

Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Radboud University Nijmegen	Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Radboud University Nijmegen
Overview of results		Extension of classical results	
 A re-formulation of the expectations Relation to well-known monads: (distribution D) (expectation) (ultrafilter UF) Algebras of E are convex comparation of Gleason's the convext comparation of Gleason's the [0, 1] ⊗ Pr(A) Mandemaker SR 0.50rd Mandemaker SR 0.50rd Mandemaker	tion monad \mathcal{E} is given via a tion \mathcal{E}) \longrightarrow (continuation \mathcal{C}) ct Hausdorff spaces canach effect modules eorem: \mathcal{L}) \cong \mathcal{E} (\mathcal{H}) The Expectation Monad	Recall the classical results: $Alg(\mathcal{UF}) \stackrel{[Manes]}{\simeq} (compact Hausdorff$ Here we will give probabilistic verse $Alg_{obs}(\mathcal{E}) \simeq (convex compact Hausdor (where 'obs' refers to a suitable obsert The role of the dualizing object 2 played by the unit interval [0, 1] in Marcola & Mandemaker SR, Oxford Introduction & coverview The expectation monad, effect algebras/modules & other monads$	sp.) $\stackrel{[Gelfand]}{\simeq}$ (comm. <i>C</i> *-algebras) ^{op} dons: ff sp.) _{obs} \simeq (Banach effect modules) ^{op} evability condition) = {0,1} in the classical case is the probabilistic versions. 2012
Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Radboud University Nijmegen	Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Radboud University Nijmegen
A categorical description		Intuition	
Sets $\begin{array}{c} \mathcal{D} \\ \downarrow \\ U \end{array} \xrightarrow{\mathcal{D}} \operatorname{Alg}(\mathcal{D}) \xrightarrow{\mathbb{I}} \\ \operatorname{Conv} \end{array}$ • The expectation monad \mathcal{E} : Sets composite adjunction Sets $\leftrightarrows \mathbf{E}$ • Thus: $\mathcal{E}(X) \cong \operatorname{EMod}(\operatorname{Conv}(\mathbb{I}))$ • Thus: $\mathcal{E}(X) \cong \operatorname{EMod}([0,1]^X)$, • Notice the similarity with the ull $\mathcal{UF}(X) \cong \{\mathcal{F} \subseteq \mathcal{P}(X)\}$ $\cong \operatorname{BA}(\mathcal{P}(X), \mathcal{H})$ $\cong \operatorname{BA}(\{0,1\}^X)$	$\begin{array}{c} \textbf{Conv}(-,[0,1]) \\ \hline \\ \textbf{EMod}(-,[0,1]) \end{array} \\ \textbf{EMod}^{op} \\ \textbf{D}(X), [0,1]), [0,1] \\ \textbf{(0,1]} \\ \textbf{trafilter monad:} \\ \mathcal{F} \text{ is an ultrafilter} \\ \textbf{(0,1)} \\ \textbf{(0,1)} \\ \textbf{(0,1)} \end{array}$	 We think of elements of h ∈ a measures application h(p) to a "fuzzy p integration ∫ p dh. This will be made more precise 	$\mathcal{E}(X) = \mathbf{EMod}ig([0,1]^X,[0,1]ig)$ as predicate" $p \in [0,1]^X$ is then se later.
Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 11 / 49 Radboud University Nijmegen	Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 12 / 49 Radboud University Nijmegen
The discrete probability distrib	ution monad	Algebras of the distribution r	monad ${\cal D}$
The (discrete probability) distribution $\mathcal{D}(X) = \{\varphi \colon X \to [0,1] \operatorname{supp}(\varphi)$ Elements of $\mathcal{D}(X)$ are formal convex • $\operatorname{supp}(\varphi) = \{x_1, \dots, x_n\} \subseteq X$ • $r_i = \varphi(x_i) \in [0,1]$, so that $\sum_i r_i$	in monad on a set X: is finite, and $\sum_{x} \varphi(x) = 1$. combinations $\sum_{i} r_{i}x_{i}$ where = 1.	 Eilenberg-Moore D(X) → X each formal convex combinat as actual sum ∑_i r_ix_i = α(∑ Note, no R-module structure There are equivalent descriptithought of as rx + (1 - r)y see Stone (1948) & Swirsze & Doberkat Easy examples of convex set: Write Conv = Alg(D) for the maps are affine functions, page 4. 	A make X into a convex set: ion $\sum_i r_i x_i$ has an interpretation $\sum_i r_i x_i) \in X$. is assumed on X; just this. ions as sums $x +_r y$, to be cz (1974), and more recently Keimel $[0, 1]$, or $[0, 1]^A$. a category of convex sets preserving convex sums

Jacobs & Mandemaker ISR, Oxford The Expectation Monad 13 / 49 Jacobs & Mandemaker ISR, Oxford The Expectation Monad 14 / 49

Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	
Towards effect algebras: PCMs	Effect algebras	
Definition A partial commutative monoid (PCM) is a triple $(M, 0, \odot)$ where $0 \in M$ and \odot is partial map $M \times M \to M$. Writing $x \perp y$ for " $x \odot y$ is defined". • commutativity: $x \perp y \Longrightarrow y \perp x$ and $x \odot y = y \odot x$ • zero: $0 \perp x$ and $0 \odot x = x$ • associativity: $x \perp y$ and $(x \odot y) \perp z \Longrightarrow y \perp z$ and $x \perp (y \odot z)$ and $(x \odot y) \odot z = x \odot (y \odot z)$. Main example Unit interval [0, 1], with $r \perp s \iff r + s \le 1$ In that case $r \odot s = r + s$.	Definition An effect algebra is a PCM in which: • each element x has a unique <i>orthosupplement</i> x^{\perp} with $x \otimes x^{\perp} = 1$, where $1 = 0^{\perp}$ • $x \perp 1 \Longrightarrow x = 0$. Examples: both from probability & logic • Unit interval [0, 1], with $r^{\perp} = 1 - r$ • functions $A \rightarrow [0, 1]$, possibly "simple" • orthomodular lattices & Boolean algebras • projections $Pr(\mathcal{H})$ on Hilbert space \mathcal{H} .	
Jacobs & Mandemaker ISR, Oxford Introduction & overview Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	
Categories EA and EMod of effect algebras / modules	Expectation monad unravelled	
 A map in EA f: E → D satisfies f(x Q y) = f(x) Q f(y), if defined, and f(1) = 1. Then f(x[⊥]) = f(x)[⊥] and f(0) = 0. The category EA is symmetric monoidal, with initial object 2 = {0,1} as unit for Q Next step: monoids in EA, given by ·: M ⊗ M → M [0,1] with multiplication is an example Next step: effect module is [0,1]-action [0,1] ⊗ E → E EMod is the category of such effect modules Examples: [0,1], and (simple) functions A → [0,1] Also: & H → H 0 ≤ A ≤ id}. Proposition EMod ~ poVectu, the category of ordered vector spaces over R with a strong unit (for each x there is an n ∈ N with nu ≥ x)	The homset $\mathcal{E}(X) = \mathbf{EMod}([0,1]^X, [0,1])$ contains those functions $h: [0,1]^X \to [0,1]$ that satisfy: (a) $h(p \oslash q) = h(p) + h(q)$, for $p, q \in [0,1]^X$ with $p(x) + q(x) \le 1$, for all $x \in X$. (a) $h(\lambda x.1) = 1$ (c) $h(r \cdot p) = r \cdot h(p)$, for $r \in [0,1]$ and $p \in [0,1]^X$. Lemma The inclusions $\mathcal{E}(X) = \mathbf{EMod}([0,1]^X, [0,1]) \hookrightarrow [0,1]^{([0,1]^X)}$ form a map of monads, from the expectation to the continuation monad.	
