be used for deriving complexity bounds for decision procedures that we
present afterwards.

7.1 Simplification Rules

The calculi introduced in previous sections form a core inference system in saturation-
based theorem provers. The inference rules of these calculi are usually called the
deduction rules. Besides deduction rules, most calculi employ additional simplifi-
cation rules during a saturation process. Simplification rules implement deletion of
redundant clauses and clause rewriting (i.e., replacing clauses with simpler ones).
Their purpose is to keep the search space of a theorem prover manageable, i.e.,
to keep as small number of clauses as possible. In fact, modern theorem provers
such as Vampire [Riazanov & Voronkov, 2002] or Spass [Weidenbach et al., 2002],
spend most of their computation time on simplification and not on deduction.

The general form of simplification rules that we consider in this report is spec-
ified by

A Simplification Rule

SR :
S ∪ [[S ′ ]]

S1 || · · · || Sn

where the conditions of the rule hold

(37)

where S, S ′, S1, .., Sn are clause sets. Some premises of a simplification rule might
be enclosed in brackets [[···]], which means that they should be deleted after this
inference is applied. Simplification rules might be multi-conclusion, i.e., possibly
several clauses can be produced in an inference. We also admit nondeterminis-
tic inference rules, i.e., when there are several choices between conclusions of an
inference rules called the possible conclusions of the rule (here we separate these
choices with || ).

Definition 7.1 (Admissible Simplification Rules).
We say that a simplification rule R : S ∪ [[S ′ ]] ` S1 || · · · || Sn is sound if every
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model for S ∪ S ′ is a model for some Si with 1 ≤ i ≤ n. R is compatible with a
redundancy criterion R = (RCl(·), RInf (·)) if for every i with 1 ≤ i ≤ n, we have
S ′ ⊆ RCl(S ∪ Si). Finally, we say that a simplification rule R is admissible for a
calculus C based on a redundancy criterion R if R is sound and compatible with
R. 33

Soundness of simplification rules is required to ensure that a rule can be always
applied such that it preserves satisfiability of a clause set. Additionally, deletion of
premises must be performed according to a redundancy criterion in order to retain
refutational completeness. In other words, application of simplification rules should
not prevent from deriving the empty clause from an unsatisfiable clause set. The
type of nondeterminism in simplification rules is a “don’t know ” nondeterminism,
meaning that only a certain choice of possible conclusions (which is a-priori not
known) preserves satisfiability of a clause set. This makes a saturation process also
nondeterministic (i.e., with backtracking).

Figure 25 Some simplification rules used in saturation-based theorem provers

Tautology Deletion Elimination of Duplicate Literals

TD :
[[C ∨ A ∨ ¬A ]]

ED :
[[C ∨ L ∨ L ]]

C ∨ L

— —

Subsumption Deletion Splitting

SD :
C [[D ]]

SP :
[[C ∨ D ]]

C || D

where (i) C strictly subsumes D
where (i) C 6= �; (ii) D 6= � and
(iii) vars[C] ∩ vars[D] = {}.

In figure 25 we list some simplification rules which are often used in saturation-
based theorem provers.18 We have already discussed several times the impact of
tautology deletion on refutational completeness of some calculi. The Tautology
Deletion rule implements deletion of simple syntactical tautologies. This rule is
applied to a clause that has complementary literals and does nothing except that
it deletes this clause. Another similar simplification rule is Elimination of Duplicate
Literals, which is applied to a clause that has multiple occurrences of some literal
and replaces it with a clause in which duplicate occurrences of this literal are
removed. The Subsumption Deletion rule is applied to two clauses, one of which
strictly subsumes the other. This rule does not produce any conclusion, but deletes

18See [Weidenbach, 2001] for a variety of other simplification rules that are commonly used in
saturation-based theorem provers
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the subsumed clause. Finally, the Splitting rule is applied to a clause C ∨ D that
consists of two non-empty variable disjoint parts C and D. If such a clause is true
in a model, then either C must be true or D must be true in this model. This rule
implements this nondeterministic choice and deletes the premise of this rule. It is
easy to check that all simplification rules from Figure 25, are admissible according
to Definition 7.1 w.r.t. the standard redundancy criterion with subsumption (see
Appendix A.2).

7.1.1 Simplification rules extending a signature

For some saturation-based decision procedures we need to employ simplification
rules that might extend a signature. An example of such inference rules is the
following rule:

Splitting through New Predicate Symbol

SPP :
C ∨ D

C ∨ u
C
(x)

D ∨ ¬u
C
(x)

where (i) C 6= �; (ii) D 6= �; (iii) vars[C]∩vars[D] = x
and (iv) u

C
is an extended predicate symbol introduced

for C.

(38)

This simplification rule splits a clause consisting of two subclauses C and D by
introducing a new predicate symbol u

C
(x) over common variables of these sub-

clauses. In case when u
C
(x) is sufficiently small in the ordering, the premise of

this rule becomes redundant w.r.t. to the conclusions of this rule (obviously, the
premise logically follows from the conclusions of this rule). An instance of Splitting
through New Predicate Symbol, when C and D do not have variables in common,
has been considered in [Riazanov & Voronkov, 2001; de Nivelle, 2001] for sim-
ulating the Splitting rule and to avoid backtracking in saturation-based theorem
provers.

In order to integrate such inference rules in our framework, we assume that
for every extended predicate or functional symbol u that might be introduced by
a simplification rule, there is a function that given a first-order interpretation I
over the initial signature, expands this interpretation to new signature elements. In
other words, interpretation of base elements of a signature, uniquely determines the
interpretation for every extended element. We will denote by uI the interpretation
of the symbol u under this expansion of I.

Extension of interpretations for introduced predicate symbols can be done by
supplying first-order definitions for them. For example, formula u

C
(x) above can
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be interpreted as a first-order formula ∃y(¬C), where y = vars[C] \x. It is easy to
check that every model for the premise of Splitting through New Predicate Symbol
is also a model for the conclusions of this rule, when u

C
is interpreted in this way.

In other words, this simplification rule is sound.
In order to indicate which elements from premises determine the interpreta-

tion of new predicate and functional symbols, we supply them with indexes. For
example, the new predicate symbol u

C
introduced in Splitting through New Pred-

icate Symbol is indexed by C, which means that its interpretation is determined
only by interpretation of C. In this way, this predicate symbol can be reused,
for instance in an application of this rule for a clause C ∨ D′ with D′ 6= D and
vars[C] ∩ vars[D] = vars[C] ∩ vars[D′].

7.2 A Model of a Saturation Process

In order to estimate complexity of different saturation-based strategies, we describe
a simple model of computation for a refutational-based theorem prover. Similar,
but more detailed and more practically-oriented models of saturation can be found
for instance in [Weidenbach, 2001; Bachmair & Ganzinger, 2001].

