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Abstract. The Description Logics underpinning OWL impose a well-known syn-
tactic restriction in order to preserve decidability: they do not allow to use non-
simple roles—that is, transitive roles or their super-roles—in number restrictions.
When modeling composite objects, for example in bio-medical ontologies, this
restriction can pose problems.
Therefore, we take a closer look at the problem of counting over non-simple
roles. On the one hand, we sharpen the known undecidability results and demon-
strate that: (i) for DLs with inverse roles, counting over non-simple roles leads
to undecidability even when there is only one role in the language; (ii) for DLs
without inverses, two transitive and an arbitrary role are sufficient for undecid-
ability. On the other hand, we demonstrate that counting over non-simple roles
does not compromise decidability in the absence of inverse roles provided that
certain restrictions on role inclusion axioms are satisfied.

1 Introduction

Recently, Description Logics (DLs) [1] have attracted increasing attention, partially due
to their usage as logical underpinning of ontology languages such as OIL, DAML+OIL,
and OWL1 [6]. All these languages are based on DLs of the SHQ family, which are de-
cidable fragments of first order logic and close relatives of modal logics. In DLs, unary
predicates/propositional variables are usually called concepts, binary predicates/modal
parameters are called roles and, in a nutshell, SHQ extends ALC (a notational variant
of multi-modal K) with transitivity and role inclusion axioms and with number restric-
tions: these are concepts of the form (6nR.C) for n a non-negative integer, R a role,
and C a possibly complex concept. Number restrictions are heavily used to define con-
cepts, e.g., the following expression makes use of standard DL notation to define the
concept Human as featherless bipeds:

Human = Mammalu∀hasPart.¬Featheru (> 2 hasPart.Leg)u (6 2 hasPart.Leg)

We find numerous more convincing yet less readable such applications of number re-
strictions in bio-informatics and medical applications, e.g., they are used to restrict the
number of certain components of proteins [10].

1 OWL comes in three flavours, OWL Lite, OWL DL, and OWL Full. Here, we are only con-
cerned with the first two.



Other heavily used features are the above mentioned transitivity and role inclusion
axioms. They allow to express, e.g., that hasPart must be interpreted as a transitive re-
lation (which is closely related to the modal logic K4) and that hasComponent implies
hasPart.

Now ontology design and maintenance is a non-trivial task, especially since on-
tologies can be quite large: e.g., SNOMED and the National Cancer Institute ontology
have over 300,000 resp. 17,000 defined concepts. In order to check for consistency and
compute the (implicit) concept hierarchy w.r.t. the subsumption relationship, ontology
editors make use of DL reasoners2 which implement decision procedures for concept
satisfiability and subsumption w.r.t. DL axioms. For this to be possible, i.e., for these
reasoning problems to be decidable for SHQ, their designer had to impose a syntactic
restriction: in number restrictions, one can neither use transitive roles nor super-roles of
transitive roles, i.e., number restrictions can only be used on simple roles. For example,
if we want to make use of our definition of Human, we have to either refrain from mak-
ing hasPart a transitive role or use, e.g., a (non-transitive) subrole such as hasComp
of hasPart in its number restrictions. Both options are sub-optimal since they result
in the loss of other, useful consequences. For the first option, e.g., we could add the
following definition of HumanBird without causing a (useful) inconsistency:

HumanBird = Human u ∃hasPart.(Wing u ∃hasPart.Feather).

For the second option, e.g., we could add the following definition of 3LHuman with-
out causing an inconsistency (please note that here we use twice the sub-role hasComp
of hasPart and only once hasPart):

3LHuman = Human u ∃hasComp.(Leg u Left) u ∃hasComp.(Leg u Right u ¬Left)
u ∃hasPart.(Leg u ¬Right u ¬Left).

In [7], it is shown that satisfiability of concepts in SHQ (even in its sublogic SHN )
is undecidable if non-simple roles (i.e., transitive roles or their super-roles) are used in
number restrictions. In this paper, we explore this area more thoroughly with the goal
of finding a more expressive but still decidable DL where we can use non-simple roles
in number restrictions. Our contributions are two-fold: on the one hand, we sharpen the
above undecidability result and demonstrate that: (i) for DLs such as SHIN (which
extends SHN with inverse roles), counting over non-simple roles leads to undecidabil-
ity even with only one role in the language; (ii) for DLs without inverses such as SHN ,
two transitive and a third role are sufficient for undecidability. On the other hand, we
demonstrate that, in the absence of inverse roles, counting over non-simple roles does
not compromise decidability provided that they satisfy certain other restrictions regard-
ing role inclusion axioms. Roughly speaking, as long as any two transitive roles are
either completely unrelated w.r.t. inclusion or one of them implies the other, we can
use them in number restrictions without losing decidability. We believe that the latter
result will turn out to be useful in practice since it allows, for example, to capture a
transitive role hasPart alongside other, possibly transitive roles such as hasComp or
hasSegment and to use them all in number restrictions—as long as any two of these
transitive roles are related by a (bi)-implication.

2 See http://www.cs.man.ac.uk/˜sattler/reasoners.html for a list.



2 Preliminaries and Known Results

The vocabulary of a DL consists of disjoint infinite sets of concept names CN, role
names RN, and individual names IN. A role is an expression of the form r or r−, where
r is a role name. For convenience, we introduce a syntactic operator defined on roles:
Inv(R) := r−, if R is a role name r; and Inv(R) := r, if R = r− for some role name r.
Finally, we use Card(M) for the cardinality of a set M .

Definition 1 (RBox). An RBoxR is a finite collection of transitivity axioms of the form
Tr(R) and role inclusion axioms of the form R v S, where R,S are roles.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , its domain, and
an interpretation function ·I that maps each role name r ∈ RN to a binary relation
rI ⊆ ∆I ×∆I ; I is finite if the domain of I is finite. We define (r−)I := {〈x, y〉 |
〈y, x〉 ∈ rI}. We define whether I satisfies an axiom α, written I |= α as follows: I |=
Tr(R) iff RI is transitive, and I |= R v S iff RI ⊆ SI . An interpretation satisfying
all axioms inR is called a model ofR. An RBoxR entails an axiom α, writtenR |= α,
if all models ofR satisfy α.

The deductive closure [R] of R is the minimal set that contains R and axioms
R v R, for all roles R inR, and that is closed under the following rules:

R v S S v T
R v T

R v S
Inv(R) v Inv(S)

T v S v T Tr(T )
Tr(S)

Tr(T )
Tr(Inv(T ))

We writeR ` α as an alternative notation for α ∈ [R], where α is an RBox axiom.

Lemma 1. LetR be an RBox. Then

1. the number of axioms in [R] is polynomial in the number of axioms inR, and
2. R ` α iff R |= α.

Definition 2. The set of concepts in DL ALCIQ is defined by the grammar:

C ::= ⊥ | A | ¬C | C uD | ∃R.C | 6nS.C,

where A ∈ CN, C,D ∈ C, R and S are roles, and n is a non-negative integer.
The interpretation function ·I maps, additionally, each concept name C ∈ CN to a

subset CI ⊆ ∆I , and ·I is extended to complex concepts inductively as follows:

⊥I = ∅, (¬C)I = ∆I \ CI , (C uD)I = CI ∩DI ,
(∃R.C)I = { e ∈ ∆I | there exists d ∈ CI such that 〈e, d〉 ∈ RI},

(6nS.C)I = { e ∈ ∆I | Card({d ∈ CI | 〈e, d〉 ∈ SI})6 n}.

For C and D ALCIQ concepts, C v D is a general concept inclusion (GCI), and
a finite set of GCIs is called a TBox. An interpretation I satisfies a GCI C v D if
CI ⊆ DI . An interpretation is a model of a TBox if it satisfies all its axioms. If a
(finite) interpretation I is a model of an RBox R and a TBox T , then we say that I is
a (finite) model of 〈R, T 〉, or 〈R, T 〉 is (finitely) satisfiable. A concept C is (finitely)
satisfiable w.r.t. 〈R, T 〉 if there exists a (finite) model I of 〈R, T 〉 such that CI 6= ∅.



As usual, the concept expressions>,C1tC2, ∀R.C and>nS.C are assumed to be
abbreviations for ¬⊥, ¬(¬C1u¬C2), ¬(∃R.¬C) and ¬(6 (n− 1)S.¬C) respectively.
Concepts ofALCIQ that do not use number restrictions (6nR.C), or inverse roles, or
both, will be calledALCI-,ALCQ-, andALC concepts, resp. The letterN in the name
of a DL indicates that this DL supports only number restrictions of the form (6nR.>).

Please note that, so far, we have introduced RBoxes and ALCIQ TBoxes sepa-
rately, i.e., we did not put them into a single logic, which is slightly unusual. Recall
that in [7] a role S is called simple w.r.t. R if there is no transitive subrole of S in R.
Traditionally, the DL that allows for

– an RBox without inverse roles and an ALCQ TBox where all roles in number
restrictions are simple is called SHQ, and

– an RBox and anALCIQ TBox where all roles in number restrictions are simple is
called SHIQ.

For SHIQ and related DLs, roles in number restrictions are restricted to simple
ones to ensure decidability of concept satisfiability w.r.t. a TBox and an RBox: in SHN
(and hence SHIQ), non-simple roles in number restrictions lead to the undecidability
of the satisfiability problem [7]. Our aim is to find conditions under which we can relax
or even get rid of this restriction to simple roles in number restrictions while preserving
decidability. This aim can be achieved by extending the notion of a simple role in such a
way that it covers, besides roles that are usually called simple, also some transitive roles
or their super-roles. In this paper, we focus on a sub-problem, namely, we are looking
for conditions on an RBox under which one can use all its roles in number restrictions
and still have a decidable logic. Therefore, we introduce the following notion.

Definition 3. Let L be a logic between ALC and ALCIQ and R an RBox. The prob-
lem of L(R)-satisfiability is to determine, given an L-concept C and an L-TBox T ,
whether C is satisfiable w.r.t. 〈R, T 〉. We say that an RBox R is L-safe (or safe for L)
if L(R)-satisfiability is decidable, and L-unsafe otherwise.

Remark 1. Note that the problem of L-safety for an RBox R, can be equivalently re-
formulated using the problem of satisfiability for pairs 〈R, T 〉 instead of satisfiability
of an L-concept C w.r.t. 〈R, T 〉, since a concept C is satisfiable w.r.t. T and R iff the
pair 〈R, T ∪ {> v ∃R.C}〉 is satisfiable, where R is a fresh role.

Any RBox is ALCI-safe because (i) neither ALCI nor SHI support number re-
strictions, and (ii) since a concept C and a TBox T are ALCI(R)-satisfiable iff C
is satisfiable w.r.t. 〈R, T 〉, we have that ALCI(R) satisfiability can be viewed as the
standard SHI satisfiability problem which is known to be decidable [7]. With a similar
argument, any RBoxR without transitivity axioms isALCIQ-safe because (i) all roles
are simple in this case, and (ii)ALCIQ(R)-satisfiability can be viewed as the standard
SHIQ satisfiability problem which is known to be decidable [7]. There are numerous
other restrictions on the syntax that could possibly lead to decidability, for example to
use only number restrictions of the form (6 1R).

At the same time, we know from [7] that the following RBox Star4 (with eight roles,
of which four are transitive) is ALCN -unsafe:

Star4 = { si v tij , rj v tij , Tr(tij) | 06 i, j 6 1 }.
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Fig. 1. The first three RBoxes are unsafe (Theorem 1) and for the last one the problem is open.

In what follows, we show that

– there is a large class of RBoxes involving role inclusions and transitivity axioms
that are ALCQ-safe (Theorem 4),

– there exists an ALCIN -unsafe RBox with only one transitive role (Theorem 2),
– there exist ALCN -unsafe RBoxes involving only three roles (Theorem 1).

3 Undecidability Results

Here we show that three roles are sufficient for building an unsafe RBox for ALCQ,
whereas forALCIQ, even one role is sufficient for that. We give fine-grained formula-
tions of results by indicating, as a subscript to the name of a logic, the maximal number
n occurring in number restrictions (6nR.C) in the proof. The undecidability results
are proved by reduction from the undecidable domino problem (see, e.g., [3]).

