
Alternating Timed Automata over Bounded Time

Mark Jenkins
Oxford University Computing Laboratory, UK

Email: mark.jenkins@comlab.ox.ac.uk

Joël Ouaknine
Oxford University Computing Laboratory, UK

Email: joel@comlab.ox.ac.uk

Alexander Rabinovich
School of Computer Science, Tel Aviv University, Israel

Email: rabinoa@post.tau.ac.il

James Worrell
Oxford University Computing Laboratory, UK

Email: jbw@comlab.ox.ac.uk

Abstract
Alternating timed automata are a powerful extension of classical

Alur-Dill timed automata that are closed under all Boolean operations.
They have played a key role, among others, in providing verification al-
gorithms for prominent specification formalisms such as Metric Tem-
poral Logic. Unfortunately, when interpreted over an infinite dense
time domain (such as the reals), alternating timed automata have an
undecidable language emptiness problem.

The main result of this paper is that, over bounded time domains,
language emptiness for alternating timed automata is decidable (but
non-elementary). The proof involves showing decidability of a class
of parametric McNaughton games that are played over timed words
and that have winning conditions expressed in monadic logic over the
signature with order and the +1 function.

As a corollary, we establish the decidability of the time-bounded
model-checking problem for Alur-Dill timed automata against specifi-
cations expressed as alternating timed automata.

1. Introduction
Timed automata were introduced by Alur and Dill in [3]

as a natural and versatile model for real-time systems. They
have been widely studied ever since, both by practitioners and
theoreticians. A celebrated result concerning timed automata,
which originally appeared in [2], is the PSPACE decidability of
the language emptiness (or reachability) problem.

Unfortunately, the language inclusion problem—given two
timed automata A and B, is every timed word accepted by A
also accepted by B?—is known to be undecidable. A related
fact is that timed automata are not closed under complementa-
tion. For example, the automaton below accepts every timed
word in which there are two a-events separated by one time
unit:

a

reset(x)

a

a

x = 1

a a

The complement automaton would have to accept a timed word
precisely when no two a-events are separated by one time unit.
Intuitively, this is not expressible by a timed automaton, since
such an automaton would need a potentially unbounded num-
ber of clocks to keep track of the time delay from each a-event.

We refer the reader to [17] for a formal analysis of these con-
siderations.

In one sense, the non-closure under complementation is easy
to remedy—one simply generalises the transition mode to al-
low both conjunctive and disjunctive transitions, an idea bor-
rowed from the theory of untimed automata that dates back 30
years [11]. Such untimed alternating automata have played key
roles in algorithms for complementing Büchi automata (see,
e.g., [20]), temporal logic verification [38], [23], and analysis
of parity games [14]. In the timed world, the resulting alter-
nating timed automata [21], [27], [22], [29], [13] subsume or-
dinary timed automata and can be shown to be closed under
all Boolean operations. They have been used, among others,
to provide model-checking algorithms for various fragments of
Metric Temporal Logic (MTL); see, e.g., [27], [28], [8]. Unfor-
tunately, the price to pay for the increase in expressiveness is
the undecidability of language emptiness for alternating timed
automata!

This undecidability follows immediately from the undecid-
ability of universality for timed automata. The proof of the lat-
ter in [3] uses in a crucial way the unboundedness of the time
domain. Roughly speaking, this allows one to encode arbitrar-
ily long computations of a Turing machine. On the other hand,
many verification questions are naturally phrased over bounded
time domains [34], [5], [19]. For example, a run of a communi-
cation protocol might normally be expected to have an a priori
time bound. In fact, most hard real-time problems, which typi-
cally involve deadlines, timeouts, and delays, are only pertinent
over a finely circumscribed time span. This leads us to con-
sider the time-bounded language emptiness problem for alter-
nating timed automata. This problem asks, given an alternating
timed automaton A and a time bound N , whether some finite
timed word of duration at most N is accepted by A. (Note
that, since we are working with a dense model of time, time-
bounded words may still contain arbitrarily many events.) The
main result of this paper is that this problem is decidable but
non-elementary. Since alternating timed automata are closed
under all Boolean operations, an immediate corollary is the
decidability of the time-bounded model-checking problem for
timed automata against specifications expressed as alternating
timed automata.

Our proofs exploit the close correspondence between au-
tomata and monadic predicate logic. Büchi [10] and Rabin [30]
have respectively proven decidability of monadic second-order
logic (MSO) over the naturals and the infinite binary tree us-
ing translations of MSO to automata. Conversely, automata
can easily be transformed into equivalent MSO formulas. The
proof of our main result involves a translation from alternating
timed automata to monadic predicate logic over the structure
(T, <,+1), where T is a bounded interval of reals and +1 is
the relation defined by +1(x, y) if and only if x + 1 = y. The
+1 relation is used to encode timing constraints in automata.

We translate timed alternating automata into games over
(T, <,+1) with winning conditions expressed in monadic
predicate logic. The class of games that we obtain is a vari-
ation of that introduced by McNaughton [25] in connection
with Church’s problem [12], [37]. Given an MSO(<)-formula
ϕ(X,Y), Church’s problem asks whether there exists a causal
operator1 F on predicates such that ∀X ϕ(X,F (X)). Thus
Church’s problem generalises the satisfiability problem for
MSO to a uniformisation problem. The games that we intro-
duce can be generalised and used to analyse a natural extension
of Church’s problem for MSO(<,+1) over bounded intervals
of the reals, but we do not pursue this direction here. For our
current purpose the key result is a procedure to determine the
winner of games from this class. This enables us to establish the
decidability of the language emptiness problem for alternating
timed automata.

It is worth noting that we reduce the language emptiness
problem for alternating timed automata to a uniformisation
problem for first-order logic over (T, <,+1). By contrast,
in the classical translations of (untimed) automata to monadic
logic, language emptiness is reduced to a satisfiability problem
for second-order logic over (N, <) [23]. It does not seem possi-
ble to give a uniform reduction of the language emptiness prob-
lem for alternating timed automata to the satisfiability problem
for monadic second-order logic over (T, <,+1). We discuss
this question further in Section 6.

Related Work. The quest for a decidable class of timed
automata with good closure properties has led to a consid-
erable body of work, including the introduction of determin-
isable subclasses of timed automata [4], restrictions to one-
clock automata [29], [22], and bounded-variability seman-
tics [39]. See also Henzinger et al.’s paper on fully decidable
formalisms [16].

The present paper substantially generalises some of the main
results of [26], in which we established the decidability of both
the time-bounded language inclusion problem for timed au-
tomata (2EXPSPACE-complete), and the time-bounded MTL
model-checking problem for timed automata (EXPSPACE-
complete). Both decidability results now easily follow from our
new Theorem 15, since MTL formulas can be encoded as one-
clock alternating timed automata of a particular type [27]. The-

1F is a causal operator if the truth value of F (X)(n) for a monadic predicate
X and individual n only depends on the values of X(m) for m ≤ n.

orem 15, in which no restrictions whatsoever are placed on al-
ternating timed automata, does not seem amenable to the proof
techniques of [26] and instead requires novel game-theoretic
tools. The increased expressiveness, however, comes at the
price of a significant blow-up in complexity: from EXPSPACE
or 2EXPSPACE to non-elementary (see Theorem 19).

