Bob Coecke
University of Oxford - Computer Science - Quantum Group

STRUCTURAL RESOURCES FOR $Q(x)$

- Categorical Quantum Mechanics -

- An attempt to formulate quantum mechanics in symmetric monoidal categories, i.e. using CS methods.

- Categorical Quantum Mechanics -

- An attempt to formulate quantum mechanics in symmetric monoidal categories, i.e. using CS methods.
- A novel take on quantum foundations and quantum axiomatics with interaction as the key concept.

- Categorical Quantum Mechanics -

- An attempt to formulate quantum mechanics in symmetric monoidal categories, i.e. using CS methods.
- A novel take on quantum foundations and quantum axiomatics with interaction as the key concept.
- A novel take on quantum logic and Q-automation.

- Categorical Quantum Mechanics -

- An attempt to formulate quantum mechanics in symmetric monoidal categories, i.e. using CS methods.
- A novel take on quantum foundations and quantum axiomatics with interaction as the key concept.
- A novel take on quantum logic and Q-automation.
- High-level methods for quantum info. and comp.

- Categorical Quantum Mechanics -

- An attempt to formulate quantum mechanics in symmetric monoidal categories, i.e. using CS methods.
- A novel take on quantum foundations and quantum axiomatics with interaction as the key concept.
- A novel take on quantum logic and Q-automation.
- High-level methods for quantum info. and comp.
- Intuitive purely graphical quantum reasoning.
B. Coecke, B.-S. Wang, Q.-L. Wang, Y.-J. Wang and Q.-Y. Zhang (2010) Graphical calculus for quantum key distribution. ENTCS (QPL'09 volume).
B. Coecke and S. Perdrix (2010) Environment and classical channels in categorical quantum mechanics. Computer Science Logic, LNCS 6247. arXiv:1004.1598
A. Hillebrand (2011) Quantum protocols involving multiparticle entanglement and their representations in the $z x$-calculus. MSC thesis, University of Oxford, 2011. http://www.cs.ox.ac.uk/people/bob.coecke/Anne.pdf

CATEGORICAL Q.M. IN \dagger-COMPACT CATEGORIES

S. Abramsky and B.C. - LiCS'04 - arXiv:0808.1023

- (physical) data in monoidal category -

Systems:

$$
A \quad B \quad C
$$

Processes:

$$
A \xrightarrow{f} A \quad A \xrightarrow{g} B \quad B \xrightarrow{h} C
$$

Compound systems:

$$
A \otimes B \quad \text { I } \quad A \otimes C \xrightarrow{f \otimes g} B \otimes D
$$

Temporal composition:

$$
A \xrightarrow{h \circ g} C:=A \xrightarrow{g} B \xrightarrow{h} C \quad A \xrightarrow{1_{A}} A
$$

- graphical notation -

- merely a new notation? -

$$
(g \circ f) \otimes(k \circ h)=(g \otimes k) \circ(f \otimes h)
$$

- graphical notation -

Thm. [Joyal \& Street '91] An equational statement between expressions in symmetric monoidal categorical language holds if and only if it is derivable in the graphical notation via homotopy.

- quantum metric -

$$
f: A \rightarrow B
$$

- quantum metric -

$$
f^{\dagger}: B \rightarrow A
$$

- (pure) classical vs. quantum -

$-\dagger$-compact categories -

$-\dagger$-compact categories -

$-\dagger$-compact categories -

\square

— \dagger-compact categories —

Thm. [Selinger '05] An equational statement between expressions in dagger compact symmetric monoidal categorical language holds if and only if it is derivable in the graphical notation via homotopy.

— \dagger-compact categories —

Thm. [Selinger '05] An equational statement between expressions in dagger compact symmetric monoidal categorical language holds if and only if it is derivable in the graphical notation via homotopy.

Thm. [Selinger '08] An equational statement between expressions in dagger compact symmetric monoidal categorical language holds if and only if it is derivable in the category of finite dimensional Hilbert spaces, linear maps, tensor product, and adjoints.

— †-compact categories —

\Rightarrow quantum teleportation

CLASSICAL STRUCTURES IN CATEGORICAL Q.M.

