Winning Strategies in Concurrent Games

Glynn Winskel University of Cambridge Computer Laboratory

A principled way to develop *nondeterministic concurrent strategies* in games within a general model for concurrency. Following Joyal and Conway, a strategy from a game G to a game H will be a strategy in $G^{\perp} || H$. Strategies will be those nondeterministic plays of a game which compose well with copy-cat strategies, within the model of event structures. Consequences, connections and extensions to winning strategies.

Event structures

An event structure comprises $(E, \leq, \operatorname{Con})$, consisting of a set of events E

- partially ordered by \leq , the **causal dependency relation**, and

- a nonempty family Con of finite subsets of E, the **consistency relation**, which satisfy

$$\{e' \mid e' \leq e\} \text{ is finite for all } e \in E,$$

$$\{e\} \in \text{Con for all } e \in E,$$

$$Y \subseteq X \in \text{Con} \Rightarrow Y \in \text{Con}, \text{ and}$$

$$X \in \text{Con } \& e \leq e' \in X \Rightarrow X \cup \{e\} \in \text{Con}.$$

Say e, e' are **concurrent** if $\{e, e'\} \in \text{Con } \& e \not\leq e' \& e' \not\leq e$. In games the relation of **immediate dependency** $e \rightarrow e'$, meaning e and e' are distinct with $e \leq e'$ and no event in between, will play an important role.

Configurations of an event structure

The **configurations**, $C^{\infty}(E)$, of an event structure E consist of those subsets $x \subseteq E$ which are

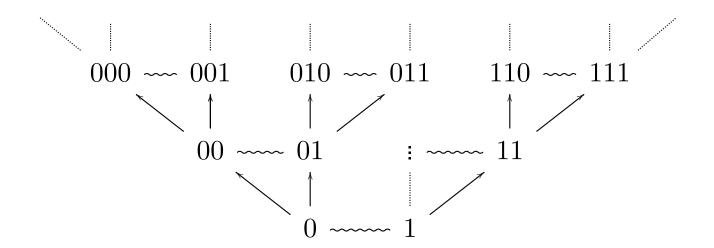
Consistent: $\forall X \subseteq_{\text{fin}} x. X \in \text{Con}$ and

Down-closed: $\forall e, e'. e' \leq e \in x \Rightarrow e' \in x$.

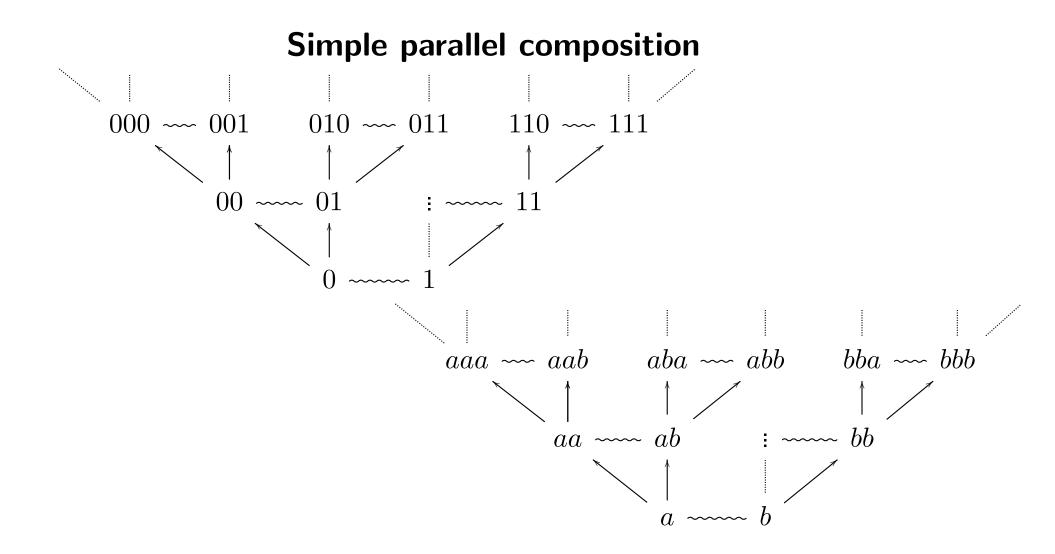
For an event e the set $[e] =_{def} \{e' \in E \mid e' \leq e\}$ is a configuration describing the whole causal history of the event e.