Jacobs & Mandemaker ISR, Oxford Introduction & overview Introduction & overview The expectation monad effect algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Jacobs & Mandemaker ISR, Oxford The Expectation Monad 18 / 49 Introduction & overview The expectation monad, effect algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	
Equivalent formulations of the expectation monad	Ultrafilter monad; essentials	
 As homset of order vector spaces with unit:	$\mathcal{U}F(X) \cong \{\mathcal{F} \subseteq \mathcal{P}(X) \mid \mathcal{F} \text{ is an ultrafilter} \}$ $\cong \mathbf{BA}(\mathcal{P}(X), \{0, 1\}) \cong \mathbf{EA}(\mathcal{P}(X), \{0, 1\})$ Thus there is an injective map of monads $\mathcal{U}F \Rightarrow \mathcal{E}$, via: $\mathcal{U}F(X) \xrightarrow{\tau_X} \qquad \mathcal{E}(X)$ $\mathbf{EA}(\mathcal{P}(X), \{0, 1\}) \xrightarrow{\langle 1 } \qquad \mathbf{EA}(\mathcal{P}(X), [0, 1])$	
$\mathcal{E}(X) \cong \mathbf{EA}(\mathcal{P}(X), [0, 1])$ Proof : via denseness of simple functions in $[0, 1]^X$, see also Gudder (1998).	Explicitly, as map: $\mathcal{U}F(X) \longrightarrow \mathbf{EMod}([0,1]^X, [0,1]) = \mathcal{E}(X)$ $\mathcal{F} \longmapsto \lambda p \in [0,1]^X. \operatorname{ch}(\mathcal{U}F(p)(\mathcal{F}))$	
Expectation monad is a "robust" mathematical notion Jacobs & Mandemaker ISR, Oxford The Expectation Monad 19 / 49	where ch: $\mathcal{UF}([0,1]) \rightarrow [0,1]$ is the \mathcal{UF} -algebra on $[0,1]$, using that $[0,1]$ is compact Hausdorff	

Notation for homsetsObservabilityNotation for homsetsCall $X \in CCH$ observable if the maps in $\mathcal{A}(X, [0, 1])$ are jointly moin:For two convex compact Hausdorff spaces $X, Y \in CCH$ one writes: $\mathcal{A}(X, Y) = \{f: X \to Y \mid f \text{ is affine & continuous}\}$ Call $X \in CCH$ observable if the maps in $\mathcal{A}(X, [0, 1])$ are jointly noine: \cdot Thus $x = x^i$ holds if $q(x) = q(x)$ for each $q \in \mathcal{A}(X, [0, 1])$ This notation will also be used when X, Y carry \mathcal{E} -algebras Then $\mathcal{A}(X, Y)$ is the algebra homset, since the functor $\mathcal{A}[g(2) \to CCH$ is full & faithful.Call $X \in CCH$ and $\mathcal{A}[g_{absel}(\mathcal{E}) \to X$ will be called observable if X is observable as above. This yields (full) subcategories: $CCH_{abse} \to CCH$ and $\mathcal{A}[g_{absel}(\mathcal{E}) \to \mathcal{A}[g(\mathcal{E})]$ in which $[0, 1]$ is cogenerator Mathematical functionsMathematical functions Mathematical functions $\mathcal{A}[g(\mathcal{E}) \to \mathcal{A}[g(\mathcal{E})]$ Mathematical functionsMathematical functions Mathematical functions Mathematical functions $\mathcal{A}[g(\mathcal{E}) \to \mathcal{A}[g(\mathcal{E})]$ in which $[0, 1]$ is convert compact Hausdorff, using $(\mathcal{A}C)$ we get: $\alpha(h) \in X$. This is a point $x = \alpha(h)$ satisfying: $\mathcal{A}[g(\mathcal{E}) = \frac{\mathcal{E}[q]}{q(\mathcal{E})} = \frac{\mathcal{E}[q]$	Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming	Radboud University Nijmegen	Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming conclusions	Radboud University Nijmegen
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	Notation for homsets		Observability	
<page-header><text><text><text><text><text><equation-block> Cold of Marketing Biological and the standard of the standard (the standard ared the standard of</equation-block></text></text></text></text></text></page-header>	For two convex compact Hausdorff spaces $X, Y \in \mathbf{CCH}$ one writes: $\mathcal{A}(X, Y) = \{f : X \to Y \mid f \text{ is affine } \& \text{ continuous}\}$ This notation will also be used when X, Y carry \mathcal{E} -algebras Then $\mathcal{A}(X, Y)$ is the algebra homset, since the functor $Alg(\mathcal{E}) \to \mathbf{CCH}$ is full & faithfull.		Call $X \in \mathbf{CCH}$ observable if the maps in $\mathcal{A}(X, [0, 1])$ are jointly monic • Thus $x = x'$ holds if $q(x) = q(x')$ for each $q \in \mathcal{A}(X, [0, 1])$ Similarly, an algebra $\mathcal{E}(X) \to X$ will be called observable if X is observable as above. This yields (full) subcategories: $\mathbf{CCH}_{obs} \hookrightarrow \mathbf{CCH}$ and $\operatorname{Alg}_{obs}(\mathcal{E}) \hookrightarrow \operatorname{Alg}(\mathcal{E})$ in which [0, 1] is <i>cogenerator</i>	