Figure 26 A simple model of computation for a saturation-based theorem prover

Prover (N)
S := ({} | {} | N);
while (U 6= {} and � /∈ U) do

S := Deduce (S);
end;
if (U = {}) then return ("Satisfiable");
if (� ∈ U) then return ("Unsatisfiable");

end.

state
↓

S = (D
↑

deleted

|

worked-out
↓

O | U
↑

usable

)

A state of our saturation-based theorem prover is a set of clauses S which
is partitioned on three pairwise disjoint subsets D, O and U of deleted clauses,
worked-out clauses and usable clauses respectively (we will shortly write S =
(D | O | U)). Given an input set of clauses N to be processed, a state of the prover
is initialised to S := ({} | {} | N). After that, the main loop of a prover is executed,
where this clause set is processed according to deduction and simplification rules.
This process stops if either all clauses are processed (U = {}), or the empty clause
� is derived (� ∈ U): see Figure 26.

Now suppose S is an inference system consisting of deduction and (nondeter-
ministic) simplification rules. Given an inference π ∈ S, we write S ∪ [[S ′ ]] π̀ N
if a clause set N is a possible conclusion of the inference π from S ∪ S ′, where all
clauses from S ′ are deleted. This relation is extended to the full inference system
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by writing S ∪ [[S ′ ]] S̀ N when N is the set of all clauses that are obtained in one
step from clauses S ∪ S ′ and S ′ is the set of all clauses that were deleted in these
inferences, i.e., formally:

S∪[[ S ′ ]] S̀ N iff N =
⋃

π∈S

Nπ; S ′ =
⋃

π∈S

S ′
π; where S∪S ′\S ′

π∪[[ S ′
π ]] π̀ Nπ. (39)

In order to explain how deduction takes place, we need to introduce additional
operation with theorem proving states, namely insertion of clauses. Given a the-
orem proving state S = (D | O | U), the result of insertion of a clause set N
into S is a theorem proving state defined by: S ∪ N = (D | O | U) ∪ N :=
D | O | (U ∪ N \ (D ∪ O)). It is obvious that insertion preserves disjointness
for the sets of deleted, worked-out and usable clauses. Now the transformation
Deduce(S) performing deduction of new clauses in the main loop of a prover is
defined in Figure 27 According to this definition, the next theorem proving state is

Figure 27 Deduction of new clauses

Deduce
D | O t O′ | {C} t U ⇒ (D ∪ O′ | O ∪ {C} | U) ∪ N where O ∪ {C} ∪ [[O′ ]] S̀ N

D | O t O′ | {C} t U ⇒ (D ∪ O′ ∪ {C} | O | U) ∪ N where O ∪ [[ {C} ∪ O′ ]] S̀ N

obtained from the previous state by (1) selecting a usable clause, (2) inserting con-
clusions of all inferences between this clause and worked-out clauses, (3) moving
deleted clauses into D and (4) moving the selected clause into the set of worked-
out clauses O if it has not been deleted. Note that the Deduce transformation
might be nondeterministic, since the relation S̀ is not necessary functional be-
cause of nondeterministic simplification rules. However, if all simplification rules
are deterministic, then the saturation procedure is also deterministic.

In our model of saturation, deleted clauses are not removed from a clause set,
but moved into a special set D of deleted clauses (speaking in deferent terms, these
clauses are marked as deleted). This is done to implement a so-called permanent
deletion. Using permanent deletion, clauses that were once deleted, are memo-
rised in a theorem proving state which prevents it from deriving them again. This
helps avoiding (infinite) repetitions of deriving/deletion of the same clauses and
solves certain problems with fairness of a saturation process. However, permanent
deletion requires more memory.19 For certain inference rules, like Tautology Dele-
tion or Elimination of Duplicate Literals it is possible to completely remove deleted
premises, when these inference rules are applied eagerly. Eager application of a
simplification rule means that the rule is applied to a clause set as soon as it has

19This is a reason why most of theorem provers do not use permanent deletion and solve
problems with fairness by different means
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become applicable. In this case, all clauses are kept normalised w.r.t. these rules.
For example, eager application of Elimination of Duplicate Literals, amounts to dele-
tion of all duplicate literals in clauses that are produced. The only requirement for
eager application, is that this normalisation process must always terminate. It is
possible to show that, in fact, all simplification rules from Figure 25 can be used
eagerly, i.e., saturation of every clause set w.r.t. these inference rules always ter-
minates (indeed, conclusions of these inference rules have a strictly smaller literals
than their premises).

In Figure 28, we modified the computational model from Figure 26 to make use
of eager simplification rules. For this, we have defined an additional transforma-
tion Simplify(S) for states of a prover. This transformation performs all one-step

Figure 28 A model of computation with eager simplification rules

Prover (N)
S:=Normalise ({} | {} | N);
while (U 6= {} and � /∈ U) do

S:=Normalise (Deduce (S));
end;
if (U = {}) then return ("Satisfiable");
if (� ∈ U) then return ("Unsatisfiable");

end.

Normalise (S)
repeat

S′:= S;
S := Simplify (S′);

until (S = S′);
return(S);

end.

Simplify
D | O t O′ | U t U ′ ⇒ (D ∪ O′ | O | U) ∪ N where O ∪ U ∪ [[O′ ∪ U ′ ]] S̀e

N

inferences from the set of worked-out and usable clauses w.r.t. the set Se of eager
simplification rules of an inference system. If a worked-out clause is deleted during
any of these inferences, than it is moved into the set D of deleted clauses. On the
other hand, all deleted usable clauses are simply removed from a clause set. This
transformation is iteratively repeated until nothing new is derived or deleted. The
described procedure is implemented using function Normalise(S), which is applied
in a state of a prover after each deduction step.

7.2.1 Correctness of the theorem-proving procedures

Before using the procedures given in Figure 26 and Figure 28, we have to demon-
strate their correctness. That is, we need to show their (1) soundness: for every
satisfiable input set N there is a branch where a prover does not return "Unsat-
isfiable", and (2) completeness: for every unsatisfiable input set N a prover must
return "Unsatisfiable".

Soundness for a theorem prover follows from soundness of inference rules be-
cause the Deduce and the Simplify transformations can be always applied in a
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satisfiability-preserving way. For showing completeness, we need to make addi-
tional assumptions about the data structure used to operate with sets of clauses
(to ensure, in particular, that the results of different operations can be always
computed). We assume that there is an efficient mechanism that provides for:

1. Insertion of clauses: Given a theorem proving state S, the result of inser-
tion of a clause set N into S can be effectively computed.

2. Enumeration of clauses: For every state S = (D | O | U), the sets O and
U of worked-out and usable clauses can be effectively enumerated.