Definition 4 (Domino). A domino system is a triple D = 〈D,H, V 〉, where D =
{d1, . . . , dn} is a finite set of tile types and H,V ⊆ D ×D are horizontal and vertical
matching relations. We say that D tiles N×N if there exists a D-tiling, i.e., a mapping
τ : N×N→ D such that, for all i, j ∈ N, the following compatibility conditions hold:
〈τ(i, j), τ(i+1, j)〉 ∈ H and 〈τ(i, j), τ(i, j+1)〉 ∈ V . The domino problem is to check,
given a domino system D, whether D tiles N×N.

Our proofs follow the usual pattern: in order to show L-unsafety of a given RBox
R, we first build an L-TBox Tgrid that together with R “encodes” a N×N grid. Then,
given a domino system D, we build (efficiently) an ALC-TBox TD that “tiles” the grid
and “ensures” the compatibility conditions. Finally, we prove thatD tiles N×N iff some
concept (usually a concept name) C is satisfiable w.r.t.R+ Tgrid + TD.

To save space and make presentation easier to understand, we depicture RBoxes
(without inverse roles) as directed graphs whose nodes are non-transitive (,) and tran-
sitive (⊕) roles and arrows represent implications between roles.

Theorem 1. The RBoxes R∧, R∨, and R⊕∨ shown in Fig. 1 are unsafe for ALCN ;
more precisely, they are unsafe for ALCN 9 and ALCQ1.

Proof. We use 16 concept names Aij , 06 i, j 6 3, place them on an N×N grid (by
repeating a [0, 3]×[0, 3] pattern periodically) and link them with R- and S-edges as
shown in Fig. 2a. We will refer to edges in this grid as 〈A, r,B〉, where A,B ∈ {Aij |
06 i, j63} and r ∈ {R,S}. Having this picture in mind, we add the following axioms
to an ALCQ-TBox T Qgrid and an ALCN -TBox T Ngrid. First, we assert that all concepts
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Fig. 2. A grid for Theorem 1: (a) A detailed view of the grid. (b) A grid at a glance. (c) Accessi-
bility relation for R (and similarly for S). (d) A pre-grid for ALCN .

Aij are pairwise disjoint: Aij u Ak` v ⊥, for all 〈i, j〉 6= 〈k, `〉. From now on, let us
carry out the proof for the RBox R∧ first. We add the following axioms (a), (b), (c) to
T Qgrid and axioms (a), (d) T Ngrid, where we denote i⊕ j := (i+ j) mod 4:

(a) A v ∃r.B for each edge 〈A, r,B〉, where r ∈ {R,S};
(b) A v 6 1Q.B for each double edge 〈A,R,B〉 and 〈A,S,B〉;
(c) Aij v 6 1Q.Ai⊕1,j⊕1 for all 06 i, j 6 3;
(d) Aij v 6 9Q for all 06 i, j 6 3 such that i+ j is even.

For instance, we have axioms A10 v ∃R.A11 from (a), A11 v 6 1Q.A12 from (b),
A32 v 6 1Q.A03 from (c) in T Qgrid, and A13 v 6 9Q from (d) in T Ngrid.

Next, given a domino systemD = 〈D,H, V 〉withD = {d1, . . . , dn}, we introduce
fresh concept names D1, . . . , Dn and add the following ALC-axioms to a TBox TD:

(e) > v D1 t . . . tDn;
(f) Dk uD` v ⊥, for all 16 k < `6 n;
(g) A uDk v ∀r.

(
B →

⊔
`: 〈dk,d`〉∈H D`

)
for each horizontal edge 〈A, r,B〉;

(h) A uDk v ∀r.
(
B →

⊔
`: 〈dk,d`〉∈V D`

)
for each vertical edge 〈A, r,B〉.

Now, for X ∈ {Q,N}, we set KXD := R∧ ∪T Xgrid ∪TD and prove the following lemma.

Lemma 1.1 (ForR∧). The concept A00 is satisfiable w.r.t. KXD iff D tiles N×N.

(⇐) Given a tiling τ : N×N → D, we build a model I as follows: set ∆I := N×N,
interpret concepts Aij exactly as in Fig. 2a, i.e., AIij = {〈i+ 4k, j + 4`〉 | k, ` ∈ N};
roles R,S as the transitive closures of the relations depicted by arrows in Fig. 2a; set
QI := RI ∪ SI ; and set 〈i, j〉 ∈ DIk iff τ(i, j) = dk. Then A00 6= ∅, as 〈0, 0〉 ∈ AI00.

It remains to check that I is a model of KXD . Clearly, I |= R∧. Notice that the
relation QI is not transitive, and R∧ has no transitivity axiom for Q. Axioms (a)–(d)
are true in I, since they were “read-off” directly from Fig. 2a. In particular, to verify
axioms (c) and (d), observe the following main property of our model: any two elements
are linked via QI iff they are linked via either a chain of R-edges, or a chain of S-
edges. Therefore, any element 〈i, j〉with even i+ j has exactly 9Q-successors, namely
〈i+ k, j + `〉 with 0 < k + `6 3 (hence axiom (d) is true), of which only one, namely
〈i+ k, j + `〉, belongs to AIi⊕k,j⊕` (hence axiom (c) is true).



Axioms (e) and (f) are true in I, since τ is a total function. It remains to show
that axioms (g) and (h) are true in I. We check it only for an instance of axiom (g)
taken for a horisontal R-edge 〈A,R,B〉, where A = Aij and B = Ai⊕1,j , for some
06 i, j 6 3. Take any element a ∈ (A u Dk)I ; it is of the form a = 〈s, t〉, for some
s, t ∈ N. Then i = smod4 and j = tmod4, by construction of AIij . To show that the
element a belongs to the r.h.s. of axiom (g), take any b ∈ ∆I such that 〈a, b〉 ∈ RI and
suppose that b ∈ BI . As mentioned above, there is only one Q-successor (in our case,
R-successor) of a that belongs toB = Ai⊕1,j , namely, b = 〈s+1, t〉. Since 〈s, t〉 ∈ DIk ,
we have τ(s, t) = dk. Now let d` := τ(s+1, t), then b ∈ DI` , by construction ofDI` . By
compatibility conditions for τ , we have 〈dk, d`〉 ∈ H . Thus, b ∈ (

⊔
`: 〈dk,d`〉∈H D`)I ,

so we are done.

(⇒) Suppose that I |= KXD andAI00 is nonempty, say a00 ∈ AI00. Then we extract a grid
from I, i.e., a subset of (not necessarily distinct) elements G := {aij | i, j ∈ N} ⊆ ∆I ,
such that I restricted to G looks as in Fig. 2a, and build a D-tiling of N×N. The proof
is different for T Qgrid and T Ngrid.

For T Qgrid: by axioms (a), there exist a10, a
′
10 ∈ AI10 such that 〈a00, a10〉 ∈ RI and

〈a00, a
′
10〉 ∈ SI . By role inclusions in R∧, these pairs are in QI , and axiom (b) im-

plies a10 = a′10. By a similar argument, there exists an element a01 ∈ AI01 such that
〈a00, a01〉 ∈ RI ∩ SI . Furthermore, by axioms (a), there are a11, a

′
11 ∈ AI11 such that

〈a10, a11〉, 〈a01, a
′
11〉 ∈ RI . By transitivity of R, both a11 and a′11 are R-successors

(and hence Q-successors) of a00. Now we apply axiom (c) A00 v 6 1Q.A11 to con-
clude that a11 = a′11. Thus, we have constructed the first cell of the grid. By repeating
this argument, we can build all elements {aij | i, j ∈ N}.

For T Ngrid: starting with a00 and applying axiom (a), we first build a “pre-grid” de-
picted in Fig. 2d, which consists of 9 elements aij with 0 < i+ j 6 3, 3 elements
c11, c21, c12, and 2 elements b10, b01. By role inclusions R v Q and S v Q, all these
elements areQ-successors of a00. Now we apply axiom (d)A00 v 6 9Q and recall that
AIij are pairwise disjoint. Therefore, in each of the 9 concepts AIij , with 0 < i+ j 6 3,
elements merge into a single one: cij = aij and bij = aij (for suitable i, j), which
yields a structure shown in Fig. 2c. Next we apply a similar argument (but with R and
S swapped) to each element aij with i+ j = 2 (in any order), then to each aij with
i+ j = 4, and so on, until we build the whole grid.

Once we have built the set {aij | i, j ∈ N} ⊆ ∆I , we define τ : N×N→ D by
putting τ(i, j) := dk iff aij ∈ DIk . By (e) and (f), τ is a total function; and compatibility
conditions easily follow from (g) and (h). Thus τ is indeed a D-tiling of N×N. This
completes the proof of Lemma 1.1. a

For the remaining two RBoxesR∨ andR⊕∨ , we add the following axioms (a’), (b’),
(c’) in T Qgrid and axioms (a’), (b’), (d’) in T Ngrid, where i, j range over {0, 1, 2, 3}:

(a’) A v ∃r.B for each single edge 〈A, r,B〉, where r ∈ {R,S};
(b’) A v ∃Q.B for each double edge 〈A,R,B〉 and 〈A,S,B〉;

(c’) Aij v 6 1 r.Ai⊕1,j⊕1, where r =
{
R, if i⊕ j ∈ {0, 1},
S , if i⊕ j ∈ {2, 3};

(d’) Aij v 6 9 r, where r = R if i⊕ j = 0, and r = S if i⊕ j = 2.
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Fig. 3. A pre-grid for the proof of ALCQ-unsafety of the RBoxesR∨ andR⊕∨ .

For X ∈ {Q,N}, we set KXD := R+ T Xgrid + TD, where the TBox TD is defined as
above, and prove the following lemma for bothR∨ andR⊕∨ .

Lemma 1.2 (ForR(⊕)
∨ ). The concept A00 is satisfiable w.r.t. KXD iff D tiles N×N.

(⇐) As in the proof of Lemma 1.1, but now we set QI := RI ∩ SI . Then QI is
transitive as the intersection of transitive relations. Hence I satisfiesR∨ and evenR⊕∨ .
(⇒) Again, the proof is similar to that of Lemma 1.1, but here it is more convenient
to present it in a different style. Suppose that I |= KXD and AI00 is nonempty, say
a00 ∈ AI00. Then we extract a grid G := {aij | i, j ∈ N} ⊆ ∆I , using axioms from
the TBox T Xgrid, and then build a D-tiling of N×N, using axioms from TD. In the first
part of the proof, which is common for both X ∈ {Q,N}, we build a “pre-grid” de-
picted in Fig. 3, using ALC-axioms (a’) and (b’) only, in 3 steps.

Step 1. Starting from a00, build a horisontal axis {ai0 | i > 0}, such that, for all i> 0,

〈ai,0, ai+1,0〉 ∈

Q
I , if i is even,

RI , if imod4 = 1,
SI , if imod4 = 3.

Step 2. Starting from each ai0, build a vertical axis {aij | j > 0}, s.t. for all i, j > 0,

〈ai,j , ai,j+1〉 ∈

Q
I , if i⊕ j is even,

RI , if i⊕ j = 1,
SI , if i⊕ j = 3.

Note that we have no edges 〈ai,j , ai+1,j〉 yet, for j > 0.
Step 3. Build elements {a′ij | i, j > 0} such that, for all i> 0, j > 0,

〈ai,j , a′i+1,j〉 ∈

Q
I , if i⊕ j is even,

RI , if i⊕ j = 1,
SI , if i⊕ j = 3.

Now we turn this pre-grid into a grid using the remaining axioms from T Xgrid, and
hence the rest of the proof is different for X = Q and X = N .
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Fig. 4. The chain RBoxesRn∧ ,Rn∨,Rn∧∨, for n> 1, are ALCN -unsafe.

For X = Q: by the axiomsQ v R and Tr(R), the element aij with i⊕ j ∈ {0, 1},
has R-successors ai+1,j+1 and a′i+1,j+1 in AIi⊕1,j⊕1. By axiom (c’), they are equal:
ai+1,j+1 = a′i+1,j+1. Similarly for i⊕ j ∈ {2, 3} and the role S. Thus, we obtain a
grid {aij | i, j ∈ N} as in Fig 2a.