There is an extensive body of work concerning games on
timed automata and related timed-graph formalisms. This orig-
inates in [18], [24] and encompasses concurrent games [9],
weighted timed automata [1], [7] and tool support [6]. Turn-
based games on timed automata can easily be encoded as Mc-
Naughton games in the sense of the present paper, thanks to the
expressiveness of the logic MSO(<,+1). However the gener-
ality of our class of McNaughton games entails that our decid-
ability results are restricted to bounded time domains, in con-
trast with [24].

A key aspect of our technical development is the use of para-
metric games. This is related to the works of [15], [33] on
Church’s problem with parameters.

2. Alternating Timed Automata
Let Σ be a finite alphabet and let R+ denote the set of non-

negative reals. A timed event is a pair (a, t), where t ∈ R+

is called the timestamp of the event a ∈ Σ. A timed word
is a finite sequence w = (a1, t1)(a2, t2) . . . (an, tn) of timed
events whose corresponding sequence of timestamps is strictly
increasing.2

We denote by untime(w) the underlying untimed word
a1a2 . . . an. A set of timed words is called a timed lan-
guage. If T ⊆ R+ then TΣ∗ denotes the set of timed words
w = (a1, t1)(a2, t2) . . . (an, tn) such that t1, t2, . . . , tn ∈ T.
In this paper we are particularly interested in timed languages
L ⊆ TΣ∗ for bounded sub-intervals of R+. For uniformity we
assume that T = [0, N) for N ∈ N, although our results can
easily be adapted arbitrary bounded intervals.

2.1. Automata
Let C be a set of clock variables. A clock valuation is a

function ν : C → R+. If R ⊆ C is a set of clock variables
then ν[R := 0] denotes the valuation that maps each clock x ∈
R to 0 and agrees with ν on all other clocks. The zero clock
valuation 0 is defined by 0(x) = 0 for all x ∈ C. The set Φ(C)
of clock constraints ϕ is defined by the following grammar:

ϕ := true | false | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | x ∼ k ,

where k ∈ N and ∼ ∈ {<,≤,=,≥, >}.

2Thus our model of time is strongly monotonic; in contrast, weakly mono-
tonic models allow multiple events to happen ‘simultaneously’ (or, more pre-
cisely, with null-duration delays between them). The main results of this paper
remain substantively the same under either approach, although weakly mono-
tonic models cause slight complications.

Note also that we are restricting ourselves to finite timed words (with, how-
ever, no a priori bound on the number of events). This is a natural assumption
in the context of bounded time domains: infinite timed words would necessarily
be Zeno, a situation usually proscribed in research on real-time systems.

Recall from [3] that the transition relation of a timed automa-
ton can be seen as a partial function

δ : S × Σ× Φ(C) → P(S × P(C)) ,

where S is the set of locations and Σ the alphabet of the au-
tomaton. The meaning of (s′, R) ∈ δ(s, a, ϕ) is that from state
(s, ν), where ν satisfies ϕ, the automaton can read letter a and
transition to state (s′, ν[R := 0]).

In the definition of an alternating timed automaton the tran-
sition function is generalised to a partial function

δ : S × Σ× Φ(C) → B+(S × P(C)) .

Here B+(P) denotes the set of positive Boolean formulas over
a set of propositions P , generated by the grammar

ψ := true | false | p | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 ,

where p ∈ P . A subset M of P satisfies ϕ ∈ B+(P) if the
truth assignment that assigns true to elements of M and false
to elements of P \M satisfies ϕ.

In state (s, ν), if ν satisfies the clock constraint ϕ and
{(s1, R1), . . . , (sk, Rk)} satisfies δ(s, a, ϕ), then we think of
the automaton as having a conjunctive transition (s, ν) a−→
{(s1, ν1), . . . , (sk, νk)}, where νi = ν[Ri := 0].

Definition 1: An alternating timed automaton is a tuple
A = (Σ, S, C, s0, F, δ), where

• Σ is a finite alphabet
• S is a finite set of locations
• C is a finite set of clock variables
• s0 ∈ S is the initial location
• F ⊆ S is a set of accepting locations
• δ : S × Σ× Φ(C) → B+(S × P(C)) is a partial function

with finite domain.
We also adopt the following simplifying assumption without
loss of generality:3

Partition. For each location s and letter a ∈ Σ,
the set of constraints ϕ such that δ(s, a, ϕ) is defined
forms a partition of the set (R+)C of clock valua-
tions.

Before formally defining the language accepted by an alter-
nating timed automaton, we give some examples.

Example 2: We define an automaton A over alphabet Σ =
{a} that accepts those words such that for every timed event
(a, t) with t < 1 there is an event (a, t + 1) exactly one time
unit later. A has a single clock x and set of locations {s, u},
with s initial and accepting, and u non-accepting. The transition
function is defined by

δ(s, a, x < 1) = (s, ∅) ∧ (u, {x}) δ(s, a, x ≥ 1) = (s, ∅)
δ(u, a, x 6= 1) = (u, ∅) δ(u, a, x = 1) = true

3This assumption does not affect the decidability of the model. It can affect
the complexity by an exponential factor, but in our main result the complexity
is non-elementary so this is inconsequential.

s u true
reset(x)

x ≥ 1

x = 1

x 6= 1

x < 1

Fig. 1. Automaton A

The automaton is illustrated in Figure 1 in which we represent
the conjunctive transition by connecting two arrows with an arc.

A run of A starts in location s. Every time an a-event occurs
in the first time unit, the automaton makes a simultaneous tran-
sition to both s and u, thus opening up a new thread of computa-
tion equipped with a fresh copy of the clock x. The automaton
must eventually leave location u, which is non-accepting, and
it can only do so exactly one time unit after first entering the
location.

Example 3: We define an automaton B, shown in Figure 2,
over alphabet {a} that accepts those words such that for all con-
secutive pairs of events (a, ti) and (a, ti+1) with ti, ti+1 < 1
there is no subsequent event (a, tj) with ti+1 < tj < ti+1 +1.
Excepting some corner cases4, this requirement says that for
each event (a, tj) with 1 < tj < 2 there is an event (a, tj − 1)
exactly one time unit earlier. Indeed, if there were no such event
then letting (a, ti) be the latest event with ti < tj − 1 and
(a, ti+1) the earliest event with tj − 1 < ti+1 we see that the
input word would be rejected by B.
B has two clocks x and y, and set of locations {s, u, v}, with

s initial and all locations accepting. The transition function is
defined by

δ(s, a, x < 1) = (s, ∅) ∧ (u, {x})
δ(s, a, x ≥ 1) = (s, ∅)
δ(u, a, true) = (v, {y})

δ(v, a, x < 1 ∨ y > 1) = (v, ∅)
δ(v, a, x ≥ 1 ∧ y ≤ 1) = false .