3. Fair selection of usable clauses: There is a function Choose(·) that given
a theorem proving state S = (D | O | U) selects a usable clause Choose(S) ∈ U
such that for every sequence of theorem proving states Si = (Di | Oi | Ui),
i = 1, 2,.., n,.., with Choose(Si) /∈ Uj when 1 ≤ i < j, we have

⋃
i≥1

⋂
j≥i Uj =

{}. In other words, if selected clauses are permanently removed from the set
of usable clauses, then every usable clause will be eventually removed.

The first property can be achieved by keeping the set of all clauses sorted, and
checking whether a clause is already in this set during insertion. In this way,
insertion of each clause C in a state S can be done in time O(|C|). For the second
property, one can use links to the “next” and “previous” elements in O and U . The
third property can be implemented in various ways, for instance, by assigning to
every new clause a positive weight (say, the number of symbols in a clause) and
selecting a minimal new clause according to this weight [see Weidenbach, 2001].

Properties 1 and 2 above insure that one can always compute the results of
transformations Deduce and Simplify. It is easy to see that every state S computed
in saturation process contains all inferences from the set O of worked-out clauses.
Since deletion of clauses is done according to a redundancy criterion, all clauses
from D must be redundant w.r.t. S.

Note that rules Deduce and Simplify are instances of theorem proving derivations
given in Figure 5. Hence, the limit of every sequence S1 \ D1, S2 \ D2, · · · of
non-deleted clauses from theorem proving states, is saturated up to redundancy
provided that all derivations were performed fairly (see Definition 3.24 on p. 47). In
this case, completeness of our theorem prover follows from Completeness Criterion
(see Corollary 3.28).

Fairness of derivations is guaranteed by assumption 3 above. Indeed, if some
inference π can be applied to all Si\Di starting from some j ≥ 1, then by condition
3, there exists k ≥ j such that Ok contains all premises of π. Hence the conclusion
of π must be in Sk, and so π is redundant w.r.t. Sk \ Dk.
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7.2.2 Complexity of saturation procedures

In many saturation-based decision procedures it is possible to estimate the maximal
number of different clauses that might be produced by a saturation procedure. This
gives a bound on space complexity of decision procedures. We will use the model
of theorem prover given in Figure 28 to estimate the time required to compute a
saturation of bounded size.

We assume that the conclusion of every inference can be computed in polynomial
time in the size of its premises. This assumption holds for all calculi introduced
in this chapter. Moreover, we assume that normalisation of a clause set N w.r.t.
eager simplification rules can be done in polynomial time in the size of N . For
many simplification rules and clause classes this is indeed the case. It is possible
to show that normalisation w.r.t. Tautology Deletion, Elimination of Duplicate Lit-
erals and Splitting can be done in polynomial time. Checking subsumption is in
general an NP-complete problem [see Garey & Johnson, 1979], however for clauses
with bounded number of literals containing all variables of a clause, Subsumption
Deletion can be done in polynomial time [Gottlob & Leitsch, 1985; Ganzinger &
de Nivelle, 1999]. In other cases, this rule can be always replaced with a suitable
polynomial approximation [see Weidenbach, 2001].

We give estimation for time complexity of saturation procedures in terms of:

|N | - the size of the initial clause set;

c - the maximal number of normalised clauses;

s - the maximal number of clauses in a normalised clause set;

m - the maximal size of a normalised clause;

k - the maximal number of premises in all deduction and simplification
rules.

Note that s bounds the number of worked-out and usable clauses after each nor-
malisation steps, whereas c bounds the total number of clauses (including deleted
ones) after normalisation. The value s might be strictly smaller than c, if there
are eager simplification rules with at least two premises. For example, if we use
Subsumption Deletion eagerly, then s bounds the maximal number of clauses in a
set where no clause strictly subsumes other clauses.

Now we estimate the time required to compute a saturation according to the
procedure from Figure 28. Normalisation of the input clause set can be done it
time p(|N |) (where p(·) is a polynomial function). In order to estimate the time
required for the main loop, note that after each iteration of this loop, the set
D ∪ O is incremented exactly on one clause, namely the usable clause which was
selected in the Deduce transformation. Since the total number of clauses in S after
normalisation step is bounded by c, we may have at most c iterations of the main
loop. In each iteration, according to Figure 27, one should compute all possible
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inferences between worked-out clauses and the selected clause. The number of
such inferences is bounded by O(s(k−1)) (recall that the set of worked-out clauses
is normalised before this step, hence their total number is bounded by s). Since
every inference can be done in polynomial time in m, the computational cost for
the Deduce step is O(s(k−1) ·p(m)), which is also a bound on the size on new clauses
that are derived in this step. The subsequent normalisation step can be done in
polynomial time in this value. Hence the total running time for the saturation
procedure is bounded by:

t = p(|N |) + c · p(m · s(k−1)) (40)

The estimation (40) for the time required to compute a saturation, can possi-
bly be refined further, by considering a more detailed model of a theorem prover
like say in [Weidenbach, 2001]. However, the main message of this section is that
the time complexity for saturation procedures is polynomial in its space complexity
(under the given assumptions about complexity of inference rules). One should
remember, however, that a saturation procedure can be nondeterministic, hence
although non-deterministic space complexity classes coincide with correspondent
non-deterministic classes (for PSPACE or higher), this is not true for time com-
plexity classes.
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A Technical Appendixes

A.1 Lifting and Redundancy with Selection Functions

In this appendix we describe a completeness proof for the ordered resolution cal-
culus with selection functions OR�

Sel
defined in subsection 3.6 in System 7. We

also give formal definitions of redundancy criteria for non-ground calculi.

A.1.1 Abstract calculi and approximations

Before introducing a technique for proving completeness of OR�
Sel, we consider the

lifting procedure described for OR� in section 3 from a more abstract viewpoint.

Definition A.1 (Calculus).
An (abstract) calculus is a quadruple C = (L, P , Sp,Rp), where:

1. L = (D, �L, TL) is a logic, where D is a nonempty set called the domain;
�L ∈ D is a basic contradiction, and TL ⊆ 2D is a collection of satisfiable
sets that enjoys the following properties: (i) D1 ⊆ D2 ∈ TL implies D1 ∈ TL

and (ii) {�L} /∈ TL;

2. P is a non-empty set of admissible parameters of the calculus and for each
p ∈ P :

3. Sp ⊆ InfD := {(d1,.., dk ` d) | di, d ∈ D, 1 ≤ i ≤ k ≥ 0} is an inference
system and

4. Rp = (Rp
Cl(·), R

p
Inf (·)) is a redundancy criterion, where for every D ⊆ D we

have R
p
Cl(D) ⊆ D is the set of redundant clauses w.r.t. D and R

p
Inf (D) ⊆ InfD

is the set of redundant inferences w.r.t. D, are such that the analogs of
conditions in Definition 3.20 hold:

for every D \ D′ ⊆ RCl(D), (R1) D /∈ TL implies D′ /∈ TL, (R2) RCl(D) ⊆
RCl(D

′) and (R3) RInf (D) ⊆ RInf (D
′). R is effective if in addition (R4) π ∈

RInf (D) for every π ∈ InfD with π(d) ⊆ D.