For X = N : by the axioms Q v R and Tr(R), the element a00 has the follow-
ing R-successors in the pre-grid: 9 elements aij with 0 < i + j 6 3, and 3 elements
a′11, a

′
12, a

′
21. Now we apply axiom (d’) A00 v 6 9R and recall that all AIij are pair-

wise disjoint. Then a11 = a′11, a12 = a′12, and a21 = a′21. Notice that the axiom Tr(Q)
has no effect on our argument, since the relation QI restricted to the pre-grid has no
chains of the length greater than 1 at all. Next we carry out the same argument (but with
R and S swapped), starting from each element aij with i+ j = 2 (in any order), then
with i+ j = 4, and so on.

The rest of the proof is the same as in Lemma 1.1, so Lemma 1.2 is proved. a
This completes the proof of Theorem 1. a

We conjecture that the fourth RBox R⊕∧ shown in Fig. 1 is ALCQ-safe. The same
construction as in Theorem 1 allows us to obtain the following generalisation.

Theorem 2. The RBoxes {⊕→,←,→⊕}, {⊕→,←,→,←⊕} areALCN -unsafe,
as well as longer chains with any number of non-transitive roles between two transitive
roles and with interleaving direction of role inclusions.

Proof. These chains can be of 3 kinds: where the ending transitive roles are both min-
imal, or both maximal, or one is minimal and another maximal. More precisely, we
consider 3 series of RBoxes, for n> 1, depicted in Fig. 4:

Rn∧ := {Tr(Q0),Tr(Qn)} ∪ {Qk−1 v Tk, Tk w Qk | 16 k 6 n },
Rn∨ := {Tr(T0), Tr(Tn) } ∪ {Tk−1 w Qk, Qk v Tk | 16 k 6 n },
Rn∧∨ := {Tr(Q0),Tr(Tn) } ∪ {Tk−1 w Qk, Q` v T` | 16 k 6 n, 06 `6 n }.

Note thatR1
∧ = R∧ andR1

∨ = R∨, so Theorem 1 is a special case of this theorem. For
proving unsafety of these RBoxes, we use the same construction of a grid as shown in
Fig. 2a; to comply with that picture, we denote the ending transitive roles in our RBoxes
by R and S. Additionally, denote by Tz the first of the roles Tk, i.e., T0 in Rn∨ and T1

in Rn∧ and Rn∧∨; ans similarly Qz . To encode a grid, we add the following axioms (a),
(b), (c), (d) to an ALCQ-TBox T Qgrid and axioms (a), (b), (c’), (d’) to an ALCN -TBox
T Ngrid (as above, we denote i⊕ j := (i+ j) mod 4):

(a) All 16 concept names Aij , 06 i, j 6 3, are pairwise disjoint;



(b) A v ∃r.B for each single edge 〈A, r,B〉, where r ∈ {R,S};
A v ∃Qk.B for each double edge 〈A,RS , B〉 and each Qk;

(c) A v 6 1Tk.B for each double edge 〈A,RS , B〉 and each Tk that has two subroles;

(c’) Aij v 6 2Tk for each Tk that has two subroles except for Tz if i⊕ j = 0, or
except for Tn if i⊕ j = 2;

(d) Aij v 6 1 r.Ai⊕1,j⊕1, where r =
{
R, if i⊕ j ∈ {0, 1},
S , if i⊕ j ∈ {2, 3};

(d’) Aij v 6 9Tz for i⊕ j = 0, and Aij v 6 9Tn for i⊕ j = 2.

For X ∈ {Q,N}, we set KXD := R+ T Xgrid + TD, where the TBox TD is defined as
in Theorem 1, and prove the following lemma simultaneously forRn∧ ,Rn∨, andRn∧∨.

Lemma 2.1. The concept A00 is satisfiable w.r.t. KXD iff D tiles N×N.

(⇐) Similar to Lemma 1.1, but here we interpret roles on ∆I as follows: roles R and S
as in Lemma 1.1; all Qk that differ from R and S are interpreted as RI ∩ SI ; finally,
all Tk that differ from R and S are interpreted as as the union of the interpretations of
their two subroles, i.e., QIk−1 ∪ QIk in Rn∧ and Rn∧∨, and QIk ∪ QIk+1 in Rn∨. Observe
that all Qk that differ from R and S are interpreted as the double edges in Fig. 2a. It is
straightforward to show that I |= KXD and AI00 6= ∅.

(⇒) The proof follows the same pattern as in Lemma 1.2: assuming that I |= KXD and
a00 ∈ AI00, we build a grid {aij | i, j ∈ N} ⊆ ∆I depicted in Fig. 2a, and then build
a D-tiling of N×N. To this end, first we build, using ALC axioms (b) only, a pre-grid
similar to that shown in Fig. 3, but with the following difference: for each aij with even
i+ j, instead of one horisontal and one vertical Q-edges outgoing from aij , now we
will have N horisontal and N vertical edges outgoing from aij that correspond to all
the roles Qk, where N is the number of roles Qk in the RBox. The Q-edges outgoing
from aij in Fig. 3 should be identified with Qz resp. Qn, for i⊕ j = 0 resp. 2.

Next, by applying axiom (c) or (c’) (depending on our logic), we merge all ho-
risontal (and similarly for vertical) Qk-edges outgoing from aij with even i+ j into a
single “Q-edge”. Indeed, e.g. forRn∨ and a00, we have 〈a00, a

k
10〉 ∈ QIk for 16 k 6 n.

Then 〈a00, a
k
10〉, 〈a00, a

k+1
10 〉 ∈ T Ik , for all 0 < k < n, i.e., exactly for all k such that

Tk has two subroles. Now applying axiom (c), we conclude that ak10 = ak+1
10 , for all

0 < k < n, i.e., all horisontal Qk-edges merged in a single edge. Similarly we merge
all vertical Qk-edges outgoing from aij with even i+ j.

To do the same job again forRn∨ and a00, but with the help of axiom (c’), consider in
addition n vertical edges 〈a00, a

k
01〉 ∈ QIk for 16k6n. Then, for each 0 < k < n, a00

has 2 Tk-successors in AI10 and 2 Tk-successors in AI01. Since these two concepts are
disjoint, applying axiom (c’) yields that ak10 = ak+1

10 and ak01 = ak+1
01 , for all 0 < k < n.

Now we have exactly the pre-grid shown in Fig. 3, and we need to turn it into a
grid using the remaining axioms in T Xgrid. The remainder of the proof repeats that of
Lemma 1.2. This completes the proof of Lemma 2.1 and hence of Theorem 2. a

Theorem 3. The RBox R := {Tr(R)} is unsafe for ALCIN (more precisely, for
ALCIN 8 and ALCIQ1), even for TBoxes with a single role name R.
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Fig. 5. (a) A grid for Theorem 3 (coloured for decoration only, as we have only 1 role). (b) A pre-
grid forALCIQ. (c) Building a horisontal axis inALCIN . (d) Building new cells inALCIN .

Proof. Take 16 concept names Aij , 06 i, j 6 3. Place them on the N×N grid (by re-
peating a [0, 3]×[0, 3] pattern periodically) and link them with R-edges in accordance
with Fig. 5a. Now, having this picture in mind (we refer to its edges as 〈A,R,B〉, where
A,B are concept names), we add the following axioms (a)–(c) to an ALCIQ-TBox
T Qgrid and axioms (a) and (d) to an ALCIN -TBox T Ngrid:

(a) All 16 concept names Aij , 06 i, j 6 3, are pairwise disjoint;
(b) A v ∃R.B and B v ∃R−.A, for each edge 〈A,R,B〉;
(c) Aij v 6 1R.Ak` and Ak` v 6 1R−.Aij , for all even i, j and odd k, `;
(d) Aij v 6 8R and Ak` v 6 8R−, for all even i, j and odd k, `.

Given a domino system D, we build a ALC-TBox TD: axioms (e) and (f) are the
same as in the proof of Theorem 1, whereas (g) is the following (and (h) is analogous):

(g) A uDk v ∀R.
(
B →

⊔
`: 〈dk,d`〉∈H D`

)
for each right-going edge 〈A,R,B〉;

A uD` v ∀R.
(
B →

⊔
k: 〈dk,d`〉∈H Dk

)
for each left-going edge 〈A,R,B〉.

Finally, for each X ∈ {Q,N}, we set KXD := R+ T Xgrid + TD. It remains to prove

Lemma 3.1. The concept A0 is satisfiable w.r.t. KXD iff D tiles N×N.

The implication ‘⇐’ is proved as in Theorem 1. To prove ‘⇒’, suppose that I |= KXD
and a00 ∈ AI00. Then we extract a grid from I, i.e., a subset of (not necessarily distinct)
elements G := {aij | i, j ∈ N} ⊆ ∆I , such that the restriction of I to G looks like
Fig. 5a, and then build a D-tiling of N×N.

For T Qgrid: We start with a00 and apply axiom (b) to build a horizontal and a vertical
axes that consist of elements ai,0 ∈ AIimod 4,0 and a0,j ∈ AI0,jmod 4 (i, j>1), which are
linked viaR-edges of interleaving orientation (as in Fig. 5a). Then, whenever we have 2
horizontal and 2 vertical edges, say, a00Ra10R

−a20 and a00Ra01R
−a02, we complete

them into a 3×3 grid as follows. First, using (b), we build 10 new elements that form
a “pre-grid” depicted in Fig. 5b, namely, a20, a02, a21, a12, a22, a

′
22, a11, a

′
11, a

′′
11, a

′′′
11.

Next, by axiom (c), only 1 element in AI11 is R-reachable from each of a00, a20, and
a02, thus: a11 = a′11 = a′′11 = a′′′11. Finally, we apply axiom (c) to a11 and conclude that
a22 = a′22. Continuing this process infinitely, we build all elements aij , for i, j ∈ N.

For T Ngrid: For organising the elements aij (i, j > 0) into a grid, we need two extra
rows ai,−1 and a−1,j with i, j >−1, see Fig. 5c. First, applying axiom (b) for suitable
B’s to the element a00, we create 4 elements: a0,±1 and a±1,0. Again by (b), each of



them in turn can R-reach 2 elements, so we create 8 new elements: a±1,±1 and a′±1,±1.
Note that, in the above passage, whenever we create an element aij , we mean that it be-
longs to AIimod 4,jmod 4. Now apply axiom (d) and recall that AIij are pairwise disjoint,
hence a±1,±1 = a′±1,±1. Thus we obtain a 3×3 grid of elements aij with−16 i, j 6 1.

Next, we create an element a20 by axiom (b) A10 v ∃R−.A20 and surround it by a
3×3 grid as before. Repeating this process, we build a horizontal axis ai,0 surrounded
by two axes ai,±1 (for i>−1) and, similarly, a vertical axis a0,j surrounded by two
axes a±1,j (for j >−1). Note that number restrictions on R− were not used so far.

Now, whenever we have three adjacent 3×3 grids, say, with the centres a00, a20,
and a02, we build the fourth one, with the centre a22, as follows. First, apply axiom (b)
A v ∃R−.A22 to a21 and a12, thus creating two new elements a22, a

′
22 ∈ AI22 such that

〈a22, a21〉, 〈a′22, a12〉 ∈ RI (see Fig. 5d). Now apply axiom (d) A11 v 6 8R− to the
element a11 and observe that a11 canR−-reach 9 neighbours which belong to 8 disjoint
concepts; therefore a22 = a′22. Finally, we surround a22 by a 3×3 grids similarly to the
above (with the only difference that 5 of 8 elements surrounding a22 are already built).

Once the set {aij | i, j ∈ N} is ready, we complete the proof as in Theorem 1. a

In the proof of Theorem 3, we essentially used number restrictions on the role R
and on its inverse. An open question is whether allowing number restrictions in one
direction only (w.l.o.g., on R) would make the logic decidable. For some applications,
this expressivity would be sufficient, e.g., we will be able to express a class of proteins
that contain at least / at most n amino-acids of a certain type [10], but usually we do not
need to talk about amino-acids that are contained in a given number of proteins.