From location s every time an a-event occurs the automaton
starts a new thread in location u, resetting clock x. On the next
a-event this new thread transitions to location v, resetting clock
y. Thereafter the thread only allows a-events if x < 1 or y > 1;
by this mechanism the automaton blocks timed events (a, tj),
t > 1, for which there is a consecutive pairs of events (a, ti)
and (a, ti+1) with ti + 1 < tj < ti+1 + 1.

A run of an alternating timed automaton
A = (Σ, S, C, s0, F, δ) over a timed word w =
(a1, t1)(a2, t2) . . . (an, tn) is a finite dag satisfying the
following conditions: (i) each vertex is a triple (i, s, ν),
with 0 ≤ i ≤ n, s ∈ S is a location, and ν is a clock

4We should also require that if (a, tj) is the first or last event with 1 ≤ tj <
2, then there be an earlier event (a, ti) with ti = tj − 1. Based on the same
ideas involved in the definition of B, one can easily define an automaton C that
accepts precisely those words satisfying this requirement.

s u v false
reset(x)

x ≥ 1

reset(y) x ≥ 1 ∧

y ≤ 1

x < 1 ∨ y > 1

x < 1

Fig. 2. Automaton B

valuation; (ii) there is a vertex (0, s0,0); (iii) each ver-
tex (i, s, ν), i ≤ n − 1, has a (possibly empty) set of
children of the form {(i + 1, s1, ν1), . . . , (i + 1, sk, νk)}
where, writing ν′ = ν + ti+1 − ti (and adopting the
convention that t0 = 0), there is a conjunctive transition
(s, ν′) ai−→ {(s1, ν1), . . . , (sk, νk)}.

The run is accepting if for each vertex (n, s, ν), s is an ac-
cepting location; in this case we say that the timed word w is
accepted by A. The language LT(A), is the set of words in
TΣ∗ that are accepted by A.

2.2. The Acceptance Game
In this paper we exploit the fact that acceptance of a timed

word w = (a1, t1)(a2, t2) . . . (an, tn) by an alternating timed
automaton A = (Σ, S, C, s0, F, δ) has a game-theoretic char-
acterisation.

Define the acceptance game G(A, w) between Automaton
and Pathfinder as follows. A state of the game G(A, w) is a
triple (i, s, ν), with 0 ≤ i ≤ n, s ∈ S is a location, and ν is a
clock valuation. Play starts in state (0, s0,0) and consists of n
rounds. Suppose that at the beginning of the (i + 1)-th round,
0 ≤ i ≤ n−1, the state is (i, si, νi) and write ν′ = νi+ti+1−ti.
Then Automaton selects a model M for δ(si, ai, ϕ), where ν′

satisfies ϕ; Pathfinder responds by choosing an atom (s,R) ∈
M , and the next state is (i+ 1, s, ν′[R := 0]). Automaton wins
if either Pathfinder cannot move on his turn (in case Automaton
selects the empty model M = ∅), or if the game ends in an
accepting state after the last round.

A partial play is a finite sequence of consecutive game states.
A strategy for Automaton is a mapping that assigns to each such
sequence a next move of Automaton. Such a strategy is winning
if Automaton wins any play in which the strategy is followed.
The following result is straightforward.

Proposition 4: A timed word w ∈ TΣ∗ is accepted by A if
and only if Automaton has a winning strategy in G(A, w).

One of the motivations for introducing alternating timed au-
tomata is that they enjoy better closure properties than ordinary
timed automata.

Proposition 5—[22], [29]: For any time domain T ⊆ R+

the class of languages L ⊆ TΣ∗ accepted by alternating timed
automata is effectively closed under union, intersection, and
complement.

Closure under union and intersection is straightforward since
we allow both disjunction and conjunction in the transition

function. Thanks to the Partition Assumption one can com-
plement an automaton by simply interchanging accepting and
non-accepting states and exchanging conjunctions and disjunc-
tions in the transition function.

Example 6: Taking the intersection of the automaton A in
Example 2, the automaton B in Example 3, and the automaton
C mentioned in the footnote to Example 3, all defined over al-
phabet {a}, one obtains the automaton Acopy. Over time do-
main T = [0, 2), LT(Acopy) consists of those timed words
w = (a, t1)(a, t2) . . . (a, t2n) such that ti+n = ti + 1 for
1 ≤ i ≤ n, i.e., such that the +1 function defines a one-to-
one correspondence between the set of events in the first time
unit and the set of events in the second time unit.

3. Monadic Second-Order Logic
Throughout this section we assume a fixed time domain

T = [0, N). We consider monadic second-order logic (MSO)
over the structure (T, <,+1), where +1(x, y) holds if and only
if x + 1 = y. The syntax of MSO(<,+1) has as vocabu-
lary first-order variables t1, t2, . . ., monadic predicate variables
X1, X2, . . ., and the binary relations +1 and <. Atomic for-
mulas are of the form X(t), t1 < t2, +1(t1, t2), and t1 = t2.
Well-formed formulas are obtained from atomic formulas using
Boolean connectives, the first-order quantifiers ∃t and ∀t, and
the second-order quantifiers ∃X and ∀X . If we omit the +1 re-
lation then we obtain the sub-logic MSO(<). We denote sets of
monadic predicates in boldface and write ϕ(X) for a formula
whose free second-order variables are drawn from the set X.
In the sequel we reserve the letters W,X, Y to denote monadic
predicate variables, and P,Q,R to denote their interpretations
as subsets of T.

Example 7: Fix a finite set W of monadic predi-
cate variables, and consider the timed word w =
(a1, t1)(a2, t2) . . . (an, tn) over alphabet Σ = 2W \ ∅. We
associate with w a structure Mw that extends (T, <,+1) with
interpretations of the monadic predicate variables W, where
W ∈ W is interpreted as the set {ti : W ∈ ai}.

Shelah [35] showed that the satisfiability problem for
MSO(<) over the non-negative reals (and hence also over
any non-empty interval of reals) is undecidable. He also
proved, however, that decidability can be recovered by restrict-
ing second-order quantification to countable sets. Given our
interest in modelling finite timed words in the manner of Ex-
ample 7, the following stronger restriction is natural and is as-
sumed henceforth.

Finiteness. All free predicate variables are inter-
preted by finite sets, and second-order quantification
ranges over finite sets.

Decidability of MSO(<) under this restriction follows from
Shelah’s result mentioned above.

Observe that the models arising from timed words in Ex-
ample 7 obey the finiteness assumption; conversely any model
arises from a unique timed word. Thus we may identify the set

of models of a formula ϕ(W) of MSO(<,+1) with a timed
language over alphabet 2W \ ∅.