B.C. and D. Pavlovic - arXiv:quant-ph/0608035
B.C., D. Pavlovic and J. Vicary - arXiv:0810.0812
B.C., E.O. Paquette and D. Pavlovic - arXiv:0904.1997
B.C. and S. Perdrix - arXiv:1004.1598

—observables and classical data -

quantum data cannot be copied nor deleted

- observables and classical data -

quantum data cannot be copied nor deleted

classical data CAN be copied and deleted

—observables and classical data -NON-FEATURE:
quantum data cannot be copied nor deleted

FEATURE:
classical data CAN be copied and deleted

- observables and classical data -

NON-FEATURE:

quantum data cannot be copied nor deleted

FEATURE:

classical data CAN be copied and deleted

OBSERVABLE:

copying operation + deleting operation

- observables and classical data -

A commutative monoid is object A with morphisms

s.t.

－observables and classical data－

A commutative monoid is object A with morphisms

$$
\text { 直: } A \otimes A \rightarrow A \quad \quad \text { : } \mathrm{I} \rightarrow A
$$

s．t．

A cocommutative comonoid is object A with morphisms

$$
\text { 只 : } A \rightarrow A \otimes A \quad \text { P: } A \rightarrow \mathrm{I}
$$

s．t．
娮

- observables and classical data -

FdHilb:

$\text { C }:=\left\{\begin{array}{l} \|00\rangle \mapsto\|0\rangle \\ \|11\rangle \mapsto\|1\rangle \end{array}\right.$	$\boldsymbol{T}::\left\{\begin{array}{l}\|0\rangle \mapsto\|00\rangle \\ \|1\rangle \mapsto\|11\rangle\end{array}\right.$
$\boldsymbol{c}:\left\{\begin{array}{l} \|++\rangle \mapsto\|+\rangle \\ \|--\rangle \mapsto\|-\rangle \end{array}\right.$: $:\left\{\begin{array}{l}\|+\rangle \mapsto \mid++ \\ \|-\rangle \mapsto \mid--\end{array}\right.$
$\boldsymbol{c}^{\boldsymbol{b}}::\left\{\begin{array}{l} \|\# \#\rangle \mapsto\|\#\rangle \\ \|==\rangle \mapsto\|=\rangle \end{array}\right.$	$\int:: \begin{aligned} & \|\#\rangle \mapsto\|\# \#\rangle \\ & \|=\rangle \mapsto\|==\rangle\end{aligned}$

- observables and classical data -

Theorem. Special dagger commutative Frobenius algebras (\dagger-SCFAs) in FHilb, that is,

exactly correspond with orthonormal bases on the underlying Hilbert space via the correspondence:

$$
\{|i\rangle\}_{i} \longleftrightarrow|i\rangle \mapsto|i i\rangle
$$

- observables and classical data -

$\mathrm{A} \dagger$ SCFA is a pair:

which is such that:

- observables and classical data -

A \dagger SCFA is a family:

$$
\text { 'spiders' }=\{\overbrace{\underbrace{}_{n} \cdots \cdots}^{m}\}
$$

which is such that, for $k>0$:

- observables and classical data -

Prop. The $2 / 0$-spider \sim compactness:

Proof.

COMPLEMENTARITY IN CATEGORICAL Q.M.

B.C. and R. Duncan - ICALP'08 - arXiv:0906.4725

— complementarity -

Two bases

$$
\{|0\rangle, \ldots,|n\rangle\} \quad \text { and } \quad\{|0\rangle, \ldots,|n\rangle\}
$$

are complementary (or unbiased) if

$$
|\langle i \| j\rangle|=\frac{1}{\sqrt{\operatorname{dim}}}
$$

yielding equal transition probabilities.

— complementarity -

Thm. Complementarity means:

— complementarity -

Z-spin:

X-spin:

— complementarity -

i.e.

$$
\left(\delta_{Z}^{\dagger} \otimes 1\right) \circ\left(1 \otimes \delta_{X}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)=C N O T
$$

- complementarity -

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \circ\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)=?
$$

— complementarity -

— complementarity -

$$
\overline{\phi \phi}
$$

— complementarity -

—phases -

Thm. Unbiased states of an observable always constitute an Abelian group with conjugates as inverses.

such that:

—phases -

For qubits in FHilb with green $\equiv\{|0\rangle,|1\rangle\} \equiv Z$:

$$
\stackrel{(}{\alpha}=\binom{1}{e^{i \alpha}}_{Z} \quad \stackrel{(\alpha}{\mathbf{\alpha}}=Z_{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right)_{Z}
$$

—phases -
For qubits in FHilb with green $\equiv\{|0\rangle,|1\rangle\} \equiv Z$:

$$
\stackrel{(}{\alpha}=\binom{1}{e^{i \alpha}}_{Z} \quad \stackrel{(\alpha}{\mathbf{\alpha}}=Z_{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right)_{Z}
$$