4 Internalization of RBoxes in TBoxes Using Extended Roles

In order to study safety of RBoxes for different DLs, it is somewhat inconvenient to
work separately with RBoxes and TBoxes. Therefore, in this section, we demonstrate
how RBoxes can be internalized into TBoxes, provided additional role constructors—
role unions and transitive closure operator—can be used. We also demonstrate that it is
sufficient to focus only on TBoxes of some simple form. The results of this section can
be applied to any logic L between ALC and ALCIQ.

Definition 5. We say that an L-TBox T is in a simple form if all axioms in T have the
following forms, where A(i), B(j) are concept names, m, n integers, and S a role:

d
Ai u

d
¬Bj v ⊥ (1)

A v >nS.B (2)
A v 6mS.B (3)

Lemma 2 (Simplification of L-TBoxes). Given an L-TBox T , one can construct in
polynomial time an L-TBox Tsf in simple form such that, for every RBox R, 〈T ,R〉 is
(finitely) satisfiable iff 〈R, Tsf〉 is (finitely) satisfiable.

Proof. The transformation to the simple form can be done by applying the usual struc-
tural transformation for DLs (see e.g. [8]). a



Definition 6. The set of extended roles Rt,+ is defined by the following grammar:

Rt,+ ::= R | ρ1 t ρ2 | ρ+, where R is a role and ρ(i) ∈ Rt,+.

The additional role constructors are interpreted as follows: (ρ1 t ρ2)I = ρI1 ∪ ρI2 ,
(ρ+)I = (ρI)+, where (·)∪(·) and (·)+ are usual operators of union and transitive clo-
sure on binary relations. Concepts of L(t,+) are defined as for L except that extended
roles can be used in place of roles. The semantics of L(t,+) is defined as for L, where
the interpretation of extended roles is used.

Our goal is to demonstrate that every RBox can be internalized in a simple L-TBox
producing an L(t,+)-TBox of a certain simple form:

Definition 7 (Simple L(t,+)-TBox). We say that an L(t,+)-TBox T is simple if
every axiom from T is either of the form (1), (2), or:

A v 6m (
⊔
u+
i t v).B (4)

where A(i), B(j) are concept names, m, n integers, and ui and v are disjunctions of
roles: ui, v =

⊔
Ri. For a simple TBox T , we denote by K(T ) the number of axioms

of type (4) in T , byN(T ) andM(T ) the sum of all numbers n, resp.m, over all axioms
of type (2), resp. (4), by C(T ) the number of concept names in T .

In order to speak about the relationship between roles induced by RBoxes, we in-
troduce additional terminology and notation:

Definition 8. Given an RBoxR and two roles S and S′, we say that S is a subrole of S′

inR ifR ` S v S′; S is equivalent to S′ inR (notation:R ` S ≡ S′) ifR ` S v S′
and R ` S′ v S; S is directly related to S′ in R, or S and S′ are comparable in R
(notation: R ` S ∼ S′) if R ` S v S′ or R ` S′ v S; finally, S is related to S′ in

R, or S and S′ are connected inR (notationR ` S ∗∼ S′) if there exists a sequence of

roles S = S1, . . . , Sn = S′ with n> 1 such thatR ` Si ∼ Si+1 for all 16 i < n.

We say that T is transitive in R if R ` Tr(T ); if additionally T is a subrole of S
and for every transitive role T ′ in R, we have R ` T v T ′ v S implies R ` T ≡ T ′,
then T is a maximal transitive subrole of S inR.

Definition 9 (R-extension). Given an RBox R, an extension of a role S in R (or the
R-extension of S, for short) is an extended roleR(S) ∈ Rt,+ defined as follows:

– If S is transitive in R then R(S) := (
⊔
Si)+, where {Si} is the set of all subroles

of S inR (including S itself);
– If S is not transitive, thenR(S) :=

⊔
R(Ti) t

⊔
Sj , where {Ti} is exactly the set

of all maximal transitive subroles of S, and {Sj} is the set of all subroles of S.

TheR-extension of an interpretation I is an interpretation J = R(I) which is defined
as AJ := AI , for each concept name A, and rJ := (R(r))I , for each atomic role r.

Remark 2. Note thatR(S) can be computed in polynomial time in the size ofR.



Lemma 3 (Semantic Properties ofR-extensions).
Let R be an RBox and I, J interpretations. Then: (1) R(I) |= R; (2) I |= R implies
R(I) = I; (3) SI ⊆ SR(I) for every S; and (4) if SI ⊆ SJ for every S, then
SR(I) ⊆ SR(J ) for every S (monotonicity property).
Proof. a

Definition 10 (Internalization of an RBox in an L-TBox).
LetR be an RBox and T be a simple L-TBox. The internalization ofR in T is a simple
L(t,+)-TBoxR(T ) := {R(α) | α ∈ T }, where:

– R(α) := α if α is of the form (1) or (2), and
– R(α) := A v 6m (R(S)).B if α = A v 6mS.B is of the form (3).

Lemma 4. Let R be an RBox and T a simple L-TBox. Then 〈R, T 〉 is (finitely) satis-
fiable iffR(T ) is (finitely) satisfiable.
Proof. a

5 Decidability Results

As we have demonstrated in Theorem 3, an RBox consisting of just one transitivity
axiom is already unsafe for ALCIN . In fact, we demonstrate in Section 6 that this
is true for every RBox containing one transitive non-symmetric role. Hence, there is a
little room left for non-trivial safe RBoxes for ALCIN . In contrast, the undecidability
results in Section 3 for ALCN require a certain interaction between several transitive
roles. This poses a question about safety of those RBoxes that do not fit such a pattern.
In this section, we investigate this question and define a relatively large class of so-
called admissible RBoxes that, as we will prove, are safe forALCQ. Since we focus on
ALCQ, within this section we assume that there are no inverse roles in RBoxes.

Definition 11. For a TBox T , RBox R, or an axiom α, let RN(T ), RN(T ), RN(α)
denote the set of role names that occur in T ,R, α, respectively.

An RBoxR is strongly admissible if, for every two transitive roles T1, T2 ∈ RN(R),
we have R ` T1 ∼ T2. An RBox R is admissible if R =

⋃
Ri where (1) each Ri is

strongly admissible and (2) RN(Ri) ∩ RN(Rj) = ∅ for all i 6= j.

Under the terminology of Definition 8, we can view an RBox as a directed graph,
where nodes correspond to roles and edges correspond to role inclusion axioms in
RBox. Under this correspondence, we can describe the class admissible RBoxes as
those in which transitive roles are linearly ordered in every connected component.

In the remainder of this section, we prove the following Theorem:

Theorem 4. Every admissible RBox is ALCQ-safe.

Note 1. ForR = {Tr(r)}, this result corresponds to the decidability of the graded vari-
ant of the modal logic K4 (called GrK4), which has already been addressed in [4]via
the finite model property (FMP). It seems, however, that the proof in this paper is in-
correct already for K4 (although works fine for Graded K): the paper claims that any



K4-model of any formula ϕ has a finite K4-submodel, i.e., can be restricted to a fi-
nite model by removing all but finitely many elements from its domain. However, this
is not the case, say, for ϕ = ♦p ∧ �(p → ♦p), whose K4-model (N, <) has no fi-
nite K4-submodels of ϕ, although it has a finite K-submodel of ϕ, namely 〈W,R〉,
where W = {0, 1, 2} and R = {〈0, 1〉, 〈1, 2〉}. Note that it is well-known that K4
enjoys FMP: in our example, ϕ has a finite K4-model 〈W,R〉, where W = {0} and
R = {〈0, 0〉}; however, it cannot be obtained as a submodel of (N, <).

In this paper we re-establish decidability of GrK4 as a special case of Theorem 4.
In fact, our result will imply that GrK4 indeed enjoys finite model property.

First of all, we demonstrate that, for the purpose of proving safety, it is sufficient to
focus only on strongly admissible RBoxes.

Lemma 5 (Modularity). LetR1 andR2 be RBoxes with RN(R1) ∩ RN(R2) = ∅ and
L is between ALC and ALCIQ. ThenR1 ∪R2 is L-safe iffR1 andR2 are L-safe.

Proof. The ‘⇒’ part of the lemma is obvious. In order to prove the ‘⇐’ part, we use the
results about fusions of DLs from [2]. For any fixed RBoxR, the logic L(R) can be ex-
pounded as an abstract description system introduced therein. Indeed, the L-component
determines the syntax and semantics for concepts, whereas R restricts the class of L-
models (to those where all axioms from R hold). Moreover, this class of L-models is
closed under disjoint unions, hence L(R) is local according to the definition from [2].
Finally, L(R1 ∪R2) is precisely the fusion L(R1) ⊗ L(R2) as defined in that paper,
since the restrictions imposed by the logic L(R1 ∪R2) on the class of L-models are
independent for roles from R1 and R2 (here we use the fact that R1 and R2 do not
share role names). Since we deal with the problem of concept satisfiability w.r.t. gen-
eral TBoxes, our lemma follows from Corollary 23 in [2]. a

Corollary 1. LetL be a logic betweenALC andALCIQ. Then every admissible RBox
is L-safe provided every strongly admissible RBox is L-safe.

In order to prove that every strongly admissible RBox R is safe, according to Re-
mark 1, it is sufficient to show that the problem of satisfiability of a pair 〈R, T 〉, with
T an L-TBox, is decidable. To this end, we first simplify the TBox T using Propo-
sition 2 and then internalize RBox R using Definition 10, which will result in some
L(t,+)-TBox of a restricted form, which we call admissible. We then demonstrate
that satisfiability of admissible L(t,+)-TBoxes is decidable.

In what follows, for convenience, we often identify an extended role u =
⊔
Ri with

the set
⋃
{Ri}. Using this convention, we can write r ∈ u or u ⊆ u′ for disjunction of

roles u and u′, as well as uI for sets of roles u.

Definition 12. A simple L(t,+) TBox T is admissible if (i) all axioms of form (4) are
of the forms (5) and (6) below, and (ii) for every two axiomsA1 v 6m1 (u+

1 t v1).B1

and A2 v 6m2 (u+
2 t v2).B2 of form (6), we have that either u1 ⊆ u2, or u2 ⊆ u1.

A v 6m (v).B (5)

A v 6m (u+ t v).B (6)



In other words, a simple L(t,+)-TBox is admissible if in every axiom of form (4)
there is at most one occurrence of a transitively closed disjunction of roles.

Lemma 6. Let T be a simple L-TBox and R a strongly admissible RBox. Then R(T )
is a simple admissible L(t,+)-TBox.
Proof. a

The condition (ii) from Definition 12 can be alternatively formulated as follows:

Proposition 1. Let T be a simple admissible L(t,+)-TBox. Then all roles in T can
be ordered as r1, . . . , rn in such a way that for every axiom A v 6m (u+ t v).B of
type (6) and every 16 i6 j 6 n, we have that rj ∈ u implies ri ∈ u.
Proof. a

We prove that satisfiability of simple admissible L(t,+)-TBoxes is decidable by
demonstrating the finite model property (FMP) for such TBoxes. The key property that
will guarantee FMP is that, in every model of a simple admissible TBox, it is possible
to “loop back” every sufficiently long chain of elements connected via roles. Therefore,
given a possibly infinite model of a TBox, we can consider its finite part of a bounded
branching and up to a certain depth in order to build a finite model. This idea is remi-
niscent to blocking conditions in tableau decision procedures for modal and description
logics [7].

The next lemma states that every model of a simple L(t,+) TBox can be reduced
to a model with bounded branching degree by removing edges that are not “required”
by axioms of type (2).

Definition 13 (Branching Degree of an Interpretation).
Let I = (∆I , ·I) be an L-interpretation. A branching degree of an element x ∈ ∆I
in I is deg(I, x) = Card{y | 〈x, y〉 ∈ rI for some r}. A branching degree of I is
deg(I) = max{deg(I, x) | x ∈ ∆I}.

