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Abstract
Materialisation precomputes all consequences of a
set of facts and a datalog program so that queries
can be evaluated directly (i.e., independently from
the program). Rewriting optimises materialisation
for datalog programs with equality by replacing all
equal constants with a single representative; and in-
cremental maintenance algorithms can efficiently
update a materialisation for small changes in the
input facts. Both techniques are critical to practi-
cal applicability of datalog systems; however, we
are unaware of an approach that combines rewrit-
ing and incremental maintenance. In this paper we
present the first such combination, and we show
empirically that it can speed up updates by sev-
eral orders of magnitude compared to using either
rewriting or incremental maintenance in isolation.

1 Introduction
Datalog [Abiteboul et al., 1995] is a declarative, rule-based
language that can describe (possibly recursive) data depen-
dencies. It is widely used in applications as diverse as en-
terprise data management [Aref, 2010] and query answering
over ontologies in the OWL 2 RL profile [Motik et al., 2009]
extended with SWRL rules [Horrocks et al., 2004].

Querying the set Π∞(E) of consequences of a set of ex-
plicit factsE and a datalog program Π is a key service in data-
log systems. It can be supported by precomputing and storing
Π∞(E) so that queries can be evaluated directly, without fur-
ther reference to Π. Set Π∞(E) and the process of computing
it are called the materialisation of E w.r.t. Π. This technique
is used in the state of the art systems such as Olwgres [Stocker
and Smith, 2008], WebPIE [Urbani et al., 2012], Oracle’s
RDF store [Wu et al., 2008], GraphDB (formerly OWLIM)
[Bishop et al., 2011], and RDFox [Motik et al., 2014].

Although datalog traditionally employs the unique name
assumption (UNA), in some applications uniqueness of iden-
tifiers cannot be guaranteed. For example, due to the distri-
bution and the independence of data sources, in the Semantic
Web different identifies are often used to refer to the same do-
main object. Handling such use cases requires an extension
of datalog without UNA, in which one can infer equalities
between constants using a special equality predicate ≈ that

can occur in facts and rule heads. The semantics of ≈ can be
captured explicitly using rules that axiomatise≈ as a congru-
ence relation; however, this is known to be inefficient when
equality is used extensively. Therefore, systems commonly
use rewriting [Baader and Nipkow, 1998; Nieuwenhuis and
Rubio, 2001]—an optimisation where equal constants are re-
placed with a canonical representative, and only facts con-
taining such representatives are stored. The benefits of rewrit-
ing have been well-documented in practice [Wu et al., 2008;
Urbani et al., 2012; Bishop et al., 2011; Motik et al., 2015a].

Moreover, datalog applications often need to handle con-
tinuous updates to the set of explicit facts E. Rematerialisa-
tion (i.e., computing the materialisation from scratch) is often
very costly, so incremental maintenance algorithms are often
used in practice. Adding facts to E is trivial as one can sim-
ply continue from where the initial materialisation has fin-
ished; hence, given a materialisation Π∞(E) of E w.r.t. Π
and a set of facts E−, the main challenge for an incremen-
tal algorithm is to efficiently compute Π∞(E \ E−). Several
such algorithms have already been proposed. Truth mainte-
nance systems [Doyle, 1979; de Kleer, 1986; Goasdoué et al.,
2013] track dependencies between facts to efficiently deter-
mine whether a fact has a derivation from E \ E−, so only
facts for which no such derivations exist are deleted. Such ap-
proaches, however, store large amounts of auxiliary informa-
tion and are thus often unsuitable for data-intensive applica-
tions. Counting [Nicolas and Yazdanian, 1983; Gupta et al.,
1993; Urbani et al., 2013; Goasdoué et al., 2013] stores with
each fact F ∈ Π∞(E) the number of times F has been de-
rived during initial materialisation, and this number is used to
determine when to delete F ; however, in its basic form count-
ing works only with nonrecursive rules, and a proposed exten-
sion to recursive rules requires multiple counts per fact [De-
wan et al., 1992], which can be costly. The Delete/Rederive
(DRed) algorithm [Gupta et al., 1993] handles recursive rules
with no storage overhead: to delete E− from E, the algo-
rithm first overdeletes all consequences ofE− in Π∞(E) and
then rederives all facts provable from E \ E−. The Back-
ward/Forward (B/F) algorithm combines backward and for-
ward chaining in a way that outperforms DRed on inputs
where facts have many alternative derivations—a common
scenario in Semantic Web applications [Motik et al., 2015b].

Combining rewriting and incremental maintenance is dif-
ficult due to complex interactions between the two tech-



niques: removing E− from E may entail retracting equali-
ties, which may (partially) invalidate the rewriting and require
the restoration of rewritten facts (see Section 3). To the best
of our knowledge, such a combination has not been consid-
ered in the literature, and practical systems either use rewrit-
ing with rematerialisation, or axiomatise equality and use in-
cremental maintenance; in either case they give up a tech-
nique known to be critical for performance. In this paper we
present the B/F≈ algorithm, which combines rewriting with
B/F: given a set of factsE−, our algorithm efficiently updates
the materialisation ofE w.r.t. Π computed using the rewriting
approach by Motik et al. (2015a). Extensions of datalog with
equality are nowadays used mainly for querying RDF data
extended with OWL 2 RL ontologies and SWRL rules, so we
formalise our algorithm in the framework of RDF; however,
our approach can easily be adapted to general datalog.

We have implemented B/F≈ in the open-source RDFox
system1 and have evaluated it on several real-world and syn-
thetic datasets. Our results show that the algorithm indeed
combines the best of both worlds, as it is often several orders
of magnitude faster than either rematerialisation with rewrit-
ing, or B/F with axiomatised equality.

2 Preliminaries
Datalog. A term is a constant (a, b, A, R, etc.) or a variable
(x, y, z, etc.). An (RDF) atom has the form 〈t1, t2, t3〉, where
t1, t2, t3 are terms; an (RDF) fact (also called a triple) is a
variable-free RDF atom; and a dataset is a finite set of facts.
A (datalog) rule r is an implication of the form (1), where
H,B1, . . . , Bn are atoms and each variable occurring in H
also occurs in some Bi; h(r) ··= H is the head atom of r;
each Bi is a body atom of r; and b(r) is the set of all body
atoms of r. A (datalog) program is a finite set of rules.

H ← B1 ∧ · · · ∧Bn (1)

A substitution is a partial mapping of variables to terms. For
α a term, atom, rule, or a set of these, voc(α) is the set of all
constants in α, and ασ is the result of applying a substitution
σ to α. The materialisation Π∞(E) of a dataset E w.r.t. a
program Π is the smallest superset of E containing h(r)σ for
each rule r ∈ Π and substitution σ with b(r)σ ⊆ Π∞(E).
Equality. The constant owl:sameAs (abbreviated ≈) can
be used to encode equality between constants. For exam-
ple, fact 〈P. Smith,≈,Peter Smith〉 states that P. Smith and
Peter Smith are one and the same object. Facts of the form
〈s,≈, t〉 are called equalities and, for readability, are abbre-
viated as s ≈ t; note that ≈ ∈ voc(s ≈ t). Program Π≈ con-
sisting of rules (≈1)–(≈4) axiomatises ≈ as a congruence re-
lation. If a program Π or a dataset E contain ≈, systems then
answer queries in the materialisation of E w.r.t. Π ∪Π≈.