Let w = (a1, t1)(a2, t2) . . . (an, tn) and w′ =
(a1, t

′
1)(a2, t

′
2) . . . (an, t

′
n) be timed words with

untime(w) = untime(w′). Then the associated models
are order-isomorphic provided that t1 and t′1 are either both
zero or both non-zero. Building on this observation, we can
represent the set of all models of an MSO(<)-formula as a
regular untimed language.

Definition 8: Let W be a set of predicate variables. Without
loss of generality, assume that W contains a distinguished pred-
icate W0 with a fixed interpretation as the set {0}. A collection
M of interpretations of W in T is said to be regular if there
exists a regular (untimed) language L on alphabet Σ = 2W \ ∅
such that

M = {Mw : w ∈ TΣ∗, untime(w) ∈ L} .

Thanks to the convention on W0, the first letter of any word in
L denotes the set of predicates true at time 0 in the associated
model.

The following proposition follows from [31, Theorem 1].
Proposition 9: The set of models of ϕ(W) ∈ MSO(<) is

effectively regular.

4. McNaughton Games
McNaughton [25] gave a formulation of Church’s problem

in terms of two-player games over the structure (N, <) with
MSO(<) winning conditions. In this section we introduce a
class of McNaughton-like games over bounded time domains
T = [0, N) with winning conditions in MSO(<,+1). These
games are shown to generalise the class of acceptance games
for alternating timed automata as defined in Section 2. Follow-
ing [15], [32] we consider games with parameters. The pres-
ence of parameters is crucial both in setting up the correspon-
dence with the acceptance game and in our inductive proof of
decidability for McNaughton games.

Let ϕ(W,X,Y) be an MSO(<,+1) formula with free vari-
ables among W, X and Y. We think of X as a set of variables
under the control of Player I, Y as a set of variables under the
control of Player II, and W as a set of parameters: each in-
stantiation of W yields a different game. Let P be an inter-
pretation of W with t1 < t2 < · · · < tn an enumeration of⋃

P, i.e., the set of points where some predicate in P holds.
The McNaughton game G(ϕ,P) is a turn-based game in which
Player I and Player II run through the sequence of timestamps
t1, . . . , tn, successively choosing values for their predicates at
each timestamp. More formally:

(i) The games consists of n rounds. In the i-th round Player I
chooses a bit vector bi ∈ {0, 1}X and then Player II chooses a
bit vector b′i ∈ {0, 1}Y;

(ii) At the conclusion of the game, Player I has constructed
an interpretation Q of X that assigns each variable X ∈ X to
the set {ti : 1 ≤ i ≤ n, bi(X) = 1}. Likewise, Player II has

constructed an interpretation R of Y that assigns each variable
Y ∈ Y to the set {ti : 1 ≤ i ≤ n, b′i(Y) = 1};

(iii) If T |= ϕ(P,Q,R) then Player I is the winner; other-
wise Player II is the winner.

Say that the sequence of moves in the first i rounds of
G(ϕ,P) determines a partial play (b1, b′1) . . . (bi, b

′
i), where

bj ∈ {0, 1}X and b′j ∈ {0, 1}Y for 1 ≤ j ≤ i. A strategy
for Player I is a function from the set of partial plays to the set
{0, 1}X. Such a strategy is winning if Player I wins all plays in
which the strategy is followed.

In the next section we consider the decidability of the follow-
ing two questions:
Decision Problem. Given a formula ϕ(W,X,Y), does there
exist an interpretation P of the set of parameters W for which
Player I has a winning strategy in the game G(ϕ,P)?
Winning-Region Problem. Compute a representation of the
set of parameters P for which Player I has a winning strategy
in the game G(ϕ,P).

We use the computability of the winning-region problem for
MSO(<) winning conditions to establish decidability of the de-
cision problem for MSO(<,+1) winning conditions.

4.1. Relating the McNaughton and Acceptance Games

We briefly sketch how the language emptiness problem for
an alternating timed automaton A = (Σ, S, C, s0, F, δ) over
time domain T can be reduced to the decision problem for Mc-
Naughton games over T. To this end, we construct a formula
ϕA(W,X,Y) of MSO(<,+1) so as to establish a correspon-
dence between the acceptance game G(A, w) for a given timed
word w (cf. Section 2) and the McNaughton game G(ϕA,P)
for a given interpretation P of W that is determined by w.

The set of parameters W = {Wσ : σ ∈ Σ} contains a
predicate variable for each alphabet symbol. Each timed word
w ∈ TΣ∗ naturally determines an interpretation P of W over
T, cf. Example 7.

We imagine that Player I in G(ϕA,P) takes the role of Au-
tomaton in G(A, w), and Player II takes the role of Pathfinder.
For each set of atoms M ⊆ S × P(C) we postulate a vari-
able XM whose truth value encodes the choice of Automaton
to select model M in a given round. Similarly, for each atom
α ∈ S × P(C) we postulate a variable Yα whose truth value
encodes the choice of Pathfinder to select atom α in a given
round.

We instrument the formula ϕA so that Player I wins the Mc-
Naughton game G(ϕA,P) if and only if Automaton wins the
acceptance game G(A, w). The key components of ϕA are sub-
formulas ϕaut and ϕpath that ensure that Player I and Player II
correctly simulate Automaton and Pathfinder respectively.

The formula ϕpath ensures that in each round Pathfinder can
only choose one atom α, which must moreover be selected from

the set M chosen by Automaton. This is expressed as:

∀u
∧
α

(
Yα(u) →

∨
M3α

XM (u)

)
∧

∀u
∧
α6=β

¬(Yα(u) ∧ Yβ(u)) .

The formula ϕaut ensures that in each round Automaton
chooses a model M satisfying the transition function δ. It is the
conjunction over all locations s ∈ S, inputs σ ∈ Σ and guards
ψ ∈ Φ(C), such that δ(s, σ, ψ) is defined, of the formulas

∀u ∀v ((states(u) ∧ next(u, v) ∧Wσ(v) ∧ constψ(v)) →∨
M |=δ(s,σ,ψ)

XM (v)) .

Here states(u) and next(u, v) are easily defined auxiliary for-
mulas, respectively expressing that the automaton is in state s at
time u, and that u and v are consecutive timestamps in the input
word. Similarly, constψ(v) expresses that the clock constraint
ψ ∈ Φ(C) holds at time u. For example, in case ψ ≡ x ∼ k we
define constψ(v) to be the formula

∀u ∀w ((resetx(u) ∧ (u < w < v → ¬resetx(w))) →
v ∼ u+ k) ,

where resetx(u) is an auxiliary formula expressing that clock x
was reset at time u (which information is available from Yα(u)).

We define ϕA := ϕaut ∧ (ϕpath ∧ϕinit → ϕfin), where ϕinit

and ϕfin are easily defined formulas, respectively expressing
that play in the acceptance game must start in an initial location
and finish in an accepting location.

It is now straightforward to prove the following:
Proposition 10: Automaton wins the acceptance game

G(A, w) if and only if Player I wins the McNaughton game
G(ϕA,P), where P is the set of parameters associated with the
timed word w.