Lemma 7. Any satisfiable simpleL(t,+)-TBox T has a model I with deg(I)6N(T ).
Proof. a

Let I = (∆I , ·I) be an interpretation. For each axiom α of type (6) in T , we
introduce a function δIα(x, y) defined on elements of ∆I as follows:

δIα(x, y) =


Card{x′ | x′ ∈ BI , 〈x, x′〉 ∈ (u+)I , 〈y, x′〉 /∈ (u+)I}

if there exists y′ ∈ AI with 〈y′, y〉 ∈ (u+)I

0 otherwise

In other words, if y has a u+ predecessor in which A holds, δIα(x, y) equals to the
number of elements in which B holds and that are reachable via u+ from x but not
from y (see Fig. 6a). The value of δIα(x, y) intuitively indicates the number of new u+

successors of y that might appear and potentially violate the axiom α (at the points,
where A holds), if x becomes reachable from y via u+.
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Fig. 6. Looping long chains in a model back

Definition 14. Let I = (∆I , ·I) be an interpretation. For an element x ∈ ∆I , let
CNI(x) := {A ∈ CN | x ∈ AI} denote the set of concept names that hold at x in I.

Given a simple admissible L(t,+)-TBox T , an interpretation I = (∆I , ·I), and
x, y, z ∈ ∆I , we say that x can foster z for y in I (w.r.t. T ) if (i) CNI(z) = CNI(x),
(ii) 〈y, x〉 ∈ rI for no atomic role r, and (iii) for every axiom α of type (6) in T , if
〈y, z〉 ∈ rI for some role r ∈ uα = u, then δIα(x, y) = 0.

Lemma 8 (Model Transformation). Let I = (∆I , ·I) be a model of a simple admis-
sible L(t,+)-TBox T and x, y, z elements of ∆I such that x can foster z for y in
I w.r.t. T . Let J = swap(I, x, y, z) be obtained from I by setting AJ := AI and,
rJ := rI \ {〈y, z〉} ∪ {〈y, x〉} if 〈y, z〉 ∈ rI , and rJ := rI otherwise, for every
concept name A and role name r. Then J is a model of T .

Proof. Since for every x ∈ ∆I , we have CNJ (x) = CNI(x), all axioms of type (1) are
satisfied inJ . Since CNI(x) = CNI(z) and, for every role name r, we have 〈y, z〉 ∈ rI
iff 〈y, x〉 ∈ rJ and 〈y, x〉 ∈ rI iff 〈y, z〉 ∈ rJ , all axioms of type (2) and (5) are
satisfied in J . Finally, the only possibility for an axiom α of type (6) to be violated in
J is when the new roles between y and x have resulted in new u+ successors for some
elements where A holds. In this case, 〈y, z〉 ∈ rI for some role r ∈ u and δIα(x, y)> 1,
which is impossible by the conditions of the lemma. a

Our main lemma states that, in every model of simple admissible L(t,+)-TBox T ,
every sufficiently long chain x0, . . . , xp of elements connected with roles contains two
elements xi and xj with i < j such that xi can foster xj for the predecessor xj−1 of xj
w.r.t. T . Thus, every sufficiently long chain can be “looped back” using the transforma-
tion described in Lemma 8.

Lemma 9 (Main Lemma). Let T be a simple admissible L(t,+)-TBox and I =
(∆I , ·I) a model for T with deg(I) 6 N . Let r1, . . . , rn be all the role names in T
enumerated according to Proposition 1, k an integer with 16 k 6 n, and x0, . . . , xp a
sequence of distinct elements in ∆I such that, for every i > 1, there exists ` 6 k such
that 〈xi−1, xi〉 ∈ rI` . Then there exist i and j with 16 i < j6 p such that xi can foster



xj for xj−1, provided that p> pk := ((M +K + 1)N · 2C + 1)k, where M = M(T ),
K = K(T ), and C = C(T ) as defined in Definition 7.

Before proving Lemma 9, we demonstrate the following auxiliary property. For
convenience, if x is an element of the sequence x0, . . . , xp, i.e., x = xi for some i, then
its predecessor in this sequence will be denoted by pre(x) := xi−1.

Lemma 10 (Auxiliary Lemma). Let a TBox T , a model I, and a sequence x0, . . . , xp
be as in Lemma 9. Let y0, . . . , yq be a sub-sequence in x1, . . . , xp such that (i) q>(M+
K + 1)N , (ii) CNI(y0) = · · · = CNI(yq), (iii) 〈pre(yi), yi〉 /∈ rI` for all 0 6 i 6 q
and ` < k. Then for some 06 i < j 6 q, yi can foster yj for pre(yj).

Proof. Let Uk be the set of axioms α = (A v 6m (u+ t v).B) ∈ T of type (6)
such that rk ∈ u. Take any axiom α ∈ Uk and consider a sequence of values δIα,i :=
δIα(yiN , y(i+1)N ) for 0 6 i 6M +K (see Fig. 6b). We claim that at most m+ 1 of
values δIα,i are positive.

Indeed, for the first i with δIα,i > 1, by definition of δIα(x, y), there exists y′ ∈ AI
with 〈y′, y(i+1)N 〉 ∈ (u+)I . For all subsequent j > i with djα > 1, there exists an el-
ement x′j such that 〈yjN , x′j〉 ∈ (u+)I , but 〈y(j+1)N , x

′
j〉 /∈ (u+)I . In particular, all

such xj are distinct for different j. Note that since rk ∈ u, by Proposition 1, r` ∈ u for
all `6k. Hence 〈y′, x′j〉 ∈ (u+)I . Since I is a model of α, the number of such different
j can be at most m.

Hence, the number of different i such that, for some α ∈ Uk, δIα,i > 1, is at most∑
α∈Uk (mα + 1)6M +K. Since q> (M +K+1)N , there exists at least one i such

that δIα,i = 0 for all α ∈ Uk. For every α ∈ Uk, there are two cases possible: either
(1) there exists no y′ ∈ AI such that 〈y′, y(i+1)N 〉 ∈ (u+)I (see Fig. 6c), or (2) such a
y′ exists, but there exists no x′ ∈ BI with 〈yiN , x′〉 ∈ (u+)I (see Fig. 6d). Hence, in
particular, δIα(yiN+j , pre(y(i+1)N )) = 0 for all j < N and all α ∈ Uk.

Since deg(I)6N and 〈pre(y(i+1)N ), y(i+1)N 〉 ∈ rI` for `6 k, there exists j < N
such that 〈pre(y(i+1)N ), yiN+j〉 /∈ rI , for every r. Since, by condition (iii), we have
〈pre(y(i+1)N ), y(i+1)N 〉 /∈ rIl for each ` < k, we have δIα(yiN+j , pre(y(i+1)N )) = 0
for each axiom α of type (6) such that 〈pre(y(i+1)N ), y(i+1)N 〉 ∈ rI` and r` ∈ u.
Indeed, those are exactly α ∈ Uk, because r` ∈ u implies rk ∈ u for every ` > k by
Proposition 1. Hence, by Definition 14, yiN+j can foster y(i+1)N for pre(y(i+1)N ). a

Proof (of Lemma 9). We prove the lemma by induction on k, using Lemma 10 both in
induction base and induction step. Denote L := (M +K + 1)N for short.

Induction base: For k = 1, we have a sequence of elements x0, . . . , xp ∈ ∆I with
p > p1 := L · 2C + 1 such that 〈xi−1, xi〉 ∈ rI1 , for all 16 i6 p. We claim that there
exists a subsequence y0, . . . , yq in x1, . . . , xp with q > L such that CNI(y0) = · · · =
CNI(yq). Indeed, otherwise, since the number of different values of CNI(x) is bounded
by 2C , and the number of elements x in x1, . . . , xp with the same value of CNI(x) is
at most L, the total number of elements in x1, . . . , xp cannot exceed L · 2C , which
contradicts to p> p1. Now, Lemma 10 can be applied to the sequence y0, . . . , yq , since
there are no roles r` with ` < k = 1. By Lemma 10 there exist elements yi and yj in
this sequence with 06 i < j 6 q, such that yi can foster yj for pre(yj).



Induction Step: Assume that the lemma holds for k − 1. Two cases are possible:
(A) There exists a sub-sequence of consecutive elements xi, xi+1, . . . , xi+pk−1 with

pk−1 = (L · 2C + 1)k−1 and for each j with 16 j 6 pk−1, there exists `6 k − 1 such
that 〈xi+j−1, xi+j〉 ∈ rI` . In this case the lemma holds by the induction hypothesis.

(B) Otherwise, in every sequence xipk−1 , xipk−1+1 . . . , x(i+1)pk−1 of consecutive
elements with 0 6 i 6 p1 − 1 = L · 2C , there exists an element x′i = xipk−1+j ,
with 1 6 j 6 pk−1, such that 〈pre(x′i), x′i〉 /∈ rI` for all `6 k − 1. By applying a
combinatorial argument as in the induction base, from the sequence x′0, . . . , x

′
p1−1 of

p1 = L · 2C distinct elements one can select a subsequence y0, . . . , yq with q > L such
that CNI(y0) = · · · = CNI(yq). Hence the claim of the lemma follows from Lemma 10
applied to the sequence y0, . . . , yq . a

Theorem 5 (Finite Model Property for Admissible ALCQ(t,+)-TBoxes).
An admissible ALCQ(t,+)-TBox T is satisfiable iff T has a finite model.

Proof. The “if” direction of the theorem is trivial, so we focus on the “only if” part.
Let I = (∆I , ·I) be a model of T . By Lemma 7, without loss of generality, we may
assume that deg(I) 6 N = N(T ). Given an element x ∈ ∆I and an integer d, we
define a d-neighbourhood of x in I as the set ωId (x) of all elements from the domain of
I reachable from x in at most d steps. Formally,

ωI0 (x) = {x}, ωId+1(x) := ωId (x) ∪ {y | ∃x′ ∈ ωId (x) : 〈x′, y〉 ∈ rI for some r}.

Since deg(I) 6 N , it is easy to show by induction that |ωId (x)| 6 (N + 1)d. In
particular, ωId (x) is finite. We write distI(x, y) = d iff y ∈ ωId (x), but y /∈ ωId−1(x).

Let x0 ∈ ∆I , r1, . . . , rn be all role names from T enumerated according to Propo-
sition 1, and pn be defined as pk in Lemma 9 for k = n. We will construct a model
J of T whose domain will consist of (finitely many) elements from ωIpn−1(x0), i.e.,
those that are reachable from x0 in less than pn steps. Intuitively, the model J is con-
structed first by applying a sequence of transformations I = I0, I1, . . . , Im of model
I by “looping back” all paths from x0 to elements at the distance pn from x0 using
Lemma 8 and Lemma 9 until none of them left, and then by removing the elements in
Im that became disconnected from x0 after such transformations.

Formally, assume that I` is a model of T and there exists xpn with distI`(x0, xpn) =
pn. Then there exists a sequence of elements x0, x1, . . . , xpn in I` such that for every i
with 16i6p, we have 〈xi−1, xi〉 ∈ rI for some r. By Lemma 9, there exist i and j with
16 i < j 6 pn such that xi can foster xj for xj−1. Let I`+1 := swap(I`, xi, xj−1, xj)
be obtained from I like in Lemma 8. Since I` is a model of T , by Lemma 8, I`+1 is a
model for T . Note also that deg(I`+1) = deg(I`).

Our goal is now to show that by repeatedly applying the transformations above
starting with I0 = I, we eventually obtain a model Im in which there is no element x
with distIm(x0, xpn) = pn. For this we need an additional property:

Claim. Let Il+1 = swap(I`, xi, xj−1, xj) be obtained from I` as described above.
Then for every d> 0 we have ωI`+1

d (x0) ⊆ ωI`d (x0).



Indeed, assume to the contrary, that there exists y such that y ∈ ω
I`+1
d (x0), but

y /∈ ωI`d (x0). Then there exists a sequence of distinct elements x0 = y0, y1, . . . , yd = y
such that for every i′ with 1 6 i′ 6 d, we have 〈yi′−1, yi′〉 ∈ rI`+1 for some r, but
for some j′ with 1 6 j′ 6 d, we have 〈yj′−1, yj′〉 /∈ rI` for every r. Since I`+1 =
swap(I`, xi, xj−1, xj), this is possible only if yj′−1 = xj−1 and yj′ = xi (all other
relations in I`+1 occur in I` as well). Moreover, j′>j, since otherwise distI(x0, pn) <
pn as x0 = y0, y1, . . . , yj′−1 = xj−1, xj , . . . , xpn is a sequence of elements connected
with roles in I` which has a smaller length than the sequence x0, x1, . . . , xpn used in the
transformation. But then x0, . . . , xi = yj′ , . . . , yd is a sequence of elements connected
with roles in I` consisting of d elements since i < j 6 j′. Hence y = yd ∈ ωI`d (x0)
contrary to what has been assumed.