 $x \subseteq x'$, *i.e.* x is a sub-configuration of x', means that x is a sub-history of x'. If E is countable, $(\mathcal{C}^{\infty}(E), \subseteq)$ is a dI-domain (and all such are so obtained). Often concentrate on the finite configurations $\mathcal{C}(E)$.

Example: Streams as event structures



 $\sim\sim$ conflict (inconsistency) \rightarrow immediate causal dependency



Other examples



 $Con = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\} \}$

Maps of event structures

- Semantics of synchronising processes [Hoare, Milner] can be expressed in terms of universal constructions on event structures, and other models.
- Relations between models via adjunctions.

In this context, a **simulation map** of event structures $f : E \to E'$ is a partial function on events $f : E \to E'$ such that for all $x \in C(E)$

$$fx \in \mathcal{C}(E')$$
 and
if $e_1, e_2 \in x$ and $f(e_1) = f(e_2)$, then $e_1 = e_2$. ('event linearity')

Idea: the occurrence of an event e in E induces the coincident occurrence of the event f(e) in E' whenever it is defined.

Process constructions on event structures

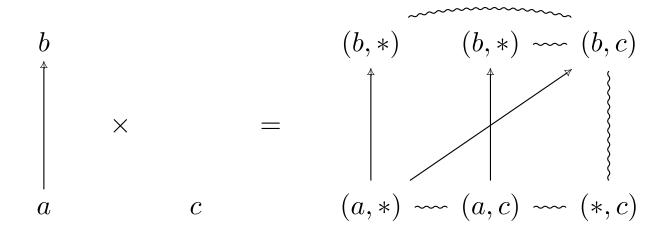
"Partial synchronous" product: $A \times B$ with projections Π_1 and Π_2 , cf. CCS synchronized composition where all events of A can synchronize with all events of B. (Hard to construct directly so use e.g. stable families.)

Restriction: $E \upharpoonright R$, the restriction of an event structure E to a subset of events R, has events $E' = \{e \in E \mid [e] \subseteq R\}$ with causal dependency and consistency restricted from E.

Synchronized compositions: restrictions of products $A \times B \upharpoonright R$, where R specifies the allowed synchronized and unsynchronized events.

Projection: Let E be an event structure. Let V be a subset of 'visible' events. The *projection* of E on V, $E \downarrow V$, has events V with causal dependency and consistency restricted from E.

Product—an example



Concurrent games

Basics

Games and strategies are represented by **event structures with polarity**, an event structure in which all events carry a polarity +/-, respected by maps.

The two polarities + and - express the dichotomy: *player/opponent; process/environment; ally/enemy.*

Dual, E^{\perp} , of an event structure with polarity E is a copy of the event structure E with a reversal of polarities; $\overline{e} \in E^{\perp}$ is complement of $e \in E$, and *vice versa*.

A (nondeterministic) concurrent **pre-strategy** in game A is a total map

$$\sigma:S\to A$$

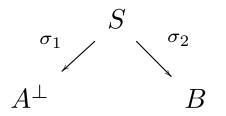
of event structures with polarity (a nondeterministic play in game A).

Pre-strategies as arrows

A pre-strategy $\sigma: A \twoheadrightarrow B$ is a total map of event structures with polarity

$$\sigma: S \to A^{\perp} \parallel B.$$

It corresponds to a *span* of event structures with polarity



where σ_1, σ_2 are *partial* maps of event structures with polarity; one and only one of σ_1, σ_2 is defined on each event of S.

Pre-strategies are isomorphic if they are isomorphic as spans.

Concurrent copy-cat

Identities on games A are given by copy-cat strategies $\gamma_A : \mathbb{C}_A \to A^{\perp} \parallel A$ —strategies for player based on copying the latest moves made by opponent.