Algebras send measures to barycentersAlgebras from barycentersLemmaEach algebra $\alpha: \mathcal{E}(X) \to X$ sends a measure to a barycenter $\alpha(h) \in X$. This is a point $x = \alpha(h)$ satisfying: $h(q) = q(x)$, for all $q \in A(X, [0, 1])$ • Recall $\mathcal{D}(X) \to \mathcal{E}(X)$ is dense, and so $\mathcal{UF}(\mathcal{D}(X)) \to \mathcal{E}(X)$ $h(q) = q(x)$, for all $q \in A(X, [0, 1])$ • If X is convex compact Hausdorff, using (AC) we get: $\alpha \doteq q \neq A(X, [0, 1])$ is an algebra map in:• Recall $\mathcal{D}(X) \to \mathcal{E}(X)$ is dense, and so $\mathcal{UF}(\mathcal{D}(X)) \to \mathcal{E}(X)$ $\mathcal{E}(X) \to \mathcal{E}(q) \to \mathcal{E}([0, 1])$ $\alpha \downarrow \to q \to [0, 1]$ • Then: $\alpha(h) \in X$ is a barycenter for $h \in \mathcal{E}(X)$ Thus: $q(\alpha(h)) = \mathcal{E}(q)(h)(id) = h(q)$.If X is observability, barycenters are necessarily unique $q(x) = h(q) = q(x')$, for each q , thus $x = x'$ A probabilistic version of Manes' theoremIf X is during the point of the dependence of the second of the approximation of Manes' theoremTheoremControl A an observability convex compact Hausdorff space, and abbreviate $A = A(X, [0, 1])$.Theorem $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. $A = A(X, [0, 1])$ $A = A(X, [0, 1])$. <td>Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions</td> <th>The Expectation Monad 28 / 49 Radboud University Nijmegen</th> <td>Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions</td> <td>The Expectation Monad 29 / 4</td>	Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 28 / 49 Radboud University Nijmegen	Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 29 / 4
Lemma Each algebra $\alpha: \mathcal{E}(X) \to X$ sends a measure to a barycenter $\alpha(h) \in X$. This is a point $x = \alpha(h)$ satisfying: $h(q) = q(x)$, for all $q \in \mathcal{A}(X, [0, 1])$ Proof: Each $q \in \mathcal{A}(X, [0, 1])$ is an algebra map in: $\mathcal{E}(X) \xrightarrow{\mathcal{E}(q)} \mathcal{E}([0, 1])$ $\frac{1}{\sqrt{q}} \xrightarrow{\sqrt{q}} ([0, 1])$ $\frac{1}{\sqrt{q}} \xrightarrow{\sqrt{q}} ([0, 1])$ $\frac{1}{\sqrt{q}} \xrightarrow{\sqrt{q}} ([0, 1])$ $\frac{1}{\sqrt{q}} \xrightarrow{\sqrt{q}} ([0, 1])$ Thus: $q(\alpha(h)) = \mathcal{E}(q)(h)(id) = h(q)$. Mathematical for the form of the fo	Algebras send measures to ba	arycenters	Algebras from barycenters	
Jacobs & Mandemaker ISR, Oxford The Expectation Monad 30 / 49 Jacobs & Mandemaker ISR, Oxford The Expectation Monad Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad, duality Relevance for quantum foundations & probabilistic programming Conclusions The Expectation Monad 30 / 49 Jacobs & Mandemaker ISR, Oxford The Expectation Monad A probabilistic version of Manes' theorem Afterthought on observable abbreviate $A = \mathcal{A}(X, [0, 1])$. The Expectation Monad $X \mapsto \lambda g. g(x)$ For the expectation Monad $X \mapsto \lambda g. g(x)$ For the expectation Monad $X \mapsto \lambda g. g(x)$ For the expectation Monad For the	Lemma Each algebra $\alpha : \mathcal{E}(X) \to X$ sends a measure to a barycenter $\alpha(h) \in X$. This is a point $x = \alpha(h)$ satisfying: $h(q) = q(x)$, for all $q \in \mathcal{A}(X, [0, 1])$ Proof: Each $q \in \mathcal{A}(X, [0, 1])$ is an algebra map in: $\mathcal{E}(X) \xrightarrow{\mathcal{E}(q)} \mathcal{E}([0, 1])$ $\alpha \downarrow \qquad $		 Recall D(X) → E(X) is dense, and so UF(D(X)) → E(X) If X is convex compact Hausdorff, using (AC) we get: α def (E(X) > section UF(D(X)) UF(cv) UF(X) ch × X) Then: α(h) ∈ X is a barycenter for h ∈ E(X) If X is observable, α is an Eilenberg-Moore algebra • with observability, barycenters are necessarily unique • q(x) = h(q) = q(x'), for each q, thus x = x' 	