Now let us define eId (x0) = {〈x, y〉 | x, y ∈ ωd(x0), 〈x, y〉 ∈ rI for some r}.
Note that |eId (x0)| 6 |ωId (x0)|2. Let I = I0, . . . , I`, I`+1, . . . be a sequence of in-
terpretations obtained by transformations described above. We claim that during every
transformation step I`+1 = swap(I`, xi, xj−1, xj) either:

(1) ω
I`+1
d (x0) ⊆ ωI`d (x0) for every d6 pn, but for some d6 pn we have ωI`+1

d (x0) (
ωI`d (x0), or

(2) ω
I`+1
d (x0) = ωI`d (x0) and |eI`+1

d (x0)|> |eI`d (x0)| for every d6 pn, but for some
d6 pn we have |eI`+1

d (x0)| > |eI`d (x0)|.

Indeed, the properties above hold since when ωI`+1
d (x0) = ωI`d (x0), we have:

e
I`+1
d (x0) =


eI`d (x0) if d < j − 1,
eI`d (x0) ∪ {〈xj−1, xi〉} if d = j − 1,
eI`d (x0) ∪ {〈xj−1, xi〉} \ {〈xj−1, xj〉} if d > j − 1.

Since deg(I`+1) = deg(I`) < N , we have |ωId (x0)| 6 (N + 1)d and |eId (x0)| 6
|ωId (x0)|26 (N + 1)2d, so the transformation process I0, . . . , I`, I`+1, . . . necessarily
terminates with some Im. Now define J := Im|ωImpn−1(x0)

to be the restriction of Im to
the elements that are reachable from x0 in at most pn − 1 steps (and hence, reachable
from x0 at all). It is easy to see that J remains a model of T since the axioms of
all types (1), (2) and (6) remain satisfied. Since ωImpn−1(x0) consists of finitely many
elements, J is a finite model for T . a

Remark 3. Note that in the proof of Theorem 5, we have demonstrated not only the
finite model property for admissible ALCQ(t,+)-TBoxes, but also a so-called small
model property. Namely, that the bound on the size of the finite model can be computed
a-priory for a given TBox T . It is easy to see from the proof of Theorem 5 that every
satisfiable TBox T has a model with at most |ωImpn−1(x0)| 6 (N + 1)pn−1 elements,
where N = N(T ) and pn can be computed from T .

Now it is time to harvest our decidability results (see [9] for all proofs).

Theorem 6 (Finite Model Property for Strongly Admissible RBoxes in ALCQ).
Let T be anALCQ-TBox andR a strongly admissible RBox. Then 〈R, T 〉 is satisfiable
iff it has a finite model.



Proof. By Lemma 2, one can effectively convert TBox T into simple form Tsf such
that 〈R, T 〉 is (finitely) satisfiable iff 〈R, Tsf〉 is (finitely) satisfiable. By Lemma 4,
〈R, Tsf〉 is (finitely) satisfiable iffR(Tsf) is (finitely) satisfiable. SinceR is an admissi-
ble RBox and Tsf a simple ALCQ-TBox, by Lemma 6, R(Tsf) is a simple admissible
ALCQ(t,+)-TBox. Now, if 〈R, T 〉 is satisfiable, then R(Tsf) is satisfiable and hence
by Theorem 5, has a finite model. Hence 〈R, T 〉 has a finite model. a

Corollary 2 (Finite Model Property for GrK4).
Every satisfiable GrK4-formula has a finite model

Proof. Every GrK4-formula ϕ can be translated into anALC-TBox T containing only
one role r, such that for an RBox R = {Tr(r)}, ϕ is (finitely) satisfiable iff 〈R, T 〉 is
(finitely) satisfiable. Since R is a strongly admissible RBox, by Theorem 6 〈R, T 〉 is
satisfiable iff 〈R, T 〉 has a finite model. Hence ϕ is satisfiable iff ϕ has a finite model.
Using Remark 3, it is also easy to show that GrK4 has a small model property. a

Corollary 3. Every strongly admissible RBox is safe for ALCQ.

Proof. Given a strongly admissible RBox R and an ALCQ TBox T , we can decide
satisfiability of 〈R, T 〉 by first converting T into a simple form Tsf and then checking if
there exists a finite model forR(Tsf) of the size at most (N+1)pn−1 by enumerating all
such (finitely many) models, where N and pn can be effectively computed fromR(Tsf)
as mentioned in Remark 3. a

Corollary 4 (Theorem 4). Every admissible RBox is safe for ALCQ.

Proof. If R is an admissible RBox, then, by to Definition 11, R =
⋃
Ri, where Ri

are strongly admissible RBoxes. By Corollary 3, every Ri is safe for ALCQ. Hence,
by Lemma 5,R is safe for ALCQ. a

6 Extending RBoxes

In Section 5 we have described a rather large class ofALCQ-safe RBoxes. However, so
far, only few RBoxes were shown to be unsafe forALCN andALCIN in Section 3. In
this section we are concerned with a question whether every RBox “containing” any of
the patterns described in Section 3 is necessarily unsafe? Or, in general, what happens
to the (un)safety of an RBox when the RBox are extended?

It is clear that adding axioms may turn a safe RBox into unsafe and vice versa:
an ALCN -safe RBox {Tr(r)} can be extended to an ALCN -unsafe RBox R∧ from
Theorem 1; adding toR∧ an inclusion between its incomparable transitive roles yields
anALCN -safe RBox by Theorem 4. So it is not sufficient for an RBoxR′ to be unsafe
if it contains some unsafe RBox R. The question now is: what additional property
an extension R′ of R should fulfill so that unsafety of R can be transferred to R′.
In this section we demonstrate that it is sufficient to require that R′ is semantically
conservative overR.
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6.1 Conservativity of RBoxes

In this section we define several notions of conservativity for RBoxes. The notion of
conservativity (or specifically of conservative extensions) is well-known from Logic [],
and been recently applied in the context of Description Logic [].

Definition 15. Let R and R′ be two RBoxes, and Σ a set of role names. For given an
interpretation I = (∆I , ·I) let I|Σ = (∆I|Σ , ·I|Σ ) be an interpretation defined by:
∆I|Σ := ∆I ; for every concept name A, we have AI|Σ := AI ; and for every role
name r, we have rI|Σ := rI if r ∈ Σ, and rI|Σ := ∅ otherwise.

We say that R′ is deductively conservative over R w.r.t. Σ if for every role axiom
α with RN(α) ⊆ Σ, we haveR′ |= α impliesR |= α.

We say that R′ is semantically conservative over R w.r.t. Σ (notation: R QΣ R′),
if for every model I ofR there exists a model I ′ ofR′ such that I ′|Σ = I|Σ .

We say that R′ is a deductive (semantic) conservative extension of R w.r.t. Σ if,
additionally, [R] ⊆ [R′]. We omit Σ when Σ = RN(R).

Remark 4. It is easy to see that the relation ofR QΣ R′ is transitive reflexive w.r.t.R′
andR, and monotonic w.r.t. Σ.

Semantic conservativity always implies deductive conservativity (but not vice versa,
as the example below shows). Indeed, assume that R QΣ R′. In order to show that R′
is a deductively conservative overR w.r.t. Σ, take any axiom α with RN(α) ⊆ Σ such
that R′ |= α. According to Definition 15, we need to demonstrate that R |= α, or,
equivalently, that for every model I of R we have I |= α. Since R QΣ R′, and I is
a model of R, by Definition 15, there exists a model I ′ of R′ such that I ′|Σ = I|Σ .
SinceR′ |= α, we have I ′ |= α. Since RN(α) ⊆ Σ and I ′|Σ = I|Σ , we have I |= α.

Example 1. Consider RBoxes depicted in Fig. 7. We haveRc Q R′c. Indeed, given any
model I |= Rc, we define I ′ by setting RI

′
:= RI , SI

′
:= SI , and T I

′
:= RI ∩ SI .

Then I ′ |= R′c; in particular, T I
′

is transitive as the intersection of transitive relations.
At the same time, for i ∈ {a, b}, we have that R′i is deductively conservative over

Ri, but Ri 6Q R′i. Indeed,Ra 6Q R′a, since one can easily construct two non-transitive
relations on some set that have no transitive relations between them. To show that
Rb 6Q R′b, take ∆I = {0, 1, 2} and set RI := {〈0, 1〉}, SI := {〈1, 2〉}, and QI :=
RI ∪ SI . Then we cannot interpret the transitive role T to satisfyR′b.

Comparing Rc Q R′c with Rb 6Q R′b, we can observe that inverting role inclusions
can invalidate semantic conservativity. On the other hand, deductive conservativity is



always preserved under this operation. This easily follows from the observation that if
R ` R v S and an RBoxR1 is obtained fromR by inverting all role inclusion axioms,
thenR1 ` S v R.

Theorem 7 (Preservation of Unsafety under Conservative Extensions of RBoxes).
IfR′ is a conservative extension ofR andR is L-unsafe, thenR′ is L-unsafe.

Proof. The proof is by contra-position. Suppose that [R] ⊆ [R′] and R Q R′, and
assume thatR′ is L-safe, then let us prove thatR is also L-safe.

To this end, according to Definition 3 and Remark 1, we need to demonstrate how
to decide satisfiability of pairs of the form 〈R, T 〉, for L-TBoxes T . Let T ′ be obtained
from T by renaming all role names from RN(R′) \ RN(R) with fresh ones. We claim
that 〈R, T 〉 is satisfiable iff 〈R′, T ′〉 is satisfiable. Indeed:

(1) 〈R, T 〉 is satisfiable iff 〈R, T ′〉 is satisfiable.
This is because 〈R, T ′〉 is obtained from 〈R, T 〉 by renaming of role names;

(2) 〈R, T ′〉 is satisfiable iff 〈R′, T ′〉 is satisfiable.
The implication ‘⇐’ is trivial due to [R] ⊆ [R′].
The implication ‘⇒’ can be proved as follows. Suppose that I |= 〈R, T ′〉. Since
R Q R′, by Definition 15 there exists I ′ |= R′ such that I ′|RN(R) = I|RN(R). Let
J be an interpretation such that J |RN(T ′) = I|RN(T ′) and J |RN(R′) = I ′|RN(R′).
Since RN(T ′) ∩ RN(R′) ⊆ RN(R) and I ′|RN(R) = I|RN(R), such interpretation
J always exists. Moreover, J |= R′ since I ′ |= R′ and J |RN(R′) = I ′|RN(R′),
and J |= T ′ since I |= T ′ and J |RN(T ′) = I|RN(T ′). Hence, J is a model of
〈R′, T ′〉, and therefore 〈R′, T ′〉 is satisfiable.

Now, if R′ if L-safe then satisfiability of 〈R′, T ′〉 is decidable, and therefore one
can decide satisfiability of 〈R′, T ′〉, which proves thatR is L-safe. a

As a consequence, if R′ is a semantic conservative extension of any RBox “of the
form” R⊕∨ ,Rn∧ ,Rn∨,Rn∧∨ depicted in Fig. 1 and 4, then R is ALCQ-unsafe. To formu-
late this statement rigorously, denote by F := {R⊕∨} ∪ {Rn∧ ,Rn∨,Rn∧∨ | n > 1} the
family of RBoxes (see. Fig. 4) that were shown to be ALCQ-unsafe in Sect. 3.

Definition 16. An RBox R′ is stronger than R (written R ↪→ R′) if there is a one-to-
one renaming of role names σ: RN→ RN such that R′ is a conservative extension of
σ(R), where σ(R) is an RBox obtained fromR by replacing every role S with σ(S).

Theorem 7 implies that ifR is L-unsafe andR ↪→ R′ thenR′ is L-unsafe.