〈x′1, x2, x3〉 ← 〈x1, x2, x3〉 ∧ x1 ≈ x′1 (≈1)

〈x1, x
′
2, x3〉 ← 〈x1, x2, x3〉 ∧ x2 ≈ x′2 (≈2)

〈x1, x2, x
′
3〉 ← 〈x1, x2, x3〉 ∧ x3 ≈ x′3 (≈3)

xi ≈ xi ← 〈x1, x2, x3〉, for 1 ≤ i ≤ 3 (≈4)

1http://www.cs.ox.ac.uk/isg/tools/RDFox/

Rewriting is a well-known optimisation of this approach. For
π a mapping of constants to constants and α a constant, fact,
rule, dataset, or substitution, π(α) is the result of replacing
each constant c in α with π(c); such α is normal w.r.t. π
if π(α) = α; and π(α) is the representative of α in π. For
c a constant, let cπ ··= {d | π(d) = c}. For U a dataset, let
Uπ ··= {〈s, p, o〉 | 〈π(s), π(p), π(o)〉 ∈ U}; and, for F a fact,
let Fπ ··= {F}π . We assume that all constant are totally
ordered such that ≈ is the smallest constant; then, for S a
nonempty set of constants, minS (resp. maxS) is the small-
est (resp. greatest) element of S. Let U be a dataset and let
Ec(U) ··= {c} ∪ {d | c ≈ d ∈ U}; then, the rewriting of U is
the pair (π, I) such that

1. π(c) = minEc(U) for each constant c, and

2. I = π(U).

Note that π(≈) = ≈, that the rewriting is unique for U , and
that Π∞≈ (U) = U implies Iπ = U . The r-materialisation of
a dataset E w.r.t. a program Π is the rewriting (π, I) of the
dataset J = (Π ∪Π≈)∞(E). Motik et al. (2015a) show how
to answer queries over J by materialising (π, I) instead of J .

3 Updating R-Materialisation Incrementally
Let E and E− be datasets, let E′ = E \ E−, and let Π be a
program. Moreover, let J (resp. J ′) be the materialisation of
E (resp. E′) w.r.t. Π ∪Π≈, and let (π, I) (resp. (π′, I ′)) be
the r-materialisation of E (resp. E′) w.r.t. Π. Given (π, I),
Π, and E−, the B/F≈ algorithm computes (π′, I ′) efficiently
by combining the B/F algorithm by Motik et al. (2015b) for
incremental maintenance in datalog without equality with the
r-materialisation algorithm by Motik et al. (2015a). We dis-
cuss the intuition in Section 3.1 and some optimisations in
Section 3.2, and we formalise the algorithm in Section 3.3.

3.1 Intuition
Main Difficulty. An update may lead to the deletion of equal-
ities, which may require adding facts to I . The following
example program Π and dataset E exhibit such behaviour.

Π = { y1 ≈ y2 ← 〈y1,R, x〉 ∧ 〈y2,R, x〉,
y1 ≈ y2 ← 〈x,R, y1〉 ∧ 〈x,R, y2〉 }

E= { 〈a,R, b〉, 〈c,R, d〉, 〈a,R, d〉}
I = { 〈a,R, b〉, a ≈ a, R ≈ R, b ≈ b, ≈ ≈ ≈}
π= { a 7→ a, b 7→ b, c 7→ a, d 7→ b, R 7→ R, ≈ 7→ ≈}

E−= { 〈a,R, d〉 }
I ′= { 〈a,R, b〉, a ≈ a, R ≈ R, b ≈ b, ≈ ≈ ≈,

〈c,R, d〉, c ≈ c, d ≈ d }
π′= { a 7→ a, b 7→ b, c 7→ c, d 7→ d, R 7→ R, ≈ 7→ ≈}

Relation R is bijective in Π, so a ≈ c ∈ J as both a and c
have outgoing R-edges to d, and b ≈ d ∈ J as both b and d
have incoming R-edges from a. By rewriting, we represent
each fact 〈α,R, β〉 from J using a single fact 〈a,R, b〉, and
analogously for facts involving ≈; thus, instead of 14 facts,
we store just five facts. Assume now that we remove E−
from E. In J and J ′ we ascribe no particular meaning to
≈, so the monotonicity of datalog ensures J ⊆ J ′; thus, the
B/F algorithm just needs to delete facts that no longer hold.



However, a ≈ c 6∈ J ′ and b ≈ d 6∈ J ′, so we must update π
and extend I with the facts from J ′ that are not represented
via π′. Thus, in our example, I ′ actually contains I .

Solution Overview. B/F≈ consists of Algorithms 1–7 that
follow the same basic idea as B/F; to highlight the differences,
lines that exist in B/F in a modified form are marked with ‘∗’,
and new lines and algorithms are marked with‘.’.

We initially mark all facts in π(E−) as ‘doubtful’—that
is, we indicate that their truth might change. Next, for each
‘doubtful’ fact F , we determine whether F is provable from
E′ and, if not, we identify the immediate consequences of F
(i.e., the facts in I that can be derived using F ) and mark them
as ‘doubtful’; we know exactly which facts have changed af-
ter processing all ‘doubtful’ facts. To check the provability
of F , we use backward chaining to identify the facts in I that
can prove F , and we use forward chaining to actually prove
F . The latter process also identifies the necessary changes to
π and I , which we apply to (π, I) in a final step. We next
describe the components of B/F≈ in more detail.

Procedure saturate() is given a dataset C ⊆ I of checked
facts, and it computes the set L containing each fact F deriv-
able from E′ such that each fact in a derivation of F is con-
tained in Cπ; thus, C identifies the part of J ′ to recompute.
Rather than storing L directly, we adapt the r-materialisation
algorithm by Motik et al. (2015a) and represent L by its
rewriting (γ, P \ P̂ ); the role of the two sets P and P̂ is dis-
cussed shortly. Lines 36–40 compute the facts in L derivable
immediately from E′: we iterate over each F ∈ C and each
G ∈ Fπ; since we represent L by its rewriting, we add γ(G)
to P . The roles of set Y and lines 37–39 will be discussed
shortly. Lines 41–50 compute the facts in L derivable using
rules: we consider each fact F in P \ P̂ (lines 41–42), each
rule r, and each match σ of F to a body atom of r (line 48),
we evaluate the remaining body atoms of r (line 49), and we
derive γ(h(r)τ) for each match τ (line 50). This basic idea
is slightly more complicated by rewriting: if F = a ≈ b, we
modify γ so that one constant becomes the representative of
the other one (line 45). As a consequence, facts can become
‘outdated’ w.r.t. γ, so we keep track of such facts using P̂ : if
F is ‘outdated’, we add F to P̂ and γ(F ) to P (line 44); due
to the latter, P \ P̂ eventually contains all ‘up to date’ facts.
Finally, we apply the reflexivity rules (≈4) to F (line 47).

Procedure saturate() is repeatedly called in B/F≈. Set C,
however, never shrinks between successive calls, so set L
never shrinks either; hence, at each call we can just continue
the computation instead of starting ‘from scratch’. A minor
problem arises if we derive a fact F with F 6∈ Cπ and so we
do not add γ(F ) to P , but C is later extended so that F ∈ Cπ
holds. We handle this by maintaining a set Y of ‘delayed’
facts: in line 59 we add F to Y if F 6∈ Cπ; and in line 40 we
identify each ‘delayed’ fact G ∈ Cπ ∩ Y and add γ(G) to P .

Procedure rewrite(a, b) implements rewriting: we update γ
(line 52), apply the replacement rules (≈1)–(≈3) to already
processed facts containing ‘outdated’ constants (line 54), en-
sure that Γ is normal w.r.t. γ (line 56), and reapply the nor-
malised rules (lines 57–58). Motik et al. (2015a) discuss in
detail the issues related to rule updating and reevaluation.