The basic notions for inference systems and redundancy criteria from the defini-
tions 2.39, 2.40, 3.24 and 3.26 are easily modified for abstract calculi. A clause set
N is called C-saturated if N is (Sp,Rp)-saturated for some p ∈ P . The calculus
C is (refutationally) complete if for every p ∈ P , (Sp,Rp) is complete for D. 33

For example, the (ground version) of the ordered resolution calculus with selec-
tion OR0�

Sel is a calculus based on the ground clause logic, i.e., L := (Cl0Σ, �, {N ⊆
Cl0

Σ
| N is satisfiable}). For simplicity, we identify the set of (ground) clauses with
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the correspondent logic (i.e., here L = Cl0Σ). OR0�
Sel is parametrized by the set

P := {(�, Sel) | “�” is admissible} of admissible orderings and selection func-
tions. For every choice of a parameter p = (�, Sel) ∈ P , the inference system
Sp := OR0�

Sel
is defined in System 5 and Rp := R

S�
gr is the standard redundancy

criterion for ground clauses. The calculus OR0�
Sel

is complete because, as it was
shown in Corollary 3.30, (Sp,Rp) is complete for any choice of admissible param-
eters. Similarly, OR� is a calculus for the logic L := ClΣ and is parametrized by
P := {� | “�” is admissible}. It is complete by Theorem 3.39.

The completeness criterion formulated in Corollary 3.28 can be extended with-
out considerable modifications to abstract calculi as follows:

Lemma A.2 (Completeness Criterion for Calculi). Let C = (L, P , Sp,Rp)
be a calculus. Then C is complete iff for every C-saturated set D ⊆ D, if D /∈ TL

then �L ∈ D.

This criterion motivates the following definition, using which it is possible to
transfer completeness of one calculus to completeness of the other calculus:

Definition A.3 (Approximates). Given calculi C = (L = (D, �L, TL), P , Sp,Rp)
and C′ = (L′ = (D′, �L

′, TL
′), P ′, S ′

p,R
′
p), we say that C approximates C′ if there

exists a function α : 2D 7→ 2D′

such that for every D ⊆ D: (i) D is C-saturated
then α(D) is C′-saturated, (ii) D /∈ TL implies α(D) /∈ TL

′ and (iii) �L /∈ D
implies �L

′ /∈ α(D). 33

Definition A.3 is derived from the concept of approximation between theorem
proving systems that has been introduced in [Bachmair et al., 1994] to reduce
refutational completeness from one system to the other. In Theorem 3.39 we
have shown that the calculus OR� approximates its ground version OR0� via the
mapping gr : N 7→ N gr. This in the end made it possible to transfer completeness
of OR0� to completeness of OR�. The arguments used in this proof can be
generalized to the following

Lemma A.4 (Relative Completeness). Let C = (L, P , Sp,Rp) be a calculus
that approximates a calculus C ′ = (L′, P ′, S ′

p,R
′
p) via α. Then C is complete if C ′

is complete.

Proof. Assume that C′ is complete but C is not. By the completeness criterion for
calculi (Theorem A.2), the last means that there exists a C-saturated set D ⊆ D

such that D /∈ TL and �L /∈ D. Since C approximates C′ via α, we have (i) α(D) is
C′-saturated, (ii) α(D) /∈ TL

′ and (iii) �L
′ /∈ α(D). However by the completeness

criterion for C′ from (i) and (ii) it follows that �L
′ ∈ α(D). A contradiction with

(iii). 22
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A.1.2 Ground closures

After these preparations, we demonstrate how to establish completeness of the
ordered resolution calculus with selection OR�

Sel
. For this purpose, we introduce

an intermediate calculus ORgc�
Sel

and show that OR�
Sel

approximates ORgc�
Sel

which
approximates OR0�

Sel. This would imply from Corollary 3.30 by Lemma A.4 that
OR�

Sel
is complete.

The key concept of the intermediate calculus ORgc�
Sel

is the notion of a ground
closure.

Definition A.5 (Ground Closures). A ground (clause) closure is a pair (C 0:C),
where C ∈ ClΣ is a clause and C 0 = Cσ ∈ Cl0

Σ
is a ground instance of C. The set

of all ground closures over a signature Σ is defined by GCΣ.
Given a clause set N ⊆ ClΣ, we define Ngc := {(C 0:C) ∈ GCΣ | C ∈ N} to be

the set of all ground closures for clauses in N . For a subset M ⊆ GCΣ, we denote
by Mgr its ground part, i.e., M gr := {C 0 | (C 0: C) ∈ N}. Note that N gr = (Ngc)gr

for all N ∈ ClΣ.
A set M ⊆ GCΣ of ground closures is satisfiable if M gr is satisfiable. The logic

of ground closures is given by (GCΣ, (�: �), {M ⊆ GCΣ |M is satisfiable}) which we
also denote by GCΣ. 33

Along with the introduced notation for ground closures, we also write closures
of the form (C 0∨A0:C∨A) and (D0∨¬B0: D∨¬B) respectively as (C 0: C)∨(A0:A)
and (D0:D) ∨ ¬(B0: B). However note, that for two ground closures (C 0: C) and
(D0: D), the expression (C 0 ∨ D0: C ∨ D) is not necessary a ground closure, if C
and D have shared variables.

The intermediate calculus ORgc�
Sel

is based on the logic of ground closures GCΣ

and is parametrized by an admissible ordering � on ground literals and a selection
function Sel on (full) clauses. The inference rules for any choice of these parameters
are given in System 13. It can be easily shown (see the lifting diagram on Figure 7),

Ordered Resolution Ordered Factoring

OR :
(C0: C) ∨ (A0: A)

?
(D0: D) ∨ ¬(A0: B)

(C0: Cσ) ∨ (D0: Dσ)
OF :

(C0: C) ∨ (A0: B) ∨ (A0: A)

(C0: Cσ) ∨ (A0: Aσ)

where (i) σ = mgu(A, B); (ii) A0 is strictly
maximal w.r.t. C 0 and nothing is selected in C∨A,
and (iii) either ¬B is selected in D ∨ ¬B, or,
otherwise nothing is selected in D ∨ ¬B and ¬A0

is maximal w.r.t. D0

where (i) σ = mgu(A, B); (ii) A0 is
maximal w.r.t. C 0 ∨ B0 and nothing is
selected in C ∨ A ∨ B.