Corollary 5. (1) AnyR′ that is stronger thanR = {Tr(r)}, is ALCIQ-unsafe.
(2) AnyR′ that is stronger than someR ∈ F is ALCQ-unsafe.

Conjecture 1. Corollary 5 describes all RBoxes that are unsafe forALCIQ andALCQ.

Corollary 5 gives a structural description of (some) unsafe RBoxes: the relation ‘↪→’
is a partial order on RBoxes which preserves unsafety, F is the set of minimal pairwise
incomparable (w.r.t. ↪→) RBoxes, and an RBox R′ is ALCQ-unsafe if (and only if,



as we conjecture) we have R ↪→ R′, for some R ∈ F . 3 However, it is not obvious
how to verify the above condition for unsafety. Therefore, in what follows we provide
an efficient procedure for checking semantic conservativity and, as a consequence, for
checking the above sufficient conditions for unsafety of an RBox.

6.2 Checking Semantic Conservativity of RBoxes

Theorem 7 provides a missing condition, namely semantic conservativity, which guar-
antees that an unsafe RBox remains unsafe after extension with new axioms. However,
it is not yet clear how to this condition for given two RBoxes. In this section we present
a general procedure for checking semantic conservativity using extensions of roles in-
troduced in Definition 9.

Definition 17. Given two extended roles ρ′ and ρ, we write I |= ρ′ vΣ ρ iff I|Σ |=
ρ′ v ρ. We write |= ρ′ vΣ ρ if for every interpretation I, we have I |= ρ′ vΣ ρ.

Remark 5. Note that, for every extended role ρ, we have the inclusion ρI|Σ ⊆ ρI .

Lemma 11 (Criterion for Semantic Conservativity of RBoxes).
Let R and R′ be two RBoxes and Σ a set of role names. Then R QΣ R′ iff, for every
role name s ∈ Σ, we have |= R′(s) vΣ R(s).

Proof. (⇐) Suppose that |= R′(s) vΣ R(s) for every s ∈ Σ. In order to prove that
R QΣ R′ we need to construct, for every model I of R, a model I ′ of R′ such that
sI = sI

′
for every s ∈ Σ.

Let I be a model of R. Define I ′ := R′(I|Σ). By Lemma 3 (1), I ′ is a model
ofR′. We need to show that sI = sI

′
, for every s ∈ Σ. Take any s ∈ Σ.

By Definition 17 and Lemma 3 (3) we have:

sI = sI|Σ ⊆ sR
′(I|Σ) = sI

′
. (7)

Since |= R′(s) vΣ R(s), by Definition 17, assumption |= R′(s) vΣ R(s), Re-
mark 5 and Lemma 3 (2), we have:

sI
′
= sR

′(I|Σ) = (R′(s))I|Σ ⊆ (R(s))I|Σ ⊆ (R(s))I = sR(I) = sI (8)

From (7) and (8), we have sI = sI
′
.

(⇒) Suppose that R QΣ R′. In order to show that |= R′(s) vΣ R(s) for every
s ∈ Σ, let I be an arbitrary interpretation. According to Definition 17, we need to prove
thatR′(s)I|Σ ⊆ R(s)I|Σ , or, equivalently, by Definition 9, that sR

′(I|Σ) ⊆ sR(I|Σ).
Since, by Lemma 3 (1),R(I|Σ) is a model ofR, andR QΣ R′, there exists a model

I ′ of R′ such that sI
′
= sR(I|Σ) for every s ∈ Σ. Also, since rI|Σ ⊆ rR(I|Σ) = rI

′

for every role name r, by Lemma 3 (4) we have:

sR
′(I|Σ) ⊆ sR

′(I′) = sI
′
= sR(I|Σ) (9)

That is, sR
′(I|Σ) ⊆ sR(I|Σ), which was required to show. a

3 This resembles Kuratiwski’s Theorem in graph theory: a graph G is not planar iff K3,3 ↪→ G
or K5 ↪→ G, where ‘H ↪→ G’ means that H is embeddable into G in a certain sense (cf. [5]).



Lemma 11 effectively reduces the problem of checking semantic conservativity for
RBoxes to the problem of checking the entailment |= ρ′ vΣ ρ for extended role expres-
sions ρ′ and ρ. The next lemma demonstrates how to syntactically check this entailment.
Recall that we identify disjunctions of roles with sets of roles, that is we can write u ⊆ v
for disjunctions of roles u and v, as well as uI for sets of roles u.

Lemma 12. Let ρ′ =
⊔

(u′i)
+tv′ and ρ =

⊔
(uj)+tv be extended roles, where u′i, uj ,

v′ and v are disjunctions of roles, andΣ a set of role names. LetΣ := {r, r− | r ∈ Σ}.
Then |= ρ′ vΣ ρ iff:

(1) v′ ∩Σ ⊆
⋃
uj ∪ v, and

(2) For every u′i, there exists uj such that u′i ∩Σ ⊆ uj .

Proof. (⇐) Suppose the conditions (1) and (2) above hold for the given ρ′, ρ and
Σ. In order to show that |= ρ′ vΣ ρ, take an arbitrary interpretation I. We need to
demonstrate that (ρ′)I|Σ ⊆ ρI|Σ . Indeed, by condition (1), for every u′i there exists
uj such that u′i ∩ Σ ⊆ uj , and so, since (u′i)

I|Σ = (u′i ∩ Σ)I|Σ ⊆ (uj)I|Σ , we
have ((u′i)

+)I|Σ ⊆ ((uj)+)I|Σ ⊆ ρI|Σ . By condition (1), (v′)I|Σ = (v′ ∩ Σ)I|Σ ⊆
(
⋃
uj ∪ v)I|Σ ⊆ ρI|Σ . Hence (ρ′)I|Σ ⊆ ρI|Σ , which was required to show.
(⇒) Suppose that |= ρ′ vΣ ρ, but either the condition (1) or the condition (2) do

not hold for ρ and ρ′. Consider each of these cases:
If condition (1) does not hold, then there exits s ∈ v′ ∩ Σ such that s 6∈

⋃
uj ∪ v.

Consider an interpretation I = (∆I , ·I) such that ∆I = {0}, rI = ∅ for r 6= s, and
sI = 〈0, 0〉. Note that I|Σ = I since s ∈ Σ. It is easy to see that (ρ′)I = {〈0, 0〉} but
ρI = ∅. Hence I|Σ = I 6|= ρ′ v ρ, and so, 6|= ρ′ vΣ ρ.

If condition (2) does not hold, then there exists u′i such that u′i ∩ Σ ∈ uj for no
uj . Assume that u′i ∩Σ = {s1, . . . , sp, s−p+1, . . . , s

−
q }. Consider an interpretation I =

(∆I , ·I) with ∆I = {0, . . . , q + 1} such that sI = ∅ for s 6∈ Σ, and for each s ∈ Σ:

sI := {〈0, 1〉} ∪ {〈i, i+ 1〉 | s = si, 16 i6 p} ∪ {〈i+ 1, i〉 | s = si, p+ 16 i6 q}.

Note that I = I|Σ . It is easy to see that 〈0, q+1〉 ∈ ((u′i)
+)I but 〈0, q+1〉 6∈ ((uj)+)I

for every uj . Since u′i is non-empty, we have q > 1 and hence 〈0, q + 1〉 6∈ vI . Thus
〈0, q + 1〉 ∈ (ρ′)I but 〈0, q + 1〉 6∈ ρI . Hence I|Σ = I 6|= ρ′ v ρ, and so, 6|= ρ′ vΣ ρ.

a

Theorem 8 (Decidability for Semantic Conservativity of RBoxes).
There is a polynomial-time procedure that, given two RBoxes R, R′, and a signature
Σ, decides the relationR QΣ R′.

Proof. In order to check whether R QΣ R′, by Lemma 11, it is sufficient to check
whether R′(s) vΣ R(s) for every s ∈ Σ. By Remark 2, the extended roles ρ = R(s)
and ρ′ = R′(s) can be computed in polynomial time in the size of R and R′. By
Lemma 12, for checking the entailment ρ′ vΣ ρ, it is sufficient to check the properties
(1) and (2) for ρ′ and ρ, which obviously can be done in polynomial time. a



6.3 Geometric Interpretation of the Criterion for Conservativity

As has been demonstrated in Theorem 8, a combination of Lemma 11 and Lemma 12
provides an effective way of checking semantic conservativity for RBoxes. It is desir-
able to have a more intuitive “geometric” conditions that are required for an RBoxR′ to
be conservative overR. Here we give such a simplified formulation for the criterion of
conservativity of RBoxes. We apply this criterion to obtain an efficient characterisation
of the classes of unsafe RBoxes described in Corollary 5.

Definition 18. Let R be an RBox, S a role and u a set of roles. We write R |= u v S
if R |= R v S, for all R ∈ u. We write R |= u+ v S and say that u is transitively
separated from S inR if, for some role T , we haveR |= Tr(T ) andR |= u v T v S.

Remark 6. Note that in the case when role S is transitive in R, u is transitively sepa-
rated from S in R if and only if all roles in u are subroles of S. Also note that once
the R-extension of a role S is computed: R(S) =

⊔
u+
i t v, it allows to easily check

whether a set u of roles is transitively separated from S in R. Namely: R |= u+ v S
iff u ⊆ ui, for some i.

Theorem 9 (Geometrical Criterion for Conservativity).
LetR andR′ be RBoxes andΣ a set of role names. ThenR QΣ R′ iff for every s ∈ Σ:

(1) for every role R ∈ Σ, we haveR′ |= R v s impliesR |= R v s, and
(2) for every set u ⊆ Σ, we haveR′ |= u+ v s impliesR |= u+ v s.

Proof. By Lemma 11, R QΣ R′ iff, for every s ∈ Σ, we have |= R′(s) vΣ R(s).
Let R(s) =

⊔
u+
i t v and R′(s) =

⊔
u′+j t v′. Recall that, by Definition 9, v and v′

consist of exactly all the subroles of s and s′, resp. By Lemma 12, |= R′(s) vΣ R(s)
iff two conditions hold:

(a) v′ ∩Σ ⊆
⋃
uj ∪ v = v and

(b) for every u′i, there exists uj with u′i ∩Σ ⊆ uj .
We claim that (a) is equivalent to (1), and (b) is equivalent to (2). Indeed:

(a)⇔ (1): v′ ∩Σ ⊆ v iff R ∈ v′ implies R ∈ v, for every R ∈ Σ,
iff (by Definition 9) R′ |= R v s impliesR |= R v s, for every R ∈ Σ.

(b)⇔ (2): for every u′i, there exists uj with u′i ∩Σ ⊆ uj
iff u ⊆ Σ and u ⊆ u′i implies u ⊆ uj for some uj
iff (by Remark 6) u ⊆ Σ,R′ |= u+ v s impliesR |= u+ v s. a

A geometric interpretation of Theorem 9 is that an RBox R′ is conservative over
R w.r.t. Σ, if (1)R′ does not entail new inclusions between roles over Σ (i.e.,R′ does
not add to the graph of the RBox any edges R between roles over Σ), and (2) R′ does
not make any set of roles u ⊆ Σ transitively separated from some role S, unless this
was already the case in R. Note that (2) in particular means that no role name s from
Σ (and hence no role from Σ) cannot become transitive in R′ if it was not in R, since
otherwise the condition (2) would not hold for u = {s}.



6.4 Consequences for Unsafety of RBoxes

Now we are ready to show that the conditions given in Corollary 5 that are sufficient
for the unsafety of an RBox can be verified efficiently (in polynomial time).

Lemma 13. LetR = {Tr(s)}. ThenR Q R′ iff R′ 6|= s− v s.

Proof. By Theorem 9, it is sufficient to show that R′ 6|= s− v s iff the conditions (1)
and (2) from Theorem 9 hold for these R, R′, and Σ = {s}. It is easy to see that (2)
holds always since R |= {s}+ v s. The only non-trivial part of (1) is when R = s−.
SoR Q R′ iff (R′ |= s− v s impliesR |= s− v s) iffR′ 6|= s− v s. a

Lemma 13 and part (1) of Corollary 5 imply that {Tr(s)} ↪→ R′ iff R′ contains a
role that is transitive and not symmetric inR′. In order to formulate a similar condition
for part (2) in Corollary 5, we need some auxiliary notation and terminology.