A probabilistic version of Manes' theorem Afterthought on observable convex compact Hausdorff space, and abbreviate $A = \mathcal{A}(X, [0, 1])$. Theorem Deal of it is a standard space in the stand	Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 30 / 49 Radboud University Nijmegen	Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 31 / 4 Radboud University Nijmegen
• Let X be an observable convex compact Hausdorff space, and abbreviate $A = \mathcal{A}(X, [0, 1])$.	A probabilistic version of Ma	nes' theorem	Afterthought on observability	,
 Alg_{obs}(E) ≅ CCH_{obs}, i.e. observable algebras of the expectation monads and observable convex compact Hausdorff spaces coincide the algebra structure yields the (unique) barycenter for a measure a crucial notion in Choquet theory (Without 'observability' requirement the situation is unclear) By definition we have an injection: X → [0, 1]^A This map is both affine and continuous using the product topology on [0, 1]^A One more step gives an embbedding: X → [0, 1]^A → ℝ^A where: ℝ^A is a locally convex topological vector space the inherited (product) topology on X coincides with the original one this is the common way to study convex compact Hausdorff spaces: as subspaces of locally convex topological vector space 	 Theorem Alg_{obs}(E) ≅ CCH_{obs}, ie. observable algebras of the expectation monads and observable convex compact Hausdorff spaces coincide the algebra structure yields the (unique) barycenter for a measure a crucial notion in Choquet theory (Without 'observability' requirement the situation is unclear) 		 Let X be an observable convex compact Hausdorff space, and abbreviate A = A(X, [0, 1]). By definition we have an injection: X → x→Aq. q(x) = [0, 1]^A This map is both affine and continuous using the product topology on [0, 1]^A One more step gives an embbedding: X → [0, 1]^A → ℝ^A where: ℝ^A is a locally convex topological vector space the inherited (product) topology on X coincides with the original one this is the common way to study convex topological vector spaces: as subspaces of locally convex topological vector spaces 	
Jacobs & Mandemaker ISR, Oxford The Expectation Monad 32 / 49 Jacobs & Mandemaker ISR, Oxford The Expectation Monad	Jacobs & Mandemaker ISR, Oxford	The Expectation Monad 32 / 49	Jacobs & Mandemaker ISR, Oxford	The Expectation Monad 33 / 4

Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Radboud University Nijmegen	Introduction & overview The expectation monad, effect algebras, modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Radboud University Nijmegen
How does Gleason fit in?		A reformulation of Gleason's	theorem
Recall, Gleason's theorem says: if \mathfrak{C} measures on projections: $\mathcal{D}\mathcal{M}(\mathcal{H}) \cong \mathbf{EA}(\mathcal{H})$ The proof is really complicated. There is a relatively easy proof of $\mathcal{D}\mathcal{M}(\mathcal{H}) \cong \mathbf{EMod}$ See Busch (Phys. Rev. Let. 2003)	$\dim(\mathcal{H}) \ge 3$, then states are $\Pr(\mathcal{H}), [0, 1]$) "Gleason light": $\mathfrak{l}(\mathcal{E}(\mathcal{H}), [0, 1])$	Theorem Gleason's theorem is equivalent to • That is, effects are the free effe • quantum probabilities are free In one direction the proof is easy: $\mathbf{EA}(\operatorname{Pr}(\mathcal{H}), [0, 1]) \cong \mathbf{EMod}([0, 1]) \cong$ $\cong \mathbf{EMod}(\mathcal{E}(\mathcal{H}))$ $\cong \mathcal{DM}(\mathcal{H})$	$[0,1] \otimes \Pr(\mathcal{H}) \cong \mathcal{E}\!f(\mathcal{H}).$ ect module on projections y obtained from quantum logic $\otimes \Pr(\mathcal{H}), [0,1])$ by freeness [0, [0,1]) by assumption by Gleason light.
Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras, modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 41 / 49 Radboud University Nijmegen	Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras, modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 42 / 49 Radboud University Nijmegen
Top horizontal arrow is surjection, $[0,1] \otimes \Pr(\mathcal{H}) \xrightarrow{\text{der}} dense \downarrow$ $\mathcal{A}(EMod([0,1] \otimes \Pr(\mathcal{H}), [0,1]), [0,1])$ $freeness \downarrow \cong$ $\mathcal{A}(EA(\Pr(\mathcal{H}), [0,1]), [0,1]) \xrightarrow{\mathbf{C}} dense$	and also injection, in: $ \begin{array}{c} spectral \\ composition \\ completeness \\ \cong \\ \end{array} \\ \begin{array}{c} \mathcal{A}\left(\mathbf{EMod}(\mathcal{B}(\mathcal{H}), [0, 1]), [0, 1]\right) \\ \\ Gleason light \\ \cong \\ \end{array} \\ \begin{array}{c} \cong \\ \mathcal{A}\left(\mathcal{DM}(\mathcal{H}), [0, 1]), [0, 1]\right) \end{array} $	The same system, as \mathcal{E} -coalgebra, w $S \longrightarrow \mathcal{E}(S)$ $a \longmapsto \lambda q \in [0,1]^S \cdot \frac{1}{2}q(b) + \frac{1}{2}$ $b \longmapsto \lambda q \in [0,1]^S \cdot \frac{1}{3}q(b) + \frac{2}{3}$ $c \longmapsto \lambda q \in [0,1]^S \cdot q(c)$	$S \xrightarrow{\text{coalgebra}} \mathcal{D}(S)$ $a \longmapsto \frac{1}{2}b + \frac{1}{2}c$ $b \longmapsto \frac{1}{3}b + \frac{2}{3}c$ $c \longmapsto 1c$ $dia \mathcal{D} \Rightarrow \mathcal{E},$ $eq(c)$
Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 43 / 49 Radboud University Nijmegen \mathcal{F} coalgebras $S \to \mathcal{E}(S)$	Jacobs & Mandemaker ISR, Oxford Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	The Expectation Monad 44 / 49 Radboud University Nijmegen
 Composition monoid (;, skip) Loops (while/for/recursion), w Finite convex sums of program and r_i ∈ [0, 1] with ∑_i r_i = 1 Finite probabilistic assignment and distribution φ ∈ D(int) use upd_n: S × int → S, giv use σ: D(int) → E(int), in: [[n := φ]](s) = Finite non-deterministic assign similarly, use P(V) ≅ UF(V) 	since \mathcal{E} is a monad ia joins \bigvee of chains is $\sum_i r_i P_i$, for $P_i : S \to \mathcal{E}(S)$ if $n := \varphi$, say with variable n : int ing $\mathcal{E}(upd_n(s, -)) : \mathcal{E}(int) \to \mathcal{E}(S)$ if $\mathcal{E}(upd_n(s, -))(\sigma(\varphi))$ iment $n := V$, for finite $V \subseteq$ int $Y) \to \mathcal{E}(int)$	 Expectation monad is unexpection in probabilistic programming in relation to other monads in convex analysis (barycentering) for quantum logic & probability Category theory is very useful a seeing connections notably for probabilistic vers many of the ingredients are some fruit was hanging low, 	tedly interesting semantics ers, Choquet theory) liity, via duality & Gleason for structuring results and ion of Manes & Gelfand already known but not all of it

Jacobs & Mandemaker ISR, Oxford The Expectation Monad 45 / 49 Jacobs & Mandemaker ISR, Oxford The Expectation Monad 47 / 49

Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	Introduction & overview The expectation monad, effect algebras/modules & other monads Algebras of the expectation monad & duality Relevance for quantum foundations & probabilistic programming Conclusions	sity Nijmegen	
Credit	That's it		
Klaus Keimel deserves credit for coming closest			
• K. Keimel, Abstract ordered compact convex sets and			
ordered compact spaces, (Alg. & Log., 2009)			
 Contains algebras via barycenters, but no duality focus on measures as monads on (convex compact) spaces, like 	Thanks for your attention!		
Giry monad on measure spaces	Questions / remarks?		
• K. Keimel, A. Rosenbusch and T. Streicher, <i>Relating direct</i> and predicate transformer partial correctness semantics for an imperative probabilistic-nondeterministic language (TCS, 2011)			
 Contains <i>ad hoc</i> monad similar to 'expectation' focus on program semantics 			

The Expectation Monad

49 / 49

Jacobs & Mandemaker ISR, Oxford The Expectation Monad 48 / 49 Jacobs & Mandemaker ISR, Oxford