System 13: The intermediate calculus ORgc�
Sel

for OR�
Sel

that the set of ground closures is closed under inferences of this calculus. Moreover,
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it is easy to see that for every inference π′ = [(C 0
1 :C1),.., (C

0
k:Ck) ` (C 0:C)] ∈

ORgc�
Sel

there exists a correspondent inference π = (C1,.., Ck ` C) ∈ OR�
Sel

. So
the lifting diagram can be extended for OR�

Sel and ORgc�
Sel

: See the upper part in
Figure 29. We exploit this correspondence for defining the notion of redundancy

Figure 29 The lifting diagram for OR�
Sel

OR�
Sel

:

ORgc�
Sel

:

OR0�
Sel′

:

C ∨ A?, D ∨ ¬B Cσ ∨ Dσ

(C0 ∨ A0?
:

:C ∨ A?)
,
(D0 ∨ ¬A0:

:D ∨ ¬B)
(C0 ∨ D0:
:Cσ ∨ Dσ)

C0 ∨ A0?
, D0 ∨ ¬A0 C0 ∨ D0

__
gc

��

__
gr

��

__

gc
��

__

gr
��

OR
+3

OR +3

OR +3

C ∨ B ∨ A Cσ ∨ Aσ

(C0 ∨ A0 ∨ A0:
:C ∨ B ∨ A)

(C0 ∨ A0:
:Cσ ∨ Aσ)

C0 ∨ A0 ∨ A0 C0 ∨ A0

__

gc
��

__

gr
��

__

gc
��

__

gr
��

OF
+3

OF +3

OF +3

for calculi parametrized by selection functions.

Definition A.6 (Standard Redundancy with Selection Functions). Let �
be an ordering on ground literals that is admissible according to Definition 3.4. The
ordering � on ground clauses is extended to ground closures by setting (C 0:C) �
(D0: D) iff C 0 � D0. The logical entailment relation � is extended to the set of
ground closures as follows: M1 � M2 iff Mgr

1 �Mgr
2 .

Let S be an inference system on clauses and S ′ be a correspondent (via a
lifting diagram) inference systems on ground closures, both parametrized with
the same admissible ordering � and a selection function Sel. Given a set of
ground closures M , we say that a ground closure (C 0: C) is redundant w.r.t. M ,
if M(C0 :C) �(C 0: C).20 An inference π′ : (C 0

1 : C1),.., (C
0

k: Ck) ` (C 0:C) ∈ InfGCΣ

is redundant w.r.t. M in S ′, if π′ ∈ S ′ implies that M(C0
i :Ci) �(C 0: C), for some i

with 1 ≤ i ≤ k.
Given a clause set N , we say that a clause C is redundant w.r.t. N if every

clause in {C}gc is redundant w.r.t. N gc. An inference π = C1,.., Ck ` C ∈ InfΣ is
redundant w.r.t. N in S, if every ground closure (π0: π) := (C 0

1 : C1),.., (C
0
k: Ck) `

(C 0: C) ∈ InfGC of π is redundant w.r.t. N gc in S ′. 33

To summarise this definition in a practically usable way, a clause C is redun-
dant w.r.t. N if every closure (C 0: C) of this clause is redundant w.r.t. the set
of ground closures N gc of N , which is when the clause C 0 follows from the set
((Ngc)(C0:C))

gr = (Ngr)C0 of the smaller ground instances from N gr. An inference
π ∈ S is redundant if every ground closure (π0: π) of this inference is redundant

20As usual, for a set D ⊆ D, ordered by � and d ∈ D, we denote Dd := {d′ ∈ D | d′ ≺ d}
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w.r.t. Ngc, which is when either (π0: π) /∈ S ′ (this is only possible if π0 does not
satisfy the ordering restrictions for non-selected literals in π), or the conclusion
C 0 of π0 follows from the set ((N gc)(C0

i :Ci))
gr = (Ngr)C0

i
of smaller clauses for some

premise C 0
i of π0.

Note that the notions of redundant clauses and redundant inferences given in
Definition A.6, coincide with those given in Definition 3.36, when the selection
function is trivial: Sel = Sel0. So, ground closures are essentially needed for
defining redundancy of inferences having selected literals. In the next section, we
show how ground closures allow to refine the notion of redundancy even further.

Lemma A.7 (Standard Redundancy Criterion for Ground Closures). The
notion of standard redundancy R

S
′�

gc = (R�
GC(·), RS

′�
InfGC

(·)) for ground closures given

in Definition A.6 is a redundancy criterion for every inference system S ′ on ground
closures and a well-founded ordering � on ground clauses. If in addition S ′ is
monotone w.r.t. �, then R

S
′�

gc is effective.

Proof. The proof of this lemma is identical to the proof of Lemma 3.21, but for
ground closures instead of ground clauses. 22

Corollary A.8 (Standard Redundancy Criterion with Selection Func-
tions). The extension of the notion of standard redundancy R

S� = (R�
Cl(·), R

S�
Inf (·))

for inference systems with selection functions given in Definition A.6 a redundancy
criterion. In addition, if the correspondent inference system S ′ on ground closures
is monotone, then R

S� is effective.

Proof. Similarly as in the proof of Lemma 3.37, this corollary follows from the fact
that for every clause sets N ′ and N , we have N ⊆ R

�
Cl(N) iff Ngc ⊆ R

�
GC(Ngc), and

for every set of inferences S ⊆ InfΣ, we have S ⊆ R
S�
Inf (N) iff Sgc ⊆ R

S
′�

InfGC
(Ngc),

where Sgc ⊆ InfGCΣ
is the set of all ground closures of inferences in S. 22

Lemma A.9. OR�
Sel

approximates ORgc�
Sel

.

Proof. We show that the mapping gc : N 7→ N gc, N ⊆ ClΣ is an approximation
function for OR�

Sel
and ORgc�

Sel
. First note that conditions (ii) and (iii) for ap-

proximations (see Definition A.3) are trivial by definition of the logic for ground
closures (see Definition A.5). In order to demonstrate (i), let N be a clause set
that is saturated in OR�

Sel
under some ordering � and selection function Sel. We

show that the set N gc is saturated in ORgc�
Sel

under the same parameters. Indeed,
for every inference π′ = [(C 0

1 :C1),.., (C
0
k:Ck) ` (C 0: C)] ∈ ORgc�

Sel
there exists a cor-

respondent inference π = (C1,.., Ck ` C) ∈ OR�
Sel

. Moreover, by Definition A.6,
if π is redundant w.r.t. N then π′ is redundant w.r.t. N gc. Hence the set N gc is
saturated in ORgc�

Sel
. 22
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Lemma A.10. ORgc�
Sel

approximates OR0�
Sel.