Procedure checkProvability() takes a fact F ∈ I and ensures
that, for each G ∈ Fπ , we have G ∈ J ′ iff γ(G) ∈ P \ P̂—
that is, we know the correct status of each fact that F repre-
sents. To this end, we add F to C (line 22) and thus ensure
that (γ, P \ P̂ ) correctly represents L (line 23). Each fact is
added to C only once, which guarantees termination of the
recursion. We then use backward chaining to examine facts
occurring in proofs of F and recursively check their prov-
ability; we stop at any point during that process if all facts in
Fπ become provable (lines 24, 28, 31, and 35). Lines 25–
24 handle the reflexivity rules (≈4): to check provability of
c ≈ c, we recursively check the provability each fact contain-
ing c. Lines 29–31 handle replacement rules (≈1)–(≈3): we
recursively check the provability of c ≈ c for each constant c
occurring in F . Finally, lines 32–35 handle the rules in π(Π):
we consider each rule r ∈ π(Π) whose head matches F and
each substitution τ that matches the body of r in I , and we
recursively check the provability of b(r)τ .
Procedure BF≈() computes the set D ⊆ I of ‘doubtful’
facts. After initialising D to π(E−) (lines 3–4), we consider
each fact F ∈ D (lines 5–16) and determine whether some
G ∈ Fπ is no longer provable (line 6); if so, we add to D all
facts that might be affected by the deletion of G. Lines 9–11
handle rules (≈1)–(≈3); line 12 handles rules (≈4); and lines
13–15 handle π(Π): we identify each rule r ∈ π(Π) where F
matches a body atom of r, we evaluate the remaining body
atoms of r in I , and we add h(r)τ to D for each τ such
that b(r)τ ⊆ I . Once D is processed, (γ, P \ P̂ ) reflects the
changes to (π, I), which we exploit in Algorithm 2.

3.2 Optimisations
Reflexivity. Facts of the formF = c ≈ c can be expensive for
backward chaining: due to reflexivity rules (≈4), in lines 25–
28 we may end up recursively proving each fact G that men-
tions c. However, F holds trivially if E′ contains a fact men-
tioning c, in which case we can consider F proven and avoid
any recursion. This is implemented in lines 37–39.
Avoiding Redundant Derivations. Assume that Γ contains a
rule y1 ≈ y2 ← 〈x,R, y1〉 ∧ 〈x,R, y2〉, and consider a call to
saturate() in which facts 〈a,R, b〉 and 〈a,R, d〉 both end up
in P . Unless we are careful, in line 50 we might consider sub-
stitution τ1 = {x 7→ a, y1 7→ b, y2 7→ d} twice: once when
we match 〈a,R, b〉 to 〈x,R, y1〉, and once when we match
〈a,R, d〉 to 〈x,R, y2〉. Such redundant derivations can sub-
stantially degrade performance.

To solve this problem, set V keeps track of the processed
subset of P : after we extract a fact F from P , in line 42
we transfer F to V ; moreover, in line 49 we evaluate rule
bodies in V \ P̂ instead of P \ P̂ . Now if 〈a,R, b〉 is pro-
cessed before 〈a,R, d〉, at that point we have 〈a,R, d〉 6∈ V ,
so τ1 is not returned as a match in line 49; the situation when
〈a,R, d〉 is processed first is analogous. This, however, does
not eliminate all repetition: τ2 = {x 7→ a, y1 7→ b, y2 7→ b}
is still considered when 〈a,R, b〉 is matched to either of the
two body atoms in the rule. Therefore, we annotate (see
Section 3.3) the body atoms of rules so that, whenever F is
matched to some body atom Bi, no atom Bj preceding Bi in
the body of r can be matched to F . In our example, τ2 is thus



considered only when 〈a,R, b〉 is matched to 〈x,R, y1〉.
B/F≈ avoids redundant derivations in similar vein: set O

tracks the processed subset ofD; in lines 10 and 14 we match
the relevant rules in I \O; and in line 16 we add a fact to O
once it has been processed.
Disproved Facts. For each F ∈ I with Fπ ∩ J ′ = ∅, no fact
in Fπ participates in a proof of any fact in J ′. Thus, in line 7
we collect all such facts in a set S of disproved facts, and in
lines 26, 29, and 33 we exclude S from backward chaining.
Singletons. If we encounter F = c ≈ c in line 9 or 29 where
c represents only itself (i.e., |cπ| = 1), then we know that no
fact in Fπ can derive a new fact using rules (≈1)–(≈3), and
so we can avoid considering rules (≈1)–(≈3).

3.3 Formalisation
We borrow the notation by Motik et al. (2015b) to formalise
B/F≈. We recapitulate some definitions, present the pseudo-
code, and formally state the algorithm’s properties.

Given a dataset X and a fact F , operation X.add(F ) adds
F to X , and operationX.delete(F ) removes F from X; both
return t if X was changed. For iteration, operation X.next
returns the next fact from X , or ε if no such fact exists.

An annotated query has the form Q = B./11 ∧ · · · ∧B./kk ,
where each Bi is an atom and annotation ./i is either empty
or equal to 6=. Given datasets X and Y and a substitution
σ, operation X.eval(Q,Y, σ) returns a set containing each
smallest substitution τ such that σ ⊆ τ and, for 1 ≤ i ≤ k,
(i) Biτ ∈ X if ./i is empty or (ii) Biτ ∈ X \ Y if ./i is 6=.
We often write [Z \W ] instead of X , meaning that Q is eval-
uated in the difference of sets Z and W .

Given a fact F , operation Π.matchHead(F ) returns all tu-
ples 〈r,Q, σ〉 with r ∈ Π a rule of the form (1), σ a substi-
tution such that Hσ = F , and Q = B1 ∧ · · · ∧Bn. More-
over, operation Π.matchBody(F ) returns all tuples 〈r,Q, σ〉
with r ∈ Π a rule of the form (1), σ a substitution such that
Biσ = F for some 1 ≤ i ≤ n, and Q is defined as

Q = B 6=1 ∧ · · · ∧B
6=
i−1 ∧Bi+1 ∧ · · · ∧Bn. (2)

Finally, given a mapping γ of constants to constants, and
constants d and c, operation γ.mergeInto(d, c) modifies γ so
that γ(e) = c holds for each constant e with γ(e) = d.

B/F≈ consists of Algorithms 1–7. Theorem 1 shows that
the algorithm is correct and that, just like the seminaı̈ve algo-
rithm [Abiteboul et al., 1995], it does not repeat derivations;
the proof is given in the appendix.

4 Evaluation
We have implemented and evaluated the B/F≈ algorithm in
the open-source RDF data management system RDFox. The
system and the test data are all available online.2

Objectives. Updates can be handled either incrementally or
by rematerialisation, and equality can be handled either by
rewriting or by axiomatisation, giving rise to four possible
approaches to updates. Our first objective was to compare all
of them to determine their relative strengths and weaknesses.

2https://krr-nas.cs.ox.ac.uk/2015/IJCAI/RDFox/index.html

As E− increases in size, incremental update becomes
harder, but rematerialisation becomes easier. Thus, our sec-
ond objective was to investigate the relationship between the
update size and the performance of the respective approaches.
Datasets. Equality is often used in OWL ontologies on the
Semantic Web, so we based our evaluation on several well-
known synthetic and ‘real’ RDF datasets.