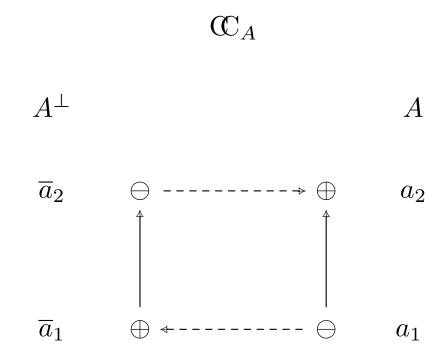
 CC_A has the same events, consistency and polarity as $A^{\perp} \parallel A$ but with causal dependency \leq_{CC_A} given as the transitive closure of the relation

$$\leq_{A^{\perp} \parallel A} \cup \{ (\overline{c}, c) \mid c \in A^{\perp} \parallel A \& pol_{A^{\perp} \parallel A}(c) = + \}$$

where $\overline{c} \leftrightarrow c$ is the natural correspondence between A^{\perp} and A. The map γ_A is the identity on the common underlying set of events. Then,

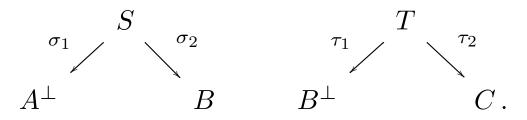
$$x \in \mathcal{C}(\mathbb{C}_A)$$
 iff $x \in \mathcal{C}(A^{\perp} \parallel A)$ & $\forall c \in x. \ pol_{A^{\perp} \parallel A}(c) = + \Rightarrow \overline{c} \in x.$

Copy-cat—an example

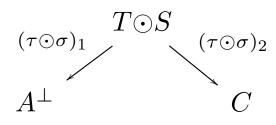


Composing pre-strategies

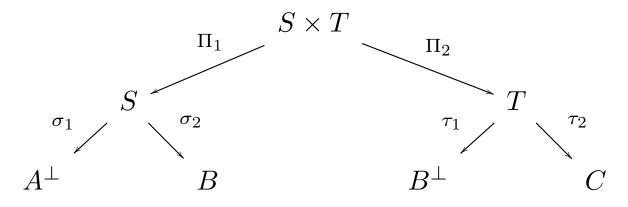
Two pre-strategies $\sigma: A \twoheadrightarrow B$ and $\tau: B \twoheadrightarrow C$ as spans:



Their composition



where $T \odot S =_{def} (S \times T \upharpoonright Syn) \downarrow Vis$ where ...

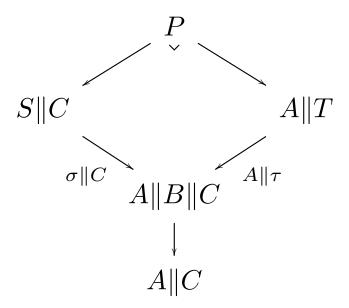


Their composition: $T \odot S =_{def} (S \times T \upharpoonright Syn) \downarrow Vis$ where

$$\begin{split} \mathbf{Syn} \ &= \ \{p \in S \times T \ \mid \ \sigma_1 \Pi_1(p) \text{ is defined } \& \ \Pi_2(p) \text{ is undefined} \} \cup \\ &\{p \in S \times T \ \mid \ \sigma_2 \Pi_1(p) = \overline{\tau_1 \Pi_2(p)} \text{ with both defined} \} \cup \\ &\{p \in S \times T \ \mid \ \tau_2 \Pi_2(p) \text{ is defined } \& \ \Pi_1(p) \text{ is undefined} \}, \end{split}$$
$$\begin{aligned} &\mathbf{Vis} \ &= \{p \in S \times T \upharpoonright \mathbf{Syn} \ \mid \ \sigma_1 \Pi_1(p) \text{ is defined} \} \cup \\ &\{p \in S \times T \upharpoonright \mathbf{Syn} \ \mid \ \tau_2 \Pi_2(p) \text{ is defined} \} \cup \\ &\{p \in S \times T \upharpoonright \mathbf{Syn} \ \mid \ \tau_2 \Pi_2(p) \text{ is defined} \}. \end{split}$$

Composition via pullback:

Ignoring polarities, the partial map



has the partial-total map factorization: $P \longrightarrow T \odot S \xrightarrow{\tau \odot \sigma} A \| C$. [N. Bowler]

Theorem characterizing concurrent strategies Receptivity $\sigma: S \to A^{\perp} \parallel B$ is *receptive* when $\sigma(x) - \subset^{-}y$ implies there is a *unique* $x' \in \mathcal{C}(S)$ such that $x - \subset x' \& \sigma(x') = y$. $x - \subset^{-} x'$ \downarrow $\sigma(x) - \subset^{-} y$

Innocence $\sigma: S \to A^{\perp} \parallel B$ is *innocent* when it is

+-Innocence: If $s \twoheadrightarrow s'$ & pol(s) = + then $\sigma(s) \twoheadrightarrow \sigma(s')$ and

--Innocence: If $s \twoheadrightarrow s'$ & pol(s') = - then $\sigma(s) \twoheadrightarrow \sigma(s')$.

