Resources in Cryptography

Ed Blakey
ed.blakey@queens.oxon.org
http://users.ox.ac.uk/~quee1871/

Information Security as a Resource
13.x. 2011

Oxford University Computer Science Department

Disclaimer!

Computational complexity.

Computational complexity.

Computational complexity.

Computational complexity.

Computational complexity.

Computational complexity.

Complexity: how resources scale with respect to $|x|$.

Computational complexity.

Complexity: how resources scale with respect to $|x|$.
Says something: (directly) about efficiency of M, and (indirectly) about difficulty of computing f.

Standard resources.

time and space

Standard resources.

Standard resources.

Standard resources.
time and space
non-determinism
NP

Standard resources.

Bounds in terms of time and space.

Non-standard resources

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Non-standard resources
e.g., precision.

Precision complexity.

Non-standard resources

e.g., precision.

Precision complexity.
Detail deferred: A Model-Independent Theory of Computational Complexity http://users.ox.ac.uk/~quee1871/thesis.pdf

Resources...

time

Resources...

time
 space

precision

Resources...

time
precision
thermodynamic cost
space
energy
material cost
mass

Resources...

time
precision
energy
thermodynamic cost
mass
etc.

Resources...

...for computation.

time space		
precision energy	material cost	
thermodynamic cost	mass	

Resources...
 ...for computation.

...for cryptographic protocols.

Communication.

Communication.

Communication.

Communication.

Communication.

Communication.

Communication.

Symmetric-key cryptography.

-Communication.

Symmetric-key cryptography.

-Communication:

Symmetric-key cryptography.

Symmetric-key cryptography.

Symmetric-key cryptography.

Symmetric-key cryptography.

Symmetric-key cryptography.

Symmetric-key cryptography.

Symmetric-key cryptography.

Symmetric-key cryptography.

Symmetric-key crypiograpity.
Public-key cryptography.

Gommunicatioा.
Syinmetric-key-cry/ptograpliy.
Public-key cryptography.

Gommunicatioा.

-Symmactií-key Clyptogranpliy.

Public-key cryptography.

Syinmactric-key clyptogranjily.

Public-key cryptography.

Symnmetric-key clyptogranpliy.

Public-key cryptography.

Public-key cryptography.

Public-key cryptography.

Public-key cryptography.

Public-key cryptography.

Public-key cryptography.

Public-key cryptography.
Computation.

-Gommunication.

Syinmetuic-key clyptogranjliy.

Public-key cryptography.

Computation.

Public-key cryptography.
Computation.
Communication.

Public-key cryptography.
Computation.
Communication.

Public-key cryptography.
Computation.
Communication.
Information

Public-key cryptography.

Computation.
Communication.
Information

Public-key cryptography.
Computation.
Communication.
Information

Syimmetric-key cryptograpliy.

Public-key cryptography.

Computation.
Communication.
Information
— inc. side-channel info.

Resource of 'security'.

Temptation: to produce some (1-D) quantity (that depends on |key|, say) that's

- large when things are difficult for Eve but easy for Alice and Bob, and
- small otherwise.

Resource of 'security'.

Temptation: to produce some (1-D) quantity (that depends on |key|, say) that's

- large when things are difficult for Eve but easy for Alice and Bob, and
- small otherwise.

However, boils down to standard comp. complexity of Eve's decryption computation.

Resource of 'security'.

Temptation: to produce some (1-D) quantity (that depends on |key|, say) that's

- large when things are difficult for Eve but easy for Alice and Bob, and
- small otherwise.
e.g. factorization

However, boils down to standard comp. complexity of Eve'sdecryption computation.

Resource of 'security'.

Temptation: to produce some (1-D) quantity (that depends on |key|, say) that's

- large when things are difficult for Eve but easy for Alice and Bob, and
- small otherwise.
e.g. factorization

However, boils down to standard comp. complexity of Eve's decryption computation.
Instead, maybe want a (multi-D) quantity that reflects

- computational difficulty for Eve,
- computational ease for Alice and Bob,
- information aspects of protocol,
- etc.

Resource of 'security'.

Temptation: to produce some (1-D) quantity (that depends on |key|, say) that's

- large when things are difficult for Eve but easy for Alice and Bob, and
- small otherwise.
e.g. factorization

However, boils down to standard comp. complexity of Eve's decryption computation.
Instead, maybe want a (multi-D) quantity that reflects

- computational difficulty for Eve,
- computational ease for Alice and Bob,
- information aspects of protocol,
- etc.