Proof. We show that the mapping gr : M 7→ M gr, M ⊆ GCΣ is an approximation
function for ORgc�

Sel
and OR0�

Sel. Again, conditions (ii) and (iii) follow from the
definition of the logic for ground closures. In order to demonstrate (i), let M be
a saturated in ORgc�

Sel
set under some ordering � and selection function Sel. We

show that Mgr is saturated in OR0�
Sel under � and a selection function Sel′ that is

defined for Sel using the following notion:

Definition A.11 (Projection of a Selection Function). Given a clause set N
we say that a selection function Sel′ is a (ground) projection of a selection function
Sel from N , if for every clause C 0 ∈ Ngr, there exists a clause C ∈ N such that
Sel′(C 0) = Sel(C)·σ for some substitution σ (substitution is applied to a multiset
element-wise). 33

Note that for every clause set N and every selection function Sel there exists at
least one projection of Sel from N : one can set any well-order �N on N and select
for every C 0 ∈ Ngr the respective selected literals in the minimal w.r.t. �N clause
C such that C 0 = Cσ.

Let Sel′ be a projection of the selection function Sel from M cl := {C ∈
ClΣ | (C 0:C) ∈ M}. We claim that the set M gr is saturated in OR0�

Sel under � and
Sel′. Indeed, for every ground clause C 0 ∈ Mgr by Definition A.11 we can always
find a clause C ∈ ClΣ such that (C 0:C) ∈ M and Sel′(C 0) = Sel(C)·σ. Hence for
every literal L in C and its correspondent literal L0 in C 0, we have L0 ∈ Sel′(C 0)
iff L ∈ Sel(C). Now, for every inference π0 = (C 0

1 ,.., C
0
k ` C 0) ∈ OR0�

Sel
′ from

Mgr there exists a correspondent inference π′ = [(C 0
1 : C1),.., (C

0
k: Ck) ` (C 0: C)] ∈

ORgc�
Sel

form M (see the lifting diagram in Figure 29). Moreover, π′ is redundant iff
π0 is redundant, since redundancy of inferences on ground closures depends only on
their ground components (see Definition A.6). Hence Mgr is OR0�

Sel
-saturated. 22

Corollary A.12 (Completeness of OR�
Sel

with Redundancy). OR�
Sel

is a
refutationally complete calculus.

Proof. From Lemma A.9 and Lemma A.10 we know that OR�
Sel

approximates
OR0�

Sel
. Since the calculus OR0�

Sel
is complete (Theorem 3.30), by relative com-

pleteness (Lemma A.4), the calculus OR�
Sel is also complete. 22

Remark A.13. We stress that proving completeness for OR�
Sel

without redundancy
(i.e., with trivial redundancy) is not a big deal and can be done directly without
using ground closures. One can show that whenever a clause set N is saturated in
OR�

Sel
, then the set Ngr is saturated in OR0�

Sel
′ for any projection Sel′ of Sel from

N . Ground closures and intermediate calculus ORgc�
Sel

are needed for extending
the completeness result with standard redundancy criterion. 33
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A.2 Subsumption

The usage of clause closures can justify an extension of redundancy criterion with
subsumption deletion. Note that redundancy criterion from Definition A.6 does
not make use of the non-ground components of closures. We can refine an ordering
on closures to take them into account.

Recall that the instance ordering &i on expressions and clauses is a quasi-
ordering defined for which E2 &i E1 (C2 &i C1) if there exists a substitution σ1

such that E2 = E1σ (C2 = C1σ), i.e., E2 is an instance of E2 (C2 is an instance of
C1). The strict instance ordering >i is the antisymmetric part of &i, i.e., C2 >i C1

iff C2 &i C1 but not C1 &i C2. It is easy to see that the order >i is well-founded on
expressions and clauses: if C2 >i C1 then either (i) |C2| > |C1|, or (ii) |C2| = |C1|,
but ]vars[C2] < ]vars[C1] < |C1|.

Let us define the order � on ground closures to be the lexicographic combi-
nations of � on ground clauses and >i on general clauses. More precisely, we set

(C 0: C) � (D0:D) iff (i) C 0 � D0, or (ii) C 0 = D0 and C >i D. (41)

Note that if � is a total and/or well-founded on ground clauses then � is respec-
tively total and/or well-founded on ground closures since clauses that are instances
of each other should be variants of each other (and we do not distinguish those).

Lemma A.7 and its Corollary A.8 can be reproven when the definition of re-
dundancy (Definition A.6) is modified for ordering (41). This extended notion of
redundancy allows one to justify deletion of strictly subsumed clauses.

Recall from Definition 3.43 that a clause C subsumes a clause D if C .i D′ ⊆ D
(for some subclause D′ of D), and C strictly subsumes D if C subsumes D but
not the other way round.

Proposition A.14. Let D be strictly subsumed by C. Then D is redundant w.r.t.
{C}.

Proof. By Definition 3.43, there exists a substitution σ such that Cσ ⊆ D. since
the subsumption between C and D is strict, then either (i) this inclusion is strict
or (ii) σ is not a renaming.

Consider the sets {C}gc and {D}gc of ground closures of C and D. We must
show that every ground closure (D0: D) of D follows from some smaller ground
closures from {C}gc w.r.t. to ordering (41). Since D0 = Dτ 0 for some ground
substitution τ 0, we must have C 0 := (Cσ)τ 0 ⊆ Dτ 0 = D0. Hence, the ground
closure (D0: D) is a logical consequence of the ground closure (C 0:C) ∈ {C}gc. It
remains to show that (D0: D) ≺ (C 0: C).

The last is trivial for case (i) above, since then D0 ( C 0 and hence D0 ≺ C 0.
If the inclusion is not strict, we have D0 = C 0. Then since only case (ii) above
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remains possible, we must have that C >i D. This yields D0 ≺ C 0, what was
required to show. 22

Clause closures, which extend ground clause closures, give rise to many other
refinements of saturation-based procedures and new theorem proving techniques.
Among them are the basic strategies [Bachmair, Ganzinger, Lynch & Snyder, 1995],
reasoning with constrained clauses [Nieuwenhuis & Rubio, 2001] and instance-
based methods [Ganzinger & Korovin, 2003]. These extensions are not used in
this thesis, so we do not cover them here.
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Index

Symbols
At0

Σ
atoms, ground, 11

AtΣ atoms, 6
Cl0Σ ground clauses, 36, 120
ClΣ clauses, 10, 120
CNF clause normal form, 94–108
C theory, of compositional axioms,

78
D interpretation, domain of, 8
D logic, domain of, 118
FmΣ formulas, 6
Fun functional symbols, 5
GCΣ ground closures, 120–123
HR�

Sel
calculus, Ordered Hyper-

Resolution, 58
H Herbrand interpretation, 11
·I interpretation, function, 8
I interpretation, 8
I|D′ interpretation, restriction of, 8
[·]Iη interpretation, value under, 8
KB0 calculus, Knuth-Bendix comple-

tion, ground, 17
KB0

� calculus, Knuth-Bendix comple-
tion, ground Ordered, 24, 66

L logic, 118
Lt0

Σ literals, ground, 11
LtΣ literals, 10
NNF negation normal form, 94–96
N∞ theorem-proving derivation, limit

of, 47, 115
OC�

Sel
calculus, Ordered Chaining, 4,
72–93

OP�
Sel calculus, Ordered Paramodula-

tion, 60, 60
OR0� calculus, Ordered Resolution,

ground, 41
OR� calculus, Ordered Resolution, 51
OR0�

Sel calculus, Ordered Resolution,
with Selection, ground, 41, 118

ORgc�
Sel

calculus, Ordered Resolution,
with Selection, intermediate,
120

OR�
Sel calculus, Ordered Resolution,

with Selection, 56, 120
P calculus, Paramodulation, 59
P calculus, admissible parameters

of, 118
Pre predicate symbols, 5
P unification problem, 27
Q universal or existential qualifier,

6
RCl(·) redundancy criterion, R-

redundant clauses, 45, 118
RInf (·) redundancy criterion, R-

redundant inferences, 45, 118
R calculus, Resolution, 35
R

S�
gc redundancy criterion, standard,

for ground closures, 122
R rewrite system, 15
R

S� redundancy criterion, standard,
46

Rp redundancy criterion, paramet-
rized, 118

R redundancy criterion, 45
SC�

Sel calculus, Subterm Chaining, 82
SP�

Sel calculus, Superposition, 59, 60,
67

Sel(·) selection function, 41, 56–57
S inference system, 33, 112
Sp inference system, parametrized,

118
Σ signature, 5
Tm0

Σ
terms, ground, 11

TmΣ terms, 5
TL logic, satisfiable sets, 118
T theory, 73
Var variables, 5
ar(·) arity, 5, 14
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�L logic, basic contradiction, 118

� empty clause, 32

] cardinality of, 5

∧∨ conjunction or disjunction, 6

F � G consequence, 9

depth(·) depth, 15

S̀ derived in one step, 33

≈ congruence relation, 12, 59
s ' t equational atom, 6

∼ equivalence relation, 12

≡ equivalent, 9

false truth value, false, 8

free[F ] variables of a formula, free, 7

·gr ground instances, 34, 51

id identity substitution, 26

S` inverse of a relation, 91

F [s] occurrence, indicated, 7

R inference rule, 32

mgu(·) unification function, 27

T� entailment relation, modulo the-
ory, 73

mgu most general unifier, 27

s 6' t equational atom, negation of, 6

∝ covers, 28

�kbo ordering, Knuth-Bendix KBO ,
22, 52, 53

� ordering, 19

&i instance, 26, 124
�

lex
ordering, lexicographic extension

of, 20

�lpo ordering, lexicographic path
LPO , 22, 53

�
mul

ordering, multiset extension of,
20

� precedence, 21, 52
% quasi-ordering, 19

� quasi-ordering, 124
π inference, 32

pol(F [H]) occurrence, polarity, 7, 83

⇒R rewrite relation, induced by R,
15

⇒ theorem-proving derivation, rela-
tion, 47

σ|V substitution, restriction of, 26
I⇓ rewrite model, 77, 85
⇒ rewrite relation, 15
s⇒ t rewrite rule, 15, 76
] selected literals, 57
{} empty set, 5
| · | size, 7, 15, 19
{· · · }

m
multiset, 19

C subterm, strict, 7
B superterm, strict, 7
[·]str structural transformation, 96–

100
G E F subformula, 7
σ substitution, 26
s E t subterm, 7
s D t superterm, 7
true truth value, true, 8
� F valid (formula), 9
I � F valid in an interpretation, 9
η valuation of variables, 8
vardepth(·) variable depth, 15
vars[F ] variables of a formula, 7
weight(·) weight function, 21
width(·) width of a formula, 7

A
A-ordering, 42
a-posteriori restrictions, 52
a-posteriori selection function, 58, 90
a-priori restrictions, 52
abstract redundancy criterion, see re-

dundancy criterion
admissible ordering

for chaining, 81, 82
for paramodulation, 60
for resolution, 36, 51, 55, 81
for subterm chaining, 82
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for superposition, 69
approximates, 119
arity ar(·), 5, 14
associativity of composition, 78, 80
atomic substitution, 28
atomic term, 28
Axiom of Choice, 29, 104

B
basic strategies, 4, 69, 125
Bliksem, 60

C
C-saturated, 118
calculus, 17, 32, 118

admissible parameters of P , 118
Knuth-Bendix completion KB

ground KB0, 17
ground Ordered KB0

�, 24, 66
Ordered Chaining OC�

Sel
, 4, 72–93

Ordered Hyper-Resolution HR�
Sel

,
58

Ordered Paramodulation OP�
Sel,

60, 60
Ordered Resolution OR�, 51

ground OR0�, 41
with Selection OR�

Sel
, 56, 120

with Selection, ground OR0�
Sel

,
41, 118

with Selection, intermediate
ORgc�

Sel
, 120

Paramodulation P, 59
Resolution R, 35
Subterm Chaining SC�

Sel, 82
Superposition SP�

Sel, 59, 60, 67
strict, 69

candidate model, 37, 63, 84, 86
chain proof, 77
clausal rewriting, 55
clause closure, 125
clause normal form CNF, 94–108

clauses ClΣ, 120
clausification, 105–107
compactness theorem, 40
complete (refutationally), 33, 114
completeness, 114
compositional law, 77
congruence axioms, 14, 59
congruence relation ≈, 12, 59
conjunction normal form, 105
conservative over, 9
constants, 5
constrained clauses, 125
counterexample, 39
covering, 29
covers ∝, 28

weakly, 29
critical pair, 16

D
deduction rules, 109
definitional predicate, 96
deleted clauses, 112, 113
depth depth(·), 15