Each dataset comprises an OWL ontology and a set of ex-
plicit facts E. UOBM [Ma et al., 2006] extends LUBM [Guo
et al., 2005], and we used the data generated for 100 universi-
ties; we did not use LUBM because it does not use ≈. Claros
contains information about cultural artefacts.3 DBpedia con-
sists of structured information extracted from Wikipedia.4
UniProt is a knowledge base about protein sequences;5 we se-
lected a subset of the original (very large) set of facts. Finally,
OpenCyc is an extensive, manually curated upper ontology.6

Following Zhou et al. (2013), we converted the ontologies
into lower (L) and upper bound (U) programs: the former
is the OWL 2 RL subset of the ontology transformed into
datalog as described by Grosof et al. (2003), and the latter
captures all consequences of the ontology using an unsound
approximation. Upper bound programs are interesting as they
tend to be ‘hard’. We also manually extended the lower bound
(LE) of Claros with ‘hard’ rules (e.g., we defined related doc-
uments as pairs of documents that refer to the same topic).
Update Sets. For each dataset, we randomly selected several
subsetsE− ofE. We considered small updates of 100 and 5k
facts on all datasets. Moreover, for each dataset we identified
the ‘equilibrium’ point n at which B/F≈ and Remat≈ take
roughly the same time. If n was large, we generated subsets
E− with sizes equal to 25%, 50%, 75%, and 100% of n;
otherwise, we divided n in an ad hoc way.
Test Setting. We used a Dell server with two 2.60GHz Intel
Xeon E5-2670 CPUs and 256 GB of RAM running Fedora
release 20, kernel version 3.17.7-200.fc20.x86 64.
Test Results. Table 1 summarises our test results. For each
dataset, we show the numbers of explicit facts (|E|) and
rules (|Π|), the number of facts in the initial r-materialisation
(|I≈|), and the time (T≈) and the number of derivations (D≈)
used to compute it via rewriting; moreover, we show the lat-
ter three numbers for the initial materialisation computed us-
ing axiomatised equality (|IA|, TA, and DA). For each set
E−, we show the numbers ∆|I≈| and ∆|IA| of deleted facts
with rewriting and axiomatisation, respectively, as well as the
times (T) and the number of derivations (D) for each of the
four update approaches. All times are in seconds. We could
not complete all axiomatisation tests with Claros-LE as each
run took about two hours. Due to the upper bound trans-
formation, the r-materialisation of UOBM-100-U contains a
constant c with |cπ| = 3930; thus, when ≈ is axiomatised,
deriving just all equalities involving cπ requires 39303 = 60
billion derivations, which causes the initial materialisation to
last longer than four hours. The number of derivations D in

3http://www.clarosnet.org/XDB/ASP/clarosHome/
4http://dbpedia.org/
5http://www.uniprot.org
6http://www.cyc.com/platform/opencyc



Input Variables
E : the explicit facts
Π : the datalog program

(π, I) : the r-materialisation of E w.r.t. Π
E− : the facts to delete from E

Global Temporary Variables
D : the consequences of E− that may require deletion
O : the processed subset of D
C : the facts whose provability must be checked
γ : the mapping recording the changes needed to π
P : the proved facts
P̂ : the proved rewritten facts
Y : the proved facts not in Cπ
V : the processed subset of P
S : the set of disproved facts

Algorithm 1 B/F≈()

∗ 1: C ··= D ··= P ··= P̂ ··= Y ··= O ··= S ··= V ··= ∅
. 2: initialise γ as identity and Γ ··= Π

3: for each F ∈ E− do
4: if E.delete(F ) then D.add(π(F ))

5: while (F ··= D.next) 6= ε do
6: checkProvability(F )

∗ 7: for each G ∈ C s.t. allDisproved(G) do S.add(G)

∗ 8: if not allProved(F ) then
. 9: if F = c ≈ c and |cπ| > 1 then
.10: for each G ∈ I \O with c ∈ voc(G) do
.11: D.add(G)

.12: for each c ∈ voc(F ) do D.add(c ≈ c)
13: for each 〈r,Q, σ〉 ∈ π(Π).matchBody(F ) do
14: for each τ ∈ [I \O].eval(Q, {F}, σ) do
15: D.add(h(r)τ)

16: O.add(F )

∗17: propagateChanges()

.Algorithm 2 propagateChanges()

18: for each c ≈ c ∈ C and each d with π(d) = c do
19: π(d) ··= γ(d)

20: for each F ∈ D \ (P \ P̂ ) do I.delete(F )

21: for each F ∈ P \ P̂ do I.add(π(F ))

.Algorithm 3 Auxiliary functions
allProved(F ):

t iff F 6∈ S and γ(Fπ) ⊆ (P \ P̂ )

allDisproved(F ):
t iff γ(Fπ) ∩ (P \ P̂ ) = ∅

Algorithm 4 checkProvability(F )

22: if not C.add(F ) then return
23: saturate()

∗24: if allProved(F ) then return
.25: if F = c ≈ c then
.26: for each G ∈ I \ S with c ∈ voc(G) do
.27: checkProvability(G)
.28: if allProved(F ) then return
.29: for each c ∈ voc(F ) with c ≈ c 6∈ S and |cπ| > 1 do
.30: checkProvability(c ≈ c)
.31: if allProved(F ) then return

32: for each 〈r,Q, σ〉 ∈ π(Π).matchHead(F ) do
33: for each τ ∈ [I \ S].eval(Q, ∅, σ) and G ∈ b(r)τ do
34: checkProvability(G)
35: if allProved(F ) then return

Algorithm 5 saturate()

36: while (F ··= C.next) 6= ε do
.37: if F = c ≈ c then
.38: for each d ∈ voc(E) with π(d) = c do
.39: P.add(γ(d) ≈ γ(d))

∗40: for each G ∈ Fπ ∩ (E ∪ Y ) do P.add(γ(G))

41: while (F ··= P.next) 6= ε do
∗42: if F ∈ P \ (P̂ ∪ V ) and V.add(F ) then
.43: G ··= γ(F )

.44: if F 6= G then P̂ .add(F ) and P.add(G)

.45: else if F = a ≈ b and a 6= b then rewrite(a, b)

.46: else
∗47: for each c ∈ voc(G) do prove(c ≈ c)

48: for each 〈r,Q, σ〉 ∈ Γ.matchBody(G) do
∗49: for each τ ∈ [V \ P̂ ].eval(Q, {G}, σ) do
∗50: prove(h(r)τ)

.Algorithm 6 rewrite(a, b)

51: c ··= min{a, b} d ··= max{a, b}
52: γ.mergeInto(d, c)

53: for each F ∈ P \ P̂ with d ∈ voc(F ) do
54: P̂ .add(F ) and P.add(γ(F ))

55: for each r ∈ Γ with r 6= γ(r) do
56: replace r in Γ with r′ ··= γ(r)

57: for each τ ∈ [V \ P̂ ].eval(b(r′), ∅, ∅) do
58: prove(h(r′)τ)

.Algorithm 7 prove(F )

59: if π(F ) ∈ C then P.add(F ) else Y.add(F )

Theorem 1. Let (π, I) be the r-materialisation of a dataset E w.r.t. a program Π, and let E− be a dataset.

1. Algorithm 1 terminates, at which point (π, I) contains the r-materialisation of E \ E− w.r.t. Π.

2. Each combination of a rule r and a substitution τ is considered at most once in line 50 or line 58, but not both.

3. Each combination of a rule r and a substitution τ is considered at most once in line 15.



UOBM-100-L |E| = 24.5M |I≈| = 46.4M T≈ = 69 D≈ = 79.3M
|Π| = 210 |IA| = 46.7M TA = 122 DA = 361M

|E−| ∆|I≈| B/F≈ Remat≈
∆|IA| B/FA RematA

T D T D T D T D
100 146 0.6 0.7k 45.1 79.3M 146 4.6 32.8k 94.6 361M
5k 7.8k 1.2 45.8k 42.5 79.3M 7.9k 7.1 805k 93.1 361M

1.3M 1.9M 18.2 8.7M 39.2 75.4M 2.0M 38.0 98.0M 89.5 361M
2.5M 3.9M 29.9 15.8M 41.7 71.5M 4.0M 54.5 151M 83.7 345M
3.8M 5.8M 31.8 22.3M 37.4 67.7M 5.9M 70.9 188M 79.3 329M

5M 7.7M 41.2 28.4M 36.2 63.8M 7.9M 73.8 218M 73.2 314M

UOBM-100-U |E| = 24.5M |I≈| = 78.8M T≈ = 225 D≈ = 719M
|Π| = 279 |IA| = — TA = — DA = —

|E−| ∆|I≈| B/F≈ Remat≈
∆|IA| B/FA RematA

T D T D T D T D
100 197 3.5 21.5k 209 719M — — — — —
1k 1.8k 277 581M 219 719M — — — — —