Remark 11: Note that ϕA has no second-order quantifiers,
that is, it is a formula in the first-order fragment of MSO(<
,+1).

5. Main Result
In this section we show decidability of the decision prob-

lem for McNaughton games over bounded time domains. From
this we derive decidability of the time-bounded language empti-
ness problem for alternating timed automata. The proof has
three parts: first we recall from [26] a satisfiability preserving
and reflecting translation from MSO(<,+1) to MSO(<) over
bounded time domains; next we show how to solve the winning-
region problem for McNaughton games with MSO(<) winning
conditions; finally we combine the first two contributions to
solve the decision problem for games with MSO(<,+1) win-
ning conditions.

Throughout this section, let T = [0, N) be a fixed time do-
main.

5.1. Eliminating the Metric
Given an MSO(<,+1) formula ϕ, we define a straightfor-

ward syntactic transformation into an MSO(<) formula ϕ such
that there is a natural bijection between models of ϕ over [0, N)
and models of ϕ over [0, 1).

Let X be the set of monadic predicates appearing in ϕ.
With each predicate X ∈ X, we associate a collection
X0, . . . , XN−1 of N fresh monadic predicates. We then write
X = {Xi | X ∈ X, 0 ≤ i ≤ N − 1}. Intuitively, each Xi

is a predicate on [0, 1) that represents X over the subinterval
[i, i + 1). Formally, an interpretation of X ∈ X over [0, N)
yields an interpretation of Xi over [0, 1) by defining Xi(t) if
and only if X(i + t). Note that this correspondence yields a
bijection between interpretations of X on [0, N) and interpre-
tations of X on [0, 1).

We can assume that ϕ does not contain any (first- or second-
order) existential quantifiers, by replacing them with combina-
tions of universal quantifiers and negations if need be. It is also
convenient to rewrite ϕ into a formula that makes use of a unary
function +1 instead of the +1 relation. To this end, replace ev-
ery occurrence of +1(x, y) in ϕ by (x < N − 1 ∧ x+ 1 = y).

Next, replace every instance of ∀xψ in ϕ by the formula

∀x (ψ[x/x] ∧ ψ[x+ 1/x] ∧ . . . ∧ ψ[x+ (N − 1)/x]) ,

where ψ[t/x] denotes the formula resulting from substituting
every free occurrence of the variable x in ψ by the term t. In-
tuitively, this transformation is legitimate since first-order vari-
ables in our target formula will range over [0, 1) rather than
[0, N).

Having carried out these substitutions, use simple arithmetic
to rewrite every term in ϕ as x + k, where x is a variable and
k ∈ N is a non-negative integer constant.

Every inequality occurring in ϕ is now of the form x + k <
N − 1 or x+ k1 < y+ k2. Replace every inequality of the first
kind by true if k+2 ≤ N and by false otherwise, and replace
every inequality of the second kind by (i) x < y, if k1 = k2;
(ii) true, if k1 < k2; and (iii) false otherwise.

Every equality occurring in ϕ is now of the form x + k1 =
y + k2. Replace every such equality by x = y if k1 = k2, and
by false otherwise.

Every use of monadic predicates in ϕ now has the form
X(x + k), for k ≤ N − 1. Replace every such predicate by
Xk(x).

Finally, replace every occurrence of ∀X ψ in ϕ by
∀X0 ∀X1 . . .∀XN−1 ψ. The resulting formula is the desired
ϕ. Note that ϕ does not mention the +1 function, and is there-
fore indeed a non-metric (i.e., purely order-theoretic) sentence
in MSO(<).

The association between ϕ and ϕ is formalised in the follow-
ing proposition.

Proposition 12: ϕ(X) holds in the structure ([0, N), <,+1)
if and only if the transformed formula ϕ(X) holds in the struc-
ture ([0, 1), <).

5.2. The Regularity Lemma
Recall our assumption that free and bound predicate vari-

ables are interpreted by finite sets. Recall the notion of a regular
set of predicates from Definition 8.

Lemma 13: [Regularity Lemma] Let ϕ(W,X,Y) be a for-
mula of MSO(<). Then the set {P : Player I wins G(ϕ,P)} is
effectively regular.

Proof: According to Proposition 9 we can compute a de-
terministic finite automaton A = (Q,Σ, q0, δ, F) over alphabet
Σ = 2W∪X∪Y \ ∅ whose language represents the set of models
of ϕ. We seek an automaton over alphabet Γ = 2W \ ∅ rep-
resenting the set of interpretations P of W such that Player I
wins G(ϕ,P).

Letw = w1w2 . . . wn ∈ Γn represent an interpretation of W
(in the sense of Definition 8). By distinguishing the contribu-
tion of input bits between two protagonists, respectively called
Player I and Player II, we define a graph game5 G(A, w), which
can be seen as a discrete analogue of G(ϕ,P).

There are two kinds of vertices in G(A, w), Player-I vertices
and Player-II vertices respectively. For each automaton state
q ∈ Q and position 0 ≤ i ≤ n, we include a Player-I vertex
(q, i); if moreover 0 ≤ i ≤ n−1 then we also include a Player-
II vertex (q, i, b) for each bit vector b ∈ {0, 1}X. If 0 ≤ i ≤ n−
1 then we include an edge from (q, i) to (q, i, b), corresponding
to a choice of bit vector b by Player I; for b′ ∈ {0, 1}Y we
also include an edge from (q, i, b) to (q′, i + 1), where q′ =
δ(q, (wi+1, b, b

′)), corresponding to a choice of bit vector b′ by
Player II.

The rules of the game G(A, w) are as follows. Player I
chooses moves at Player-I vertices and Player II chooses moves
at Player-II vertices. Play starts in the vertex (q0, 0) and Player I
wins if play reaches a vertex (q, n) with q ∈ F .

The game G(A, w) essentially represents an untiming of
G(ϕ,P): the moves in each games are the same once one elides
the timestamp associated with each round in the latter game. In
particular, Player I wins G(A, w) if and only if Player I wins
G(ϕ,P).

For E ⊆ Q a set of automaton states and w ∈ Γ∗, we define
the set Predw(E) of states from which Player I can force play
into E on input w:

Predε(E) = E
Predu(E) = {q : ∃b1 ∀b2 δ(q, (u, b1, b2)) ∈ E} u ∈ Γ

Preduw(E) = Predu(Predw(E)) u ∈ Γ, w ∈ Γ∗

Given w ∈ Γ∗, it is straightforward that Player I wins
G(A, w) if and only if q0 ∈ Predw(F). From this observation
one can build an automaton B on alphabet Γ that accepts those
words w such that Player I wins G(A, w). The set of states of B
is P(Q), with F the unique final state, and {S ⊆ Q : q0 ∈ S}
the set of initial states. We include a transition S b−→ T on
input b ∈ Γ if and only if S = Predb(T).

5Graph games are a simple and classical notion [37]. We treat them infor-
mally to avoid overburdening the reader with yet more game-theoretic formal-
ism.