 $[\rightarrow stands for immediate causal dependency]$

Theorem Receptivity and innocence are necessary and sufficient for copy-cat to act as identity w.r.t. composition: $\sigma \odot \gamma_A \cong \sigma$ and $\gamma_B \odot \sigma \cong \sigma$ for all $\sigma : A \twoheadrightarrow B$. [Silvain Rideau, GW]

Definition A *strategy* is a receptive, innocent pre-strategy.

 \rightsquigarrow A bicategory, $\mathbf{Games},$ whose

objects are event structures with polarity-the games,

```
arrows are strategies \sigma: A \twoheadrightarrow B
```

2-cells are maps of spans.

The vertical composition of 2-cells is the usual composition of maps of spans. Horizontal composition is given by the composition of strategies \odot (which extends to a functor on 2-cells via the functoriality of synchronized composition).

Strategies—alternative description 1

A strategy S in a game A comprises a total map of event structures with polarity $\sigma: S \to A$ such that (i) whenever $\sigma x \subseteq \overline{y}$ in $\mathcal{C}(A)$ there is a unique $x' \in \mathcal{C}(S)$ so that

and

 $[\rightsquigarrow strategies as presheaves over "Scott order" \sqsubseteq =_{def} \subseteq^+ \circ \supseteq^-.]$

Strategies—alternative description 2

A strategy S in a game A comprises a total map of event structures with polarity $\sigma: S \to A$ such that

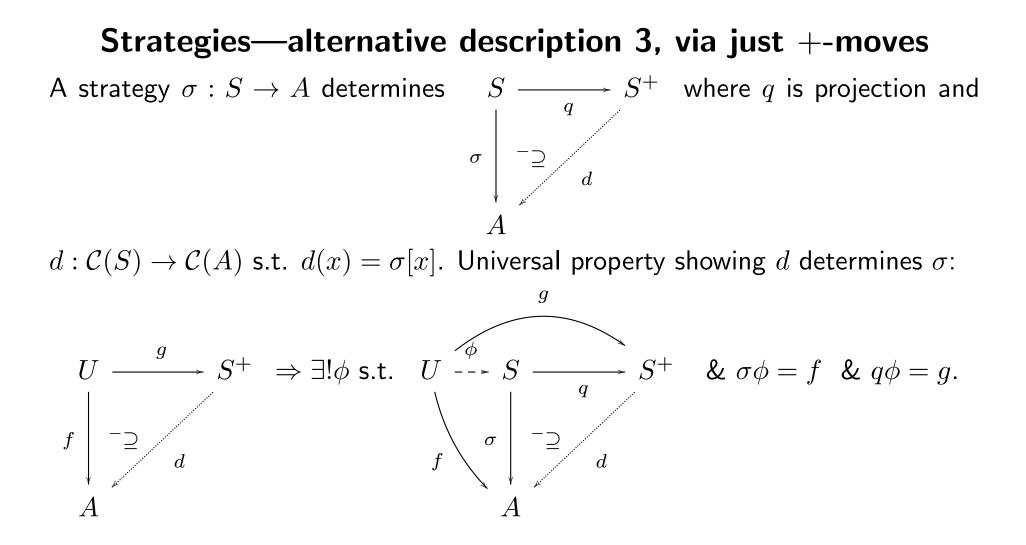
(i) $\sigma x \xrightarrow{a} c \& pol_A(a) = - \Rightarrow \exists ! s \in S. x \xrightarrow{s} c \& \sigma(s) = a$, for all $x \in C(S)$, $a \in A$.

(ii)(+) If $x \xrightarrow{e} \subset x_1 \xrightarrow{e'} \subset \& pol_S(e) = + \text{ in } \mathcal{C}(S) \text{ and } \sigma x \xrightarrow{\sigma(e')} \subset \text{ in } \mathcal{C}(A)$, then $x \xrightarrow{e'} \subset \text{ in } \mathcal{C}(S)$.