Definition 19. Given roles s, s′, r and an RBox R, we write R ` s ∗∼
r
s′ if there exits

a sequence of roles s = s1, . . . , sn = s′ with n > 1 such that R ` si ∼ si+1 for all
16 i < n, andR 0 r v si for every i with 16 i6 n.

In other words, relationR ` s ∗∼
r
s′ expresses that s and s′ are connected inR with

a sequence of roles that are not above r.

Proposition 2. Given roles s, s′, r and an RBoxR, it is possible to check in polynomial
time whetherR ` s ∼

r
s′.

Proof. Given r and R we first compute a relation si ∼
r
sj for all roles si and sj such

that R ` si ∼ sj , R 0 si v r and R 0 sj v r. Then the relation s ∗∼
r
s′ is a transitive

closure of the relation si ∼
r
sj . a

Lemma 14. LetR′ be an RBox. ThenR ↪→ R′, for some RBoxR ∈ F , iff there exists
two transitive role names t1 and t2 in R′ such that (i) R′ ` t1

∗∼ t2 and (ii) for every

transitive role name t inR′ withR′ ` t1 v t andR′ ` t2 v t, we haveR′ ` t1
∗∼
t
t2.

Proof. (⇒): Suppose thatR ↪→ R′, for some RBoxR ∈ F . Without loss of generality
(by renaming roles), we can assume that R′ is a conservative extension of R (e.g.
[R] ⊆ [R′] and R Q R′). Then take t1 and t2 be, respectively, the role names R,S
if R = R⊕∨ , Q0, Qn if R = Rn∧ , or T0, Tn if R = Rn∨, or Q0, Tn if R = Rn∧∨ (see
Fig. 4). It is easy to see t1 and t2 are transitive roles that are connected inR, and hence
inR′ (since [R] ⊆ [R′]). Hence the condition (i) of lemma holds. In order to prove the
condition (ii), suppose R′ ` t1 v t and R′ ` t2 v t for some transitive role name
t in R′, but R′ 0 t1

∗∼
t
t2. Since every connection between t1 and t2 in R is also a

connection inR′ (since [R] ⊆ [R′]), we haveR′ ` t v s for some s ∈ RN(R). Hence
R′ |= {t1, t2}+ v s. Since R Q R′ and {t1, t2, s} ⊆ RN(R), by condition (2) of
Theorem 9, we haveR |= {t1, t2}+ v s which is possible for neitherR ∈ F .



(⇐): First, note that this direction of the lemma holds if there exists tree role names
t′1, t′2 and t′ that are transitive in R′ and such that R′ ` t′ v t′1, R′ ` t′ v t′2, and
R′ 0 t′1 ∼ t′2. In this case R ↪→ R′ for R = R⊕∨ ∈ F using the renaming σ(R) := t′1,

σ(S) := t′2 and σ(Q) := t′. Indeed, it is easy to see that conditions condition (1) and
(2) of Theorem 9 hold for σ(R), R′ and Σ = RN(σ(R)) = {t′1, t′2, t′}. Hence in the
reminder of the proof we assume that for every transitive roles t′1, t′2 and t′ inR′:

R′ ` t′ v t′1 and R′ ` t′ v t′2 implies R′ ` t′1 ∼ t′2 (10)

Property (10) essentially means that the inclusions between transitive roles in R′ form
a tree structure. In particular, for every two transitive roles t1 and t2 in R′, there exists
at most one, up to equivalence, minimal transitive role t such that R′ ` t1 v t and
R′ ` t2 v t; that is, whenever R′ ` t1 v t′ and R′ ` t2 v t′ for some transitive role
t′, thenR′ ` t v t′.

Consider the set of P all sequences t1 = s1, . . . , sn = tn, n>1, such that t1 and t2
are transitive inR′,R′ ` si ∼ si+1 for every i with 16 i < n, andR′ 0 t v si where

t is a minimal transitive role such that R′ ` t1 v t and R′ ` t2 v t. By condition
(ii) of this lemma, at least one such sequence exists. Consider a shortest sequence
t1 = s1, . . . , sn = tn from P . We claim that for this sequence the following properties
hold: (a) R′ 0 si ∼ sj , for all 16 i, j 6 n with i+ 1 < j, (b) R′ 0 {si−1}+ v si for

i < n, and (c)R′ 0 {sj+1}+ v sj for i > 1.
Indeed, if property (a) does not hold, then t1 = s1, . . . , si, sj , . . . , sn = t2 is a

shorter sequence inP . If property (b) does not hold then there exists a transitive role t in
R′ such thatR′ ` si−1 v t andR′ ` t v si, i < n. In this case the t1 = s1, . . . , si−1, t
is a shorter sequence in P . Similarly, if condition (c) does not hold then there exists a
shorter sequence t, sj+1, . . . , sn = t2 in P . Note also that (d) R′ 0 t1 ∼ t2, since,

otherwise R′ ` t1 v t and R′ ` t2 v t for t = t1 or t = t2, and so, R′ 0 t v t1 or
R′ 0 t v t2, which is not possible by definition of P .

From properties (a)–(d), using Theorem 9, it is easy to show thatR′ is a conserva-
tive extensions of someR ∈ F . a

In words, Lemma 14 says that an RBox R′ is stronger than some RBox from the
family F iff there are two connected transitive roles t and t′ in R′ that are connected
below every transitive super-role of t and t′.

Proposition 3. Given an RBox R′ it is possible to verify in polynomial time whether
R ↪→ R′ for someR ∈ F .
Proof. a

Now we put together the results from this section and Section 3 and formulate a
sufficient (and, as we conjecture, necessary) condition for unsafety of RBoxes:

Corollary 6 (Sufficient Condition for Unsafety). LetR be an RBox. Then:

1. If there is a role T withR |= Tr(T ) andR 6|= T− v T , thenR isALCIN -unsafe.



2. If there are two transitive role names t1 and t2 inR such that: (i)R ` t1
∗∼ t2 and

(ii) for every transitive role name t inR withR ` t1 v t andR ` t2 v t, we have
R ` t1

∗∼
t
t2, thenR is unsafe for ALCN .

Proof. This is a consequence of Theorems 2, 3, 9, and Lemmas 13 and 14. a

7 Conclusions and Future Work

Driven by applications, we have looked more closely at the effect of non-simple roles
in number restrictions on the decidability of standard DL reasoning problems. We have
shown that, in the absence of inverse roles, the restriction imposed by SHQ to non-
simple roles in number restrictions can be relaxed substantially and that, in the presence
of inverse roles, this restriction turns out to be crucial for decidability.

These results raise numerous further questions. Firstly, given a DL L, can we for-
mulate necessary and sufficient conditions for an RBox to be L-safe? Secondly, for an
interesting class of L-safe RBoxes R, what is the computational complexity of decid-
ing L(R)-satisfiability? And can these decision procedures be implemented and used
in practice? Thirdly, in the approach taken here, we allow all roles to occur in number
restrictions. Given an L-unsafe RBox R, can we extend the notion of simple roles to
regain decidability of L(R)? And how applicable would this be in practice? Finally, in
the presence of inverse roles, can we restrict the usage of inverse roles in TBoxes so as
to re-gain decidability? For example, would disallowing number restrictions on inverse
roles whilst allowing number restrictions on transitive role names help? For the list of
other interesting open problems, see the accompanying technical report [9].
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Appendix: Open problems

Problem 1. Is the RBoxR⊕∧ = {⊕→⊕←⊕} ALCQ-safe? Conjecture: Yes.

Problem 2 (Criterion for ALCQ-safety). An RBox R is ALCQ-unsafe iff R ↪→ R′
for someR ∈ F . Here F := {Rn∧ ,Rn∨,Rn∧∨ | n> 1} (cf. Fig. 4).

Note: the ‘⇐’ is already proved. To prove ‘⇒’, first try to solve Problem 1.

Problem 3 (Simple roles revised). In anALCQ-unsafe RBoxR, which roles inR could
be called simple and used in number restrictions, while keeping the logic decidable?

Note: the answer may be non-deterministic: you can use in num. restr. either these
roles, or these roles... Hence we can talk about a simple subset u ⊆ RN(R) of roles.

Conjecture: a subset u ⊆ RN(R) is simple if its downward closure inR is ALCQ-
safe. Here by the downward closure of a set of roles u inR we call the minimal subset
of roles containing roles from u and all their subroles inR.

For example, inR := {⊕→,←⊕}, if we allow to use in number restriction the two
transitive roles, but not the non-transitive role, will it be decidable? Conjecture: Yes.

Problem 4. Is the RBoxR = {Tr(R), R v R−} ALCIQ-safe?4 Conjecture: Yes.

Problem 5 (Criterion forALCIQ-safety). If Problem 4 is answered ‘No’, then the Cri-
terion is: An RBox is ALCIQ-unsafe iff it contains a transitive role.

If Problem 4 is answered ‘Yes’, then the Criterion for ALCIQ-safety is:
An RBox is ALCIQ-unsafe iff it contains a transitive non-symmetric role.

Problem 6 (Semi-safety). An RBox is ALCIQ-semi-safe if all its role names but not
their inverses can be used in number restrictions, while keeping the logic decidable.
(We confined the definition to names w.l.o.g., as we can always rename roles.)

Which RBoxes are semi-safe? In particular, is {Tr(R)} ALCIQ-semi-safe?
Conjecture: an RBox (without inverse roles) is semi-safe iff it is ALCQ-safe.
Note: even ALCIF with general TBoxes does not have the Finite Model Property.

Problem 7 (Semi-simple roles). An obvious combination of the previous two problems:
how can we divide roles into simple (both r and r− can be used in num. rest.), semi-
simple (only r but not r− can be used in num. restr., or vice-versa), and non-simple?

Note: since we are in ALCIQ, transitive roles cannot be simple, only semi-simple.

Problem 8. Are our decidability results hold for ABox consistency problem as well?

Problem 9 (Nominals). What about ALCOQ-safety?
Note that in presence of nominals, the logic does not have the Disjoint Union Model

Property, which was used in the proof of Modularity (Lemma 5). Therefore it might be
the case that two disjoint safe RBoxes put together yield an unsafe RBox.

Problem 10. What about ALCF-safety and ALCIF-safety? Open problem since [7].
Here ‘F’ stands for (6 1R).

Conjecture: all RBoxes areALCF- andALCIF-safe (by eliminating transitivity?).

4 By the way, is it meaningful to consider ALCQ-safety of RBoxes that involve inverses?



Problem 11 (Empty TBox and new Modal Logics). Our main notion of a safe RBox
(Definition 3) can be written more explicitly as follows: an RBoxR is safe for a logic L
with general TBoxes. In most cases (except for one transitive role in ALCQ), TBoxes
are not internalizable. And in our proofs of undecidability, we essentially used GCIs
(general concept inclusion axioms). Now, what about (traditional in DLs) acyclic and
empty TBoxes? Note that if we are interested in decidability not in complexity, then
acyclic TBoxes have the same impact as empty TBoxes. Empty TBoxes yield the fol-
lowing interesting modal logics:

Graded Transitive Logics: are logics GrL, where L ∈ {K45,K4B,S4,S5}, decid-
able? What is their complexity?
Recall: 4 denotes transitivity, 5 euclideanness, B symmetricity, S reflexivity.
Decidability of GrK4B is the retriction of Problem 4 to empty TBoxes. Since the
proofs in [4] for transitive modalities are incorrect, these problems are again open.

Graded Transitive Logics with inverse modalities: are Graded modal logics with in-
verse GrLI decidable, where L ∈ {K4,K45,K4B,S4,S5}? What is their com-
plexity? In addition, consider these logics with counting allowed on modality but
not on its inverse. (Check if these logics were already considered in literature.)
Note: Theorem 3 says that {Tr(R)} is ALCIQ-unsafe; but since TBoxes are not
internalizable in this logic, undecidability of GrK4I does not follow from it.

Finite Model Property: which of the logics mentioned above possess FMP?
Note that absense of FMP forALCIF with general TBoxes does not imply absense
of FMP for GrK4I.

Graded Multimodal Logics: the same questions for GrLm and GrLIm, L as above.