A result similar to Lemma 13 was proven in [15] for para-
metric games over (N, <).

5.3. The Decision Procedure
Theorem 14: Let T = [0, N) be a fixed time domain. Given

an MSO(<,+1)-formula ϕ(W,X,Y), it is decidable whether
there exists an interpretation P of W over T such that Player I
wins G(ϕ,P).

Proof: Applying the transformation described in
Section 5.1 to ϕ(W,X,Y) yields an MSO(<) formula
ϕ(W,X,Y), where W = {Wi : W ∈ W, 0 ≤ i < N},
X = {Xi : X ∈ X, 0 ≤ i < N}, and Y = {Yi : Y ∈
Y, 0 ≤ i < N}. Then interpretations P,Q,R of W,X,Y
as predicates on [0, N) naturally yield interpretations P,Q,R
of W,X,Y as predicates on [0, 1) where, e.g., Pi(t) holds if
and only if P (i + t) holds, 0 ≤ t < 1 and 0 ≤ i < N . By
Proposition 12 we have that ϕ(P,Q,R) holds if and only if
ϕ(P,Q,R) holds.

Observe, however, that there is a significant difference be-
tween the game G(ϕ,P), which is played over the interval
[0, N) and the game G(ϕ,P), played over [0, 1). For exam-
ple, in the former, for X ∈ X and 0 ≤ t < 1, Player I chooses
the value of X(t) before X(t+1). However, in the latter, these
values, respectively represented asX0(t) andX1(t), are chosen
at the same time.

Instead we associate with G(ϕ,P) a sequence of Mc-
Naughton games G0, . . . , GN−1, each over the interval [0, 1),
and each with an MSO(<) winning condition. Intuitively the
i-th game Gi corresponds to the restriction of G(ϕ,P) to the
time interval [i, i + 1). Accordingly we have Player I choose
the value of Xi, X ∈ X and Player II choose the value of Yi,
Y ∈ Y in Gi. The key insight in defining Gi is to treat the
variables Xj , X ∈ X and Yj , Y ∈ Y as additional parameters
for each j < i. That is, the respective choices of Player I and
Player II in the preceding games Gj , j < i become parame-
ters in Gi. (Strictly speaking each Gi is a family of games, one
game for each instantiation of the extra parameters in ϕi.)

To be precise, the winning condition of Gi is an MSO(<)-
formula ϕi with free variables W, {Xj : X ∈ X, 0 ≤ j ≤ i}
and {Yj : Y ∈ Y, 0 ≤ j ≤ i}. Of these, Player I controls
Xi, X ∈ X, Player II controls Yi, Y ∈ Y, and the remain-
ing variables are parameters. The definition of the ϕi proceeds
backwards, from ϕN−1 down to ϕ0, and is such that Player I
wins G(ϕ,P) if and only if he wins G0(ϕ0,P), which is an
instantiation of G0. This equivalence allows us to decide the
winner of G(ϕ,P).

To start with we define ϕN−1 := ϕ ∧ χN−1, where χN−1,
which constrains Player I and Player II to move only when one
of the predicates WN−1, W ∈ W is true, is defined by(∧
X∈X

XN−1 ⊆
⋃

W∈W

WN−1

)
∨

(∨
Y ∈Y

YN−1 6⊆
⋃

W∈W

WN−1

)
.

Suppose we have defined the game Gi+1 involving parame-
ters W, {Xj : 0 ≤ j ≤ i,X ∈ X} and {Yj : 0 ≤ j ≤ i, Y ∈

Y}. By the Regularity Lemma the set of interpretations of these
parameters such that Player I wins Gi+1 is effectively regular
and is expressible by an MSO(<)-formula ψi with the above
parameters as its set of free variables. The winning condition
for the game Gi is then defined to be ϕi := ψi ∧ χi, where χi,
which constrains Player I and Player II to move only when one
of the predicates Wi, W ∈ W is true, is defined by(∧

X∈X

Xi ⊆
⋃

W∈W

Wi

)
∨

(∨
Y ∈Y

Yi 6⊆
⋃

W∈W

Wi

)
.

This completes the definition of the games G0, . . . , GN−1.
There is a natural bijective correspondence between the set of
positions of G(ϕ,P) and the set of positions of (the various in-
stantiations of) theGi, where a position ofG(ϕ,P) with times-
tamp t corresponds to a position ofGbtc with timestamp t−btc.
Moreover this association preserves the identity of the winning
player. In particular, Player I wins G(ϕ,P) if and only if he
wins G(ϕ0,P). We omit the details.

Recalling from Section 4.1 the reduction of the language
emptiness problem for alternating timed automata to the game
decision problem for MSO(<,+1), we obtain the following
theorem, which is the central result of our paper:

Theorem 15: The time-bounded language emptiness prob-
lem for alternating timed automata is decidable.

Note, as an immediate corollary, that Theorem 15 entails the
decidability of the time-bounded model-checking problem of
timed automata against alternating timed automata specifica-
tions.

6. Complexity and Expressiveness
Define a family of functions expk : N → N by exp0(n) = n

and expk+1(n) = 2expk(n). A function f : N → N is non-
elementary if it grows faster than any expk.

Our procedure for determining language emptiness for alter-
nating timed automata has non-elementary complexity. This
blow-up does not arise from the translation of MSO(<) for-
mulas to automata in the proof of Proposition 9, since the
quantifier-alternation depth of the relevant formulas is bounded
independently of the size of the automata. Rather, the culprit
is the exponential blow-up that occurs with each application of
the Regularity Lemma in the proof of Theorem 14.

In this section we give a non-elementary lower bound for
the language emptiness problem for alternating timed automata.
We prove this by reduction from the emptiness problem for
star-free regular expressions. We also discuss the related ques-
tion of translating from alternating timed automata to equivalent
MSO(<,+1) formulas.

6.1. Complexity Lower Bound
A star-free regular expression over alphabet Σ is built from

the symbols ∅ and σ, for any σ ∈ Σ, using the operations of
union (+), concatenation (·), and complementation (¬). Such

an expression E denotes a language L(E) ⊆ Σ∗ which is de-
fined as follows:

L(∅) = ∅ and L(σ) = {σ};
L(E + E′) = L(E) ∪ L(E′);
L(E · E′) = L(E) · L(E′);
L(¬E) = Σ∗ \ L(E).

The following result was shown in [36].
Theorem 16: The language emptiness problem for star-free

regular expressions is non-elementary.
We give a polynomial-time reduction of the language empti-

ness problem for star-free regular expressions to the time-
bounded language emptiness problem for alternating timed au-
tomata. Note that since language emptiness for (untimed) al-
ternating automata is PSPACE-complete [11], such a reduction
would not be possible in the untimed setting. Before describ-
ing the reduction we need some auxiliary notions concerning
regular expressions.

The operator depth odp(E) of a regular expression E is de-
fined as follows:

odp(∅) = odp(σ) = 1;
odp(E + E′) = max{odp(E), odp(E′)}+ 1;
odp(E · E′) = max{odp(E), odp(E′)}+ 1;
odp(¬E) = odp(E).