(ii)(-) If $x \xrightarrow{e} \subset x_1 \xrightarrow{e'} \subset \& \operatorname{pol}_S(e') = -\operatorname{in} \mathcal{C}(S)$ and $\sigma x \xrightarrow{\sigma(e')} \subset \operatorname{in} \mathcal{C}(A)$, then $x \xrightarrow{e'} \subset \operatorname{in} \mathcal{C}(S)$.

Notation $x \xrightarrow{e} c y$ iff $x \cup \{e\} = y \& e \notin x$, for configurations x, y, event e. $x \xrightarrow{e} c$ iff $\exists y. x \xrightarrow{e} c y$.

19



Deterministic strategies

Say an event structures with polarity S is *deterministic* iff

 $\forall X \subseteq_{\text{fin}} S. Neg[X] \in \text{Con}_S \Rightarrow X \in \text{Con}_S,$

where $Neg[X] =_{def} \{s' \in S \mid \exists s \in X. \ pol_S(s') = -\& s' \leq s\}$. Say a strategy $\sigma : S \to A$ is deterministic if S is deterministic.

Proposition An event structure with polarity S is deterministic iff $x \xrightarrow{s} \subset \& x \xrightarrow{s'} \subset \& pol_S(s) = +$ implies $x \cup \{s, s'\} \in \mathcal{C}(S)$, for all $x \in \mathcal{C}(S)$.

Notation $x \xrightarrow{e} C y$ iff $x \cup \{e\} = y \& e \notin x$, for configurations x, y, event e. $x \xrightarrow{e} C$ iff $\exists y. x \xrightarrow{e} C y$. **Lemma** Let A be an event structure with polarity. The copy-cat strategy γ_A is deterministic iff A satisfies

$$\forall x \in \mathcal{C}(A). \ x \xrightarrow{a} \subset \& \ x \xrightarrow{a'} \subset \& \ pol_A(a) = + \& \ pol_A(a') = - \\ \Rightarrow x \cup \{a, a'\} \in \mathcal{C}(A).$$
 (‡)

Lemma The composition $\tau \odot \sigma$ of two deterministic strategies σ and τ is deterministic.

Lemma A deterministic strategy $\sigma: S \to A$ is injective on configurations (equivalently, $\sigma: S \rightarrowtail A$).

 \rightsquigarrow sub-bicategory DetGames, equivalent to an order-enriched category.

Related work

Ingenuous strategies Deterministic concurrent strategies coincide with the *receptive* ingenuous strategies of and Melliès and Mimram.

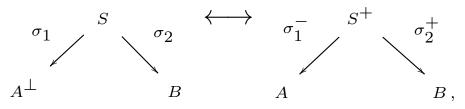
Closure operators A deterministic strategy $\sigma : S \to A$ determines a closure operator φ on $\mathcal{C}^{\infty}(S)$: for $x \in \mathcal{C}^{\infty}(S)$,

$$\varphi(x) = x \cup \{s \in S \mid pol(s) = + \& Neg[\{s\}] \subseteq x\}.$$

The closure operator φ on $\mathcal{C}^{\infty}(S)$ induces a *partial* closure operator φ_p on $\mathcal{C}^{\infty}(A)$ and in turn a closure operator φ_p^{\top} on $\mathcal{C}^{\infty}(A)^{\top}$ of Abramsky and Melliès.

Simple games *"Simple games"* of game semantics arise when we restrict Games to objects and deterministic strategies which are 'tree-like'—alternating polarities, with conflicting branches, beginning with opponent moves.

Stable spans, profunctors and stable functions The sub-bicategory of Games where the events of games are purely +ve is equivalent to the bicategory of stable spans:



where S^+ is the projection of S to its +ve events; σ_2^+ is the restriction of σ_2 to S^+ is rigid; σ_2^- is a *demand map* taking $x \in \mathcal{C}(S^+)$ to $\sigma_1^-(x) = \sigma_1[x]$. Composition of stable spans coincides with composition of their associated profunctors.

When deterministic (and event structures are countable) we obtain a subbicategory equivalent to Berry's **dl-domains and stable functions**.

Winning conditions

A game with winning conditions comprises

G = (A, W)

where A is an event structure with polarity and $W \subseteq C^{\infty}(A)$ consists of the *winning configurations* for Player.

Define the losing conditions to be $L =_{def} C^{\infty}(A) \setminus W$. [Can generalize to winning, losing and neutral conditions.]

Winning strategies

Let G = (A, W) be a game with winning conditions.