2.5k 4.3k 338 584M 209 719M — — — — —
5k 8.5k 345 584M 214 719M — — — — —

Claros-L |E| = 18.8M |I≈| = 79.5M T≈ = 83 D≈ = 129M
|Π| = 1.3k |IA| = 102M TA = 3.9k DA = 11.0G

|E−| ∆|I≈| B/F≈ Remat≈
∆|IA| B/FA RematA

T D T D T D T D
100 209 8.3 797k 77.4 135M 819 2476 15.8G 3174 11.0G
5k 11.2k 9.1 895k 77.0 135M 18.6k 2609 15.8G 3166 11.0G

750k 1.7M 29.5 14.5M 80.9 131M 4.0M 2816 17.1G 2690 9.5G
1.5M 3.5M 46.1 26.5M 81.5 127M 10.1M 2757 17.4G 1933 7.3G
2.3M 5.3M 63.9 38.4M 77.7 123M 15.3M 3092 18.3G 1389 5.5G

3M 7.2M 78.4 48.8M 72.4 119M 19.4M 3170 18.6G 1075 4.4G

Claros-LE |E| = 18.8M |I≈| = 539M T≈ = 4514 D≈ = 12.6G
|Π| = 1.3k |IA| = 562M TA = 9048 DA = 26.3G

|E−| ∆|I≈| B/F≈ Remat≈
∆|IA| B/FA RematA

T D T D T D T D
100 522 16.1 617k 4397 12.6G 1132 5703 25.8G 8693 26.3G

2.5k 179k 31.6 9.9M 4430 12.6G — — — — —
5k 427k 39.4 10.7M 4392 12.6G 435k 5845 25.8G 9383 26.3G

7.5k 609k 44.8 11.6M 4713 12.6G — — — — —
10k 781k 4300 12.4G 4627 12.6G — — — — —

DBpedia-L |E| = 113M |I≈| = 136M T≈ = 49.3 D≈ = 36.6M
|Π| = 3.4k |IA| = 139M TA = 641 DA = 895M

|E−| ∆|I≈| B/F≈ Remat≈
∆|IA| B/FA RematA

T D T D T D T D
100 105 0.3 91 47.5 36.6M 105 8.9 1.7M 251 895M
5k 5.0k 0.4 24.4k 64.6 36.6M 5.3k 20.3 5.7M 256 895M

1.8M 1.8M 29.4 2.1M 48.7 36.3M 2.0M 50.0 72.2M 239 895M
3.5M 3.6M 38.9 3.6M 49.0 35.9M 3.9M 85.5 116M 237 881M
5.3M 5.3M 52.2 4.9M 54.3 35.5M 5.9M 89.8 152M 232 866M

7M 7.1M 63.1 6.2M 50.7 35.1M 7.8M 103 184M 227 852M

UniProt-L |E| = 123M |I≈| = 179M T≈ = 118 D≈ = 183M
|Π| = 451 |IA| = 229M TA = 527 DA = 1.6G

|E−| ∆|I≈| B/F≈ Remat≈
∆|IA| B/FA RematA

T D T D T D T D
100 125 2.5 892 235 238M 125 14.3 6.0k 490 1.6G
5k 6.1k 3.4 35k 221 238M 6.1k 17.5 271k 482 1.6G

4.5M 5.7M 84.0 24.8M 204 232M 5.7M 125 190M 475 1.5G
9M 11.5M 137 46.7M 216 225M 11.5M 192 344M 478 1.5M

13.5M 17.4M 209 67.1M 220 218M 17.4M 315 483M 473 1.4G
18M 23.4M 220 86.5M 217 210M 23.4M 371 613M 481 1.4G

OpenCyc-L |E| = 2.4M |I≈| = 141M T≈ = 164 D≈ = 280M
|Π| = 261k |IA| = 1.2G TA = 3.5k DA = 12.9G

|E−| ∆|I≈| B/F≈ Remat≈
∆|IA| B/FA RematA

T D T D T D T D
100 5.4k 15.5 405k 220 280M 50.0k 472 8.5M 3296 12.9G
1k 53.1k 1062 69.5M 222 280M 5.1M 5537 2.0G 3479 12.9G

2.5k 130k 1078 69.8M 178 279M 5.8M 5339 2.1G 3621 12.8G
5k 261k 1123 70.4M 177 279M 7.2M 5475 2.1G 3334 12.8G

Table 1: Experimental results

B/F≈ is the sum of the number of times a fact is determined as
‘doubtful’ (lines 11, 12, and 15), checked in backward chain-
ing (lines 27, 30, and 34), or derived in forward chaining (line
59); we use this number to estimate reasoning difficulty inde-
pendently from implementation details.

Discussion. For updates of 100 facts, B/F≈ outperforms all
other approaches, often by orders of magnitude, and in most
cases it does so even for much larger updates.

Even when |IA| − |I≈| is ‘small’ (i.e., when not many
equalities are derived), B/F≈ outperforms B/FA. This seems
to be mainly because B/FA ascribes no special meaning to
Π≈ and so it does not use the optimisation from lines 37–39;
thus, when trying to prove c ≈ c, B/FA performs backward
chaining via rules (≈4) and so it potentially examines each
fact containing c. On Claros-L, although |IA| and |I≈| are
of similar sizes, IA contains one constant c with |cπ| = 306,
which gives rise to 3063 derivations; this explains the differ-
ence in the performance of B/F≈ and B/FA.

Remat≈ outperforms B/F≈ in cases similar to those de-
scribed by Motik et al. (2015b). For example, in UOBM, re-
lation hasSameHomeTownWith is symmetric and transitive,
which creates cliques of connected constants; B/F always re-
computes each changed clique, thus repeating most of the

‘hard’ work. Equality connects constants in cliques, which
poses similar problems for B/F≈. For example, due to the
constant cwith |cπ| = 3930, deleting 5k facts in UOBM-100-
U results in only 961k (about 1.2% of |I≈|) facts being added
to set C in line 22, but these facts contribute to 73% of the
derivations from the initial r-materialisation; thus, B/F≈ re-
peats in Algorithm 5 a substantial portion of the initial work.

On OpenCyc-L, Remat≈ already outperforms B/F≈ on up-
dates of 1k triples, which was surprising since the former
makes more derivations than the latter. Our investigation
revealed that OpenCyc-L contains about 200 rules of the
form 〈x, type, y〉 ← 〈x,Ri, y〉 that never fire during forward
chaining; however, to check provability of 〈a, type, C〉, Al-
gorithm 4 considers in line 32 each time each of the 200
rules. After removing all such ‘idle’ rules manually, B/F≈
and Remat≈ could update 1k tuples in roughly the same time.
Further analysis revealed that the slowdown in B/F≈ occurs
mainly in line 40: the condition is checked for 13.3M facts
F , and these give rise to 139M facts in Fπ , each requiring
an index lookup; the latter number is similar to the number
of derivations in rematerialisation, which explains the slow-
down. We believe one can check this condition more effi-
ciently by using additional book-keeping.



5 Conclusion
This paper describes what we believe to be the first approach
to incremental maintenance of datalog materialisation when
the latter is computed using rewriting—a common optimi-
sation used when programs contain equality. Our algorithm
proved to be very effective, particularly on small updates.