Note that negation does not count toward the operator depth.
Given a star-free regular expression E over alphabet Σ and a

word u ∈ Σ∗ we define the membership game G(u,E). This
is a two-player game with N rounds, where N is the operator
depth of E. The two players are Prover, who is trying to show
u ∈ E, and Refuter, who is trying to show u 6∈ E. The positions
of the game are pairs (v, F) where v is a sub-word of u and F
has the form G or ¬G for G a sub-expression of E. The initial
position is (u,E). Suppose the position at the start of a given
round is (v, F), where v = v1 . . . vn; then the round proceeds
as follows:

• If F ≡ F1 · F2 then Prover moves first by choosing
an index i in v. Refuter responds by selecting either
(v1 . . . vi−1, F1) or (vi . . . vn, F2) as the position in the
next round;

• If F ≡ ¬(F1 · F2) then Refuter moves first by choos-
ing an index i in v. Prover responds by selecting either
(v1 . . . vi−1,¬F1) or (vi . . . vn,¬F2) as the position in the
next round;

• If F ≡ F1+F2 then Prover selects either (v, F1) or (v, F2)
as the position in the next round;

• If F ≡ ¬(F1 +F2) then Refuter selects either (v,¬F1) or
(v,¬F2) as the position in the next round.

The positions (v, σ), (v,¬σ), (v, ∅), and (v,¬∅) are terminal.
In these cases Prover wins if v is a member of the corresponding
expression and Refuter wins otherwise.

It is clear that Prover has a winning strategy in G(u,E) if
and only if u ∈ L(E).

Definition 17: Suppose that E is a star-free regular expres-
sion over alphabet Σ. Given a time domain T = [0, N), we
associate with E a timed language LT(E) ⊆ TΣ∗ containing

those timed words w = (a1, t1) . . . (an, tn) satisfying the fol-
lowing two properties:
(i) There exists a word u ∈ L(E) such that untime(w) = uN

consists of N copies of u;
(ii) Each successive copy of u in w is separated by one time

unit, that is, ti+|u| = ti + 1 for 1 ≤ i ≤ Nn− |u|, where
|u| denotes the length of u.

Example 18: In case T = [0, 2) and Σ = {a} then
LT(Σ∗) = LT(Acopy), where Acopy is the automaton defined
in Example 6.

Let E be a star-free regular expression of operator depth N
and write T = [0, N). It holds by construction that LT(E) is
non-empty if and only if L(E) is non-empty. Next we define an
alternating timed automaton AE such that LT(AE) = LT(E).

There are two ideas behind the definition of AE . The first,
following Example 18, is that LT(Σ∗) is the language of a sim-
ple variant of Acopy—call it B—that accepts its input if and
only if the sub-word occurring in the first time unit is repeated
in all subsequent time units. The second idea is that for an ar-
bitrary expression E we can define AE as the intersection of B
with another automaton. Note that if w is accepted by B then
untime(w) = uN for some u ∈ Σ∗. The definition of AE
is such that AE simulates the membership game G(u,E) by
playing one round in each time unit. Intuitively, AE simulates
moves of Prover by disjunctive transitions and moves of Refuter
by conjunctive transitions.

Recall that a position of the membership game G(u,E) is a
pair (v, F), where v is a sub-word of u and F has the form G
or ¬G for a sub-expression G of E. In order to remember the
game position (v, F) between successive time units, AE stores
F in its finite control, while it records v by resetting a clock x as
it reads the first letter of v and resetting a clock y as it reads the
last letter of v. Automaton AE consists of N gadgets; one time
unit passes between control entering and exiting each gadget.

There is an initialisation gadget that resets clock x on the first
event of the timed word and resets clock y on the last event in
the first time unit.

The gadget for F ≡ F1 ·F2 is illustrated in Figure 3 (we omit
the labels on transitions). Referring to the appropriate clause in
the membership game, the choice of when to take the transi-
tion exiting location s simulates the move of Prover to select an
index of the input word; the two conjunctive branches of this
transition simulate the choice of Refuter either to choose the
left sub-word or the right sub-word.6

The gadget for F ≡ ¬(F1 · F2) is illustrated in Figure 4. It
operates along similar lines to the gadget for F1 · F2 and we
omit detailed explanation.

Theorem 19: The time-bounded language emptiness prob-
lem for alternating timed automata is non-elementary.

It can be seen from the proof of Theorem 19 that the non-
elementary lower bound applies for automata with only two

6Strictly speaking, to handle the case in which v is the empty word, we should
include transitions in Figures 3 and 4 that allow clocks x and y to be reset
simultaneously. But these are omitted for readability.

F1 · F2 s

F1

F2

reset(x)

x = 1

re
se

t(
y)

reset(x)

reset(y)

y = 1

y ≤ 1

Fig. 3. Gadget for F1 · F2

¬(F1 · F2) s

¬F1

true

¬F2

reset(x)

x = 1

reset(y)

reset(x)

y > 1

reset(y)

y = 1

y ≤ 1

y ≤ 1

Fig. 4. Gadget for ¬(F1 · F2)

clocks. On the other hand, for a fixed time bound the decision
procedure for language emptiness presented in Theorem 15 is
elementary. The translation of the language emptiness prob-
lem to the decision problem for McNaughton games detailed in
Proposition 10 involves a winning condition ϕA whose quan-
tifier depth is absolutely bounded. Furthermore the decision
procedure for McNaughton games presented in Theorem 14 is
elementary if the quantifier depth of the winning condition and
the time bound are fixed.

6.2. Expressiveness
Nondeterministic automata on words and trees can be

straightforwardly translated into equivalent MSO(<) formulas
whose size is polynomial in the size of the automata and whose
quantifier-alternation depth (both first- and second-order) is
bounded independently of the automata. In these translations
the formulas encode runs of the automata.

The paper [23] shows how to encode run dags of alternat-
ing automata over (untimed) words in MSO(<); however such
a direct encoding fails for alternating timed automata since
their run dags can have unbounded width. Indeed, the non-
elementary lower bound for the time-bounded language empti-
ness problem seems to preclude a ‘simple’ uniform transla-
tion of alternating timed automata to MSO(<,+1). More pre-

cisely, there cannot be an elementary procedure that computes
from a given automaton an MSO(<,+1) formula that defines
the same language over all time domains T and such that the
quantifier-alternation depth of the formula is bounded indepen-
dently of the automaton. The existence of such a procedure
would contradict Theorem 19 given that the satisfiability prob-
lem for MSO(<,+1) over bounded time intervals is elementary
for formulas of a fixed quantifier-alternation depth [26]. How-
ever, for each fixed time domain T = [0, N), we can extract a
translation from automata to equivalent MSO(<,+1)-formulas
from the proof of Theorem 14:

Theorem 20: Let T = [0, N) be a bounded time domain.
Given a set of predicate symbols W and an alternating timed
automaton A over alphabet 2W \ ∅ one can compute a formula
ψ(W) of MSO(<,+1) such that L(A) = L(ϕ).