A strategy in G is a strategy in A.

A strategy $\sigma: S \to A$ in G is winning (for Player) if $\sigma x \in W$, for all +-maximal configurations $x \in \mathcal{C}^{\infty}(S)$.

[A configuration x is +-maximal if whenever $x \stackrel{s}{\longrightarrow} \subset$ then the event s has -ve polarity.]

A winning strategy prescribes moves for Player to avoid ending in a losing configuration, no matter what the activity or inactivity of Opponent.

Characterization via counter-strategies

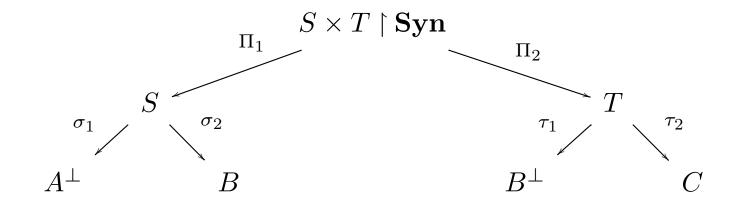
Informally, a strategy is winning for Player if any play against a counterstrategy of Opponent results in a win for Player.

A *counter-strategy*, *i.e.* a strategy of Opponent, in a game A is a strategy in the dual game, so $\tau: T \to A^{\perp}$.

What are the *results* $\langle \sigma, \tau \rangle$ of playing strategy σ against counter-strategy τ ?

Note $\sigma: \emptyset \twoheadrightarrow A$ and $\tau: A \twoheadrightarrow \emptyset \dots$

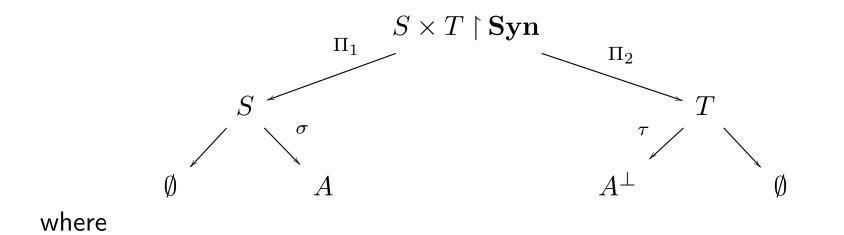
Composition of pre-strategies without hiding



where

 $\begin{aligned} \mathbf{Syn} &= \{ p \in S \times T \mid \sigma_1 \Pi_1(p) \text{ is defined } \& \Pi_2(p) \text{ is undefined} \} \cup \\ \{ p \in S \times T \mid \sigma_2 \Pi_1(p) = \overline{\tau_1 \Pi_2(p)} \text{ with both defined} \} \cup \\ \{ p \in S \times T \mid \tau_2 \Pi_2(p) \text{ is defined } \& \Pi_1(p) \text{ is undefined} \}. \end{aligned}$

Special case



Syn = { $p \in S \times T \mid \sigma \Pi_1(p) = \overline{\tau \Pi_2(p)}$ with both defined}.

Define **results**, $\langle \sigma, \tau \rangle =_{\text{def}} \{ \sigma \Pi_1 z \mid z \text{ is maximal in } \mathcal{C}^{\infty}(S \times T \upharpoonright \mathbf{Syn}) \}.$

Characterization of winning strategies

Lemma Let $\sigma: S \to A$ be a strategy in a game (A, W). The strategy σ is a winning for Player iff $\langle \sigma, \tau \rangle \subseteq W$ for all (deterministic) strategies $\tau: T \to A^{\perp}$.

Its proof uses a key lemma:

Lemma Let $\sigma: S \to A^{\perp} || B$ and $\tau: B^{\perp} || C$ be receptive pre-strategies. Then,

 $z \in \mathcal{C}^{\infty}(S \times T \upharpoonright \mathbf{Syn})$ is +-maximal iff $\Pi_1 z \in \mathcal{C}^{\infty}(S)$ is +-maximal & $\Pi_2 z \in \mathcal{C}^{\infty}(T)$ is +-maximal.

Examples

 $\begin{array}{ll} \oplus & \text{with } W = \{ \emptyset, \{ \ominus, \oplus \} \} \text{ has a winning strategy.} & \ominus & , W = \{ \{ \oplus \} \} \text{ has not.} \\ \uparrow & & \uparrow \\ \ominus & & \oplus \end{array}$

 $\ominus \cdots \oplus$ has a winning strategy only if W comprises all configurations.