In our future work, we shall aim to address the issues we
identified in Section 4. For example, to optimise the check
in line 40, we shall investigate ways of keeping track of how
explicit facts are merged so that we can implement the test
by iterating over the appropriate subset of E rather than over
Fπ . Moreover, we believe we can considerably improve the
efficiency of both the initial materialisation and the incremen-
tal updates by using specialised algorithms for rules that pro-
duce large cliques; hence, we shall identify common classes
of ‘hard’ rules and then develop such specialised algorithms.
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A Proof of Theorem 1
Let Π be a program (that ascribes no special meaning to ≈), and let E be a dataset. A derivation tree for a fact F from E w.r.t.
Π is a finite tree T in which each node t is labelled with a fact Ft, and each nonleaf node t is labelled with a rule rt ∈ Π and a
substitution σt such that the following holds:
D1. Fε = F holds for the root ε of T ;
D2. Ft ∈ E holds for each leaf node t of T ; and
D3. h(rt)σt = Ft and b(rt)σt = {Ft1 , . . . ,Ftn} hold for each nonleaf node t of T with children t1, . . . , tn.
The materialisation Π∞(E) of E w.r.t. Π is the smallest set containing each fact that has a derivation tree from E w.r.t. Π; this
definition of Π∞(E) is equivalent to the one in Section 2. The height of a derivation tree is the length of its longest branch;
moreover, the height of a fact F ∈ Π∞(E) w.r.t. E and Π is the minimum height of a derivation tree for F from E w.r.t. Π.

In the rest of this paper, we make the following assumption (∗): no derivation tree contains a node t where rt is (≈1) and
σt(x1) = σt(x

′
1), or rt is (≈2) and σt(x2) = σt(x

′
2), or rt is (≈3) and σt(x3) = σt(x

′
3) . This is w.l.o.g. because, for each such

t, we have Ft = Ft1 for t1 the first child of t; hence, we can always remove such t from the derivation tree.
Next, we recapitulate Theorem 1 and present its proof, which we split into several claims.

Theorem 1. Let (π, I) be the r-materialisation of a dataset E w.r.t. a program Π, and let E− be a dataset.
1. Algorithm 1 terminates, at which point (π, I) contains the r-materialisation of E \ E− w.r.t. Π.
2. Each combination of a rule r and a substitution τ is considered at most once in line 50 or line 58, but not both.
3. Each combination of a rule r and a substitution τ is considered at most once in line 15.
In the rest of this section, we fix a datalog program Π and datasetsE andE−. Let (π, I) be the r-materialisation ofE w.r.t. Π;

let J ··= (Π ∪Π≈)∞(E); let E′ ··= E \ E−; let (π′, I ′) be the r-materialisation of E′ w.r.t. Π; and let J ′ ··= (Π ∪Π≈)∞(E′).
By the monotonicity of datalog, we clearly have J ′ ⊆ J .

We next show that Algorithm 5 essentially captures the r-materialisation algorithm by Motik et al. (2015a).

Claim 1. Let P and P̂ be as obtained after a call to Algorithm 5 in line 23, let K ··= {d ≈ d | d ∈ voc(E)}, and let L be the
set containing precisely each fact F that has a derivation T from K ∪ E′ w.r.t. Π ∪Π≈ in which Ft ∈ Cπ holds for each node
t of T . Then, the following properties hold:

1. γ(c) = minEc(L) for each constant c;

2. P \ P̂ = γ(L); and
3. each combination of a rule r and a substitution τ is considered at most once in line 50 or line 58, but not both.

Proof (Sketch). Algorithm 5 is a variant of the r-materialisation algorithm by Motik et al. (2015a), so properties 1–3 hold by a
straightforward modification of the correctness proof of that algorithm. This proof is quite lengthy so, for the sake of brevity,
we just summarise the differences.

• Lines 37–39 ensure γ(Cπ ∩K) ⊆ P \ P̂ , and line 40 ensures γ(Cπ ∩ E′) ⊆ P \ P̂ ; hence, Cπ ∩ (K ∪ E′) plays the
same role that explicit facts play in the algorithm by Motik et al. (2015a).
• Let F be an arbitrary fact considered in line 41. To ensure property 4 of Claim 1, the algorithm by Motik et al. (2015a)

uses slightly different annotated queries to apply the rules in lines 48–49 only to facts extracted before F . In contrast,
Algorithm 7 keeps track of previously processed facts in set V , but this has exactly the same effect.
• All derivations of a fact in line 47, 50, or 58, are handled by Algorithm 7, which, for each F , checks whether π(F ) ∈ C;

this is equivalent to checking F ∈ Cπ . If the latter holds, then F is added to P , and otherwise F is added to Y . If in a
subsequent invocation of Algorithm 5 set C is extended such that π(F ) ∈ C suddenly holds, then γ(F ) is added to P in
line 40. This, however, does not change the algorithm in any substantial way.

The following claim follows immediately from the definitions in Algorithm 3.
Claim 2. The following properties hold for an arbitrary fact F normal w.r.t. π:

1. allProved(F ) = t if and only if F 6∈S and Fπ ⊆ (P \ P̂ )γ; and

2. allDisproved(F ) = t if and only if Fπ ∩ (P \ P̂ )γ = ∅.
We next show that sets C, P , P̂ , S, and γ always satisfy an important property.

Claim 3. Assume that Algorithm 4 is applied to some fact F , mapping γ, and sets S, C, P , and P̂ where S is normal w.r.t. π
and Sπ ∩ J ′ = ∅, and assume that all of these satisfy the following property:

(♦) for each G ∈ C, either Gπ ⊆ (P \ P̂ )γ or, for each fact H ∈ Gπ , each derivation tree T for H from E′ w.r.t.
Π ∪Π≈, and each child ti of the root of T , we have π(Fti) ∈ C.



Then, property (♦) remains preserved after the invocation of Algorithm 4.

Proof. The proof is by induction on recursion depth of Algorithm 4 at which a fact is added to C. For the induction base, (♦)
remains preserved if the algorithm returns in line 22.

For the induction step, assume that (♦) holds for each fact G ∈ C different from F after a recursive call in line 27, 30, or 34.
If the algorithm returns in line 24, 28, 31, or 35, then property 1 of Claim 2 implies Fπ ⊆ (P \ P̂ )γ , so property (♦) remains
preserved. Otherwise, consider an arbitrary fact H ∈ Fπ and an arbitrary derivation tree T for H from E′ w.r.t. Π ∪Π≈.
Let t1, . . . , tn be the children (if any exist) of the root ε of T ; since J contains each fact labelling a node of T , we have
{Fti , . . . ,Fti} ⊆ J ′ ⊆ J . Now let Fi = π(Fti); by the definition of r-materialisation, we have {F1, . . . , Fn} ⊆ I . Moreover,
for each 1 ≤ i ≤ n, we have Fi ∈ J ′ and Sπ ∩ J ′ = ∅, which imply Fi 6∈ Sπ; moreover, S is normal w.r.t. π, so Fi 6∈ S as
well. Finally, we clearly have π(rεσε) = π(rε)π(σε), and so h(π(rε))π(σε) = F and b(π(rε))π(σε) = {F1, . . . , Fn} ⊆ I \ S.
We next consider the forms of rε.
• Assume rε is of the form (≈4), so n = 1. Fact F1 is eventually considered in line 26, so, due to the recursive call in line 27,

we have F1 ∈ C, as required.
• Assume rε is of the form (≈1)–(≈3); thus, n = 2, F1 = F , and F2 = c ≈ c for some constant c. Fact F1 = F is added to
C in line 22. Moreover, by assumption (∗) on the shape of T , we have F2 = s ≈ t with s 6= t; since π(s) = π(t) = c, we
have |cπ| > 1. Thus, due to the recursive call in line 30, we have F2 ∈ C, as required.
• Assume rε ∈ Π. Then, π(rε) ∈ π(Π), so π(rε) and π(σε) are eventually considered in lines 32 and 33; hence, due to the

recursive call in line 34, we have Fi ∈ C for each 1 ≤ i ≤ n, as required.