These are relative phases for Z, hence in $X-Y$:

—phases -

For qubits in FHilb with red $\equiv\{|+\rangle,|-\rangle\} \equiv X$:

$$
\boldsymbol{\alpha}=\binom{1}{e^{i \alpha}}_{X} \quad \underset{\alpha}{\mathbf{\alpha}}=X_{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right)_{X}
$$

These are relative phases for X, hence in $Z-Y$:

—phases -

Thm. Every linear map in $\mathbf{F H i l b}_{2}$ can be expressed in the language of a pair of complementary observables and the corresponding phases, that is, it can be written down using only red and green decorated spiders.

$$
\Lambda^{Z}(\gamma) \circ \Lambda^{X}(\beta) \circ \Lambda^{Z}(\alpha)=\underset{\boldsymbol{\alpha}}{\boldsymbol{\beta}} .
$$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)=\$:=
$$

- MBQC -

New results on resource requirements and complexity of translations between Q-computational models:

R. Duncan and S. Perdrix ICALP'10
quantomatic - Dixon / Duncan / Frot / Kissinger / Merry / Soloviev

http://sites.google.com/site/quantomatic/home

ENVIRONMENT AND CLASSICAL CHANNELS IN CATEGORICAL Q.M.

B.C. and S. Perdrix - CSL'10 - arXiv:1004.1598

classical Q-mixtures := density matrices \& CP-maps

classical Q-mixtures := density matrices \& CP-maps

Selinger QPL'05: pure cats to mixed cats construction
classical Q-mixtures := density matrices \& CP-maps

Selinger QPL'05: pure cats to mixed cats construction
C QPL'06: axiomatic account on mixed cats via:
$\stackrel{\text { I }}{\overline{3}}$
classical Q-mixtures := density matrices \& CP-maps

Selinger QPL'05: pure cats to mixed cats construction
C QPL'06: axiomatic account on mixed cats via:

C and Perdrix '10: interaction of $\frac{1}{\overline{\bar{I}}}$ with ${ }^{\prime}$ \&':

- Decoherence
- Classical channels
- Complex control structure
- Elementary derivation of general protocols
$\{\underline{\underline{\underline{\boldsymbol{L}}}}\}_{A}$ is environment iff for all (pure) f, g :

$\{\underline{\underline{\underline{\boldsymbol{I}}}}\}_{A}$ is environment iff for all (pure) f, g :

and:

= classical channel $=$ decoherence

= classical channel = decoherence

Prop 1:

1 兰
 = classical channel $=$ decoherence

Prop 1:

Prop 2:

Destructive measurement:

Destructive measurement:

Non-destructive measurement:

1st example:
 QUANTUM TELEPORTATION

ras

$$
\because
$$

$$
\cap
$$

$$
\stackrel{\square}{6}
$$

Indeed measurement:

Indeed controlled unitary:

2nd example: QUANTUM KEY DISTRIBUTION

— key distribution -

— key distribution -

STRONG COMPLEMENTARITY

B.C., Ross Duncan, Quanlong Wang

Anne Hillebrand

Def. Strong complementarity $:=$ (scaled) bialgebra

Def. Strong complementarity $:=$ (scaled) bialgebra

Prop. Strong complementarity \Rightarrow Complementarity

Def. Strong complementarity $:=($ scaled $)$ bialgebra

Prop. Strong complementarity \Rightarrow Complementarity
Conj. Strong complementarity, $\pi / 2$-phases, H-decomp. is complete with respect to stabilizer qubit theory.
R. Duncan and S. Perdrix (2009) Graph states and the necessity of Euler decomposition. CiE'09, LNCS 5635. arXiv:0902.0500
Alex Lang and B.C. (2011) Trichromatic open digraphs for understanding qubits. QPL'11 proceedings.

Def. Strong complementarity $:=$ (scaled) bialgebra

Prop. Strong complementarity \Rightarrow Complementarity
Conj. Strong complementarity, $\pi / 2$-phases, H-decomp. is complete with respect to stabilizer qubit theory.

Claim. Strong complementarity is more fundamental as a structural resource than complementarity.

- quantum gates -

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \circ \sigma \circ\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \circ \sigma \circ\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)=?
$$

- quantum gates -

- quantum correlations -
- quantum correlations -

_ quantum correlations __

- quantum correlations -

— quantum correlations -

— quantum correlations -