 $\begin{array}{ccc} \ominus & \cdots & \oplus & \text{the empty strategy is winning if } \emptyset \in W. \\ & \swarrow & \uparrow & \\ & \oplus & \end{array}$

Operations on games with winning conditions

Dual $G^{\perp} = (A^{\perp}, W_{G^{\perp}})$ where, for $x \in \mathcal{C}^{\infty}(A)$,

 $x \in W_{G^{\perp}}$ iff $\overline{x} \notin W_G$.

Parallel composition For $G = (A, W_G)$, $H = (B, W_H)$,

$$G \| H =_{\mathrm{def}} (A \| B, \ W_G \| \mathcal{C}^{\infty}(B) \cup \mathcal{C}^{\infty}(A) \| W_H)$$

where $X || Y = \{\{1\} \times x \cup \{2\} \times y \mid x \in X \& y \in Y\}$ when X and Y are subsets of configurations. To win is to win in either game. Unit of || is (\emptyset, \emptyset) .

Derived operations

Tensor Defining $G \otimes H =_{def} (G^{\perp} || H^{\perp})^{\perp}$ we obtain a game where to win is to win in both games G and H—so to lose is to lose in either game. More explicitly,

$$(A, W_A) \otimes (B, W_B) =_{\text{def}} (A || B, W_A || W_B).$$

The unit of \otimes is $(\emptyset, \{\emptyset\})$.

Function space With $G \multimap H =_{def} G^{\perp} || H$ a win in $G \multimap H$ is a win in H conditional on a win in G:

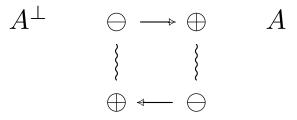
Proposition Let $G = (A, W_G)$ and $H = (B, W_H)$ be games with winning conditions. Write $W_{G \multimap H}$ for the winning conditions of $G \multimap H$. For $x \in C^{\infty}(A^{\perp} || B)$,

 $x \in W_{G \multimap H}$ iff $\overline{x_1} \in W_G \Rightarrow x_2 \in W_H$.

The bicategory of winning strategies

Lemma Let σ be a winning strategy in $G \multimap H$ and τ be a winning strategy in $H \multimap K$. Their composition $\tau \odot \sigma$ is a winning strategy in $G \multimap K$.

But copy-cat need not be winning: Let A consist of $\oplus \dashrightarrow \ominus$. The event structure C_A :



Taking $x = \{\ominus, \ominus\}$ makes x +-maximal, but $\overline{x}_1 \in W$ while $x_2 \notin W$.

A robust sufficient condition for copy-cat to be winning: copy-cat is deterministic. [The Aarhus lecture notes give a necessary and sufficient condition.] \rightarrow bicategory of games with winning strategies.

Two applications

Total strategies: To pick out a subcategory of *total* strategies (where Player can always answer Opponent) within simple games.

Determinacy of concurrent games: A necessary condition on a game A for (A, W) to be determined for all winning conditions W: that copy-cat γ_A is deterministic. Not sufficient to ensure determinacy w.r.t. all Borel winning conditions. Think sufficient for determinacy if winning conditions W are *closed* w.r.t. local Scott topology, and in particular for finite games [sketchy proof].

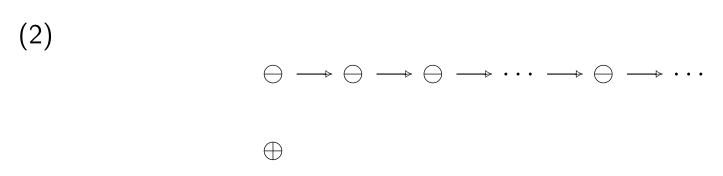
There must be many more!

Aarhus Lecture notes: http://daimi.au.dk/~gwinskel/

A next step: *back-tracking* in games via "copying" monads in event structures with symmetry.

Counterexamples to Borel determinacy

(1) $\oplus \cdots \oplus$ with $W = \{\{\oplus\}\}$, copy-cat is nondeterministic.



where Player wins iff

Opponent plays finite no. of \ominus moves and Player does nothing or Opponent plays all \ominus moves and Player the single \oplus move.