Calls in line 6 ensure another property on C, P , P̂ , and S.
Claim 4. The following properties hold after each line of Algorithm 1:

1. property (♦) is satisfied;

2. (P \ P̂ )γ = Cπ ∩ J ′;
3. γ(c) = minEc(C

π ∩ J ′) for each constant c; and
4. Sπ ∩ J ′ = ∅.
5. For each fact F ∈ O, we have Fπ 6⊆ J ′.
6. D ⊆ C.

Proof. The proof is by induction on the number of iterations of the loop in lines 5–16. For the induction base, we have
S = C = P = O = ∅ in line 1, so properties 1–5 clearly hold initially. For the induction step, assume that all properties hold
before line 6. Due to property 4 and Claim 3, property 1 remains preserved after line 6; hence, we next consider properties 2–6.

(Property 2) Let K and L be as stated in Claim 1; note that property 2 of Claim 1 is equivalent to (P \ P̂ )γ = L. We first
show (P \ P̂ )γ ⊆ Cπ ∩ J ′. Since K ⊆ J ′, we clearly have J ′ = (Π ∪Π≈)∞(K ∪ E′). Moreover, for each F ∈ (P \ P̂ )γ we
have F ∈ L, so by the definition of L there exists a derivation tree T for F fromK ∪ E′ w.r.t. P ∪Π≈ such that Ft ∈ Cπ holds
for each node t of T ; but then, we clearly have F ∈ Cπ ∩ J ′. We next prove Cπ ∩ J ′ ⊆ (P \ P̂ )γ by induction on the height
h of a fact F ∈ Cπ ∩ J ′ w.r.t. E′ and Π ∪Π≈.

• If h = 0, then F ∈ E′; since F ∈ Cπ , by the definition of L we have F ∈ L; but then, F ∈ (P \ P̂ )γ as well.
• Assume that the claim holds for each fact in Cπ ∩ J ′ whose height w.r.t. E′ and Π ∪Π≈ is at most h, and consider an

arbitrary fact F ∈ Cπ ∩ J ′ with height h + 1; let T be the corresponding derivation tree for F . Moreover, assume that
F 6∈ (P \ P̂ )γ ; then, F ∈ Cπ implies π(F ) ∈ C; hence, property (♦) ensures that, for each child ti of the root of T , we
have π(Fti) ∈ C, which is equivalent to Fti ∈ Cπ . Now the height of each Fti w.r.t. E′ and Π ∪Π≈ is at most h so, by
the induction assumption, we have Fti ∈ (P \ P̂ )γ = L. The latter ensures that, for each Fti , there exists a derivation tree
Ti in which each node is labelled by a fact contained in Cπ . Let T ′ be the derivation tree in which the root ε is labelled
with the same fact, rule, and substitution as in T , and each Ti is a subtree of ε. Clearly, T ′ is a derivation tree for F
from E′ w.r.t. Π ∪Π≈ in which each node is labelled by a fact contained in Cπ; thus, by the definition of L, we have
F ∈ L = (P \ P̂ )γ , as required.

(Property 3) This property follows directly from property 1 of Claim 1 and property 2 of Claim 4.
(Property 4) Assume that some fact G is added to S in line 7. Then allDisproved(G) = t, which by property 2 of Claim 2

implies Gπ ∩ (P \ P̂ )γ = ∅. Property 2 of Claim 4 holds at this point, so we have Gπ ∩ Cπ ∩ J ′ = ∅. Finally, lines 6 and 22
ensure G ∈ C, so we have Gπ ⊆ Cπ; thus, Gπ ∩ J ′ = ∅, and so adding G to S preserves property 4.

(Property 5) Assume that some fact F is added to O in line 16. Then allProved(F ) = f, which by property 1 of Claim 2
implies F ∈ S or Fπ 6⊆ (P \ P̂ )γ . In the former case, Fπ 6⊆ J ′ holds directly from property 4. In the latter case, property 2 of



Claim 4 holds at this point, so we have Fπ 6⊆ Cπ ∩ J ′; moreover, lines 6 and 22 ensure F ∈ C, which implies Fπ ⊆ Cπ; this,
in turn, implies Fπ 6⊆ J ′. Consequently, adding F to O preserves property 5.

(Property 6) Each fact F extracted from D in line 5 is passed in line 6 to Algorithm 4, which in turn ensures that F is added
to C in line 22.

We next show that setD contains each fact that needs to be deleted, and each fact that contains a constant whose representative
changes as a result of the update.

Claim 5. For each fact F ∈ J \ J ′, the following two properties hold in line 17:

1. π(F ) ∈ D, and

2. if F = s ≈ t with s 6= t, then D contains each fact G ∈ I such that π(s) ∈ voc(G) and Gπ 6⊆ J ′.

Proof. Consider an arbitrary fact F ∈ J \ J ′.
(Property 1) We prove the claim by induction on the height h of F w.r.t. E and Π ∪Π≈; the notion of the height of F is

correctly defined because F ∈ J . For the induction base, assume h = 0; now F ∈ J implies F ∈ E; moreover, F 6∈ J ′ implies
F 6∈ E′; thus, F ∈ E−, and so π(F ) is added toD in lines 3–4. For the induction step, assume that the claim holds for each fact
in J \ J ′ whose height w.r.t.E and Π ∪Π≈ is at most h, and assume that the height of F w.r.t.E and Π ∪Π≈ is h+1. Let T be
a corresponding derivation tree for F fromE w.r.t. Π ∪Π≈; let t1, . . . , tn be the children of the root ε of T ; and let Fi = π(Fti)
for each 1 ≤ i ≤ n. Moreover, let N contain precisely each Fi, 1 ≤ i ≤ n, such that Fi ∈ D and Fπi 6⊆ J . Since F 6∈ J ′, some
j with 1 ≤ j ≤ n exists such that Ftj 6∈ J ′; moreover, T is a derivation tree for F from E w.r.t. Π ∪Π≈, so Ftj ∈ J and the
height of Ftj is at most h; but then, we have π(Ftj ) = Fj ∈ D by the induction hypothesis, and so we also have Fj ∈ N—that
is, N 6= ∅. Each fact in D is eventually considered in line 5; thus, let F ′ be the fact from N that is consider first. At that point,
we have O ∩N = ∅ because facts are added to added to O in line 16 only after they have been considered; hence, Fi ∈ I \O
holds at this point for each 1 ≤ i ≤ n. Furthermore, F ′ ∈ D ⊆ C implies (F ′)π ⊆ Cπ; but then, (F ′)π 6⊆ J ′ and property 2
of Claim 4 imply (F ′)π 6⊆ (P \ P̂ )γ ; thus, property 1 of Claim 2 ensures we have allProved(F ′) = f and so the check in line 8
passes. We next consider the possible forms of the rule rε.

• Assume that rε is (≈1)–(≈3). Then, we clearly have π(F ) = F1; fact Ft2 is of the form Ft2 = s ≈ t with s 6= t and
c = π(s) = π(t); and c ∈ voc(F1). We have two possible ways to choose F ′. If F ′ = F1, then π(F ) = F1 = F ′ ∈ D
holds. If F ′ = F2, then s 6= t by assumption (∗) on the shape of T , so |cπ| > 1 and the check in line 9 passes; furthermore,
due to F1 ∈ I \O, we eventually consider fact G = F1 = π(F ) in line 10 and add it to D in line 11.

• Assume that rε is (≈4). Then, F is of the form s ≈ s so π(F ) = c ≈ c for c = π(s); clearly, we have c ∈ voc(F ′) and
F ′ = F1. But then, π(F ) is added to D in line 12.