Maintaining generality.

Problem with using concepts like 'difficulty for Eve':

- assumes rigid goody/baddy roles seen in cryptographic protocols, but not necessarily seen in wider information-theory setting.

Maintaining generality.

Problem with using concepts like 'difficulty for Eve':

- assumes rigid goody/baddy roles seen in cryptographic protocols, but not necessarily seen in wider information-theory setting.
(complexity) (information)
Instead, consider how hard agents must compute, what they know, etc. without using a priori goody/baddy labels.

Maintaining generality.

Problem with using concepts like 'difficulty for Eve':

- assumes rigid goody/baddy roles seen in cryptographic protocols, but not necessarily seen in wider information-theory setting.

(complexity) (information)

Instead, consider how hard agents must compute, what they know, etc. without using a priori goody/baddy labels.

Then work out which agent is Alice, which is Bob, which is Eve based on difficulty, etc.

Primitives.

Goody/baddy-free approach \Rightarrow dealing at level of primitives

Primitives.

One-way fn. Trapdoor fn. Pseudorandom no. gen. etc.
Goody/baddy-free approach \Rightarrow dealing at level of primitives

Primitives.

One-way fn. Trapdoor fn. Pseudorandom no. gen. etc.

Goody/baddy-free approach \Rightarrow dealing at level of primitives rather than dealing with full-blown protocols with predefined roles.

Primitives.

One-way fn. Trapdoor fn. Pseudorandom no. gen. etc.

Goody/baddy-free approach \Rightarrow dealing at level of primitives rather than dealing with full-blown protocols with predefined roles.

So, want to consider trade-offs between security and not only resources, but also primitives.

Idea.

Want a framework that accommodates such things as

- computational resources (\Rightarrow complexity),
- communication resources,
- primitives and
- availability of information.

Idea.

Want a framework that accommodates such things as

- computational resources (\Rightarrow complexity),
- communication resources,
- primitives and
- availability of information.

Gives us a better chance of spotting (e.g.) side-channel attacks than (say) a complexity-only view.

Idea.

Want a framework that accommodates such things as

- computational resources (\Rightarrow complexity),
- communication resources,
- primitives and
- availability of information.

Gives us a better chance of spotting (e.g.) side-channel attacks than (say) a complexity-only view.

Can view a process (computation, comm., etc.) as having costs in these 'dimensions'.

Idea.

Want a framework that accommodates such things as

- computational resources (\Rightarrow complexity),
- communication resources,
- primitives and
- availability of information.

Gives us a better chance of spotting (e.g.) side-channel attacks than (say) a complexity-only view.

Can view a process (computation, comm., etc.) as having costs in these 'dimensions'.
Many such processes/entities have 'thickness' in only one dimension;
if this were true of all entities, then framework would decompose and give nothing new.

Idea.

Want a framework that accommodates such things as

- computational resources (\Rightarrow complexity),
- communication resources,
- primitives and
- availability of information.

Gives us a better chance of spotting (e.g.) side-channel attacks than (say) a complexity-only view.

Can view a process (computation, comm., etc.) as having costs in these 'dimensions'.
Many such processes/entities have 'thickness' in only one dimension;
if this were true of all entities, then framework would decompose and give nothing new.
But some special entities-like security—straddle more than one dimension, and make the structure non-trivial and useful.

Questions?

Precision complexity reference:
A Model-Independent Theory of Computational Complexity http://users.ox.ac.uk/~quee1871/thesis.pdf

This research was funded by the EPSRC grant:
Complexity and Decidability in Unconventional Computational Models (EP/G003017/1)

```
Ed Blakey
http://users.ox.ac.uk/~quee1871/
ed.blakey@queens.oxon.org
```


Questions? Discussion.

Precision complexity reference:
A Model-Independent Theory of Computational Complexity http://users.ox.ac.uk/~quee1871/thesis.pdf

This research was funded by the EPSRC grant:
Complexity and Decidability in Unconventional Computational Models (EP/G003017/1)

```
Ed Blakey
http://users.ox.ac.uk/~quee1871/
ed.blakey@queens.oxon.org
```