E
E, 60
eager simplification, 113
eligible w.r.t., 41, 56

for hyper-resolution, 43, 58
empty clause �, 32
entailment relation �

modulo theory T�, 73
equational atom s ' t, 6

negation of s 6' t, 6
equisatisfiable, 9, 96
equivalence relation ∼, 12
existential closure, 104
expansion of a model, 9, 97, 103
expression, 14
expression symbol, 14
extended symbol, 111
extension of a signature, 9
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F

fair, 47

first-order logic with equality, 6

full selection, 66

functional clause, 15

G

greatest w.r.t., 20

ground clauses Cl0
Σ
, 120

ground closures GCΣ, 120–123

ground instances ·gr, 34, 51

ground level, 34

ground term/atom/literal, 11

H

Herbrand base, 11

Herbrand interpretation H, 11

with equality, 12

Herbrand theorem, 11
Herbrand universe, 11

hyper-resolution, 58

I

inference π, 32

inference rule R, 32

inference rules, 32
inference system S, 33, 112

monotone, 41

parametrized Sp, 118

weakly monotone, 92

infix notation, 6, 73
instance &i, 26, 124
instance-based methods, 125
interpretation I, 8

domain of D, 8

function ·I , 8

restriction of I|D′ , 8

value under [·]Iη , 8

inverse of a relation S`, 91

irreducible, 15, 62

L
L-ordering, 42
lifting, 34, 51–56, 120–123
lifting diagram, 52, 65, 121
literal symbol, 14
logic L, 118

basic contradiction �L, 118
domain of D, 118
satisfiable sets TL, 118

M
main loop, 112, 116
maximal w.r.t., 20

literal, 41
model (first-order), 9
model generation method, 34
monotone inference, 41
most general unifier mgu, 27
multiset {· · · }

m
, 19

N
negation normal form NNF, 94–96
Noetherian ordering, 19

O
occurrence, 7

bounded, 7
free, 7
polarity pol(F [H]), 7, 83

negative 0, 8
positive 1, 8

order, see ordering
ordering �, 19

Knuth-Bendix KBO �kbo, 22, 52,
53

lexicographic extension of �
lex

, 20
lexicographic path LPO �lpo, 22,

53
liftable, 51
lifting of, 51
multiset extension of �

mul
, 20

non-liftable, 51
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recursive path, with status RPOS,
23

simplification, 21
total, 19
well-founded, 19

ordering restrictions, 44

P
paramodulation into variables, 59
partial equivalence, 75
peak, 77, 85
permanent deletion, 91, 113
persisting clauses, 47
plain, 85
plateau, 85
precedence �, 21, 52
produces, 37, 42, 63, 69, 86
productive clause, 37, 42, 63, 69, 86

Q
quasi-ordering %, 19
quasi-ordering �, 124

R
redex, 15
reduction of counterexamples, 39–40
reduction ordering, 21–24
reductive clause, 41
redundancy, 4, 44–50, 73

standard, 44
with selection functions, 121

redundancy criterion R, 45
R-redundant clauses RCl(·), 45,

118
R-redundant inferences RInf (·), 45,

118
based on semantical entailment, 61
effective, 46, 118
parametrized Rp, 118
standard R

S�, 46
for ground closures R

S�
gc , 122

trivial, 46

redundancy ordering, 92
redundant clause, 25, 44, 53, 61, 61,

93, 115, 121
redundant ground closure, 121
redundant inference, 44, 53, 61, 93,

121
refutation, 32
refutationally complete, 48, 118
renaming, 26, 51
renaming of subformulas, see structural

transformation
rewrite model I⇓, 77, 85
rewrite ordering, 21, 53
rewrite proof, 72, 77, 84
rewrite relation ⇒, 15

induced by R ⇒R, 15
labelled, 84
left-to-right, 76
overlap, 62
right-to-left, 76
two-way, 76

rewrite rule s⇒ t, 15, 76
labelled, 76
overlap, 16

rewrite system R, 15
canonical (for chaining), 86
canonical (for paramodulation), 62
canonical (for superposition), 68
confluent, 16
convergent, 16
terminating, 16, 17
well-founded, 16

rules
(Binary) Resolution R, 35
(Positive) Factoring F, 35
Compositional Resolution CR, 80
Elimination of Duplicate Literals ED,

110
Equality Factoring EF, 67, 89
Factoring F, 36
Functional Reflexivity FR, 59
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Merging Paramodulation MP, 72
Negative Chaining NC, 74, 80
Negative Hyper-Chaining HC, 90
Negative Subterm Chaining NSC, 83
Negative Superposition NS, 67

Simulteneous, 72
Ordered Chaining OC, 74, 80
Ordered Factoring OF, 41, 52, 56,

120
Ordered Hyper-resolution HR, 43, 58
Ordered Paramodulation OP, 60, 67,

83
Simulteneous, 66

Ordered Resolution OR, 41, 52, 56,
120

Ordered Subterm Chaining OSC, 83
Orient O, 17, 24
Paramodulation P, 59
Positive Superposition PS, 67

Simulteneous, 72
Reflexivity Resolution RR, 60, 67, 83
Resolution R, 36
Splitting through New Predicate

Symbol SPP, 111
Splitting SP, 110
Subsumption Deletion SD, 110
Superpose S, 17, 24
Superposition SP, 24
Tautology Deletion TD, 110
Transitivity Factoring TF, 74
Transitivity Resolution TR, 76
multi-conclusion, 80, 109

S
satisfiable (formula), 9
satisfiable in an interpretation, 9
saturated up to redundancy, 45, 48
saturation, 18, 32, 33

fair, 113
selected literal, 41
selection function Sel(·), 41, 56–57

projection of, 123
selection strategies, 40
shallow expression, 15
signature Σ

relational, 5
simple literal, 15
simplification rules, 109

admissible, 110
compatible with a redundancy cri-

terion, 110
eager application of, 113
extending a signature, 111–112
multi-conclusion, 109
nondeterministic, 109
sound, 109

size | · |, 19
Skolem function, 29, 101
Skolemization, 101–105

innermost, 101
outermost, 101

sound, 33, 109
soundness, 114
Spass, 3, 60, 109
special atoms, 73
special literals, 73
special symbols, 73, 78
(S,R) is complete for N , 48, 118
(S,R)-saturated, 47, 48, 118
state of a prover, 112
strictly maximal w.r.t., 41
strongly admissible, 84
structural transformation [·]str, 96–

100
substitution σ, 26

ground, 26
restriction of σ|V , 26

subsumes (clause), 57, 124
strictly, 57, 124

subsumption of clauses, 57, 124–125
subterm property (for an ordering), 21
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T
T -model, 73
T -redundant, 73
T -satisfiable, 73
tautology deletion, 47
theorem-proving derivation, 47, 115

fair, 47
limit of N∞, 47, 115
relation ⇒, 47

theory T , 73
of compositional axioms C, 78

compatible with a precedence �,
79

induced by �, 79
transitivity axiom, 53, 59, 73

U
unification function mgu(·), 27

unification problem P, 27
unifier, 27
usable clauses, 112

V
valid (formula) � F , 9
valid in an interpretation I � F , 9
valley, 85
valuation of variables η, 8
Vampire, 3, 60, 109
variable depth vardepth(·), 15

W
weakly covering, 29, 30
weight function weight(·), 21
well-order, 19
width of a formula width(·), 7
worked-out clauses, 112, 114
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