• Assume that rε ∈ Π. We clearly have π(rεσε) = π(rε)π(σε); therefore, we have π(F ) = π(h(rεσε)) = h(π(rε))π(σε)
and π(b(rεσε)) = {F1, . . . , Fn} = b(π(rε))π(σε) ⊆ I \O. Moreover, we clearly have π(rε) ∈ π(Π). Finally, let i be the
smallest integer with 1 ≤ i ≤ n such that Fi = F ′, and letQ be annotated query (2) obtained from π(rε) for that i; clearly,
the way in which we chose i ensures Fj 6= F ′ for each j with 1 ≤ j < i. All of these observations ensure together that
〈π(rε), Q, σ)〉 ∈ π(Π).matchBody(F ′) is considered in line 13, and that π(σε) is considered in line 14; consequently,
π(F ) is added to D in line 15.

(Property 2) Assume that F is of the form F = s ≈ t with s 6= t, let c = π(s) = π(t), and let F ′ = π(F ). Property 1 of
this claim ensures F ′ = c ≈ c ∈ D ⊆ C, and so we have (F ′)π ⊆ Cπ; but then, together with F 6∈ J ′, property 2 of Claim 4
ensures (F ′)π 6⊆ (P \ P̂ )γ ; finally, property 1 of Claim 2 ensures allProved(F ′) = f. Fact F ′ is eventually processed in line 5,
and by the previous discussion the check in line 8 passes. Moreover, s 6= t implies |cπ| > 1, so the check in line 9 passes as
well. Now consider an arbitrary fact G ∈ I such that c ∈ voc(G) and Gπ 6⊆ J ′; property 5 of Claim 4 ensures G 6∈ O, and
therefore G is added to D in line 11.

We next show that Algorithm 1 correctly updates I to I ′.

Claim 6. Algorithm 1 updates set I to I ′.

Proof. Property 6 of Claim 4 and property 1 of Claim 5 clearly ensure that (3) holds. Furthermore, property 2 of Claim 4
clearly ensures that (4) holds.

J \ J ′ ⊆ Dπ ⊆ Cπ (3)

(P \ P̂ )γ ⊆ J ′ ⊆ J (4)

For convenience we recapitulate the definitions of π(c), π′(c), and γ(c); note that (7) follows immediately from properties 2
and 3 of Claim 4. Finally, (4), (6), and (7) clearly imply (8).

π(c) = minEc(J) (5)



π′(c) = minEc(J
′) (6)

γ(c) = minEc((P \ P̂ )γ) (7)

π′((P \ P̂ )γ) = π′(P \ P̂ ) (8)

Before proceeding, we prove several useful properties. Consider an arbitrary constant c with π(c) = c; by (4) and (5)–(7),
we clearly have π′(c) = c and γ(c) = c. Thus, for each fact F with π(F ) = F , we have π′(F ) = F and γ(F ) = F , which
ensures the following properties:

F ∈ I iff F ∈ J, F ∈ I ′ iff F ∈ J ′, F ∈ (P \ P̂ )γ iff F ∈ P \ P̂ ,
F ∈ D iff F ∈ Dπ, and F ∈ C iff F ∈ Cπ. (9)

We next show that lines 18–19 update π to π′. To this end, consider arbitrary constants c and d with π(d) = c, and let
F = c ≈ c. Set Fπ clearly contains each triple of the form d ≈ e ∈ J , which, together with (4), implies

Ed(F
π ∩ (P \ P̂ )γ) = Ed((P \ P̂ )γ), Ed(F

π ∩ J ′) = Ed(J
′), and Ed(F

π ∩ J) = Ed(J). (10)

We now consider two possible cases.

• Assume that F ∈ C. Thus, Fπ ⊆ Cπ holds, so property 2 of Claim 4 ensures Fπ ∩ (P \ P̂ )γ = Fπ ∩ J ′ = V . But then,
(10) imply Ed(V ) = Ed(J

′) = Ed((P \ P̂ )γ). Finally, (6) and (7) imply π′(d) = γ(d).
• Assume that F 6∈ C. We thus have Fπ ∩ Cπ = ∅; but then, J \ J ′ ⊆ Cπ implies Fπ ∩ (J \ J ′) = ∅, which then implies
Fπ ∩ J = Fπ ∩ J ′. Finally, (5), (6), and (10) together imply π′(d) = π(d).

We next prove I \ I ′ = D \ (P \ P̂ ) and hence show that line 20 correctly deletes the relevant facts. To this end, we next
consider each side of the inclusion.
• Assume that F ∈ I \ I ′. Then F ∈ I implies π(F ) = F , so by (9) we have F ∈ J \ J ′. By (3) we have F ∈ Dπ ⊆ Cπ ,

and by (9) we have F ∈ D ⊆ C. Moreover, F 6∈ J ′ and property 2 of Claim 4 imply F 6∈ (P \ P̂ )γ , which by (9) implies
F 6∈ P \ P̂ . Consequently, we have F ∈ D \ (P \ P̂ ).

• Assume that F ∈ D \ (P \ P̂ ). ThenD ⊆ I implies F ∈ I , so π(F ) = F . Also, F 6∈ P \ P̂ and (9) imply F 6∈ (P \ P̂ )γ .
But then, property 2 of Claim 4 ensures F 6∈ Cπ ∩ J ′. Due to D ⊆ C and (9), we have F ∈ Cπ; thus, F 6∈ J ′, so by (9)
we have F 6∈ I ′. Consequently, we have F ∈ I \ I ′.

We finally prove that I ′ = [I \ (I \ I ′)] ∪ π′(P \ P̂ ) and hence show that line 21 correctly adds the relevant facts; please
remember that, due to updates in lines 18–19, mapping π actually contains π′ in line 21.

• Assume that F ∈ [I \ (I \ I ′)] ∪ π′(P \ P̂ ). We consider two cases.
– Assume that F ∈ I \ (I \ I ′). Thus, F ∈ I and F 6∈ I \ I ′; but then, we have F ∈ I ′, as required.
– Assume that F ∈ π′(P \ P̂ ). Then, some G ∈ (P \ P̂ )γ exists such that π′(G) = F . By property 2 of Claim 4, we

have G ∈ J ′; but then, we have π′(G) = F ∈ I ′, as required.
• Assume that F ∈ I ′ and F 6∈ I \ (I \ I ′). Thus, F 6∈ I , but clearly F ∈ J ′ ⊆ J . Due to the latter, some G ∈ I exists

such that π(F ) = G; clearly, F 6= G and Gπ 6⊆ J . Since G ∈ I , we have π(G) = G; thus, by (9) we have π′(G) = G.
Moreover, F ∈ I ′ implies π′(F ) = F . Consequently, distinct constants a ∈ voc(F ) and b ∈ voc(G) exist such that
a ≈ b ∈ J \ J ′; but then, property 2 of Claim 5 and Gπ 6⊆ J ensure that G ∈ D ⊆ C ⊆ Cπ , which ensures F ∈ Cπ .
Since F ∈ J ′, by property 2 of Claim 4 we have F ∈ (P \ P̂ )γ ; but then, by (8) we have F ∈ π′(P \ P̂ ), as required.

We next show that Algorithm 1 does not repeat derivations.
Claim 7. Each combination of a rule r and a substitution τ is considered at most once in line 15.

Proof. Assume that a rule r ∈ Π and substitution τ exist that are considered in line 15 twice, when (not necessarily distinct)
facts F and F ′ are extracted from D. Moreover, let Bi and Bi′ be the body atoms of r that τ matches to F and F ′—that is,
F = Biτ and F ′ = Bi′τ . Finally, let Q′ be the annotated query considered in line 13 when atom Bi′ of r is matched to F ′. We
have the following possibilities.
• Assume that F = F ′. Then, Bi and Bi′ must be distinct, so w.l.o.g. assume that i ≤ i′. But then, query Q′ contains atom
B 6=i , so τ cannot be returned in line 14 when evaluating Q′.
• Assume that F 6= F ′ and that, w.l.o.g. F is extracted fromD before F ′. Then, we have F ∈ O due to line 16, and therefore

we have F 6∈ I \O; consequently, τ cannot be returned in line 14 when evaluating Q′.