Proof: Consider the McNaughton game G(ϕA,P) de-
rived from the automaton A in the manner described in Section
4.1. We seek a formula ψ(W) representing the set of predicates
P for which Player I wins G(ϕA,P).

Let W = {Wi : W ∈ W, 0 ≤ i ≤ N − 1} be a fresh
set of monadic predicates. Recall from Section 5.1 the natural
bijection between interpretations of W over [0, N) and inter-
pretations of W over [0, 1). The decision procedure for Mc-
Naughton games given in the proof of Theorem 14 yields an
MSO(<) formula θ(W) that represents the image under the
above-mentioned bijection of the set of predicates P for which
Player I wins G(ϕA,P). It remains to apply the inverse of the
transformation described in Section 5.1, and obtain from θ(W)
a corresponding MSO(<,+1) formula ψ(W).

The transformation from θ(W) to ψ(W) is straightforward.
One replaces each atomic formula Wi(t) in θ(W) with W (t+
i) and one relativises all first-order quantifiers to the interval
[0, 1): thus ∀xϕ becomes ∀x (0 ≤ x < 1 → ϕ) and ∃xϕ
becomes ∃x (0 ≤ x < 1 ∧ ϕ).

References
[1] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for

weighted timed games. In Proc. ICALP’04, volume 3142 of LNCS.
Springer, 2004.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. In Proc. LICS’90. IEEE Computer Society Press, 1990.

[3] R. Alur and D. Dill. A theory of timed automata. Theoret. Comp. Sci.,
126:183–235, 1994.

[4] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A deter-
minizable class of timed automata. Theoret. Comp. Sci., 211:253–273,
1999.

[5] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort. Effi-
cient computation of time-bounded reachability probabilities in uniform
continuous-time Markov decision processes. Theor. Comput. Sci., 345(1),
2005.

[6] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime. Uppaal-tiga: Time for playing games! In Proc. CAV’07, volume
4590 of LNCS. Springer, 2007.

[7] P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies
in priced timed game automata. In Proc. FSTTCS’04, volume 3328 of
LNCS. Springer, 2004.

[8] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The cost of punctual-
ity. In LICS’07. IEEE Computer Society Press, 2007.

[9] T. Brihaye, T. Henzinger, V. Prabhu, and J.-F. Raskin. Minimum-time
reachability in timed games. In Proceedings of ICALP’07, volume 4596
of LNCS. Springer, 2007.

[10] J. R. Büchi. On a decision method in restricted second-order arithmetic.
In Proc. 1960 International Congress on Logic, Methodology and Philos-
ophy of Science, pages 1–11. Stanford University Press, 1962.

[11] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

[12] A. Church. Applications of recursive arithmetic to the problem of cir-
cuit synthesis. In Summaries of the Summer Institute of Symbolic Logic,
volume 1, pages 3–50. Cornel Univ, Ithaca, 1957.

[13] M. Dickhöfer and T. Wilke. Timed alternating tree automata: The
automata-theoretic solution to the TCTL model checking problem. In
Proc. ICALP’99, volume 1644. Springer, 1999.

[14] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determi-
nacy (extended abstract). In Proc. FOCS’91. IEEE, 1991.

[15] P. Hänsch, M. Slaats, and W. Thomas. Parametrized regular infinite games
and higher-order pushdown strategies. In Proc. FCT’09, volume 5699 of
LNCS. Springer, 2009.

[16] T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time
languages. In Proc. ICALP’98, volume 1443 of LNCS. Springer, 1998.

[17] P. Herrmann. Timed automata and recognizability. Information Process-
ing Letters, 65:313–318, 1998.

[18] G. Hoffmann and H. Wong-Toi. The input-output control of real-time
discrete event systems. In IEEE Real-Time Systems Symposium, 1992.

[19] J.-P. Katoen and I. S. Zapreev. Safe on-the-fly steady-state detection for
time-bounded reachability. In Proc. QEST’06. IEEE Computer Society
Press, 2006.

[20] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that
weak. ACM Trans. Comput. Log., 2(3):408–429, 2001.

[21] S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. of
FoSSaCS’05, volume 3441 of LNCS. Springer LNCS, 2005.

[22] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans.
on Computational Logic, 9(2):1–27, 2008.

[23] C. Löding and W. Thomas. Alternating automata and logics over infinite
words. In Proc. IFIP TCS’00, volume 1872 of LNCS. Springer, 2000.

[24] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems (an extended abstract). In Proc. STACS’95, volume 900
of LNCS. Springer, 1995.

[25] R. McNaughton. Testing and generating infinite sequences by a finite
automaton. Inf. Contr., 9:521–530, 1966.

[26] J. Ouaknine, A. Rabinovich, and J. Worrell. Time-bounded verification.
In Proceedings of CONCUR’09, volume 5710 of LNCS. Springer, 2009.

[27] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic.
In Proc. LICS’05. IEEE Computer Society Press, 2005.

[28] J. Ouaknine and J. Worrell. Safety metric temporal logic is fully decid-
able. In Proc. TACAS’06, volume 3920 of LNCS. Springer, 2006.

[29] Joël Ouaknine and James Worrell. On the decidability and complexity of
metric temporal logic over finite words. Logicical Methods in Computer
Science, 3(1):1–27, March 2007.

[30] M. Rabin. Decidability of second order theories and automata on infinite
trees. Transaction of the AMS, 141:1–35, 1969.

[31] A. Rabinovich. Finite variability interpretation of monadic logic of order.
Theor. Comput. Sci., 275(1-2):111–125, 2002.

[32] A. Rabinovich. Church synthesis problem with parameters. In Proc.
CSL’06, volume 4207 of LNCS, pages 546–561. Springer, 2006.

[33] Alexander Rabinovich. The church synthesis problem with parameters.
Logical Methods in Computer Science, 3(4), 2007.

[34] O. Roux and V. Rusu. Verifying time-bounded properties for ELECTRE
reactive programs with stopwatch automata. In Hybrid Systems, volume
999 of LNCS. Springer, 1994.

[35] S. Shelah. The monadic theory of order. Annals of Math., 102:349–419,
1975.

[36] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time. In Proc. STOC’73, pages 1–9, New York, NY, USA, 1973. ACM.

[37] W. Thomas. Church’s problem and a tour through automata theory. In
Pillars of Computer Science, Essays Dedicated to Boris (Boaz) Trakhten-
brot on the Occasion of His 85th Birthday, volume 4800 of LNCS, pages
635–655. Springer, 2008.

[38] M. Y. Vardi. Alternating automata and program verification. In Computer
Science Today, volume 1000 of LNCS. Springer, 1995.

[39] T. Wilke. Specifying timed state sequences in powerful decidable log-
ics and timed automata. In Proc. FTRTFT’94, volume 863 of LNCS.
Springer, 1994.

